
Architecture Independent

Massive Parallelization of

Divide�and�Conquer Algorithms

Klaus Achatz and Wolfram Schulte

Fakult�at f�ur Informatik� Universit�at Ulm
E�mail� fachatz�wolframg�informatik�uni�ulm�de

Note� This technical report is an extended version of the paper with

the same title in the proceedings of Mathematics of Program Con�

struction� ����� Bad Irrsee� which will be published in the Springer

series Lecture Notes in Computer Science�

Abstract� We present a strategy to develop� in a functional setting� cor�
rect� e�cient and portable Divide�and�Conquer �DC	 programs for mas�
sively parallel architectures� Starting from an operational DC program�
mapping sequences to sequences� we apply a set of semantics preserving
transformation rules� which transform the parallel control structure of
DC into a sequential control
ow� thereby making the implicit data par�
allelism in a DC scheme explicit� In the next phase of our strategy� the
parallel architecture is fully expressed� where �architecture dependent�
higher�order functions are introduced� Then due to the rising commu�
nication complexities on particular architectures topology dependent
communication patterns are optimized in order to reduce the overall
communication costs� The advantages of this approach are manifold and
are demonstrated with a set of non�trivial examples�

� Introduction

It is well�known that the main problems in exploiting the power of modern
parallel systems are the development of correct� e�cient and portable programs
�Pep��� Fox��	
 The most promising way to treat these problems in common
seems to be a systematic� formal� top�down development of parallel software

In this paper we choose transformational programming to develop parallel
programs where transformational programming summarizes a methodology for
constructing correct and e�cient programs from formal speci�cations by app�
lying meaning�preserving rules �Par��	
 Starting with a functional speci�cation�
we derive programs for the massively data parallel model � which assumes a large
data collection that needs to be processed and that there is a single processor
element PE� for each member in the collection
 The same set of instructions
is concurrently applied to all data elements� i
e
� there is a single control �ow
which guides the computation on all PEs

The main characteristics of our strategy� using transformational program�
ming to develop data parallel software� are the following ones� as a problem

adequate structure we restrict ourselves to sequences � which are fully satisfac�
tory in the vast majority of situations
 The usual data parallel operations� like
apply�to�all or reduce� are provided
 In addition� certain high level operations
are introduced� which can be interpreted as communication operations on the
machine level cf
 Sect
 ��

As the starting point of our strategy� we choose a very popular tactic for
designing parallel algorithms� Divide�and�Conquer DC�
 Batcher�s bitonic sort
is a well�known example
 DC algorithms are particularly suited for parallel im�
plementation because the sub�problems can be solved independently and thus
in parallel
 Obviously DC algorithms have explicit control parallelism� i
e
� there
are separate independent parts that can be processed simultaneously by distinct
CPUs
 However� our model of computation does not allow several control �ows

Therefore we aim at exploiting the inherent data parallelism
 Hence� we present
a set of semantic preserving transformation rules � which make the implicit data
parallelism in a DC scheme on sequences explicit� thereby introducing architec�
ture independent communication operations on sequences cf
 Sect
 ��

The architecture is fully expressed in the next step of our strategy� where
skeletons are introduced
 Skeletons are higher�order functions to express data
parallel operations on speci�c architectures
 The aforementioned sequence ope�
rations each have a straightforward implementation in terms of skeletons
 In par�
ticular it turns out that even the communication oriented sequence operations
can be implemented on arrays� meshes and hypercubes equally well
 Due to the
rising communication complexity on particular architectures� topology dependent
optimizations become more and more important
 We calculate two architecture
dependent optimizations for arrays and meshes� using only the skeleton de�
�nitions� where correspondent communications followed by broadcasts can be
realized using less communication operations cf
 Sect
 ��

However� aside from answering theoretical questions concerning the correctness
of our approach� we want to stress the advantages of our work from a practical
and methodological point of view�

� The identi�cation of a transformation rule to exploit the implicit data par�
allelism of DC and its necessary applicability condition makes the transfor�
mation process target directed

� The developed DC algorithms are e�cient and can be ported across several
architectures
 If� in addition� topology dependent optimizations are applied
very e�cient algorithms can be derived

� The presented transformations can be automated using an extended compi�
lation approach� where the user may give hints in the form of laws to the
compiler �Fea��	

� Architecture independent data parallelism is distinguished from architecture
dependent one
 Correspondingly we operate on di�erent levels of abstraction
sequences vs
 skeletons� and supply di�erent transformation rules data
parallelization vs
 communication transformation�

These aspects are demonstrated with three examples� the parallel pre�x com�

�

putation� Batcher�s bitonic sort� and computing the convex hull of a set of points
in the plane

The rest of this paper is organized as follows
 Section � brie�y presents our
sequence model� and its relation to the massively data parallel model

The new DC transformation rules are introduced in Sect
 �
 Section � de�nes
skeletons� their use and optimizations
 We follow in Sect
 � with two examp�
les� demonstrating the applicability of our approach
 Section � compares our
approach with others
 Finally� Sect
 � draws conclusions and raises issues for
further research

Notation� In notation we follow the standard of lazy functional programming
languages� like Haskell or Miranda
 For example� we write function application
in curried form� as in f x y which is equivalent to f x � y � and de�ne functions
� whenever possible � using pattern matching
 If� in addition� assertions on
parameters are used� they are given in the surrounding text

Addendum� The di�erences of this technical report wrt
 �AS��	 are marked as
being addenda like this one�
 Additionally proofs and an implementation of the
running example in a real parallel language are presented in the appendices
 �

� The Balanced Sequence Model

Sequences in general can be used to express data parallelism in an abstract
way� where parallelism is achieved exclusively through operations on sequences
�Ble��	
 In this section we explore this approach� present the traditional operati�
ons on sequences and its data parallel view Sect
 �
��� introduce communication
oriented operations Sect
 �
��� and de�ne some properties Sect
 �
�� that will
be of value in the following exposition

��� Basic Sequence Operations

Our so called balanced sequence model is motivated by the underlying parallel
program development strategy� viz
 divide�and�conquer see Sect
 ��� and by the
need to perform the same computation on all data elements of the sequence in
parallel
 The term �balanced sequence� stems from the fact that our DC scheme
always results in balanced computation trees

The constructors of our balanced sequence model are the following ones� �	 is
the empty sequence� �e	 is the sequence which contains the single element e� and
x �� y is the sequence formed by concatenating sequences x and y � but only if
both have equal length
 This always results in sequences of lengths powers of ��
which is appropriate� since all known massively parallel machines work with �n

PEs

Addendum� An alternative constructor set replaces concatenation� also called
left�right composition by the shu�e operator �� also named odd�even composi�
tion
 In a shu�ed sequence x � y the elements with even indices come from x

�

and the odd ones from y
 We will later pick up this constructor set and show
that � in a DC scheme � it can be transformed into the former
 �

The following auxiliary functions are used to specify programs
 They will be
removed during program development� the operator �� returns the length of a
sequence
 The �rst�order functions �rst and last extract the �rst or last element
from a nonempty sequence� respectively
 The function copy creates a sequence
of n copies of identical elements

It is perfectly well to assume every sequence element corresponds to a data
element resting on a particular processor element
 Two sequences can be seen as
two di�erent storage levels on the parallel machine

We now start to introduce the set of balanced sequence functions� most of
them are commonly used functions �BW��� AJ��	�

� map
 Applies a function to every element of a sequence independently� and
therefore re�ects the massively data parallel programming paradigm in the
most obvious way

� zipWith�zipWith�
 Takes a pair�triple of sequences� having equal length� into
a new sequence in which corresponding elements are combined using any
given binary�ternary operator
 The family of zipWith functions correspond
to the map functional working on two or more storage levels

� reduce
 Reduces a nonempty sequence using any binary operator
 This func�
tion can be implemented on a parallel machine in logarithmic time using a
 tree� �Ski��	

In a data parallel environment conditionals are somewhat di�erent to their
sequential counterparts
 The action of a parallel if can be summarized this way�
on every PE the condition is evaluated! in components where the condition is
true� the then�branch is executed� otherwise the else�branch

A specialization of a parallel conditional is the operation join
 It takes a pair
of sequences x � y � having equal length� into a new sequence� which consists of
alternate slices of x and y each of length n� n � � see Fig
 �a��

We can de�ne join by�

join n x� �� x�� y� �� y�� " x� �� y�� if n " �x�
join n x� �� x�� y� �� y�� " join n x� y� ��

join n x� y�� if n � �x�
��

Like the functions de�ned in the next subsection� join is a partial operation

Since these functions are introduced during program development� de�nedness
of the resulting programs must be guaranteed by the appropriate transformation
rules cf
 Sect
 ��

��� Communication Oriented Sequence Operations

A very wide range of scienti�c problems can be computed under the DC scheme
using a regular communication pattern
 Naturally� some communication pat�
terns are better than others for developing parallel algorithms
 Essentially� they

�

y
4

join 2

(a)

corr 2

(b)

distL 2

(c)

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

0

1

2

3

4

5

6

7

1

2

3

5

6

7

0
x

x

x

x

x

x

x

x

0

1

2

3

4

5

6

7

x

x

x

x

x

x

x

2

3

0

1

6

7

4

5

x

x

x

x

x

x

x

x

x

0

1

2

3

4

5

6

7

x

x

x

x

x

x

x

x

1

1

3

3

5

5

7

7

Fig� �� Sequence operations� �a	 join � x y � �b	 corr � x � �c	 distL � x

have structural properties that make it easier to describe the data movement
operations necessary for parallel computations
 In the case of our particular DC
scheme see Sect
 ��� the following communication operations seem to be the
most suitable ones�

Correspondent communication � modeled by function corr n x � exhibits a
butter�y�like communication pattern� for a particular value of n� each PE com�
municates with each PE whose index di�ers in the nth bit from the left
 An
example is depicted in Fig
 �b�
 Its de�nition is straightforward�

corr n x �� y� " y �� x �� if n " �x
corr n x �� y� " corr n x �� corr n y � if n � �x

��

First or last communication can be realized using a correspondent commu�
nication followed by a directed broadcast
 A directed broadcast operates from
right to left� where the value of the rightmost element is distributed to the left
distL�� e
g
� distL n x copies the value of the last element of each slice of length
n to its left neighbors see Fig
 �c��
 The function distR operates from left to
right
 Directed broadcast is related to copy by the following de�nition�

distL n x " copy n last x �� if n " �x
distL n x �� y� " distL n x �� distL n y � if n � �x

��

The introduced sequence operations corr � distL�distR and join� mirror the
necessity of our DC scheme to exchange data between PEs and to select di�erent
data elements on each PE� respectively

��� Properties� Distributivity and Length Preservation

Our balanced sequence model ful�lls a number of properties� where especially the
following two are needed in our transformation rules given below cf
 Sect
 ��

�

Let f denote a function� which maps sequences to sequences
 The function is
said to be distributive� if it distributes through concatenation of sequences�

f x �� y� " f x �� f y

It is said to be length preserving � if the length of the output sequence is equal
to the length of the input sequence�

�f x � " �x

The generalization to functions taking a tuple of sequences yielding a single
sequence is straightforward

Another generalization concerns the distributivity of functions like corr or
distL� which work on slices of length n
 This time� let f n denote a function�
which maps sequences to sequences
 If it distributes through a sequence x �� y �
where n � �x � then the function is said to be distributive modulo n� or � more
general spoken � slice�distributive

All slice��distributive functions that either map the empty sequence to the
empty sequence� or are unde�ned for empty sequences� are uniquely de�ned by
specifying their e�ect on elementary� sequences having length n�

It can be shown that functions map and zipWith are distributive� corr � distL
and join are slice�distributive� and map� zipWith� corr � distL and join are length
preserving

� Divide and Conquer

First� the idea and assumption of our DC tactic is discussed Sect
 �
�� followed
by its formal account Sect
 �
�� that aims at transforming the parallel control�
structure of DC into a sequential control �ow with a parallel data�structure

��� The DC Scheme

DC is a well�known tactic for designing parallel algorithms
 It consists of three
steps�

�
 If the input is not primitive� partition the input

�
 Solve recursively the subproblems� de�ned by each partition of the input

�
 Compose the solutions of the di�erent subproblems into a solution for the

overall problem

A general DC tactic can be de�ned as the following higher�order function�

DC q t g h k j " f
where f x " t x � if q " �x

f x �� y� " k v w� �� j v w�� otherwise
where v �w� " f g x y�� f h x y��

�

In DC � when the input has length q � the problem is solved trivially by t � other�
wise the input is split by pattern matching�� the subinputs are preadjusted by
g and h� solved in a recursive manner� postadjusted by k and j and then con�
catenated
 Thus the decompose and compose operations consist of two steps�
g � h� � ���� and �� � k � j �� respectively
 This leads to a computation� where
the control �ow� expressed by the sequence primitives� is separated from the
computation� expressed by the adjust functions
 In addition� it is assumed that
the trivial� the pre� and the postadjust functions are length preserving

This DC scheme is perfectly appropriate for data parallelization� since the
sequence primitives are independent of the elements in the sequence and hence
can be performed in constant time

The power of this scheme stems from the fact that the pre� and postadjust
functions receive the complete input and output sequence� respectively
 However�
since the adjust functions must be length preserving only �balanced� algorithms
can be derived

These assumptions rule out certain important non�balanced algorithms� as
for instance Quicksort
 But algorithms that either are not balanced or depend on
values are not suitable for massively data parallel computation
 They require � in
contrast to our adjust functions � irregular communication patterns to get things
in the right place� which normally causes high communication costs
 Therefore
such algorithms are not considered relevant for our current study

Addendum� Obviously one can choose the alternative constructor set using shuf�
�ing instead of concatenation� too
 All facts and assumptions that hold for con�
catenation also hold for shu�ing
 �

��� The Rules

The presented DC scheme exhibits cascading recursion and explicit data decom�
position
 In order to transform this scheme into a corresponding data parallel
program� we have to introduce a sequential control �ow� i
e
� we must transform
the cascading recursion into linear� or � even better � tail recursion� and we have
to make the explicit data decomposition implicit

First� we concentrate on simplifying the recursion
 The computation proceeds
in two phases� in a decompose or top�down� phase the preadjust functions g and
h are applied to the subsequences� whereas in the compose or bottom�up� phase
the postadjust functions k and j are applied
 For a sequential �ow of control�
we have to decouple the phases of f � i
e
� we introduce two functions one for the
top�down computation f � and one for the bottom�up computation f �

Theorem� �Generalized divide�and�conquer rule	� Assume g � h� j � k� t��
t� and t are length preserving functions and t " t� � t�� Let f be a general DC
algorithm of the form�

f x " t x � if q " �x
f x �� y� " k v w� �� j v w�� otherwise

where v �w� " f g x y�� f h x y��

�

Then� f can be decomposed into an equivalent function f � � f ��

f x " f � f � x �
where f � x " t� x � if q " �x

f �x �� y� " f �g x y� �� f �h x y�� otherwise

f � x " t� x � if q " �x
f �x �� y� " k v w� �� j v w�� otherwise

where v �w� " f � x � f � y�

Proof� See Appendix A
�
 ut

The resulting functions f � and f � still have cascading recursion
 But now
pre� and postadjust functions are decoupled
 Additionally� we know the number
of iterations beforehand�� since the recursive computation only uses split and
concatenation on balanced sequences

We rewrite the functions f � and f � to include an additional parameter� which
determines the recursion depth
 Thus� it is not necessary anymore to use the
sequence to determine the recursion depth � its length becomes constant
 On
the other hand� the trivial� pre� and postadjust functions have to be performed
on the appropriate slices
 This is possible� if they are length preserving
 Then it
is easy to de�ne their slice�distributive generalizations� which work on the whole
sequence and not only on the subsequences as in the case of cascading recursion

In order to supply the appropriate slices to the pre� and postadjust functions�
we must explicitly introduce correspondent communication followed by a join of
the di�erent solutions of the subproblems

The following two transformation rules enable us to derive tail�recursive and
therefore data parallel versions of f � and f �

Theorem� �Top�down with pre�adjustment	� Assume functions g � h and
t are length preserving� Let f � be a cascading top�down algorithm of the form�

f � x " t x � if q " �x
f �x �� y� " f � g x y� �� f �h x y�� otherwise

Then� f � is transformed into an equivalent function f �� which is a tail�recursive
top�down computation with pre�adjustment� As an assertion on the parameters
of f � we require �x � n�

f � x " f � �x � x
where

f � n x " t � q x � if q " n
f � n x " f � n

�
join n

�
g � n

�
x x �� h � n

�
x � x ��� otherwise

where
x � " corr n

�
x

t � n x " t x � if n " �x
t � n x �� y� " t � n x � �� t � n y�� if n � �x
g � n x y " g x y � if n " �x
g � n x� �� x��y� �� y�� " g � n x� y�� �� g � n x� y��� if n � �x�
h � n x y " h x y � if n " �x
h � n x� �� x��y� �� y�� " h � n x� y�� �� h � n x� y��� if n � �x�

�

Proof� See Appendix A
�
 ut

Theorem� �Bottom�up with post�adjustment	� Assume functions k � j and
t are length preserving� Let f � be a cascading bottom�up algorithm of the form�

f � x " t x � if q " �x
f � x �� y� " k v w� �� j v w�� otherwise

where v �w� " f � x � f � y�

Then f � is transformed into an equivalent function f �� which is a tail�recursive
bottom�up computation with post�adjustment� As an assertion on the parameters
of f � we require �x � n�

f � x " f � �x � q t � q x �
where

f � m n x " x � if n " m
f � m n x " f � m �n� join n k � n x x �� j � n x � x ��� otherwise
where

x � " corr n x

t � as de�ned in Theorem �
k �� j � are renamings of g � and h � of Theorem �

Proof� Analogous to A
�
 ut

Example Parallel pre�x� One of the simplest and most useful building blocks for
parallel algorithms is the parallel pre�x function �Ble��� Bir��	� which takes a
binary operator �� a sequence of �i elements

�e�� e�� � � � � e
�i 	

and returns

�e�� e� � e��� � � � � e� � e� � � �� e
�i �	

If � denotes addition� then a possible initial speci�cation for this function
shortly coined psum� is�

psum� x " x � if �x " �
psum� x �� y� " v �� map �� last v�� w�� otherwise

where v �w� " psum� x � psum� y�

This speci�cation immediately leads to a DC computation� which can be
done in Olog n� time on n PEs � ignoring the communication costs � since each
addition can be computed in one timestep� and the depth of the computation is
Olog n�

Applying our strategy� �rst� we derive a data parallel version for psum
 Ob�
viously� psum� matches the input pattern of the bottom�up computation rule

An appropriate instantiation is�

�

t x " x
k x y " x
j x y " map ��last x �� y

We immediately obtain an iterative data parallel version of psum�
 The new
functions t �� k � and j �� however� are still recursive
 Although they can be imple�
mented using DC too� it is much better to circumvent the recursion
 Therefore�
we carry out some precomputations to determine their closed forms�

Derivation� Let n " �x�� and x " x� �� x� and x � " x� �� x��

k � n x x �

" � def
 of x and x �� slice�distrib
 of k �� unfold k �	

k x� x�� �� k x� x��

" � unfold k 	

x� �� x�

" � assumption� x " x� �� x� 	

x

j � n x x �

" � def
 x and x �� slice�distrib
 j �� unfold j � 	

j x� x�� �� j x� x��

" � unfold j 	

map �� last x��� x�� �� map �� last x��� x��

" � property of map wrt
 zipWith 	

zipWith �� copy n last x��� x�� ��

zipWith �� copy n last x��� x��

" � fold distL 	

zipWith �� distL n x�� x� �� zipWith �� distL n x�� x�

" � distrib
 of zipWith 	

zipWith �� distL n x�� �� distL n x��� x� �� x��

" � slice�distrib
 of distL� assumption on x and x �	

zipWith �� distL n x � x �

Due to the slice�distributivity of k � and j �� de�nitions of k � and j � hold for
all n � �x�
 In a similar way� t � can be shown to be equivalent to the identity
function

By means of these de�nitions� we apply Theorem � to psum� and result in�

��

psum� x " psum� �x � x
where

psum� m n x " x � if n " m
psum� m n x� �� x�� " p� otherwise
where x � " corr n x

p " psum� m �n� join n x zipWith �� distL n x �� x ��

In the following section� we will pick up psum�� and will systematically derive
architecture speci�c array� mesh and hypercube algorithms� respectively
 ut

Addendum� On closer inspection of the di�erent constructor sets and their use
in the DC scheme� we can observe that � under certain conditions � a top�down
computation based on split and concatenation is equivalent to a bottom up
computation based on unshu�e and shu�e� where the post�adjust function of
the latter is the pre�adjust function of the former
 However this only holds� if on
termination of DC the input has length � q " �� and is then trivially solved by
the identity function t " id�
 This fact was already observed by �CM��	

Theorem
 �Odd�even vs� left�right	� Let f � be a top�down algorithm with
pre�adjustment of the form�

f � x " x � if �x " �
f � x � y� " f � g x y� � f � h x y�� otherwise

Then f � is transformed into an equivalent function f �� which is a bottom�up
computation with post�adjustment�

f � x " x � if �x " �
f � x �� y� " g v w� �� h v w�� otherwise

where v �w� " f � x � f � y�

Proof� By computational induction
 ut

Theorem � holds even if the computation ordering is changed that is� if the
roles of the pre�and postadjust functions are inverted

This result justi�es our approach� to present the former rules for only one
constructor set � whether it is the one which is based on concatenation� the one
we have chosen� or the other one� does not really matter
 �

� Skeletons and Skeleton Transformations

In this section� the basis for the derivation of architecture speci�c programs is
given� i
e
� topology independent skeletons are introduced Sect
 �
��� followed
by topology dependent ones Sect
 �
��� then the derived sequence skeletons are
calculated Sect
 �
��� and �nally communication transformations are presented
Sect
 �
��

��

�� Basic Skeletons

The skeleton idea is fairly simple
 The data components on all processors are
modeled as a data �eld �YC��	� i
e
� as a function over some index domain D �
which describes the PE�s indices� into some codomain V of problem related
values
 Then� data parallel operations can be de�ned as higher�order functions
called skeletons�� which are either abstractions of

� elementary communication�independent computations on all PEs or

� communication operations� which pass values along the network connections

For instance� the most typical elementary operation on data parallel archi�
tectures is a single function operating on multiple PEs
 This computation is
expressed by the MAP skeleton�

MAP f a " � i �f a i� ��

The higher�order function MAP takes an operator f and a data �eld a� and
returns a data �eld in which each element is the result of operation f applied to
the corresponding element of a

The skeleton ZIPWITH generalizes the MAP skeleton in the sense that
ZIPWITH takes a pair of data �elds a and b� and combines them using a dyadic
operator �

ZIPWITH � a b " � i �a i�� b i� ��

The introduced skeletons can be applied to every data parallel architecture�
because no data exchange between two processors takes place
 All data parallel
architectures share these topology independent skeletons

Individual types of architectures di�er in their topology and thus� in their
possible patterns of communication
 Communication patterns for linear arrays�
meshes and hypercubes will be given in the next subsection

�� Communication Skeletons

This section formally de�nes three important static processor organizations� li�
near arrays� meshes and hypercubes

Linear arrays� Linear arrays have a very simple interconnection network
 Every
PE is linked to its left and right neighbor� if they exist
 An abstraction of a li�
near array with N PEs� where N in general is a power of �� will be written as a
parameterized type�

array�� " index 	 �
where index " f i j � � i � N g

��

Arrays can have wrap�around connections then called rings�� i
e
� PE � is
connected to PE N
 �
 Here� we only consider arrays without wrap�around
connections
�

We identify two basic data parallel exchange operations� shifting all elements
one position to the left or to the right
 The next two skeletons allow communi�
cation of k steps at a time� although only one step at a time is an elementary
computation on these architectures�

SHLA k a " � i � aN
 ��� if i � N
 k
ai � k�� otherwise

SHRA k a " � i � a��� if i � k
ai
 k�� otherwise

Note� The above communication skeletons are modeled in such a way that PEs�
which do not receive a valid data element� yield the appropriate value of a
boundary PE
 Other patterns could be chosen too

Meshes� In a mesh network� the nodes are arranged in a q�dimensional lattice

Communication is allowed only between neighboring nodes
 Two�dimensional
meshes� for instance� have N �N identical PEs� which are positioned according
to an N � N matrix
 Each PE Pi � j � is connected to its neighbor PEs Pi �
�� j ��Pi
 �� j ��Pi � j � ��� and Pi � j
 ��� if they exist
 The abstraction of
two�dimensional meshes reads�

mesh�� " index 	 �
where index " f i � j � j � � i � j � N g

Meshes also can have wrap�around connections� where each column and each
row of the mesh is connected like a ring
 Again� we only consider meshes without
wrap�around connections

According to these interconnections� we distinguish four di�erent exchange
operations� data is sent to its leftSHL�� to its right SHR� to its upper SHU �
or lower neighbors SHD�
 The skeletons have the form�

SHLM k m " �i � j �� mi �N
 ��� if j � N
 k
mi � j � k�� otherwise

SHRM k m " �i � j �� mi � ��� if j � k
mi � j
 k�� otherwise

SHUM k m " �i � j �� mN
 �� j �� if i � N
 k
mi � k � j �� otherwise

SHDM k m " �i � j �� m�� j �� if i � k
mi
 k � j �� otherwise

��

� Wrap�around connections do not add further functionality to the system� but make
communication patterns more e�ciently implementable�

��

Hypercubes� In an n�dimensional hypercube� which has �n nodes� each PE
has n neighbors� which it can reach in one time step
 Its abstraction looks like
the one for arrays� i
e
� we have�

hyper�� " index 	 �
where index " f i j � � i � �n g

A PE in an n�dimensional hypercube can communicate with n of its neigh�
bors� where nodes are adjacent to each other when their indices di�er in exactly
one bit position
 This bit can be set on or o� � correspondingly� we can communi�
cate up� or down�
 Once again we generalize this communication� by specifying
communication in dimension d � which has to be a power of ��

COMMU d h " � i � hi
 d�� if i � i div �d�� � �d � d
hi�� otherwise

COMMD d h " � i � hi � d�� if i � i div �d�� � �d � d
hi�� otherwise

��

Note� The integer parameter for shifting elements on the array or mesh describes
the number of elementary communication steps� whereas the �rst parameter of
COMMU and COMMD speci�es the dimension in which a communication takes
place � thus the elementary hypercube communication is performed in a single
step

�� Derived Skeletons

Now that on the one side� we have derived data parallel functions on sequences�
and on the other have speci�ed architecture speci�c skeletons� it remains to close
the gap� i
e
� to implement the sequence primitives in terms of skeletons

We state without proof the correspondence of map with MAP and zipWith
with ZIPWITH
 This can easily be seen� if we recognize that each operation
by means of map or MAP and zipWith or ZIPWITH � respectively� is applied
independently to each data element
 Therefore� it makes no di�erence whether
the data component is an element of a sequence or an element of a data �eld

The communication oriented sequence operations� however� have to be de�ned
in the context of the architecture the algorithm is aimed at

Arrays� Sequences of length N and linear arrays de�ned as data �elds have a
one�to�one correspondence�

g �

�
��	 	 array��
x 	 � i �xi

where xi is the selection of the ith element of the sequence
 The inverse of g is�

g�� �

�
array�� 	 ��	

x 	 �x ��� � � � � x N
 ��	

��

We derive the skeleton functions� operating on a linear array from the com�
munication oriented sequence operations
 We start with the following de�nition�

gjoin n x y� " JOINA n g x � g y�

gcorr n x � " CORRA n g x �

gdistL n x � " DISTLA n g x �

gdistR n x � " DISTRA n g x �

��

After eliminating the bijection g � we get the following direct de�nitions�

Corollary ��

JOINA n a b " � i �a i � if eveni div n�
b i � otherwise

CORRA n a " JOINA n SHLA n a� SHRA n a�

DISTRA n a " � i � al � n� where l " i div n

DISTLA n a " � i � al � �� � n
 �� where l " i div n

��

Proof� See Appendix A
�
 ut

In order to obtain an array speci�c program� we replace the sequence opera�
tions by operations on data �elds

Example Parallel pre�x cont�d� Unfolding the skeleton operations for arrays in
psum�� results in the following architecture speci�c psum� program�

psum� x " psum� �x � x
where

psum� m n x " x � if m " n
psum� m n x " psum� m �n� JOINA n x x ��� otherwise
where x � " ZIPWITH �� DISTLA n CORRA n x �� x �

Note that the resulting program su�ers from a lot of redundant communica�
tion operations
 Due to our architecture independent transformation rules � and
�� we always introduce a correspondent communication
 But in the particular
case of the above example� we only have to distribute data in one direction�
which leads to many super�uous shifts
 Below� we will present communication
transformations to remove redundant communication operations
 ut

Index Translations� In order to de�ne the derived skeletons for meshes and
hypercubes� we could proceed as already done for arrays
 However� having de�
�ned arrays as data �elds� it is much simpler to map only the index domain of
the array to the hypercube or mesh domain instead of mapping the whole data
structure

Let D and E be two index domains
 A bijective mapping g � D 	 E � with
inverse g�� � E 	 D is called an index translation

In fact� the application of an index translation results in a change of the
underlying coordinate system� given by the source index domain D

��

Meshes� Linear arrays of length N � are mapped onto a mesh with N columns
and N rows� using the following index translation�

g �

�
f�� � � � �N �
 �g 	 f�� � � � �N
 �g � f�� � � � �N
 �g

k 	 k div N � k modN �

where it is assumed that the indices are in row�major�order
 The inverse mapping
reads�

g�� �

�
f�� � � � �N
 �g � f�� � � � �N
 �g 	 f�� � � � �N �
 �g

i � j � 	 i �N � j

The mesh oriented skeletons JOINM �CORRM �DISTRM and DISTLM can
be derived starting from the corresponding array skeletons� this time using index
translations�

JOINM n x y " JOINA nx � g�y � g�� � g��

CORRM n x " CORRA nx � g�� � g��

DISTLM n x " DISTLA nx � g�� � g��

DISTRM n x " DISTRA nx � g�� � g��

���

Eliminating the index mapping� we obtain the following direct de�nitions�

Corollary ��

JOINM n x y " �i � j �� x i � j �� if eveni � N � j � div n�
yi � j �� otherwise

CORRM n x " �i � j ��JOINM n x� x�
where x� " SHLM n mod N � SHUM n div N � x �

x� " SHRM n modN � SHDM n div N � x �
DISTLM n x " �i � j ��x l � ��n
 �� div N � l � ��n
 �� modN �

where l " i � N � j � div N

DISTRM n x " �i � j ��x l � n� div N � l � n� mod N �
where l " i � N � j � div n

Proof� See Appendix A
�
 ut

Hypercubes� Derived skeletons for the hypercube architecture are de�ned by
choosing the identity function as an index translation g " id�
 From ��� by
replacing the subscript M with H � we obtain�

Corollary �

JOINH n x y " � i � x i � if eveni div n�
y i � otherwise

CORRH n x " � i �JOINH n COMMDH n x � COMMUH n x �

DISTLH n x " � i �x l � �� � n
 �� where l " i div n

DISTRH n x " � i �x l � n� where l " i div n

Proof� See Appendix A
�
 ut

��

�
 Communication Transformations for Array and Mesh

The result of our derivation leads to communication patterns� which probably are
not the most e�cient ones on a particular architecture
 This is caused by the fact
that for reasons of architecture independence� we always introduce correspon�
dent communication
 Sometimes �rst or last communication would be perfectly
su�cient
 Whereas correspondent communication is cheap on the hypercube � it
can be performed in one step � it is more expensive on the mesh and rather ex�
pensive on the array
 Thus it is obvious to specialize �rst or last communications
on these architectures by eliminating correspondent communication
 This can be
achieved by partial evaluation of the communication pattern
 As an example� we
give two lemmas for arrays and meshes�

Lemma� �Communication transformation for linear arrays	� Let the fol�
lowing compound communication pattern for linear arrays be given�

JOINA n x ZIPWITH � DISTLA n CORRA n x �� x �

This pattern is partially evaluated into�

JOINA n x ZIPWITH � DISTRA n SHRA � x �� x �

Proof� See Appendix A
�
 ut

Note� The expression DISTLA n CORRA n x � is slice�distributive� whereas the
substituted expression DISTRA n SHRA � x � is not
 However both expressions
are at least equal on every second slice of length n
 Therefore the expression
must be embedded as the second parameter in a JOINA n
 The use of ZIPWITH
generalizes the communication transformation

While the communication pattern with the correspondent communication
needs �n
 � elementary shifts� the improved pattern can do with n shifts

In a similar way� we can derive a communication improvement for mesh
connected computers

Lemma� �Communication transformation for meshes	� Let the following
compound communication pattern for meshes be given�

JOINM n x ZIPWITH � DISTLM n CORRM n x �� x �

This pattern is partially evaluated into�

JOINM n x ZIPWITH � x x ��
where x � " DISTRM n SHRM � x �� if n � N

DISTLM n SHDM
n
N

x �� otherwise

Proof� Analogous to the proof of Lemma �
 ut

��

In the worst case n � N �� the improved pattern requires N � n
N

 � ele�

mentary shifts on meshes� while the original communication with correspondent
shifts needs N �� n

N

�
 Since communication costs are crucial for the e�ciency

of real parallel programs� a reduction of elementary shifts by a factor of about �
seems worth the work

Example Parallel pre�x cont�d� Applying the communication transformation for
arrays to psum� results in�

psum� x " psum� �x � x
where

psum� m n x " x � if m " n
psum� m n x " psum� m �n� JOINA n x x ��� otherwise
where x � " ZIPWITH �� DISTRA n SHRA � x � x �

An implementation of psum� in a real data parallel language is now straight�
forward and presented in Appendix B
 ut

� Applications

In order to demonstrate the usefulness of the presented approach� we work out
two somewhat more complex examples
 In Sect
 �
�� we treat one of the most
popular sorting algorithms for data parallel computers viz
 Batcher�s bitonic
sort
 Section �
� deals with a problem in computational geometry� namely the
construction of a convex hull

��� Bitonic Sort

The well�known bitonic sort algorithm was proposed by K
 E
 Batcher in ����
for so called sorting networks �Bat��	 and later adapted to parallel computers
�NS��	

Preliminaries and Operational Speci�cations

The bitonic sort algorithm is based on the central notion of the bitonic sequence

A sequence s is said to be bitonic if it either monotonically increases and then
monotonically decreases� or else monotonically decreases and then monotonically
increases
 For example� the sequences ��� �� �� �� �� �	 and ��� �� �� �� �� �	 are both
bitonic

The fundamental idea behind the bitonic sort algorithm rests on the following
observation� let s " x �� y be a bitonic sequence and let d " zipWith min x y
and e " zipWith max x y � where min computes the minimum and max the
maximum of two ordered values
 Then we have�

i� d and e are each bitonic and
ii� reduce max d � reduce min e

The proof of this proposition can be found in �Bat��	

��

Bitonic Sorter� This fact� merging two bitonic sequences gives an ascending se�
quence� immediately gives us an operational speci�cation according to the DC
paradigm
 As a precondition� we require the input sequence to be nonempty and
bitonic

bimerge �e	 " �e	
bimergex �� y� " bimergezipWith min x y� �� bimergezipWith max x y�

Arbitrary Sorter� A sorter for arbitrary sequences implemented by function
bisort� can be constructed from bitonic sorters using a sorting�by�merging scheme�
decompose a sequence of length n into separate intervals of length �
 Trivially�
these intervals are bitonic so that we can use the algorithm for bitonic sequences

In this way� we obtain n

�
pairs of sorted elements

Unfortunately� two adjacent subsequences in ascending order cannot be put
together to form a single bitonic sequence
 To achieve this� the intervals have to
be sorted alternately in ascending and descending order� or every second interval
has to be reversed
 Doing so� we get n

�
intervals of length �� all of them are

bitonic so that again the above algorithm for bitonic sequences can be applied

This process is repeated until we get a single bitonic interval� which eventually
will be sorted by function bimerge

Again� we can summarize this informal description into an operational spe�
ci�cation using the DC strategy�

sort s " bimergebisort s�
where

bisort �e	 " �e	
bisortx �� y� " bimerge bisort x � �� reverse bimerge bisort y��

Note� Algorithm bisort explicitly reverses every second interval� putting an ascen�
ding sequence into a descending one by means of the auxiliary function reverse

The same e�ect can be achieved by inverting the comparisons� i
e
� instead
of min in function bimerge we use max and vice versa
 Function bimerge � "
reverse � bimerge uses inverted comparisons in order to return sequences in de�
scending order

We rede�ne function sort by explicitly using function bimerge ��

sort s " bimergebisort � s�
where

bisort � �e	 " �e	
bisort �x �� y� " bimerge bisort � x � �� bimerge � bisort � y�

Parallelization

A closer inspection of the operational speci�cations shows that they both �t the
patterns provided by the transformation rules given in Sect
 �

��

Transformation of function bimerge� In order to apply the rule Top�down
with pre�adjustment to function bimerge� we have to instantiate the input scheme
given by Theorem ��

t x " x
g x y " zipWith min x y
h x y " zipWith max x y

In the next step� we want to rewrite the cascading recursive de�nitions of
t �� g � and h � given in Theorem �
 Remember that we aim at a data�parallel
computation scheme� where we can apply a single instruction to multiple data
elements

Derivation� Let n " �x� and x " x� �� x� and x � " x� �� x��

g � n x x �

" �de�nition of x and x �� slice�distributivity of g �� unfold g �� unfold g 	

zipWith min x� x�� �� zipWith min x� x��

" �distributivity of zipWith� assumption� x " x� �� x� and x � " x� �� x�	

zipWith min x x �

In a similar way� we derive simpli�ed de�nitions for functions t � and h ��

t � n x " x
h � n x x � " zipWith max x x �

Due to the slice�distributivity of t �� g � and h �� their de�nitions hold for all
n � �x�
 ut

Under the assumption �x � �� application of the transformation rule see
Theorem �� results in�

bimerge x " bimerge� �x � x
where

bimerge� n x " x � if n " �
bimerge� n x " bimerge� n

�
join n

�
v w�� otherwise

where x � " corr n
�
x

v �w� " zipWith min x x �� zipWith max x � x �

Analogously� we can develop a top�down version of function bimerge ��

bimerge �� n x " x � if n " �
bimerge �� n x " bimerge �� n

�
join n

�
v w�� otherwise

where x � " corr n
�
x

v �w� " zipWith max x x �� zipWith min x � x �

��

Transformation of function bisort�� We start with an instantiation of the
transformation rule Bottom�up with post�adjustment see Theorem ���

t x " x
k x y " bimerge x
j x y " bimerge � x

Again� we replace the recursive� de�nitions of t �� k � and j � by appropriate data
parallel non�recursive� versions�

Derivation� Let n " �x� and x " x� �� x� and y " y� �� y��

k � n x y

" �de�nition of x and y � slice�distributivity of k �� unfold k �� unfold k 	

bimerge x�� �� bimerge x��

" �property of bimerge�� assumption� n " �x� and x " x� �� x�	

bimerge� n x

In exactly the same way� we compute instantiations for t � and j ��

t � n x " x
j � n x y " bimerge �� n x

Due to the slice�distributivity of t �� k � and j �� their de�nitions hold for all
n � �x�
 ut

Under the assumption �x � �� the application of the transformation rule
Bottom�up with post�adjustment yields�

bisort � x " bisort� �x � � x
where

bisort� m n x " x � if m " n
bisort� m n x " bisort� m �n� join n v w�� otherwise
where x � " corr n x

v �w� " bimerge� n x � bimerge �� n x �

An obvious simpli�cation since x � does not occur in the body of bisort��
results in�

bisort � x " bisort� �x � � x
where

bisort� m n x " x � if m " n
bisort� m n x " bisort� m �n� join n v w�� otherwise
where v �w� " bimerge� n x � bimerge �� n x �

The �nal result of our transformational derivation of bitonic sort is summa�
rized in the following program�

��

x0

x1

x2

x3

x4

x5

x6

x7

x0

x1

x2

x3

x4

x5

x6

x7

(a) (b)

Fig� �� Sorting a bitonic sequence of � elements using� �a	 bimerge�� �b	 bimerge�

sort s " bimerge� �x � bisort� �x � � x �
where

bisort� m n x " x � if m " n
bisort� m n x " bisort� m �n� join n v w�� otherwise
where

v �w� " bimerge� n x � bimerge �� n x �
x � " corr n

�
x

bimerge� n x " x � if n " �
bimerge� n x " bimerge� n

�
join n

�
v w�� otherwise

where v �w� " zipWith min x x �� zipWith max x � x �

bimerge �� n x " x � if n " �
bimerge �� n x " bimerge �� n

�
join n

�
v w�� otherwise

where v �w� " zipWith max x x �� zipWith min x � x �

It can be e�ciently executed on massively parallel computers with such diverse
topologies as linear array� mesh connected computer or hypercube

Addendum� The bitonic merge algorithm is often presented with the alternative
constructor set based on odd�even division

The di�erence can nicely be illustrated using a comparison network� which
is comprised solely of wires and comparators
 We draw wires as horizontal lines�
its inputs appear on the left� its outputs on the right and draw the comparator�
which receives two inputs x and y and generates the two outputs x � " min x y
and y � " max x y as vertical lines

We immediately observe that in the derived bimerge function� henceforth
called bimerge��� the connections between comparators varies from stage to stage
see Fig
 �a��� whereas the connections between comparators is constant using a
shu�e network
 This was already realized by Stone �Sto��	
 His bimerge variant�
here called bimerge� see Fig
 �b��� is a bottom�up computation with an odd�
even division instead of the left�right one�

��

bimerge� �e	 " �e	
bimerge�x � y� " zipWith min v w � zipWith max v w

where v �w� " bimerge�x � bimerge�y�

Obviously� bimerge� matches the input pattern of the odd�even to left�right
division rule
 We apply theorem � to bimerge� and result in bimerge��
 Thus
both versions are equivalent! the data parallelization of bimerge� needs only one
initial transformation step
 �

��� Convex Hull

This section considers the problem of constructing the convex hull from a �nite
set S of points in the two�dimensional real space IR � IR
 The algorithm given
here is mainly an adaptation of a sequential one presented in �PH��	 with major
changes to �t the massively parallel paradigm

Preliminaries and Operational Speci�cations

Given a set S " fs�� s�� � � � � s�ng of points in the plane� the convex hull of S
is the smallest convex polygon P � for which each point in S is either on the
boundary of P or in its interior
 The following analogy given in �Akl��	 might
be useful� Assume that the points of S are nails driven halfway into a wooden
board
 A rubber band is now stretched around the set of nails and then released

When the band settles� it has the shape of a polygon
 Those nails touching the
band at the corners of that polygon are the vertices of the convex hull

It simpli�es the exposition� if we divide the problem into two sub�problems

First� we calculate the upper hull UH S � of set S
 This is that part of its boun�
dary traced by a clockwise path from the leftmost to rightmost points in S
 In a
second phase� we compute the according lower hull LH S �
 Since the computa�
tion of UH S � is analogous to the computation of LH S �� we omit the latter
 In
a preprocessing step� a sequence is created containing the elements of S sorted
by x �coordinate e
g
� by applying the bitonic sort algorithm given above�

To start with� we consider an algebraic type that de�nes the points in the
plane in addition with suitable operations on it
 Suppose Point denotes a pair
of real numbers on which the following operations are de�ned�

�x � �y �� Point 	 Real
� " � �� Point 	 Point 	 Bool
maxx �maxy �minx �miny �� Point 	 Point 	 Point

The interpretation of these operations is as follows�

a� b��x " a
maxx p q " q � if p�x � q �x

p� otherwise
minx p q " p� if p�x � q �x

q � otherwise
p " q� " p�x " q �x � � p�y " q �y�

a� b��y " b
maxy p q " q � if p�y � q �y

p� otherwise
miny p q " p� if p�y � q �y

q � otherwise

��

The DC method of constructing UH S � given in �PH��	 is as follows� Let
S be a sequence of �n points in the plane such that s��x � s��x � � � � � s�n �x
where n is a power of �
 If n � �� then S itself is an upper hull of S primitive
case�
 Otherwise� we subdivide S into two subsequences S� " �s�� s�� � � � � sn 	
and S� " �sn��� � � � � s�n 	
 Then� we recursively compute UH S�� and UH S��
in parallel
 As the �nal step� we must �nd the upper common tangent between
UH S�� and UH S��� and deduce the upper hull of S

The informal description given above can immediately be formulated as an
operational speci�cation on non�empty sequences of points�

UH �� �Point 		 �Point 	
UH s " s � if �s � �
UH s� �� s�� " UCT UH s�� UH s��� otherwise

Function UCT combines two nonintersecting upper hulls UH S�� and UH S��
by means of the upper common tangent� which is the unique line touching both
UH S�� " �p�� � � � � pM 	 and UH S�� " �q�� � � � � qN 	 at unique corners p and q
see Fig
 �b��

(a) (b)

UH(S1)
UH(S2)

g2i = g py qi

qy

p = py

p1

pM

q1

qN

x

y

q

upper common tangent passing
through p and q

qy

py

p1

pM

q1

qN

x

y

UH(S1)

UH(S2)

Fig� �� Upper common tangent of UH �S�	 and UH �S�	

The upper common tangent can be computed by �rst determining those
points py and qy of UH S�� and UH S��� respectively� with the maximal y�
coordinates
 To compute a point sy with the maximal y�coordinate in a sequence
of points s � we use the reduce operation� sy "def reduce maxy s

Then� p is de�ned as the rightmost point in UH S�� with the minimal slope
wrt
 qy
 Its formal de�nition is� p "def pi � i � f�� � � � �M g such that

�
 g qy pi � g qy pj � for all j � fi � �� � � � �M g and

�
 g qy pi � g qy pj for all j � f�� � � � � i
 �g

��

where g determines the slope of the line passing through the points a and b�

g �� Point 	 Point 	 Real
g a b " �� if a " �� � b " ��

b�y
 a�y��b�x
 a�x �� otherwise

Henceforth� � denotes an unde�ned value� which remains unchanged during
computation

The second corner q in UH S�� is speci�ed in a similar way� where only the
signs of the slopes are inverted

Figure �a� depicts two upper hulls UH S�� and UH S��
 The dashed li�
nes are the tangents passing through py
 The tangent with the minimal slope
modulo sign� determines the right corner q
 Figure �b� pictures the result
of computing the upper common tangent
 The new upper hull now consists of
points �p�� p� q � qN 	

An operational speci�cation of the above description reads as follows�

UCT �� �Point 		 �Point 		 �Point 	
UCT s� s� " s�� �� s��

where py � qy � " reduce maxy s�� reduce maxy s��
g�� g�� " map g qy� s��map neg � g py �� s��
m��m�� " reduce min g�� reduce min g��
f �� f �� " �nd m� g� s���nd m� g� s��
p� q� " reduce maxx f �� reduce minx f ��
s��� s��� " map upd �� p� s��map upd �� q� s��

In UCT � �rst the maximal points in s� and s� wrt
 the y�coordinate are
determined� resulting in the pair py � qy �
 Then� in every subsequence s� and s��
respectively� the slopes are computed by means of the auxiliary function g
 In
s�� function neg additionally negates the slopes� where

neg x " �� if x " �

x � otherwise

The pair m��m�� denotes the minimal slope in each subsequence s� and s�

Points� whose tangents wrt
 py and qy have a slope equal to m� and m� are
assembled in the pair of sequences f �� f �� by means of function �nd �

�nd �� Real 	 �Real 		 �Point 		 �Point 	
�nd m gs s " zipWith ism m� gs s
where ism m m � x " x � if m " m �

�� otherwise

Then� the unique corners p and q of s� and s� are the rightmost and leftmost
points in the according subsequences
 Finally those elements in s� and s�� resp
�
which do not belong to the upper hull� are replaced by dummy elements� accor�
ding to the de�nition of function upd �

upd �� Point 	 Point 	 Bool�	 Point 	 Point 	 Point
upd � a b " �� if a�x � b�x

b� otherwise

��

Unfolding function UCT in the body of UH leads to a version� which �ts the
input scheme of transformation rule Bottom�up with post�adjustment�

UH s " s � if �s � �
UH s� �� s�� " k v w �� j v w � otherwise
where
v �w� " UH s��UH s��
k v w " map upd �� p v w�� v j v w " map upd �� q v w��w
p v w " reduce maxx f � v w� q v w " reduce minx f � v w�
f � v w " �nd m� v w� g� v w� v f � v w " �nd m� v w� g� v w�w
m� v w " reduce min g� v w� m� v w " reduce min g� v w�
g� v w " map g qy v w�� v g� v w " map neg � g py v w���w
py v w " reducemaxy v qy v w " reducemaxy w

Note� In order to ease the following parallelization we lifted the object declara�
tions of UCT to functions in UH

Parallelization

As in the previous subsection� we carry out some precomputations in order to
derive instantiations of t �� k � and j � without using recursion�

Derivation� Let n " �s� and s " s� �� s� and s � " s� �� s�

k � n s s �

" � de�nition of s and s �� slice�distributivity of k � unfold k �� unfold k 	

map upd �� p s� s��� s� �� map upd �� p s� s��� s�

" � property of map wrt
 zipWith� distributivity of zipWith 	

zipWith upd ��� copy n p s� s�� �� copy n p s� s��� s� �� s��

" � s " s� �� s�� p� n s s � "def copy n p s� s�� �� copy n p s� s�� 	

zipWith upd ��� p� n s s �� s

p� n s s � "def copy n p s� s�� �� copy n p s� s��

" � unfold p 	

copy n reduce maxx f � s� s��� �� copy n reduce maxx f � s� s���

" � reduce� � s "def copy �s�reduce � s� 	

reduce� maxx f � s� s�� �� reduce� maxx f � s� s��

" �reduce��� � �s�� � s� �� s�� " reduce� � s� �� reduce� � s�	

reduce� maxx n � f � s� s� �� f � s� s��

" � f �� n s s � "def f � s� s� �� f � s� s� 	

reduce� maxx n � f �� n s s ��

�� The function reduce� is a parallel version of reduce�� Its derivation is analogous to
the given ones�

��

In an analogous way� we can �nd generalizations for f ��m�� g� and qy �

f �� n s s � " zipWith� ism m�� n s s �� g�� n s s �� s
m�� n s s � " reduce� min n � g�� n s s ��
g�� n s s � " zipWith g q �

y n s s �� s
q �

y n s s � " reduce� maxy n � s �

Due to the slice�distributivity of k �� de�nition of k � holds for all n � �s�

Analogously� we can derive�

t � n s " s
j � n s s � " zipWith upd ��� q � n s s �� s �

where
q � n s s � " reduce� minx n � f �� n s s ��
f �� n s s � " zipWith� ism m�� n s s �� g�� n s s �� s �

m�� n s s � " reduce� min n � g�� n s s ��
g�� n s s � " map neg zipWith g p�

y n s s �� s ��
p�

y n s s � " reduce� maxy n � s

ut

The application of Theorem � results in�

UH s " UH � �s� � s
where

UH � m n s " s � if m " n
UH � m �n� join n k � n s s �� j � n s � s��� otherwise

where
s � " corr n s
k � and j � as de�ned above

which� after several unfolding steps and consistent renaming� leads to a data
parallel version of UH ��

UH � m n s " s � if m " n

UH � m �n� join n k j �� otherwise
where

s � " corr n s

k " zipWith upd ��� p s j " zipWith upd ��� q s

p " reduce� maxx n � f � q " reduce� minx n � f �

f � " zipWith� ism m� g� s f � " zipWith� ism m� g� s
m� " reduce� min n � g� m� " reduce� min n � g�
g� " zipWith g py s g� " map neg zipWith g qy s�
qy " reduce� maxy n � s � py " reduce� maxy n � s �

A closer inspection of this version of UH � shows that due to the generality
of our transformation rules we wasted a lot of parallelism
 Since join only takes
half of the elements of its argument sequences� we compute some data values
sequentially instead of parallel
 Thus� we continue our derivation by applying an

��

adapted horizontal fusion strategy �Par��	� which amounts to �merging� di�erent
computations into a single one

Derivation� Without loss of generality� we assume n " �s

�

 The auxiliary func�

tions left and right take the �rst and the second half of a sequence� respectively�
left s� �� s�� " s� and right s� �� s�� " s�

join n k j

" � unfold k and j 	

join n zipWith upd ��� p s� zipWith upd ��� q s�

" � distributivity of zipWith� unfold join 	

zipWith upd ��� left p� s� �� zipWith upd ��� right q� s�

" � pq "def left p �� right q 	

join n zipWith upd ��� pq s� zipWith upd ��� pq s�

pq "def left p �� right q

" � unfold p and q 	

left reduce� maxx n � f �� �� right reduce� minx n � f ��

" � property of reduce� under the assumption n " �f � " �f � 	

reduce� maxx n � left f �� �� reduce� minx n � right f ��

" � f "def left f � �� right f � 	

join n reduce� maxx n � f � reduce� minx n � f �

Similar derivations lead to appropriate equations for f �m� g � a and pqy see be�
low�
 ut

Our �nal version of the convex hull algorithm is summarized in the following
program�

UH s " UH � �s� � s
where

UH � m n s " s � if m " n

UH � m �n� join n k j �� otherwise
where s � " corr n s

k " zipWith upd ��� pq s
j " zipWith upd ��� pq s

pq " join n reduce� maxx n � f � reduce� minx n � f �

f " zipWith� ism m g s
m " reduce� min n � g
g " join n a map neg a�
a " zipWith g pqy s
pqy " reduce� maxy n � s �

��

This algorithm uses all those higher order functions on sequences� which
can immediately be rewritten as skeletons for a particular massively parallel
architecture

The algorithm we have derived here di�ers from those in the parallel litera�
ture cf
 �J#aJ��� Akl��	�
 Especially� it does not need unrealistic assumptions like
a concurrent read access to shared memory variables as e
g
 given by the PRAM
model� but is well suited for massively parallel computation on distributed me�
mory architectures by making e�ciently use of the underlying interconnection
network to exchange data

� Related Work

Much attention has been paid to the formal parallelization of DC algorithms

Smith develops a DC theory �Smi��� Smi��	� e
g
� DC can be treated as a mor�
phism from a decomposition algebra on the input domain to a composition alge�
bra on its output domain
 His emphasis is on the development of a DC algorithm�
whereas we are interested in its data parallelization on a particular architecture

Thus� our work can be seen as a completion of Smith�s work towards data parallel
execution

Mou and Houdak describe DC in a algebraic model called Divacon �MH��	

They recognize that the original DC model is too restrictive with respect to
decomposition and communication
 For the latter� they introduce so called pre�
and postmorphims� which correspond with our adjustment� functions g � h� k and
j
 They illustrate the expressive power of this generalized DC� with a broad range
of examples
 However� they only sketch the mapping of the model on parallel
computers

This algebraic model was later picked up by Carpentiery and Mou� who study
communication issues in the model �CM��	
 They present hypercube speci�c
rules to optimize communication by introducing new storage levels
 These rules
are expressed in Divacon� whereas our approach takes the architecture explicitly
into account
 However� their approach is neither calculated nor transparent

Axford and Joy �Axf��� AJ��	 have proposed to use DC as a fundamental
design principle� and have either proposed arrays or sequences as suitable data
structures
 In fact� the balanced sequence primitives that we use� were proposed
by Axford and Joy
 Aside from this� no calculation nor interesting distributed
implementation is presented

Among the �rst� who used the skeleton approach in a functional setting�
initiated by Cole �Col��	� was a group at Imperial College �DFH���	
 Their ske�
letons are rather highlevel� e
g
� they distinguish farming� pipelining� DC and
other high level skeletons� but do not tackle massive parallelism� as it is under�
stood by us

Still more abstract is the work on investigating parallelism within the Bird�
Meertens formalism� which recently has gained much attention cf
 e
g
 �Col��	�

However� all these di�erent approaches have in common that they stop on the

��

level of DC algorithms or homomorphisms� whereas our approach proceeds down
to an architecture speci�c target program

An exception to these works is presented by Gorlatch and Lengauer �GL��	

They develop a DC function� using mainly the control parallelism
 In particular�
they do not require that there is a single PE for each member in the sequence�
but assume that there is a single PE for a group of members in the sequence

As before� the step to a working imperative implementation is still left open

Work that is closely related to ours is done at the University of Nijmegen
�Gee��� Gee��� Par��� BGP��� Gee��	
 In fact� the skeletons which we propose
were adapted from their work
 Opposite to our goals� their research aims at
introducing data parallelism out of a parallel control structure� which can be
achieved by means of partial inversion
 Recently� Geerling also considers data
type transformations in order to adapt algorithms to di�erent hardware
 We
start� however� with a problem dependent data structure� which enables right
from the start implicit data parallelism

In contrast to our approach� a group in Yale introduces data �elds right from
the beginning of the derivation process �CC��� YC��	
 They make extensive use
of so called domain morphisms in order to specify parallel�program optimiza�
tions
 Their approach seems to work well for numerical problems� where the
problem domain is given by matrices
 The main problems lie in the absence of
a strategy for deriving programs and in di�culties to �nd appropriate index
domain morphisms� which lead to optimizations

The important problem of how to cope with the usual situation that the
number of processors is smaller than the size of the input domain is ignored in
our work
 We believe that this is perfectly reasonable� since either the hardware
of massively parallel computers e
g
 Connection Machine CM���� or the software
e
g
 Fortran on the MASPAR� abstracts from the number of real processors

However� not all massively parallel machines support virtual processors
 The�
refore� data distribution is still a major problem� which is tackled by a group
around Pepper �PES��	

� Conclusion and Future Research

In this paper� we have presented a transformation strategy to develop correct�
e�cient� data parallel DC algorithms� and showed how such derivation is guided

The main advantage of making the strategy explicit lies in its reuseability
 A
similar problem can be solved in a similar fashion� which is demonstrated by the
examples

We distinguish data parallelism in the problem domain here� sequences�
from data parallelism on the level of the architecture here� skeletons�
 This
distinction gives rise to develop portable parallel programs� since data parallelism
on the problem domain must be mapped di�erently on existing hardware� if the
diversity in architectures is exploited in full

In addition� we claim that the transformational approach taken here is rather
crucial to the presented development� The calculational properties of functional

��

programs� in particular skeletons� give a basis for a solid understanding and a
formal treatment for the derivation of massive parallel algorithms from a high�
level speci�cation down to the low�level hardware

More research is necessary for the development of further strategies
 In this
context� our ultimate goal is the development of a methodology for transforma�
tional data parallel program development

Acknowledgements� We would like to thank Helmuth A
 Partsch and Ton Vul�
linghs for their helpful comments

References

�AJ��� T� Axford and M� Joy� List processing primitives for parallel computation�
Computer Languages� ����	����� �����

�Akl��� S� G� Akl� The Design and Analysis of Parallel Algorithms� Prentice�Hall�
�����

�AS��� K� Achatz and W� Schulte� Architecture independent massive paralleliza�
tion of devide�and�conquer algorithms� In B� M�oller� editor� Proceedings of
Mathematics of Program Construction� Bad Irsee� ����� volume forthcoming
of Lecture Notes in Computer Science� �����

�Axf��� T� Axford� Crystal� The divide�and conquer paradigm as a basis for parallel
language design� In L� Kronsjo and D� Shumsheruddin� editors� Advances
in Parallel Algorithms� chapter �� Blackwell� �����

�Bat��� K� E� Batcher� Sorting networks and their applications� AFIPS Spring Joint
Computer Conference� pages ������� �����

�BBES��� I� Barth� T� Br�aunl� S� Engelhardt� and F� Sembach� Parallaxis version �
user manual� Technical Report ����� Fakult�at Informatik� Universit�at Stutt�
gart� September �����

�BGP��� E� A� Boiten� A� M� Geerling� and H� A� Partsch� Transformational deriva�
tion of �parallel	 programs using skeletons� Technical Report ������ Katho�
lieke Universiteit Nijmegen� September ����� Also� Proceedings of Compu�
ter Science in the Netherlands ����� Utrecht�

�Bir��� R� Bird� Lectures on constructive functional programming� In M� Broy� edi�
tor� Constructive methods in computing science� NATO ASI Series� Series
F� Computer and systems sciences ��� pages ������� Berlin� ����� Springer�
Verlag�

�Ble��� G� E� Blelloch� NESL� A nested data�parallel language �version ���	� Tech�
nical Report CMU�CS�������� School of Computer Science� Carnegie Mellon
University� April �����

�Ble��� G� E� Blelloch� Pre�x sums and their applications� In J Reif� editor� Syn�
thesis of Parallel Algorithms� chapter �� pages ����� Morgan Kaufmann
Publishers� �����

�BW��� R� Bird and Ph� Wadler� An Introduction to Functional Programming�
Prentice�Hall� �����

�CC��� M� Chen and Y� Choo� Domain morphisms� A new construct for paral�
lel programming and formalizing program optimization� Technical Report
DCS�TR����� Department of Computer Science� Yale University� August
�����

��

�CM��� B� Carpentieri and G� Mou� Compile�time transformations and optimiza�
tions of parallel divide�and conquer algorithms� ACM SIGPLAN Notices�
�����	������ �����

�Col��� M� Cole� Algorithmic Skeletons� Structured Management of Parallel Com�
putation� MIT Press� �����

�Col��� M� Cole� List homomorphic parallel algorithms for bracket matching� Tech�
nical Report CSR������� Department of Computer Science� University of
Edinburgh� August �����

�DFH���� J� Darlington� A� Field� P� Harrison� P� Kelly� D� Sharp� Q� Wu� and
R� White� Parallel programming using skeleton functions� In A� Bode�
M� Reeve� and G� Wolf� editors� PARLE	�
 Parallel Architectures and Lan�
guages Europe� volume ��� of Lecture Notes in Computer Science� pages
������� �����

�Fea��� M� S� Feather� A survey and classi�cation of some program transformation
approaches and techniques� In L�G�L�T� Meertens� editor� Program Speci��
cation and Transformation� North�Holland� �����

�Fox��� G�C� Fox� Parallel computing comes of age� Supercomputer level parallel
computations at caltech� Concurrency� Practice and Experience� ���	���
���� �����

�Gee��� A� M� Geerling� Two examples of parallel�program derivation� Parallel�
pre�x and matrix multiplication� Technical Report DoC ������ Imperial
College London� November �����

�Gee��� A� M� Geerling� Formal derivation of SIMD parallelism from non�linear re�
cursive speci�cations� Technical Report CSI�R����� Katholieke Universiteit
Nijmegen� September �����

�Gee��� A�M� Geerling� Formal derivation of SIMD parallelism from non�linear
recursive speci�cations� In B� Buchberger and J� Volkert� editors� CON�
PAR	�� VAPP VI International Conference on Parallel and Vector Proces�
sing� pages ������� Springer�Verlag� �����

�GL��� S� Gorlatch and C� Lengauer� Parallelization of divide�and conquer in the
Bird� Meertens formalism� Technical Report ������ Fakult�at f�ur Mathema�
tik und Informatik� Universit�at Passau� Dezember �����

�J�aJ��� J� J�aJ�a� An introduction to parallel algorithms� Addison�Wesley� �����

�MH��� Z�G� Mou and M� Hudak� An algebraic model for divide�and�conquer algo�
rithms and its parallelism� Journal of Supercomputing� ���	�������� �����

�NS��� D� Nassimi and S� Sahni� Bitonic sort on a mesh�connected parallel compu�
ter� IEEE Transactions on Computers� ����	���� �����

�Par��� H� A� Partsch� Speci�cation and Transformation of Programs� Springer�
Verlag� �����

�Par��� H� Partsch� Some experiments in transforming towards parallel executabi�
lity� In R� Paige� J� Reif� and R� Wachter� editors� Parallel Algorithm Deri�
vation and Program Transformation� Kluwer Academic Publisher� �����

�Pep��� P� Pepper� Deductive derivation of parallel programs� In R� Paige� J� Reif�
and R� Wachter� editors� Parallel Algorithm Derivation and Program Trans�
formation� Kluwer Academic Publishers� ����� Also� Technical Report ���
��� Technische Universit�at Berlin� July �����

�PES��� P� Pepper� J� Exner� and M� S�udholt� Functional development of massi�
vely parallel programs� In D� Bjorner� M� Broy� and I�V� Pottosin� editors�
Formal Methods in Programming and Their Applications� Proceedings In�

��

ternational Conference Novosibirsk� JuneJuly ���
�� volume ��� of Lecture
Notes in Computer Science� pages ������� Berlin� ����� Springer�Verlag�

�PH��� F� P� Preparata and S� J� Hong� Convex hulls of �nite sets of points in two
and three dimensions� Communications of The ACM� �������� �����

�Ski��� D�B� Skillicorn� A cost calculus for parallel functional programming� Tech�
nical Report ISSN������������������ Department of Computing and Infor�
mation Science� Queen�s University� March �����

�Smi��� D�R� Smith� The design of divide�and�conquer algorithms� Science of Com�
puter Programming� ������� �����

�Smi��� D� R� Smith� Derivation of paralel sorting algorithms� In R� Paige� J� Reif�
and R� Wachter� editors� Parallel Algorithm Derivation and Program Trans�
formation� Kluwer Academic Publisher� �����

�Sto��� H� S� Stone� Parallel processing with perfect�shu�e� IEEE Computer� pages
������� February �����

�YC��� J� A� Yang and Y� Choo� Data �elds as parallel programs� Technical Report
CT ���������� Department of Computer Science� Yale University� March
�����

��

A Proofs

A�� Proof of the Generalized Divide�and�Conquer Rule

We show

f x " f � f � x �

by induction on the length of the argument�

Induction Basis� �x " q

f � f � x �

" � unfold f � and f � under assumption �x " q 	

t� t� x �

" � applicability condition� t " t� � t� 	

t x

" � fold f 	

f x

Induction Step� �x �� y� � q

f �f � x �� y��

" � unfold f � and f � under assumption �x �� y� � q 	

k v w �� j v w where v �w� " f � f � g x y��� f � f � h x y���

" � induction hypothesis 	

f x �� y�

ut

A�� Proof of Transformation Rule� Top�down with Pre�adjustment

The proof consists of two steps and makes substantial use of a lemma� which
also will be given during this subsection

Step �� Embedding� We start our proof by an appropriate embedding of func�
tion f � in order to introduce a termination parameter n� which denotes the length
of the input sequence of f ��

f � x " f �� �x � x

where f �� n x "def f � x provided �x " n

" � unfold f � 	

f �� n x " t x � if �x " q
f �� n x �� y� " f � g x y� �� f � h x y�� otherwise

" � �x " q � n " q � g and h length preserving� fold with assertion 	

f �� n x " t x � if n " q
f �� n x �� y� " f �� n

�
g x y� �� f �� n

�
h x y�� otherwise

��

Step �� Computational Induction� In order to proof the equality of f �� and
f �� we de�ne two functionals�

� �f ��	 n x " t x � if n " q
� �f ��	 n x �� y� " f �� n

�
g x y� �� f �� n

�
h x y�� otherwise

for which we assume� that the parameter n denotes the length of the input
sequence x and x �� y � respectively� and

	�f �	 n x " t x � if n " q
	�f �	 n x " f � n

�
join n

�
v w�� otherwise

where x � " corr n
�
x

v �w� " g � n
�
x x �� h � n

�
x � x �

for which we require that �x � n

Now we have to show�

� �f ��	 �x � x " 	�f �	 �x � x

As an abbreviation we de�ne� s " x �� y and s � " y �� x " corr �x s

� �f ��	 n x

" � unfold � �f ��	 	

t x � if n " q
f �� n

�
g x y� �� f �� n

�
h x y�� otherwise

" � induction hypothesis 	

t x � if n " q
f � n

�
g x y� �� f � n

�
h x y�� otherwise

" � Lemma A
� 	

t x � if n " q
f � n

�
g x y �� h x y�� otherwise

" � fold g � and h �� since �x " �y " n
�
� property of join 	

t x � if n " q
f � n

�
join n

�
g � n

�
s s �� h � n

�
s � s��� otherwise

" � fold t� 	

t� q x � if n " q
f � n

�
join n

�
g � n

�
s s �� h � n

�
s � s��� otherwise

" � fold 	�f �	 with assertion 	

	�f �	 n x

ut
In the above proof� we have used the slice�distributivity of function f ��

Lemma �Slice�distributivity of f �	� Let �x " �y � n� Then function f �
�see Theorem 	
 ful�lls the following property�

f � n x �� y� " f � n x �� f � n y

��

The proof is made by induction on the length of the argument

Induction Basis� n " q

f � n x �� y� " t � q x �� y�

" � unfold f � 	

t � q x �� y�

" � unfold t � 	

t � q x �� t � q y

" � fold f � 	

f � q x �� f � q y

Induction Step� �x � �n
 As an abbreviation� we de�ne� x �� y �� " corr n x �
corr n y�

f � �n� x �� y�

" � unfold f � 	

f � n join n g � n s s ��h � n s � s��

where s � s �� " x �� y � corr n s�

" � property of corr 	

f � n join n g � n x �� y� x � �� y ���h � n x � �� y �� x �� y���

" � unfold g � and h � 	

f � n join n g � n x x � �� g � n y y ��h � n x � x �� h � n y � y��

" � property of join 	

f � n join n g � n x x �� h � n x � x � �� join n g � n y y �� h � n y � y��

" � induction hypothesis 	

f � n join n g � n x x �� h � n x � x �� �� f � n join n g � n y y �� h � n y � y��

" � fold f � with assertion 	

f � �n� x �� f � �n� y

ut

A�� Proof of Corollary

We only pick out the proposition

g corr n x � " CORRA n g x �

the remaining propositions can be treated similarly

Induction Basis� n " �x

��

CORRAngx �� y��

" � unfold CORRA and g 	

SHLA n � i � x �� y�i �� if eveni div n�
SHRA n � i � x �� y�i �� if �eveni div n�

" � eveni div n� � i � n� unfold SHLA and SHRA 	

� i � x �� y�i�n �� if i � n
x �� y�i�n �� if i � n

" � property of �� 	

� i � yi � if i � n
xi�n � if i � n

" � property of list concatenation 	

� i � y �� x �i

" � fold g and corr 	

g corr n x �� y��

Induction Step� n � �x
 Let i � f�� � � � �N
 �g

CORRA n g x �� y���i�

" � unfold CORRA 	

SHLA n gx �� y��i�� if eveni div n�
SHRA n gx �� y��i�� if �eveni div n�

" � unfold SHLA�SHRA and g 	

x �� y�N��� if i � N
 n � eveni div n�
x �� y�i�n � if i � N
 n � eveni div n�
x �� y��� if i � n � �eveni div n�
x �� y�i�n � if i � n � �eveni div n�

" � eveni div n�� i � N
 n� �eveni div n�� i � n 	

x �� y�i�n � if i � N
 n � eveni div n�
x �� y�i�n � if i � n � �eveni div n�

Case �� i � �x

xi�n � if � � i � �x
 n � eveni div n�
xi�n � if n � i � �x � �eveni div n�

" � fold g and CORRA 	

CORRA n gx ��i�

" � induction hypothesis 	

g corr n gx ���i�

" � i � �x 	

g corr n gx �� y���i�

��

Case �� i � �x

yi��x�n � if �x � i � N
 n � eveni div n�
yi��x�n � if i � n ��x � �eveni div n�

" � index translation 	

yi�n � if � � i � �x
 n � eveni div n�
yi�n � if i � n � �eveni div n�

" � analog to case � 	

� � �

g corr n gx �� y���i�

ut

A�
 Proof of Corollary �

As a representative of the four propositions� we only proof

CORRA n x � g�� � g�� " CORRM n x

Let i � j � f�� � � � �N
 �g

CORRM n x �i � j �

" � unfold CORRM 	

JOINM n s� s��i � j �
where s� " SHLM n mod N �SHUM n div N �x �

s� " SHRM n mod N �SHDM n div N �x �

Case �� n � N
 This implies� n divN " � � nmodN " n
 Then by simplifying
the above expression� we yield�

JOINM n s� s��i � j �

where s� " SHLM n x � s� " SHRM n x �

" � unfold JOINM 	

SHLM n x �i � j �� if eveni � N � j � div n�
SHRM n x �i � j �� otherwise

" � unfold SHLM an SHRM 	

x i �N
 ��� if j � N
 n � eveni � N � j � div n�
x i � j � n�� if j � N
 n � eveni � N � j � div n�
x i � ��� if j � n � � eveni �N � j � div n�
x i � j
 n�� if j � n � � eveni �N � j � div n�

" � n � N � eveni �N � j � div n� " evenj div n�� j � N
 n� �
�evenj div n�� j � n�	

x i � j � n�� if j � N
 n � eveni �N � j � div n�
x i � j
 n�� if j � n � � eveni � N � j � div n�

��

" � gi � N � j � n� " i � j � n� and gi � N � j
 n� " i � j
 n� 	

x � g�i �N � j � n�� if j � N
 n � eveni �N � j � div n�
x � g�i �N � j
 n�� if j � n � � eveni � N � j � div n�

" � evenj div n� � i � N � j � N �
 n�
�evenj div n�� i �N � j � n� j � n � i �N � j � n	

x � g�N �
 ��� if i �N � j � � N �
 n �
eveni � N � j � div n�

x � g�i �N � j � n�� if j � N
 n � eveni �N � j � div n�
x � g���� if i � N � j � n � � eveni �N � j � div n�
x � g�i �N � j
 n�� if i � N � j � n � � eveni �N � j � div n�

" � fold SHLA and SHRA 	

SHLA n x � g��i � N � j �� if eveni � N � j � div n�
SHRA n x � g��i �N � j �� otherwise

" � fold JOINA 	

JOINA n s� s��i � N � j �

where s�� s�� " SHLA n x � g��SHRA n x � g��

" � fold CORRA and g�� 	

CORRA n x � g�� � g��� i j

Case �� n � N
 This implies� n div N " n
N
� n mod N " �� since both n and

N must be a power of �
 Then by simplifying the above expression� we yield�

JOINM n s� s��i � j � where s� " SHUM
n
N

x � s� " SHDM
n
N
x �

" � unfold JOINM 	

SHUM
n
N
x �i � j �� if eveni � N � j � div n�

SHDM
n
N
x �i � j �� otherwise

" � unfold SHUM and SHDM 	

x N
 �� j �� if i � N
 n
N
� eveni � N � j � div n�

x i � n
N
� j �� if i � N
 n

N
� eveni � N � j � div n�

x �� j �� if i � n
N
� � eveni �N � j � div n�

x i
 n
N
� j �� if i � n

N
� � eveni �N � j � div n�

" � eveni �N � j � div n�� i � N
 n
N
� � i � N � j � � N �
 n��

�eveni �N � j � div n�� i � n
N
� � i �N � j � � n�	

x N
 ��N
 ��� if i � N � j � � N �
 n � eveni � N � j � div n�
x i � n

N
� j �� if i � N � j � � N �
 n � eveni � N � j � div n�

x �� ��� if i �N � j � n � � eveni � N � j � div n�
x i
 n

N
� j �� if i �N � j � n � � eveni � N � j � div n�

" � gi � N � j � n� " i � n
N
� j � and gi �N � j
 n� " i
 n

N
� j � 	

x � g�N �
 ��� if i �N � j � � N �
 n � eveni � N � j � div n�
x � g�i �N � j � n�� if i �N � j � � N �
 n � eveni � N � j � div n�
x � g���� if i � N � j � n � � eveni �N � j � div n�
x � g�i �N � j
 n�� if i � N � j � n � � eveni �N � j � div n�

��

" � fold SHLA and SHRA 	

SHLA n x � g��i �N � j �� if eveni �N � j � div n�
SHRA n x � g��i � N � j �� otherwise

" � fold JOINA 	

JOINA n s� s��i �N � j �

where s�� s�� " SHLA n x � g��SHRA n x � g��

" � fold CORRA and g�� 	

CORRA n x � g�� � g���i � j �

ut

A�� Proof of Corollary �

As a representative of the four propositions� we only proof

CORRA n x � g�� � g�� " CORRH n x

Let i � f�� � � � � �n
 �g

CORRH n x � i

" � unfold CORRH 	

JOINH n COMMDH n x � COMMUH n x �� i

" � unfold JOINH 	

COMMDH n x �� if eveni div n�
COMMUH n x �� otherwise

" � eveni div n� � i � i div �n� � �n � n� unfold COMMDH �COMMUH 	

x i � n�� if eveni div n�
x i
 n�� otherwise

" � fold SHRA and SHLA 	

SHL n x � i � if eveni div n�
SHR n x � i � otherwise

" � fold JOINA� fold CORRA 	

CORRA n x � i

ut

A�� Proof of Lemma

Let i � f�� � � � �N
 �g�

JOINA n s ZIPWITH �� DISTLA n CORRA n s�� s��i�

" � unfold JOINA 	

si�� if eveni div n�
ZIPWITH ��DISTLA nCORRA n s�� s�i�� otherwise

��

We concentrate on the case �eveni div n� and start by unfolding ZIPWITH

DISTLA nCORRA n s��i� � si�

" � unfold DISTLA 	

CORRA n s��i div n�n � n
 ��� si�

" � unfold CORRA 	

JOINA n SHLA n s�SHRA n s��i div n�n � n
 ��� si�

" � unfold JOINA� distributivity over conditional 	

SHLA n s�
i div n�n � n
 ��� si�� if eveni div n�n � n
 �� div n�

SHRA n s�
i div n�n � n
 ��� si�� otherwise

" � i div n�n � n
 �� div n " i div n� 	

SHRA n s�i div n�n � n
 ��� si�

" � unfold SHRA 	

s��� if i div n�n � n
 � � n
si div n�n � n
 �
 n�� si�� otherwise

" � i div n�n � n
 � � n " i div n�n � � 	

s��� if i div n�n � �
si div n�n � n
 �
 n�� si�� otherwise

" � abstraction 	

� j � s��� if j � �
sj
 ��� otherwise �i div n�n�� si�

" � fold SHRA �� fold DISTRA and fold ZIPWITH 	

ZIPWITH ��DISTRA n SHRA � s�� s�i�

Now putting the two cases together and folding JOINA results in�

JOINA n sZIPWITH �� DISTRA n SHRA � s�� s��i�

ut

��

B Example Implementation of Pre�x Sums

We give an implementation of psum� see �
�� by means of an imperative paral�
lel language� viz
 Parallaxis �BBES��	
 Parallaxis is a Modula�� like imperative
language with explicit parallel control constructs as well as communication ope�
rations
 It is not dedicated to a particular architecture� but allows the user to
specify a concrete one
 Parallaxis follows the SIMD computation model� i
e
 there
is one control unit� which provides a single instruction stream to hundreds or
thousands of PEs
 According to that� Parallaxis distinguishes two kinds of varia�
bles� a� scalar variables which reside on the control unit and b� vector variables�
which denote data elements spread over all PEs
 Communication primitives are
PROPAGATE �RECEIVE and SEND which can only be distinguished by their
behavior on inactive PEs

SYSTEM Prefix�Sum�

CONST N � 	
��� � natural number� power of � ��

TYPE inat � �	��N��

���� Architecture specification� linear array with N PEs �����

CONFIGURATION list�	��N��

CONNECTION left� list�i� �� list�i�	��right�

right� list�i� �� list�i�	��left�

���� Definition of extended architecture skeletons� �����

���� JOIN� CORR and DISTR �����

PROCEDURE JOIN SCALAR n�inat� VECTOR s�t�INTEGER��VECTOR INTEGER�

VECTOR res� INTEGER�

BEGIN IF EVENid�no � 	� DIV n� THEN res �� s ELSE res �� t END�

RETURN res

END JOIN�

PROCEDURE CORR SCALAR n�inat� VECTOR s�INTEGER��VECTOR INTEGER�

VECTOR t�u� INTEGER�

BEGIN PROPAGATE�left�n s�t�� PROPAGATE�right�n s�u��

RETURN JOINn�t�u��

END CORR�

PROCEDURE DISTR SCALAR n�inat�VECTOR s�INTEGER��VECTOR INTEGER�

SCALAR i� INTEGER�

BEGIN FOR i �� 	 TO n DO

IF id�no � 	� MOD n �
 THEN

RECEIVE list�lefts� FROM list�rights�

END END� RETURN s

END DISTR�

���� Computation of the parallel prefix sum �����

PROCEDURE psum SCALAR m�n�inat� VECTOR s�INTEGER��VECTOR INTEGER�

VECTOR t� INTEGER�

BEGIN WHILE m � n DO PROPAGATE�rights�t�� t �� DISTRn�t� � s�

s �� JOINn�s�t�� n �� � � n

END� RETURN s

END psum�

���� Main program �����

BEGIN PARALLEL ���� s �� psumN�	�s�� ��� ENDPARALLEL END Prefix�Sum�

��

This article was processed using the LaTEX macro package with LLNCS style

��

