
Architecture for Hybrid Robotic Behavior

Author

Billington, David, Estivill-Castro, Vladimir, Hexel, Rene, Rock, Andrew

Published

2009

Journal Title

Lecture Notes in Computer science

DOI 

https://doi.org/10.1007/978-3-642-02319-4_18

Copyright Statement

© 2009 Springer Berlin / Heidelberg. This is the author-manuscript version of this paper.
Reproduced in accordance with the copyright policy of the publisher. The original publication is
available at www.springerlink.com

Downloaded from

http://hdl.handle.net/10072/30249

Griffith Research Online

https://research-repository.griffith.edu.au



Architecture for hybrid robotic behavior

David Billington1, Vladimir Estivill-Castro2, René Hexel1, and Andrew Rock1

1 ICT/IIIS, Griffith University, Nathan, QLD, 4111, Australia
{d.billington,v.estivill-castro, r.hexel,a.rock}@griffith.edu.au

www.griffith.edu.au/mipal
2 Visiting Scholar, Universitat Popeu Fabra, Barcelona, Spain.

Abstract. Software architectures for agent technology and robots have
been polarized between reactive architectures and architectures based on
planning and reasoning. Although hybrid architectures have been shown
to offer benefits from both, these seem complicated to integrate. In this
paper we integrate the reactive nature of finite state machines and the
reasoning capabilities of non-monotonic logics to produce intelligent au-
tonomous robots. In particular, we demonstrate this with a robotic poker
player. The robotic player integrates vision, sound recognition, motion
control and the reasoning to perform competitively as a player in a com-
plex game with incomplete information.
Key words: Non-monotonic logics, finite state machines, software pat-
terns, software engineering, software architecture.

1 Introduction
The implementation of the behavior of an autonomous robot is a delicate and
sophisticated engineering task. Typically, one would like to produce an architec-
ture that combines a reactive architecture (considered suitable for unknown but
simple environments and tasks) with a planning/reasoning approach (suitable for
complex worlds which need sophisticated knowledge about the domain and the
environment). We present a software architecture that enables behavior design-
ers to specify behaviors using the reactive modeling tool of finite state machines;
however, we enable predicates of non-monotonic logics to label transitions. This
simplifies the design task because the reasoning component of the logic will re-
solve conflicts in the description, while the descriptive nature of non-monotonic
logics relieves the designer from many of the concerns regarding implementation
or the burdens and pitfalls of procedural implementation.

We enable the design of robotic behaviors in terms and formalisms that are
accessible to humans. This will become significantly more relevant as collabora-
tive applications for teams of autonomous robots in human environments emerge
in the near future. Robots have penetrated carefully controlled industrial envi-
ronments where they perform well-defined, repetitive tasks. However, the emer-
gence of agent technology and reduced costs of hardware for sensors, batteries,
networking, and computational power, suggest robots will be deployed in much
more challenging environments that continuously change, often in unpredictable
ways. Today’s technologies only handle the complexity of human environments
to a very limited extent, but it is expected that in the near future, intelligent
integrated systems with the capacity to act within such a complex environment
will collaborate with their users in many tasks [1].



There is now an emerging line of research where the human-machine interac-
tion anticipates the ability of all parties to act and co-exist with the environment
both in cooperation but also in competition with each other and other collabo-
rative teams [2, 3]. Therefore, the area of social robots that interact with people
is gaining prevalence [4], together with the area of human-robot interaction [5].

Cognitive Robotics aims at programing robots using only high-level actions
and relations among actions described by a formal logic. With the situation
calculus as foundation, Golog is arguably the most studied high level logical lan-
guage in this direction [6], and many extensions have appeared in the literature.
However, little exists in terms of comparisons and implementations in robots [7].
Non-monotonic logics can and should be incorporated into formalisms for the
specification, analysis, and design of behavior [8]. We incorporate them into the
central behavioral artifacts provided by state machines. This paper describes
how we implemented this approach. A specific non-monotonic logic (Plausible
Logic [9–11] (PL), which is the only non-monotonic logic with an efficient non-
looping algorithm [11], was used. This paper describes the infrastructure that
enables programmers to design, validate, and deploy graphical models of be-
havior in autonomous mobile robots. We describe the generic architecture that
solves issues of control, interaction with the environment and knowledge rep-
resentation, and how developers define behaviors using this infrastructure else-
where [12]. Here, we give an illustration with an application where robots have
multi-modal interactions with humans in a game of poker. We believe this will
demonstrate the benefits of our approach for intelligent integrated systems that
combine capabilities such as reasoning and planning, voice recognition, image
analysis, and motion control. Games are considered a suitable methodology for
evaluating robot-human interaction [13] while general game playing is the new
frontier of artificial intelligence and agent technology [14]. Our robot acts as a
multi-modal interface that perceives multiple aspects of the environment and
produces diverse types of outputs, such as sounds and gestures, and even acts
on the environment. It interacts with a human in a competitive environment
with incomplete information.3 However, the architecture has also been applied
to other scenarios where decision-making is complicated because there is incom-
plete information about a dynamic environment, for example robotic soccer [15]
and robots for multi-modal interfaces [16]. Algorithms for signal analysis, com-
puter vision, image processing, and gesture recognition are all involved to capture
information from the environment including human speech and human actions.

2 Software Architecture

The most general architecture for an agent interacting with its environment pre-
sumes an execution cycle consisting of a phase where the agent collects informa-
tion through its sensors, decides on an action, and then applies this action [17].
This provides a preliminary answer to the first problem the architecture is to
3 In game theory, making a decision without knowledge of all the values of variables

that determine the state of the environment is labeled as incomplete information,
but also, in the literature of agents this is referred to as an inaccessible environment.



solve — the interaction problem, i.e. how does the robot/agent receive informa-
tion from the environment, and how does it act on it. We use a global architec-
ture that provides a series of services that enable high-level PL descriptions to
be compiled and executed directly on board a robot.

2.1 Format of the Generic Software Architecture

Our generic software architecture shares many fundamental and structural com-
ponents with other proposed software architectures for robotics [18]. This will
illustrate that our incorporation of non-monotonic reasoning and its tools for
visual description and for designing behavior are also applicable to many other
architectures. Our architecture has also proven to be a solid framework4 for de-
velopment from the software engineering perspective in two important aspects.
Modules and subcomponents can be developed by a team of programmers work-
ing relatively independently of each other. The architecture facilitates integration
and supports a development cycle that consists of regular version refinement and
improvement, almost like Extreme Programming [20].

How the robot encodes all information collected about the environment, in-
cluding domain knowledge provided a priori, is the knowledge representation
problem. Our architecture proposes to have this at several levels of detail. At
one level, we use what we call a whiteboard where almost all modules write infor-
mation they have come across, mainly to facilitate module communication. From
the perspective of knowledge representation with logics, the whiteboard comprises
all the facts (including a time-stamp and an author), allowing reasoning associat-
ing agency and negotiation. E.g., in soccer we can interpret whiteboard messages
as “vision believes the ball is in front” and “sonar believes something is ahead”,
and fuse this to increase our confidence that the ball is ahead.

This basic knowledge representation is complemented with formal logics (and
in particular PL) to represent significant issues regarding the domain of oper-
ation. Eg. the rules of poker and the strategies to make decisions should be
expressed in logic. While this would enable reasoning regarding the action to
be performed in a certain state of the environment, the other important aspect
is a software engineering concern. Robot control software becomes rather large
very quickly, and the analysis of certain situations would be better expressed
in a descriptive language close to human understanding enabling much easier
analysis of the validity of the knowledge implicitly determining robot’s actions.

The nesting, presentation, and meaning of rules encoded in, e.g., C++ or
Java becomes complicated and beyond human comprehension. Logic models can
be created and evolved with mechanisms that abstract the logical inference algo-
rithms, but will facilitate the validation and testing. They should also facilitate
their improvement through iterative refinement by humans; much in the way the
theory of expert systems approached knowledge elicitation [21].

When addressing the control problem, the architecture determines what takes
control of the robot’s actuators, how a decision on the next action is made, and
how progress and the environment is being monitored to adapt the course of
4 In the sense of ‘framework’ defined by Larman [19].



action if the current setting is not what we hoped for? There have been many
debates between reactive systems and reasoning agents [17]. Reactive agents typ-
ically do not build plans, carry out no reasoning, and rarely represent knowledge
in any formal logic. Reasoning architectures try to build sophisticated knowl-
edge representations of the environment in order to perform high-level reasoning
and to conclude what should be the best action. They may identify goals, build
plans, evaluate plan feasibility and monitor progress. Some argue that it is not
possible to control a robot in a complex environment unless one applies variants
of the subsumption architecture proposed by Brooks. Others [22] suggest a com-
bination of non-monotonic reasoning in reactive systems, placed as “knowledge
middleware” to bridge the reactive sensor-based approach and reasoning.

We have a hybrid architecture for the control problem. Like subsumption,
it uses priority discrimination. Behaviors are organized to provide a hierarchi-
cal structure to the type of behaviors or actions suitable for a certain setting.
External States characterize some high-level settings in the environment.

Consider a reactive system with behaviors that control the robot and de-
scribed with state-machines. A behavior consists of behavior states and transi-
tions between them. For example, in robotic soccer, a simple ball-chaser behavior
could be defined by two states and two transitions. In the state of follow the
robot follows the ball. If the ball goes out of sight, a ball not visible transition
moves the behavior to a state of search where the robot spins around. When the
ball becomes visible again, (ball visible transition), the robot changes state
back to the state follow (Fig. 1(a). This is reactive behavior, because as soon
as the conditions that label a transition become effective, the system reacts by
performing the actions in the new state.

However, there are elements of planning and reasoning in our agents (robots),
as formal logic statements label the transitions between states. Reasoning is
performed to establish if a transition should take effect. In the example above,
the change to the ball searching state may not be simply the fact that one
frame has not identified the ball, but involve a more complex evaluation of other
aspects such as path calculation, ball speed and/or distance, as well as the vision
module error rate, recent changes of state, or minimum time intervals.

Our architecture has the capability to develop and incorporate complex be-
haviors while maintaining some grasp on the correctness of them. For this, we
enable the programming of a robot in a high-level descriptive language (not just
procedural or object-oriented coding in C++ or Java). We describe the knowl-
edge base with a formal logic, and the behaviors are described by a hierarchy of
finite state machines. Both of these descriptions are manipulated by program-
ming tools that allow visualization and development by software engineers, while
enabling a significant amount of testing in simulators.

2.2 Environmental Interaction – the Action-Perception Cycle

The action-perception cycle is perhaps an issue of control, but we discuss it
further since it defines the interface with the environment. More importantly, it
defines the possibility of the same agent to operate on different hardware (and
possibly a different environment). This is because the specific sensors interact



(a) (b) (c)

Fig. 1. (a) Illustration of simple behavior. (b) Illustration of the architecture operating
under an action-perception cycle. (c)The prototype interacting with humans.

with behavior control and the knowledge base through wrappers5 that can have
common interfaces. Consider the diagram in Fig. 1(b). Sensors collect information
about the environment and deposit this on the whiteboard. The behavior control
deposits messages on the whiteboard that actuator wrappers grab if the message
belongs to them and in turn operate their actuator. A particular sensor (e.g. a
camera, gyroscope, sonar sensor, or microphone) may in fact be accessible to a
series of software layers. Also, the sensor wrapper may be in itself a sophisticated
layered or pipelined architecture (e.g. a vision module representing a pipeline for
image segmentation, edge detection and object recognition).

The wrapper allows replacing the physical environment with a virtual envi-
ronment (e.g. through connecting to a networking socket instead of a real sensor)
or portability between different hardware platforms in line with considerations
by Kim[24]. In this way, the intelligence (and arguably the personality) of the
agent remains the same, operating unaware of a virtual or a physical environ-
ment.6 This idea also illustrates that the majority of the architecture is isolated
from the actual physical platform it operates on. Thus, from the software engi-
neering perspective, this means that we can test and verify a large portion of
our internal modules by providing simulators for the sensors and the actuators.

2.3 Knowledge Representation – The Whiteboard

The whiteboard is an abstract data structure where a module can deposit a
message. Each message has a type and a time stamp, and is signed by the module
that deposits the message. Modules can read all or just the most recent message
of a given type. Modules can also retrieve messages sorted by the time-stamp.

The whiteboard is inspired by the blackboard architectures for Distributed
Artificial Intelligence [25] and by the publish/subscribe and similar software
engineering patterns [26, 19]). This eliminates the need to create a more com-
plex module communication mechanism. Recall that historically, the first model
of communication was a master-slave model best illustrated by the notion of
subroutine. While this enabled procedural abstraction, the master must know
how and when to call the subroutine. The client-server model provides a step

5 The design pattern wrapper [19, Page 418] is also named facade [23, Page 185].
6 We have denoted this capability the matrix in honor of the series of 3 science-fiction

films where the sensors of humans are bridged to a virtual environment, but in the
literature on robotics and agents there are other names for this.



forward due to the independence of flow of control to each module. Neverthe-
less, the client must be aware of the server interface. The whiteboard allows a
further level of decoupling. The provider may supply information for unknown
consumers who may not even be active. There is no need to be aware of the
consumer’s interface, only the interface to the whiteboard is necessary.

Sensory information in robotic applications is noisy, and may lead to false
beliefs about the ground truth. Information with the same time-stamp in the
whiteboard may in fact not be synchronous in the environment. A typical exam-
ple of this is the challenge of reading angles for joints in the head of a SONY
Aibo and associate them with an image from the camera. A moving head can
result in images whose associated angles for head-joints are more than 12 degrees
off. Of course this can be eliminated by commanding the head to stay still and
then grabbing the image, but in robotic soccer, this would slow down participa-
tion in the game beyond any level of competitive performance. Other software
modules need to perform the corresponding sensor fusion (data fusion) to build
a reasonable picture of the environment. The whiteboard can be considered a
series (a table) of facts of the form “at time X, module Z believed Y ”. Every
sensor wrapper will deposit into the whiteboard whatever information it can re-
port. Using non-monotonic logic solves the sensor fusion issues by integrating
the different beliefs about the environment.

However, there are some challenges with the whiteboard. For efficiency rea-
sons, some message may hold pointers (references) to other objects7 that were
not replicated (cloned). E.g. with the images from the vision module, it is too
costly (in terms of memory and CPU time) to copy the image pixels. Therefore,
the potential exists for the publisher to have deleted the object(s) pointed to by
the message. Vision may need to free memory more frequently than other mod-
ules as it handles much larger objects. Reference counting offers a solution, but
in C++ requires retro-fitting into all affected classes. Nonetheless, the whiteboard
offers an interface to test references that no longer have a footprint.

2.4 Reasoning and Planning
The large list of facts that are available on the whiteboard need further process-
ing by reasoning. We have shown that non-monotonic logic can reason about
the landmarks reported by vision [27, 28]. We have also used this to construct
behaviors for triggering alarms if certain conditions are observed in the environ-
ment [29]. The first point that the above examples of reasoning illustrate is that
the reasoning engine can sit independently of the perception-action cycle.

1. It may sit somewhere in the list of activities that are performed when we
respond to the sensor that has brought us to the start of the cycle (e.g.
analyzing sightings after vision has processed an image).

2. It may sit as part of some behavior. That is, the conditions that label the
transitions in the finite state machine that describes the behavior.

The implementation of PL required the development of a logic programing
language (DPL) and a reasoning engine in C. The DPL representation of a set
7 Instances of classes in the sense of the object-oriented model.



of rules is parsed into a binary representation that can be uploaded onto the
robot or used in a simulator for testing. The very same reasoning engine runs
on both the robot and the simulator, allowing us to test and debug logic models
in a controlled environment outside the robot.

Glue code between the C++ implementation on the robot and the reason-
ing engine allows us to use predicates that we know can be implemented more
efficiently in the native programming language than in logic itself. For example,
it may be very laborious to describe integer arithmetic in logic. Asking if an
integer is larger than another (which may be necessary for testing if an object is
perceived above another) or computing the angle between to perceived objects
is best performed in the SONY Aibo in C++. Therefore, we expect to naturally
construct logic models for which some predicates consist of collecting a bunch
of facts from the whiteboard (and thus perhaps from many other modules) and
formulating a new fact by posting a new message onto the whiteboard.

We have a direct mechanism to place automatically generated C++ code
(from a PL) in a Framework using a Template Method8. The template method
has three main phases. The first phase (initialization) sets all the variables of
the logic to false, ensuring that, by default, all facts are unknown. Then, those
predicates that are calculated in the native language are evaluated once using
the information on the whiteboard (in the simulator, they are set by the operator
of the simulator). The resulting values modify the Boolean variables that were
initialized in the first step. The logic engine can now be invoked with one or
more formulas, and as a result, some new facts can be posted to the whiteboard,
with the signature of the module using the engine.

2.5 Modeling Behaviors

We now provide a description of the tools and our approach to the implemen-
tation and the programming of behaviors. As we already mentioned, this was
originally implemented on a SONY Aibo for several applications. Easy migration
to other platforms has been demonstrated by a Mac OS X (Cocoa) simulator
implementation, and a recent port to Aldebaran’s Nao robot.

Our sense of subsumption is not strictly in the sense of its proponent [30,
31]. The highest level in the hierarchy is what we call external states. Actions
issued by external states have the highest priority. They are modeled by finite
state machines (a programmer can define the external states and its transitions
with a finite state machine). We use the term state to reflect again the notion
of state in finite state machines, or OMT/UML state diagrams [26, 19] but in
our nomenclature external state refers to overarching states where behaviors
take place. An external state is a general top-level, easily perceived, long lasting
condition of the robot. The robot changes from these external states because
an external event produces some stimulus. Our external states correspond to
the states designed for the application at hand. These are also what external
agents will believe are states of the application (this is what we mean by “easily
perceived”). Eg., for playing soccer, the external states were ready, playing,

8 Larman describes frameworks using the design pattern Template Method [19].



off-field, booting, set-team, getting-up, and returning-home (perhaps
a better name is “meta-states” or “modes”). External states have the highest
controller priority. For example, if gyroscopes tell the robot that it has fallen over,
such meta-state components may send instructions and issue joint commands to
recover from falling over. These actions may dispute the control over “behaviors”
under that meta-state (this is where meta-states take priority over behaviors and
is our analogy for “subsumption” [30]). For poker and dominoes, the indication
that a player’s turn has arrived, will constitute a transition of external states.

Behaviors can be implemented under the assumption that pre-conditions of
the State are met. For example, the designer of a Behavior may assume to a
significant extent that the robot is standing (because if not the meta-state would
have taken over and performed the transition to get it standing, despite the
fact that the Behavior will still execute if the robot is up-side-down; however,
none of the commands will be able to overrule the commands issued by the
external state). This point is important because the programmer of the behavior
cannot totally assume for example that it will always have images as if standing
up. In fact, some variables may have values from an up-side-down robot, and
this may create a programming bug in the behavior. The true assumption for
behavior designers is that their command would have no effect if the robot is
up-side-down. However, programming with the aid of non-monotonic reasoning
facilitates operation under these contexts, because again, any sensor information
can be incorporated in the from of “sensor X believes Y” and thus, it does not
matter that it is inconsistent with other information. The logic model should
account for this, we will illustrate this point further with an example.

A Behavior is a long lasting activity, (however, the code will only do a
little bit of work in every call), a personality that defines what the robot does
under this behavior. We must emphasize that a behavior must make sense for
each of the possible external states. Behaviors are constructed from actions (or
commands) to the wrappers of actuators (if they are basic behaviors) or by
sub-behaviors (if they are composite behaviors). Commands and actions are
thus detailed motions, while behaviors are intermediate between commands and
external states. An example of the benefits of this design is our RoboCup soccer
implementation, by which the state component maintains whether the robots
are playing on the blue team or on the red team. Mi-Pal played both halves of
a match with the same memory stick even before the league considered this.

Behaviors operate under a BehaviorControl container (a singleton9 object).
BehaviorControl has different Behaviors and decides which to run based on
the current external State. If the external State has changed, then we will call
SwitchBehavior in BehaviorControl; this will select the Behavior for that
State. Thus, fundamentally, states are aware of behaviors, but behaviors should
be unaware of states. This should enable the same behavior to be used in a differ-
ent state. However, behaviors will be aware that an external state transition has
occurred. Each external state should have at least one behavior responsible for
controlling the robot in that external state. Therefore, behaviors act in parallel.

9 A singleton is the only object of this class in the system [19, Page 413][23, Page 125].



When the external state is established (because of a external-state switch) the
method DoBehavior in BehaviorControl will perform what we call an update of
all behaviors in all states, namely UpdateBehavior() is called. This makes every
behavior aware of changes in the environment, even if they are not “active”.

3 Illustration and Conclusions

Interpreting the information from sensors (or from other reasoning modules)
as beliefs for combining them for common-sense decision making has several
benefits. We use the example of a poker player to illustrate that both backward
chaining and forward chaining are possible. It is also possible to consider a
model of (multiple) agency within a single robot. We illustrate first the use
modalities to fuse inputs or expertise from different sub-modules. For example,
the ranking of the 169 possible initial hands of Texas-Hold’em Poker is subject
to contention. Therefore, perhaps it is better, after recognizing its hold, that
the robot represents this fact as “vision believes our hand-strength pre-flop is
in the top 50% of all possible hands”. Sensors supply contradictory information.
In soccer, vision on the Aibo regularly reports a distance to the ball different
from what the chest-sonar sensor reports. Thus, a fact such as “sensor X says
temperature is above 20” can be modeled as a simple belief using the power of
plausible rules. That is, the temperature of the environment in unknown, but
we can have a rule that says “if sensor X says temperature is above 20, then
usually the temperature is above 20”. So evaluations and measurements of the
environment, and comparisons for specific constants and values, can be handled
with more flexibility. We incorporate sensor information on the same aspect of
the environment from more than one sensor by plausible rules and a priority
relation on the rules. Similarly, we can incorporate two or more personalities
into a poker player that give potentially contradictory advice on the next action.
That is, our poker strategy is by default a tight aggressive strategy. However,
we monitor the opponent’s moves. If we learn that the opponent is tight and
passive, we become even tighter and more aggressive.

In many interactions for games it is not uncommon to have a state diagram
leading to the same set of outputs. For example, the design demands a behavior
that has few final options as its completion. This is very common in games like
poker or dominoes, where the external state of in my turn has very few ways to
finish the behavior. For example, an active poker player can only call, raise, or
fold (and in some situations, only a subset of these options). The corresponding
state-diagrams do not have transitions back. When this happens (no transitions
back), our tools that evaluate the large system of PL modules can operate in
two formats that are analogous to the two types of automatic reasoning (namely
forward-chaining and backward chaining). In the forward chaining approach, the
execution follows the execution that the finite state machine would follow. That
is, the PL expression guarding the initial state is evaluated, and a new state is
determined as a result. Once again, the new state is taken as the current state
and the expressions guarding transitions are used to determine the next state.
This is repeated until a final state is determined. In the poker player, when it is



its turn, the robot runs the PL module that determines if the type of opponents
is to be changed, and according to the outcome we may now be in a new state
to play tighter, it tosses a coin to perhaps bluff, and finally, after deciding on
the personality it is going to go with, it uses the PL of the personality it has
decided upon to make the final decision whether to call, fold or raise.

Backward chaining is also possible, that is, to execute all the PL modules
leading to final states asynchronously (but completely). Then the ones on the
previous level synthesize from the current level, and so on, traversing backwards
in the transition chain until the initial state is reached. In the the poker player, we
may run all styles of play, and get “suggestions” on how to play (as if these were
experts on the next move). Then, we synthesize back, so that now we can take the
advice from the strategy that best counters the type of opponent we believe we
are facing, and directly select among the suggested actions to call, raise, or fold.
While backward chaining may seem more wasteful, we have found that typically
the run time of the embedded PL reasoning engine is negligible within the action
cycle of the robot. We can therefore easily execute all PL modules, rather than
selectively execute them. But, we have left this as an optional alternative as we
believe both forms may be useful in different behaviors.

Moreover, this also illustrates that the architecture supports a multi-agent
model, which is proposed as a post-object-orientation paradigm for software
development [17]. The agent model suggests negotiation, perhaps interaction
through auctions or regulators. Since behaviors are composed of loosely coupled
modules capable of non-monotonic reasoning demonstrates that we can model
and support several agents who may arrive at rather contradictory conclusions or
bid for possibly incompatible actions. The overall system will mediate between
them for a global, well-defined behavior. This was illustrated with the example
of a poker player modeled as several personalities that would not necessarily
suggest the same action on a particular scenario for the game. Nevertheless, all
can execute and are mediated by a non-monotonic reasoning regulator.

References

1. Wichert, G.V., Lawitzky, G.: Man-machine interaction for robot applications in
everyday environments. IEEE Int. Workshop on Robot and Human Interactive
Communications, Bordeaux/Paris (2001) 343–346

2. Clarkson, J., Dowland, B., Cipolla, R.: The use of prototypes in the design of
interactive machines. Int. Conf. Engineering Design ICED-97, Tampere (1997)

3. Tzafestas, S., Tzafestas, E.: Human-Machine interaction in intelligent robotic sys-
tems: A unifying consideration with implementation examples. J. Intelligent and
Robotic Systems 32(2) (2001) 119–141

4. Breazeal, C., Takanishi, A., Kobayashi, T.: Social robots that interact with people.
Springer Handbook of Robotics, Berlin, Springer (2008) 1349–1369

5. Sankar, N., ed.: Human-Robot Interaction. I-Tech Education, Vienna, (2007)
6. Vassos, S., Levesque, H.: Progression of situation calculus action theories with

incomplete information. 20th IJCAI, Hyderabad, India (2007) 2024–2029
7. Trevizan, F.W., de Barros, L., Corrêa da Silva, F.: Designing logic-based robots.

Inteligencia Artificial 10(31) (2006) 11–22
8. Antoniou, G.: Nonmonotonic Reasoning. MIT Press, Cambridge, (1997)



9. Billington, D., Rock, A.: Propositional plausible logic: Introduction and imple-
mentation. Studia Logica 67 (2001) 243–269

10. Rock, A., Billington, D.: An implementation of propositional plausible logic. 23rd
Australasian Computer Science Conf. Vol 22(1) of Australian CSC. (2000) 204–210

11. Billington, D.: The proof algorithms of plausible logic form a hierarchy. 18 Aus-
tralian Joint Conf. Artificial Intelligence. Vol 3809. Springer LNAI (2005) 796–799

12. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Plausible logic facilitates
engineering the behavior of autonomous robots. submitted.

13. Xin, M., Sharlin, E.: Playing games with robots — a method for evaluating human-
robot interaction. In Sankar, N., ed.: Human-Robot Interaction, Vienna, Austria,
Chapter 26, I-Tech Education and Publishing (2007) 469–480

14. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. Twenty-
Second AAAI Conf. on Artificial Intelligence, AAAI Press (2007) 1191–1196

15. Lovell, N.: Machine Vision as the Primary Sensory Input for Mobile, Autonomous
Robots. PhD thesis, School of ICT, Griffith University, Nathan, QLD (2006)

16. Estivill-Castro, V., Seymon, S.: Mobile robots for an e-mail interface for people who
are blind. RoboCup 2006: Symp. Vol. 4434., Bremen, Germany, Springer-Verlag
LNCS(2007) 338–346

17. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley, NY, (2002).
18. Liu, T.X.W., Baltes, J.: An intuitive and flexible architecture for intelligent mobile

robots. 2nd Int. Conf. Autonomous Robots and Agents, NZ, (2004) 52–57
19. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. Prentice-Hall, NJ (1995)
20. Jeffries, D., Anderson, A., Hendrickson, C.: Extreme Programming Installed.

Addison-Wesley, MA (2001)
21. Compton, P.e.a.: Ripple down rules: possibilities and limitations. 6th Banf AAAI

Knowledge Acquisiiton for Knowledge Based Systems Workshop. (1991)
22. Heintz, F., Rudol, P., Doherty, P.: Bridging the sense-reasoning gap using dyknow:

A knowledge processing middleware framework. 30 German Conf. on AI, KI 2007.
Vol 4667 LNCS., Osnabrück, Springer (2007) 460–463

23. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, MA (1995)

24. Kim, J.H., Lee, K.H., Kim, Y.D.: The origin of artificial species: Generic robot.
Int. J. Control, Automationa, and Systmes 3(4) (2005) 564–570

25. Hayes-Roth, B.: A blackboard architecture for control. Distributed Artificial In-
telligence, San Francisco, CA, Morgan Kaufmann (1988) 505–540

26. Rumbaugh, J.R., Blaha, M.R., Lorensen, W., Eddy, F., Premerlani, W.: Object-
Oriented Modeling and Design. Prentice-Hall, NJ (1991)

27. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Non-monotonic reason-
ing for localisation in robocup. Australasian Conf. on Robotics and Automation,
Sydney, Australian Robotics and Automation Association (2005)

28. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Using temporal consistency
to improve robot localisation. RoboCup 2006 Symp. Vol 4434., Bremen, Germany,
Springer-Verlag LNCS(2007) 232–244

29. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Chapter 3: Non-monotonic
reasoning on board a sony AIBO. In Lima, P., ed.: Robotic Soccer, Vienna, Austria,
I-Tech Education and Publishing (2007) 45–70

30. Brooks, R.: Intelligence without reason. 12th ICJAI, Morgan Kaufmann (1991)
569–595 Sydney, Australia.

31. Brooks, R.: How to build complete creatures rather than isolated cognitive simu-
lators. Architectures for Intelligence, Lawrence Erlbaum (1991) 225–239


