
Architecture Implementation Using the
Machine Description Language LISA

Oliver Schliebusch, Andreas Hoffmann, Achim Nohl,
Gunnar Braun and Heinrich Meyr

Integrated Signal Processing Systems, RWTH Aachen, Germany
schliebusch,fhoffmann,nohl,braun,meyrg@iss.rwth-aachen.de

Abstract

The development of application specific instruction set
processors comprises several design phases: architecture
exploration, software tools design, system verification and
design implementation. The LISA processor design plat-
form (LPDP) based on machine descriptions in the LISA
language provides one common environment for these de-
sign phases. Required software tools for architecture explo-
ration and application development can be generated from
one sole specification. This paper focuses on the imple-
mentation phase and the generation of synthesizable HDL
code from a LISAmodel. The derivation of the architectural
structure, decoder and even approaches for the implementa-
tion of the data path are presented. Moreover, the synthesis
results of a generated and a handwritten implementation of
a low-power DVB-T post processing unit are compared.

1. Introduction

Today’s communication market faces strong competi-
tion and multiple new standards. For this reason, several
systems, such as mobile devices, networking products or
modems require new embedded processors (EP). These EPs
can either be general purpose, such as microcontrollers (�C)
and digital signal processors (DSP), or application specific,
using application specific instruction set processors (ASIP).
The decision between flexibility and high optimization to
special applications is driven by the time intensive task to
develop new architectures. In fact, there is only little mar-
gin for design exploration and finding the best-in-class so-
lution.
This results from the fact that the development process of
new ASIPs is separated into several development phases,
such as design exploration, software tools design, system
integration and design implementation. Moreover, the de-
sign phases are assigned to different design engineer groups
with expertise knowledge in their field. Design automa-
tion is mostly limited to the dedicated design phases; even

software tools and description languages vary from phase
to phase. Thus, a very important but time-intensive fac-
tor is communication and verification between different de-
sign groups or at least design phases. The development
time can be decreased significantly by employing a retar-
getable approach using a machine description language.
The Language for Instruction Set Architectures (LISA) [10]
was developed for the automatic generation of consistent
software development tools and synthesizable HDL code.

2. LISA language

The language LISA [10] is aiming at the formalized de-
scription of programmable architectures, their peripherals
and interfaces. It was developed to close the gap between
purely structural oriented languages (VHDL, Verilog) and
instruction set languages for architecture exploration pur-
poses. The language syntax provides a high flexibility to
describe the instruction set of various processors, such as
SIMD, MIMD and VLIW-type architectures. Moreover,
processors with complex pipelines can be easily modeled.
The LISA machine description provides information con-
sisting of the following model components:

� The memory model lists the registers and memories of
the system with their respective bit widths, ranges, and
aliasing.

� The resource model describes the available hardware
resources, for example registers or functional units and
the resource requirements of operations. Resources re-
produce properties of hardware structures which can
be accessed exclusively by a given number of opera-
tions at a time.

� The instruction set model identifies valid combinations
of hardware operations and admissible operands. It
is expressed by the assembly syntax, instruction word
coding, and the specification of legal operands and ad-
dressing modes for each instruction.

� The behavioral model abstracts the activities of hard-
ware structures to operations changing the state of the



processor for simulation purposes. The abstraction
level of this model can range widely between the hard-
ware implementation level and the level of high-level
language (HLL) statements.

� The timing model specifies the activation sequence of
hardware operations and units.

� The micro-architecture model allows grouping of
hardware operations to functional units and contains
the exact micro-architecture implementation of struc-
tural components such as adders, multipliers, etc.

These various model components are sufficient for gener-
ating software tools as well as a HDL representation each
with their particular requirements.
Furthermore, LISA models may cover a wide range of ab-
straction levels. This comprises all levels starting at a pure
functional sight, modeling the data path of the architecture,
to register transfer level (RTL) accurate models. Besides
a proper description of the structure, RTL models include
detailed information about the micro-architecture model.
Therefore, these models can be used to generate a HDL rep-
resentation of the architecture, using the languages VHDL,
Verilog or SystemC. Certainly a working set of software
tools can be generated from all levels of abstraction.

3. Related work

Hardware description languages (HDLs) like VHDL or
Verilog are widely used to model and simulate processors,
mainly with the goal of implementing hardware. Using
these models for architecture exploration and production
quality software development tool generation has a number
of disadvantages especially for cycle-based or instruction-
level processor simulation. They cover a huge amount of
hardware implementation details which are not needed for
performance evaluation, cycle-based simulation and soft-
ware verification.
Instruction set languages are mainly designed to retarget
the software development tools, sometimes a complete tool
suite. However, instruction set languages operate on a high
level of abstraction to provide as much convenience as pos-
sible for fast and efficient design exploration phases. Un-
fortunately, the required information about the underlying
hardware is missing.
The language nML was developed at TU Berlin [2, 1] and
adopted in several projects [7, 4]. The nML language sup-
ports, similar to the LISA language the grouping of instruc-
tions regarding the coding and syntax of the instruction set.
Unfortunately, this grouping is also used for the identifica-
tion of functional units. Thus, resource sharing is not pos-
sible. Moreover, implementation results are currently not
presented.
The same restriction regarding the generation of functional

units applies to ISDL [6]. The language ISDL is an en-
hanced version of the nML formalism and allows the gener-
ation of a complete tool suite consisting of HLL compiler,
assembler, linker and simulator. As the generation of func-
tional units is the result of an analysis and optimization pro-
cess of the HDL generator HGEN, the designer has only
indirect influence to the generated HDL model. Moreover,
no results on the efficiency of the generated HDL code is
given.
In contrast to instruction set languages, SystemC [3] is an
approach to combine the requirements of system level de-
sign and hardware implementation. Semiconductors and
embedded software companies announced the Open Sys-
temC Initiative (OSCI) in September 1999. SystemC is
based on the C++ programming language and provides via a
class library all elements which are necessary to implement
hardware. This comprises timing, concurrency and reactive
behavior. However, SystemC differs from LISA as the de-
signer is not able to derive the software development tools
from the architecture model, since as with VHDL or Verilog
information about the instruction set is missing.

4. Architecture design

Today’s standard architecture development process uses
description languages in two fields for the development of
new architectures: for architecture exploration, the soft-
ware development tools are realized using a high level lan-

Figure 1. Exploration and implementation

guage as C/C++ to describe the target architecture from
the instruction set view, whereas (low level) Hardware
Description Languages (HDL) like VHDL and Verilog are
used to model the underlying hardware in detail for imple-
mentation purposes.
It is obvious that combining the development processes of
software tools suite and HDL description is extremely ben-
efiting. As can be seen in figure 1 the LISA language com-
piler generates both and design changes only influence the



LISA description. By this, consistency problems vanish and
the generated software development tools and HDL code
are correct by construction.
The LISA processor design platform (LPDP)[9] is an envi-
ronment that allows the automatic generation of software
development tools for architecture exploration and appli-
cation design, hardware-software co-simulation interfaces,
and hardware implementation, from one sole specification
of the target architecture in the LISA language. The set of
LISA tools comprises the following programs:

� The LISA language debugger for debugging the
instruction-set as well as the behavior with a dedicated
graphical debugger frontend.

� The Assembler which translates text-based instruc-
tions into object code for the respective programmable
architecture.

� The linker which is configured by a dedicated linker
command file.

� The Instruction-set architecture (ISA) simulator for cy-
cle accurate simulation including support for deep in-
struction and data pipelines.

After design exploration and application design the tar-
get architecture needs to be implemented, which will be dis-
cussed in subsequent part of this paper.

5. Architecture implementation

The LPDP platform supports the generation of a HDL
representation of the architecture. Since, the generated
HDLmodel does not consist of any predefined components,
such as ALUs or basic control logic, the LISA compiler
must derive all necessary information from the given LISA
description. Thus, the generated HDL model components
can be fully compared to the LISA model components given
in section 2 and illustrated in figure 2:

� Thememory configuration,which summarizes the reg-
ister and memory sets including the bus configuration
is directly derived from the LISA memory model.

� The structure of the architecture, such as pipeline
stages and pipeline registers is generated. The required
information is gathered from the resource model, be-
havioral model and the micro-architecture model.

� The functional units are generated from the micro-
architecture model. Depending on the HDL language
used, the functional units are either generated as empty
frames or with full functionality, which is dicussed de-
tailed in section 5.3.

� The decoders are resulting from the coding informa-
tion included in the instruction set model and the tim-
ing model.

Figure 2. LISA model and correspondent HDL
model components

� The pipeline controller is also generated from the in-
struction set model and the timing model.

This relation between LISA model and generated HDL
components is the basis for a comprehensible implemen-
tation process. Required changes to the HDL model may be
applied either to the LISA model or - if necessary - to the
generated HDL model. In fact, the designer has full con-
trol over the generated HDL model with all its components.
Moreover, the designer has the choice to generate a VHDL,
Verilog or SystemC representation of the target architecture.
As modern EPs are highly optimized concerning clock
speed, chip area or power consumption, the generated HDL
code has to fulfill tight constraints to be an acceptable re-
placement for HDL code handwritten by experienced de-
signers. Especially the data path of an architecture is highly
critical and, in most cases, must be optimized manually.
Frequently, full-custom design technique must be used to
meet power consumption and clock speed constraints.
As the LISA behavior model is described using the C/C++
programming language, it cannot be transformed efficiently
to VHDL or Verilog. Thus, only frames for the functional
units are generated. If SystemC is chosen, the data path will
be also generated, as reported in section 5.3. The different
parts of the generated HDL model will be discussed now
more detailed.

5.1. The HDL model structure

The LISA resource model and memory model cover in-
formation about the register configuration, memory config-
uration, pipeline sets and pipeline registers. This informa-
tion is used to generate the base structure of a HDL model.



The base structure consists of different entities for the reg-
ister resources, the memory resources and the pipeline, as
shown for the case study in figure 5. The register resources
are completely generated, including RTL level HDL code to
model the register behavior. In contrast, the memory entity
is left empty, thus the designer may place a desired memory
model into this entity.
The pipeline consists of several entities representing the
pipeline stages and pipeline registers. Additionally, the
pipeline contains the pipeline controller, derived from the
LISA model. Since LISA provides a formalized way to
initiate pipeline functions like flush or stall, the HDL gen-
erator is able to utilize this information. Furthermore, the
pipeline controller is driven by various decoders, placed in
the pipeline stage entities.
The pipeline stages contain the entities representing the
functional units. More precisely, the functional units im-
plement the data path and will be discussed in detail later.
Besides decoder, multiplexers are generated to avoid driver
conflicts. These driver conflicts may appear if several func-
tional units require exclusive access to the same resources.
The HDL generator derives the information about the exclu-
siveness from the coding information included in the LISA
instruction set model and uses the LISA timing model to
generate adequate multiplexers.

5.2. Decoder generation

The decoder generation requires information from var-
ious LISA model components. In fact, detailed informa-
tion about hardware operations and their execution schedule
are needed. Thus, the decoder is derived from the instruc-
tion set model, the timing model and the micro-architecture
model. These models are implemented by several LISA op-
erations, which are ordered in a tree-like structure. More-
over, a single operation may be assigned to a dedicated
pipeline stage. Therefore, the behavior of a software in-
struction, for example the instruction add, is distributed
over several different LISA operations as shown in figure
3:

� The operation decode is assigned to the DE stage.
This operation loads the operands from a general pur-
pose register into a pipeline register.

� The operation addition, which adds the values in
the pipeline registers and writes the result back to an-
other pipeline register. This operation is assigned to
the EX stage

� The operation writeback, which is assigned to the
WB stage, writing the value from the pipeline register
to the general purpose registers.

The operation execution depends on the LISA timing
model. Whereas, the timing model results from the fact,
that LISA operations may activate each other, as indicated
by arrows on the left side of figure 3. Thus, a schedule re-
sults, which rules the execution of the behavior included in
the LISA operations. These activation sequences are trans-
lated to control signals in the HDL model, which are set or
reset depending on the information given in the coding sec-
tion of the respective LISA operation.
Decoders are generated in each stage activation signals start.
Therefore, two decoders are generated, respectively one de-
coder in the DE stage and the EX stage. If the activation
sequence would be changed in such manner that the decode
operation activates all other LISA operations, only a single
decoder in the DE pipeline stage would be generated.

Figure 3. LISA operation tree and decoder
generation

5.3. Data path implementation

The functional units covering the data path result from
the micro-architecture model, as certain hardware opera-
tions can be grouped in a LISA model to one unit. Figure
4 shows the grouping of the operations add and rshift.
In the case of VHDL or Verilog code generation these func-
tional units are generated as frames with all necessary input
and output ports. The data ports, such as operands are de-
rived from the LISA behavior model. Additionally, the units
are connected to the respective control signals driven by the
decoder. Since all ports are derived from the LISA descrip-
tion the existence of the ports is fully comprehensible to the
designer. Changes to the LISA model are immediately re-
flected in the HDL model. In this example, the designer has
to implement the addition and shift manually, and a multi-
plexer must be implemented to judge which result is written
to the output port.
The disadvantage of rewriting the data-path in the VHDL or
Verilog description by hand is that the behavior of hardware



operations within those functional units has to be described
and maintained twice – on the one hand in the LISA model
and on the other hand in the HDL model of the target archi-
tecture. Consequently, a major problem here is verification.
The solution for this verification issue is the usage of the
SystemC language, which can also be processed by stan-
dard synthesis tools. As the behavior description in a LISA
model is based on the C/C++ programming language, the
functional units can be generated completely if SystemC is
used for the behavior description and HDL code genera-
tion. In fact, the behavior of the architecture, which is split
into different LISA operations is combined in the generated
functional units. The control signals are automatically used
by the generated multiplexer to ensure a correct execution
of the respective functional unit.

Figure 4. Data path generation from LISA

One major research topic here is the resource sharing issue.
For example the developer may implement the functionality
of a shifter in two different exclusive executed LISA opera-
tions, which are assigned to the same functional unit. Thus,
in hardware only one shifter resource is needed. The HDL
generator is currently only able to detect obviously shared
resources. The reason for this is that it is difficult to extract
the semantic of a C/C++ statement in the LISA behavior
model. Thus, the automatic generation of the data path can
currently only be used as first step to a more efficient, hand
written implementation of the data path.

5.4. Implementation results

The ICORE is a low-power application specific instruc-
tion set processor (ASIP) for DVB-T acquisition and track-
ing algorithms [5]. It has been developed in cooperation
with Infineon Technologies. The primary tasks of this archi-
tecture are the FFT-window-position, sampling-clock syn-
chronization for interpolation/decimation and carrier fre-
quency offset estimation. In a previous project this architec-
ture was completely designed by hand using semi-custom
design. Thereby, a large amount of effort was spend in op-
timizing the architecture towards extremely low power con-
sumptionwhile keeping up the clock frequency at 120MHz.
At that time, a LISA model was already realized for ar-
chitecture exploration purposes and for verifying the model

against the handwritten HDL implementation.
The language VHDL has been chosen to implement the ar-
chitecture. As a consequence the data path within func-
tional units has been written manually, whereas the VHDL
code of the remaining architecture has been automatically
generated. Figure 5 shows the composition of the model.
The gray boxes have been filled manually with HDL code,
whereas the white boxes and interconnects have been com-
pletely generated.

5.4.1. Design effort. The LISA model of the ICORE as
well the original hand-written VHDL model of the ICORE
architecture have been developed by one designer. The ini-
tial manual realization of the VHDL model (without the
time needed for architecture exploration) took approx. three
months. The LISA model was already developed in this
first realization of the ICORE for architecture exploration
and verification purposes. It took the designer approx. one
month to learn the LISA language and to derive a cycle ac-
curate LISA model.
After completion of the HDL generator, it took another two
days to refine the LISA model to RTL accuracy. The hand
written functional units (data path), that were added manu-
ally to the generated VHDL model, could be completed in
less than a week. This comparison clearly indicates, that
the time-expensive work in realizing the VHDL model was
to create structure, controller and decoder of the architec-
ture. In addition, a major decrease of total architecture de-
sign time can be seen, as the LISA model results from the
design exploration phase an does not to be rewritten for im-
plementation purpose.

Figure 5. The generated VHDL model

5.4.2. Gate level synthesis. To verify the feasibility of au-
tomatically generating HDL code from LISA architecture
descriptions in terms of power-consumption, clock speed
and die size, a gate level synthesis was carried out. The re-
sults are summarized in figure 6. To get meaningful data,



Figure 6. Implementation Results

the generated model has not been changed (i.e. manually
optimized) to enhance the results. Hence, all given results
are only for a definition of position of the generated VHDL
model in comparison to the hand-written, hand-optimized
implementation.
Timing and size comparison: The results of the gate-level
synthesis affecting timing and area optimization were com-
pared to the hand-written ICORE model, which comprised
the same architectural features. Moreover, the same synthe-
sis scripts were used for both models.
It shall be emphasized that the performance values are
nearly the same for both models. Moreover, it is interest-
ing that the same bottlenecks were found in both the hand-
written and the generated model. The bottlenecks occur ex-
clusively in the data-path, which highlights the statement
that the data-path is the most critical part of the architec-
ture.
Critical path: The synthesis has been performed with a
clock of 8ns, this equals 125MHz. The critical path violates
this timing constrains by 0.36ns. This matches the hand-
written ICORE model, which has been improved from this
point of state manually at gate-level.
Area: The synthesized area has been a minor criteria, due
to the fact that the constrains for the hand-written ICORE
model are not area sensitive. As can be seen in figure 6 the
area of both implementations are nearly the same.
Power consumption: In addition to the area and the timing
comparison, the power consumption has been also evalu-
ated. Figure 6 shows the comparison of power consumption
of different ICORE realizations. The hand-written model
consumes 12,64mW, instead the implementation generated
from a LISA model consumes 14,51mW.

6. Conclusion and Future Work

In this paper we presented the architecture implementa-
tion based on the machine description LISA. The compo-
nents of the LISA model and the HDL model were com-
pared and an overview to the generated elements, as struc-

ture, decoder and data path was given. In a case study it was
shown that a real-world ASIP, the ICORE architecture, was
completely realized using the LISA based HDL code gener-
ation. The results concerning maximum frequency, die size
and power consumption were comparable to those of the
hand optimized version of the same architecture. Moreover,
in earlier work [8] the quality of the generated software de-
velopment tools was compared to those of the semiconduc-
tor vendors. It carried out, that the generated software tool
suite can compete well with commercial products.
Our future work will focus on modeling further real world
processor architectures. Moreover, the optimized genera-
tion of the data path, considering the resource sharing issue,
is another major research topic. Additionally, the automatic
generation of pipelined functional units in order to combine
the advantages of flexible DSPs and application optimized
ASIPs is of major interest.

References

[1] A. Fauth, M. Freericks, and A. Knoll. Generation of hard-
ware machine models from instruction set descriptions. In
Workshop on VLSI Signal Processing, pages 242–250, 1993.

[2] A. Fauth, J. Van Praet, and M. Freericks. Describing instruc-
tion set processors using nML. In Proc. European Design
and Test Conf., Paris, Mar. 1995.

[3] J. Gerlach and W. Rosenstiel. System Level De-
sign Using the SystemC Modeling Platform. Source:
www.systemc.org.

[4] Geurts, W. et al. Design of DSP systems with
Chess/Checkers. In 2nd Int. Workshop on Code Generation
for Embedded Processors, Mar. 1996.

[5] T. Glökler, S. Bitterlich, and H. Meyr. ICORE: A Low-
Power Application Specific Instruction Set Processor for
DVB-T Acquisition and Tracking. In 13th IEEE Workshop
on Signal Processing Systems (ASIC/SOC), Washington DC,
Sep. 2000.

[6] G. Hadjiyiannis, P. Russo, and S. Devadas. A methodology
for accurate performance evaluation in architecture explo-
ration. In Proceedings of the 36th Design Automation Con-
ference, pages 927–932, 1999.

[7] Hartoog, M. et al. Generation of software tools from proces-
sor descriptions for hardware/software codesign. In Proc. of
the Design Automation Conference (DAC), Jun. 1997.

[8] A. Hoffmann, A. Nohl, G. Braun, and H. Meyr. Generating
Production Quality Software Development Tools Using A
Machine Description Language. In Proc. of the Conference
on Design, Automation & Test in Europe (DATE), Mar. 2001.

[9] A. Hoffmann, A. Nohl, G. Braun, O. Schliebusch, T. Ko-
gel, and H. Meyr. A Novel Methodology for the Design of
Application Specific Instruction Set Processors (ASIP) Us-
ing a Machine Description Language. IEEE Transactions on
Computers-Aided Design, Nov. 2001.

[10] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr. LISA –
Machine Description Language for Cycle-Accurate Models
of Programmable DSP Architectures. In Proc. of the Design
Automation Conference (DAC), New Orleans, June 1999.


