
Architecture Migration Driven by Code

Categorization

R. Correia1,2, C. Matos1,2, R. Heckel1, and M. El-Ramly3

1 Department of Computer Science, University of Leicester, University Road,
Leicester, LE1 7RH, United Kingdom

{rmc20, cmm22, reiko, mer14}@mcs.le.ac.uk
2 ATX Software, Rua Saraiva de Carvalho 207C, 1350-300 Lisboa, Portugal

3 Computer Science Department, Cairo University, Egypt

Abstract. In this paper, we report on the development of a method-
ology for the evolution of software towards new architectures. In our
approach, we represent source code as graphs. This enables the use of
graph transformation rules, allowing the automation of the transforma-
tion process. Prior to its model representation, the source code is subject
to a preparatory step of semi-automatic code annotation according to the
contribution of each of its parts in the target architecture. This paper
first describes the overall methodology and then focuses on the code an-
notation and model transformation parts. We also discuss issues of the
implementation of the approach based on existing tools.

1 Introduction

As business and technology evolve and software becomes more complex, re-
searchers and vendors of tools in reengineering are constantly challenged to come
up with new techniques to effectively support the transition of legacy systems
to modern architectures.

In this paper, we introduce a methodology to fill the gap that exists in ad-
dressing systematically the complexity of architecture migrations. We argue that,
starting from a legacy application, such transitions involve different steps of de-
composition. Depending on the target architecture, these are made along one
or both technological and functional dimensions. Technological decomposition
is used in the layering of software systems and may, for example, lead to a 3-
tiered architecture, separating logic, data, and user interface (UI). Functional de-
composition, used to move to Service Oriented Architectures (SOAs), separates
components which, when removing their UI tier, represent candidate services.

Based on a metamodel for both source and target architecture, the methodol-
ogy presented in this paper consists in (1) categorizing the source code according
to the different elements of the target architecture they shall be mapped to, (2)
obtaining a metamodel-based representation of the code, (3) transforming it into
the target architecture, and (4) generating the target code.

At this point, we have implemented in an automated way the transformation
and partially implemented the semi-automatic code categorization, but only for



Fig. 1: Methodology for architectural migration

the technological decomposition (or layering). This is where the paper concen-
trates on. Its main contribution is the automation of the architectural migration
using graph transformation rules over a model of the annotated source code. This
allows us to: abstract (in large parts of the process) from the specific languages
involved and describe transformations in a more intuitive way (compared to code
level transformations). Along the paper a small Java client-server application is
used to exemplify the implementation of some of the steps. The intended target
architecture is 3-tier.

The remainder of this paper is organized as follows: Section 2 presents our
methodology for architectural transformation. The code annotation and the
model transformation parts of our approach are discussed in Sections 3 and 4
respectively. We review related work in Section 5 and discuss conclusions and
further work in Section 6.

2 Architectural Transformation Methodology

In this section we discuss methodological aspects of our approach to architec-
tural redesign. We are following the Horseshoe Model [1], refining it to support
automation and traceability. Our methodology consists of the three steps of re-

verse engineering, redesign, and forward engineering, preceded by a preparatory
step of code annotation, as illustrated in Figure 1.

A metamodel composed of a type graph that represents the technological
paradigm of the system and a list of the code categories needed regarding the
target architecture is used. Target constraints are also used to ensure that the
target model is achieved and complies to the expected one.

1. Code Annotation. The source code is annotated by code categories, distin-
guishing its constituents (classes, methods, or fragments thereof) with respect
to their foreseen association to architectural elements of the target system.

The annotation is done by means of comments in the original source code
and even though the code is categorized statement by statement, in the end,
consecutive statements of the same category are grouped making possible for
a whole class or package being annotated with just one code category. This
procedure makes the graph model representation of the source code much simpler



than if there was no categorization step, since the level of detail used can be much
lower. Simpler graph models make the redesign step easier to scale.

This semi-automatic code annotation is based on categorization rules defined
at the level of the Abstract Syntax Tree (AST), taking into account information
obtained through dependency analysis and inputs by the developer. The results
may have to be revised and the propagation repeated in several iterations, leading
to an interleaving of automatic and manual annotations.

2. Reverse Engineering. From the annotated source code, a graph model is cre-
ated, whose level of detail depends on the annotation. For example, a method
wholly annotated with the same code category is represented as a single node,
but if the method is fragmented into several categories, each of these fragments
has to have a separate representation in the model. The relation R1 between
the original (annotated) source code and the graph model is kept to support
traceability. This step is a straightforward translation of the relevant part of the
AST representation of the code into its graph-based representation.

3. Redesign. The source graph model is restructured in order to comply to the
target architecture. In our approach, code categories provide the control required
to automate the transformation process, focussing user input on the annotation
phase. During this redesign step, the relation with the original source code is
kept as R2 in order to support the code generation.

This code category-driven transformation is specified by graph transformation
rules, conceptually extending those suggested by Mens et al [2] to formalize
refactoring by graph transformation.

4. Forward Engineering. The target code is generated from the target graph
model and the original source code, using their relation R2 as an input. The
result of this step, the annotated code in relation with a graph model, has the
same structure as the input to Step 1. Hence, the process can be iterated. This
is particularly relevant if the reengineering is directed towards service-oriented
systems, because the transformation has to address first the technological and
then the functional decomposition.

3 Code Annotation

The annotated source code is obtained through an iteration of manual defini-
tion of the categorization rules and the automatic application of them, based
on the categories defined in the metamodel. After each iteration, manual input
might be needed to refine the categorization rules in order to achieve code fully
categorized.

In the example mentioned in section 1, our goal is to reach a three-tier ar-
chitecture, thus we can use the following code categories: User Interface (UI),
Logic, Data, Control: UI to Logic, Control: Logic to UI, Control: Logic to Data.
For different target architectures, other categories might be defined as well as
more complex ways to represent them.



Fig. 2: Categorization rule example

The rules used in the categorization process are applied over the AST. They
can be programming language specific or depend on previously categorized code
and taking into account information obtained through dependency analysis.

We use L-CARE [3], a tool developed in ATX Software, to design the rules.
This tool uses XPath [4] to query the AST and allows us to automatically anno-
tate the source code using comments. L-CARE has been used over the last years
in multiple large projects, which ensures the scalability of this step. In Figure
2 we show an example of a rule for Java that categorizes all attributes of type
JLabel as belonging to the User Interface concern, since we know that JLabel is
of this concern.

The source code annotation allows us to abstract to graph model level only
the relevant information. This is extremely important to reduce the size of the
source graph model and consequently making the transformation process much
more efficient.

4 Redesign

The source graph model of Figure 1 is an abstraction of the code achieved
through the categorization process. It keeps traceability to the code in order
to facilitate the transformation / generation process and it is an instantiation of
the metamodel that holds information about the source and target models.

Graph transformation rules are then applied to the source graph model in a
fully automated way, transforming it into the intended target architecture.

4.1 Type Graph

To take advantage of graph transformation rules in the transformation process,
we developed a type graph which is part of the metamodel present in Figure 1.

The model that we are using has the goal of being flexible enough so it can
be instantiated by any OO application regardless of the specific technology. This
way there is a better chance that it can be reused for different instantiations of
our methodology. The high level view of the model can be seen in Figure 3. The
CodeFragment package is used to represent code elements and is an extension of
the type graph presented by Mens et al in [5]. This extension was necessary in



Architecture

CodeFragment CodeCategory

«call»

«call»«derived»

Fig. 3: High level view of the type graph

order to introduce classification attributes and the notion of code blocks, needed
because the code categorization requires finer granularity than that of methods.
Package Architecture includes the concepts of Component and Connector that
allow us to represent the mapping between the programming language elements
and the architecture level. The code categories information is represented in
package CodeCategory.

Since it is necessary to keep traceability to the code in order to facilitate
the transformation / generation process, a method to associate it to the type
graph had to be considered. Given that we want to be as language-independent
as possible we did not link the type graph directly to the source code but used
instead an attribute (ASTNodeID) to associate its elements to the AST of the
program.

4.2 Transformation Specification

Our use of graph transformation rules to describe model transformations is sim-
ilar to what is being used in refactoring research [6]. However, refactoring rules
are not enough for all reengineering purposes because sometimes it is necessary
to perform transformations that are not completely behavior-preserving. An ex-
ample of this is when we want to transform a legacy client-server system into
a web-based application. The UI has to be changed because of the differences
in the user communication paradigm between these different architectures. An-
other major difference is that our transformations are code category oriented,
thus allowing architectural modifications.

An example of transformation rule specification is the Move Method UI rule.
This rule searches for occurrences of methods classified as UI that are contained
in classes that are classified as non UI (for example: having multiple concerns).
The result is that those methods are moved to the appropriate UI classes. A
small example of this rule application is presented in section 4.3. To specify the
rules we are using the Tiger EMF Transformation tool [7], an Eclipse plugin.

4.3 Transformation Execution

For our instantiation of the reengineering methodology we are using code gen-
erated by the transformation specification in Tiger.



Class

name = DepositMoney

concern = *

Method

name = txtClear

concern = UI

Class

name = DepositMoneyUI

concern = UI

Class

name = DepositMoney

concern = *

Method

name = txtClear

concern = UI

Class

name = DepositMoneyUI

concern = UI

Move Method UI

Fig. 4: Graph models before (left) and after (right) the application of rule Move Method
UI. The graphs were simplified for readability. (The architectural elements are not
shown and, in reality, the attribute ”concern” does not exist directly in the code ele-
ments but is used as an association to code category elements.)

The transformation execution applies the rules defined in the transformation
specification to the source graph model to obtain the target one.

Part of an example of the source graph model can be seen in the left side of
Figure 4. The value “*” for the attribute “concern” means that the element con-
tains more than one concern. For example, class “DepositMoney”, even though
it is not visible in the simplified figure, contains methods that belong to different
concerns. This occurrence constitutes a potential candidate for the application of
the transformation rule Move Method UI previously described. When we apply
it, the method “txtClear” is moved from the class “DepositMoney” to “Deposit-
MoneyUI”, a class belonging to the UI concern as shown in the right side of
Figure 4. This transformation is an example of a rule that contributes to the
layering of the application.

4.4 Constraints

The global constraints, in our approach, are imposed by the type graph. This
way we ensure that source, intermediate and target models are compliant to the
general requirements.

In order to assure that the target model complies to the desired architecture,
we define target constraints over the metamodel that correctly reflect the archi-
tectural paradigm. For instance, in 3-tier applications, there should be no UI
and Logic layer methods in the same class and no direct links from UI to Data
These constraints can be defined as graph transformation rules.

5 Related Work

Program transformation can occur in different levels of abstraction. The source-
to-source level of transformation is the most established one, both in research and
in industrial implementations. There are several research ideas that led to suc-
cessful industrial tools. Examples from research include TXL [8] and ASF+SDF
[9]. DMS from Semantic Designs [10] and Forms2Net from ATX Software [11] are
program transformation tools being successfully applied in the industry. Trans-
formations at the detailed design level, due to its applications as maintenance



techniques, have an increasing interest that is following the same path. Practices
such as Refactoring [12] are driving the implementation of functionalities that
automate detailed design level transformations. These are mainly integrated in
development environments as is the case of Eclipse [13] and IntelliJ [14]. How-
ever, there is still a lot of ongoing research in this area, for instance, the work
of Mens et al in the determination of dependencies between refactorings [5]. At
the architectural level of program transformation there is some important re-
search, e.g. the work in the Software Engineering Institute of CMU [1], but the
industrial cases have been limited to specific source and target architectures and
programming languages.

6 Conclusion and Future Work

Most of the ongoing research in the context of automated software transforma-
tion, as well as existing industrial tools, focus on textual and structural transfor-
mation techniques that intend to solve very specific problems within well defined
domains (e.g. program restructuring, program renovation, language-platform mi-
gration). Our experience indicates that such techniques fall short of addressing
in a systematic way the complexity of the architecture-based transformation
problem. In practice, when such a problem arises, these approaches have to be
combined in a trial and error fashion, the success of which often depends on
the experience of the reengineering team and on the specific problem at hand.
On the other hand, there exist techniques and tools that work well at an ar-
chitectural level, but with the main goal of documenting and visualizing the
architecture of applications rather than supporting increased levels of automa-
tion in architecture-based transformations. Although such tools can provide a
very good starting point and facilitate the subsequent effort, in industry projects
a reengineering approach that starts with redocumenting architectures is often
too limited given the time and budget constraints.

In this work we have presented a systematic approach in order to explic-
itly address this issue. This paper focused on the code annotation and model
transformation techniques to obtain the target architecture. The use of code
category-driven graph transformation rules provides us several benefits, includ-
ing: abstraction from programming language specifics (languages of the same
paradigm share most of the same implementation), description of the transfor-
mations in a more intuitive way than that of code level transformations, and
possibility of using existing tools for the tranformation execution and for anal-
ysis over the models (e. g. constraint checking).

Presently we are in the process of completing the tools in order to apply them
to a large real-world scenario. This way, it will be possible to test a good set of
categorization and transformation rules and see if more need to be developed.



Acknowledgments

R. Correia and C. Matos are Marie-Curie Fellows seconded to the University of
Leicester as part of the Transfer of Knowledge, Industry Academia Partnership
Leg2Net (MTK1-CT-2004-003169). This work has also been supported by the
IST-FET IP SENSORIA (IST-2005-16004).

We would also like to thank L. Andrade and G. Koutsoukos (ATX Software)
for their contribution in the development of the overall methodology. M. El-
Ramly contributed to this work while lecturer at the University of Leicester.

References

1. Kazman, R., Woods, S., Carrière, J.: Requirements for integrating software archi-
tecture and reengineering models: CORUM II. In: WCRE ’98: Proceedings of the
Fifth Working Conference on Reverse Engineering, Washington, DC, USA, IEEE
Computer Society (1998) 154–163

2. Mens, T., Demeyer, S., Janssens, D.: Formalizing behaviour preserving program
transformations. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, Grze-
gorz Rozenberg, eds.: Graph Transformation. Volume 2505 of LNCS., Barcelona,
Spain, Springer (2002) 286–301

3. ATX Software: L-CARE. http://www.atxsoftware.com/?sec=products&it=818
4. W3C: XPath. http://www.w3.org/TR/xpath
5. Mens, T., Taentzer, G., Runge, O.: Analyzing refactoring dependencies using graph

transformation. Software and Systems Modeling (2007) To appear.
6. Mens, T., Eetvelde, N.V., Demeyer, S., Janssens, D.: Formalizing refactorings with

graph transformations. Journal of Software Maintenance and Evolution: Research
and Practice 17(4) (2005) 247–276

7. Tiger EMF Transformation Project: Tiger EMF Transformation. http://tfs.cs.tu-
berlin.de/emftrans

8. Cordy, J., Dean, T., Malton, A., Schneider, K.: Source transformation in software
engineering using the TXL transformation system. Journal of Information and
Software Technology 44(13) (2002) 827–837

9. van den Brand, M., Heering, J., Klint, P., Olivier, P.: Compiling language defi-
nitions: the ASF+SDF compiler. ACM Transactions on Programming Languages
and Systems 24(4) (July 2002) 334–368

10. Baxter, I., Pidgeon, C., Mehlich, M.: DMS R©: Program transformations for prac-
tical scalable software evolution. In: ICSE ’04: Proceedings of the Twenty Sixth
International Conference on Software Engineering, Washington, DC, USA, IEEE
Computer Society (2004) 625–634

11. Andrade, L., Gouveia, J., Antunes, M., El-Ramly, M., Koutsoukos, G.: Forms2Net
- Migrating Oracle Forms to Microsoft .NET. In Lämmel, R., Saraiva, J., Visser,
J., eds.: Generative and Transformational Techniques in Software Engineering.
Volume 4143 of LNCS., Springer (2006)

12. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Boston, MA, USA (1999)

13. The Eclipse Foundation: Eclipse. http://www.eclipse.org/
14. Jetbrains: IntelliJ IDEA. http://www.jetbrains.com/idea/


