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The entorhinal cortex (EC) is the major input and output structure of the hippocampal

formation, forming the nodal point in cortico-hippocampal circuits. Different division

schemes including two or many more subdivisions have been proposed, but here we

will argue that subdividing EC into two components, the lateral EC (LEC) and medial

EC (MEC) might suffice to describe the functional architecture of EC. This subdivision

then leads to an anatomical interpretation of the different phenotypes of LEC and

MEC. First, we will briefly summarize the cytoarchitectonic differences and differences

in hippocampal projection patterns on which the subdivision between LEC and MEC

traditionally is based and provide a short comparative perspective. Second, we focus

on main differences in cortical connectivity, leading to the conclusion that the apparent

differences may well correlate with the functional differences. Cortical connectivity of

MEC is features interactions with areas such as the presubiculum, parasubiculum,

retrosplenial cortex (RSC) and postrhinal cortex, all areas that are considered to belong to

the “spatial processing domain” of the cortex. In contrast, LEC is strongly connected with

olfactory areas, insular, medial- and orbitofrontal areas and perirhinal cortex. These areas

are likely more involved in processing of object information, attention and motivation.

Third, we will compare the intrinsic networks involving principal- and inter-neurons in LEC

and MEC. Together, these observations suggest that the different phenotypes of both EC

subdivisions likely depend on the combination of intrinsic organization and specific sets

of inputs. We further suggest a reappraisal of the notion of EC as a layered input-output

structure for the hippocampal formation.

Keywords: parahippocampal region, hippocampus, connectivity, primate, rodent

INTRODUCTION

The denomination ‘‘entorhinal cortex (EC)’’ (Brodman’s area 28) is based on the fact that it is

(partially) enclosed by the rhinal (olfactory) sulcus. Interest in the EC arose around the turn

of the 20th century when Ramón y Cajal, described a peculiar part of the posterior temporal

cortex that was strongly connected to the hippocampus by way of the temporo-ammonic

tract (Ramón Y Cajal, 1902; Witter et al., in press). Cajal was struck by this massive connection
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and he therefore suggested that the functional significance of the

hippocampus had to be related to that of EC or the sphenoidal

cortex/angular ganglion, as he called it at that time. Today, EC is

conceived as the nodal point between the hippocampal formation

on the one hand and a variety of cortical areas on the other

hand. Multimodal, as well as highly processed unimodal sensory

inputs converge at the level of neurons in the superficial layers

of the EC. This input is conveyed by the neurons in layers II

and III of EC to all subdivisions of the hippocampal formation

(Insausti et al., 2004; van Strien et al., 2009; Cappaert et al.,

2014; Strange et al., 2014). The hippocampal fields CA1 and

subiculum are the main source of projections that return to

layer V of EC, with a less dense projection to layers II and III.

Layer V neurons in turn are the main origin of EC projections

to widespread cortical and subcortical domains in the forebrain

(Rosene and Van Hoesen, 1977; Kosel et al., 1982; Cappaert et al.,

2014).

EC comprises different subdivisions, charaterized by

connectivity with functionally different sets of cortical and

subcortical areas in the brain. This has led to the now quite

widely accepted concept of parallel input/output channels,

mediated by way of perirhinal and postrhinal (rodents) or

parahippocampal cortex (primates; Witter et al., 1989a, 2000;

Naber et al., 1997; Eichenbaum et al., 2012; Ranganath and

Ritchey, 2012). Recent electrophysiological recordings in

the lateral and medial EC (LEC and MEC respectively; see

below for definitions) of rodents show that cells in MEC

are predominantly spatially modulated. In contrast, in LEC

such modulation is essentially absent, with neuron-firing

correlating to objects in context (Fyhn et al., 2004; Deshmukh

and Knierim, 2011; Knierim et al., 2013; Tsao et al., 2013; Moser

et al., 2014). Does this phenotypical difference between the

two EC components reflect input differences, or differences

in local circuits and cell types, or could this phenotypical

separation be the result of interactions between these two

parameters. In this review, we aim to address specifically

this question by providing a comprehensive description of

EC, its intrinsic organization in relation to input and output

organizations. We mainly focus on data from studies in

rodents, although occasional comparative remarks are inserted

when considered relevant for the narrative of the article.

DEFINITION OF THE ENTORHINAL
CORTEX, SUBDIVISIONS AND OVERALL
ARCHITECTURE

There are different ways to define a cortical area, using

different criteria, such as location, connectivity, cyto- and

chemoarchitecture. Applying all of these approaches has resulted

in a variety of borders, subdivisions and description of

layers. Architectural parcellation schemes are useful tools to

relate experimental data to standard locations in the brain

(Bjaalie, 2002; van Strien et al., 2009; Zilles and Amunts,

2010; Kjonigsen et al., 2011, 2015; Boccara et al., 2015).

Connection-based subdivision schemes may relate closer to

our understanding of functional differences between areas

(see below). In view of the strong implications of the

human EC in a variety of brain diseases (Braak and Braak,

1992), the development of adequate animal models for such

diseases depends strongly on our capabilities to extrapolate the

definition of the EC from rodents to non-human and human

primates. Therefore, combinations of the different approaches

mentioned above will likely provide the most reliable concept for

subdividing EC.

An apparently good lead, since it has withstood over a century

of arguments, is the definition of EC based on hippocampal

connectivity, as originally suggested by Ramón Y Cajal (1902,

1911). In view of increasing insights into the connectivity of

the hippocampal formation and its subdivisions, we follow

the well-established practice in rodents to take the differential

distribution of EC projections to the dentate gyrus as a good

defining criterion for two main subdivisions of EC. These are

nowadays referred to as LEC and MEC (Steward, 1976; Witter,

2007). Unfortunately, in the monkey, the terminal distribution

of the entorhinal-to-dentate projection does not provide such

a clear criterion to functionally subdivide EC (Witter et al.,

1989b). Potentially in line with this, cytoarchitectural division

schemes tend to differentiate more than two subdivisions

(Amaral et al., 1987; Rosene and Van Hoesen, 1987). However,

the second entorhinal-hippocampal projection, connecting the

two entorhinal domains to area CA1 and the subiculum in

all mammalian species studied, including primates, shows a

strikingly preserved topology along the transverse axis of both

hippocampal fields. Projections emerging from a posteromedial

location in EC target the proximal CA1, i.e., close to DG,

and distal subiculum, whereas an anterolateral origin in EC

maps onto the distal CA1 and adjacent proximal subiculum

(human: Witter et al., 2000; Maass et al., 2015; monkey: Witter

and Amaral, 1991; rat: Naber et al., 2001; van Strien et al.,

2009).

Other connectivity patterns have been proposed to

functionally subdivide EC as well, one being the input

from the presubiculum. In all non-primate mammalian

species studied so far, including rat, guinea pig and cat, the

innervation of EC by presubicular fibers is restricted to a

more caudal and dorsal portion that coincides with a cyto-

and chemoarchitectonically well defined area, now called

MEC (Shipley, 1975; Köhler, 1984; Room and Groenewegen,

1986). Also in the monkey, inputs from the presubiculum

distribute to only a restricted posterior portion of EC

(Amaral et al., 1984; Saunders and Rosene, 1988; Witter

and Amaral, unpublished observations), and this area may thus

represent the homolog of MEC as defined in non-primates.

Recent connectional MRI studies in humans have pointed

to a comparable connectional bipartite system separating

anterolateral from posteromedial EC, showing clear differences

with respect to connectivity measures with perirhinal and

parahippocampal cortex, resembling those reported in rodents

(Naber et al., 1997; Maass et al., 2015; Navarro Schröder et al.,

2015).

Cytoarchitectural data reveal that in all species studied,

two entorhinal areas can be differentiated and that these

share cytoarchitectonic features with the two entorhinal areas
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defined by Brodmann as areas 28a and b (Brodmann, 1909).

One can easily recognize a posteromedial area characterized

by a very regular six-layered structure and a homogenous

distribution of neurons in all layers, typical for area 28b or MEC.

Layer II of MEC comprises a mixture of excitatory medium-

sized pyramidal neurons and large multipolar neurons that

have become known as stellate cells (SCs). On the opposite,

anterolateral side, the laminar structure is comparable, but much

less regular, resembling the cytoarchitecture of area 28a or

LEC. In the latter portion, layer II comprises a mixture of

large multipolar neurons, nowadays in rodents referred to as

fan cells, pyramidal and medium-sized multipolar neurons. At

some locations, these cell types seem to cluster into sublayers

(referred to as IIa and IIb, or II and IIIa; Kobro-Flatmoen

and Witter, 2017). Depending on the species, one or several

additional subdivisions have been described, similar to what

was mentioned above for the monkey (Lorente de Nó, 1933;

Insausti et al., 1997). Note that the terms LEC and MEC

do not simply reflect a particular position in anatomical or

stereotaxic space. In many species, the two areas, defined by

their combined architectural and hodological features occupy

a more rostrolateral (LEC) vs. a more caudomedial position

(MEC).

CONNECTIVITY OF THE TWO
ENTORHINAL SUBDIVISIONS

Both LEC and MEC project to the hippocampus, and the

axons form synapses on neurons in all hippocampal subfields.

Neurons in layer II are the main source of the entorhinal

projections to the dentate gyrus and fields CA2 and CA3, and

neurons in layer III give rise to the entorhinal projections to

CA1 and subiculum (note that a small number of neurons

in deeper entorhinal layers contribute to both projections). In

view of a confusing nomenclature that has developed over

the years to describe these different projection systems (for a

recent description and discussion, see Witter et al., in press),

in the present article, we differentiate between the EC-layer

II projection and the EC-layer III projection. Regarding the

EC-layer II projection, we know that single layer II cells project

to both the dentate gyrus and CA2/CA3 (Tamamaki and Nojyo,

1993). Whether such a collateral organization is true for the

layer III projection to CA1 and subiculum is unclear. In view

of this striking layer-separation in the origin of the EC to

hippocampus projections, we feel that a description of intrinsic

and extrinsic connectivity of LEC and MEC might benefit from

a layered approach. In the following, we focus on the main

cell layers II, III and V (for a description of layers I and VI,

the reader is referred to Canto et al., 2008; Cappaert et al.,

2014).

Extrinsic Connections
The two entorhinal divisions differ with respect to their

major extrinsic cortical and subcortical connections (for recent

detailed overviews in the rat, see Kerr et al., 2007; Cappaert

et al., 2014; for broader comparative overviews of cortical

connectivity in a functional context, see Eichenbaum et al.,

2012; Ranganath and Ritchey, 2012). Here we focus on a

description of the distribution of main cortical inputs and

their laminar preference of termination. Superficial layers of EC

receive a substantial input from olfactory structures including

the olfactory bulb, the anterior olfactory nucleus, and the

piriform cortex (Haberly and Price, 1978; Kosel et al., 1981).

Olfactory axons preferentially terminate laterally and centrally

in LEC and in MEC, avoiding the most caudodorsal portion

of MEC (Kerr et al., 2007). Olfactory fibers mainly distribute

to layer I, where they make synaptic contacts with dendrites of

neurons in layers II and III (Wouterlood and Nederlof, 1983).

Other superficially terminating inputs to dorsolateral parts of

LEC originate from insular cortex (Mathiasen et al., 2015),

perirhinal cortex (Naber et al., 1999; Pinto et al., 2006) and

orbitofrontal cortex (Hoover and Vertes, 2007, 2011; Kondo

and Witter, 2014). Interestingly, the orbitofrontal and insular

projections to LEC mainly terminate anteriorly, and close to

the rhinal fissure. Parietal cortex projects moderately to LEC

and MEC, terminating close to the rhinal fissure, preferentially

in layers I and V (Olsen et al., 2017). Superficial layers of

MEC receive inputs from the orbitofrontal cortex, but only

from the ventral part (Kondo and Witter, 2014), postrhinal

cortex (Koganezawa et al., 2015) and pre- and parasubiculum

(Caballero-Bleda and Witter, 1993). The latter two inputs not

only terminate on dendrites of neurons in layers II and III,

but also influence neurons in layer V (Canto et al., 2012), and

such a connectional scheme might hold true for all superficially

terminating inputs. This however remains to be established, but

the possibility points to a potentially relevant role for layer V

neurons as integrators of entorhinal inputs, since they also are the

recipients of other major cortical inputs distributing to layer V.

These include inputs from infralimbic and prelimbic cortex,

apparently innervating LEC and MEC almost equally dense.

LEC layer V receives a denser input from anterior cingulate

cortex, whereas the retrosplenial innervation almost exclusively

distributes to MEC layer V (Wyss and Van Groen, 1992; Vertes,

2004; Jones and Witter, 2007), which also receives a weak to

moderate input from visual cortex (Kerr et al., 2007; Olsen et al.,

2017).

Intrinsic Networks Layer II
Principal cells in both subdivisions of EC come in two chemical

types, calbindin- and reelin-expressing cells. In MEC, calbindin-

positive cells and reelin-positive cells appear to be grouped

in patches, and in LEC the two cell types are more or less

confined to two separate sublayers, reelin cells in layer IIa

and calbindin cells in layer IIb. The reported clustering of

calbindin-positive neurons is particularly striking in limited

parts of MEC and is more striking in mice than in rats

or other species. Only in mouse MEC the calbindin-positive

neurons are located superficial to the reelin positive neurons

(Figure 1A; Tunon et al., 1992; Fujimaru and Kosaka, 1996;

Wouterlood, 2002; Ramos-Moreno et al., 2006; Kitamura et al.,

2014; Ray et al., 2014; Leitner et al., 2016). EC in humans

is known for its wart-like bumps or verrucae (Retzius, 1896;

Klinger, 1948; Solodkin and Vanhoesen, 1996; Naumann et al.,

2016), which in the largest part of EC, located centrally along
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FIGURE 1 | Layer II cells come in two, chemically defined types, reelin- and

calbindin-positive. (A) Coronal sections taken through entorhinal cortex (EC) of

the rat (left) and mouse (right), stained for reelin (cyan) and calbindin

(magenta). Note the different position of the two cell populations in the two

species and the two subdivisions of EC. In the rat medial EC (MEC; top-left),

the two populations are intermingled with a tendency for both types to cluster

somewhat. In contrast, in mouse MEC (top-right), calbindin-positive cells form

clear clusters (white arrowheads) that are located superficial to the

reelin-positive neurons. In lateral EC (LEC) of the rat (bottom-left),

reelin-positive cells form superficially positioned clusters (white arrowheads),

separated by calbindin-positive dendritic bundles belonging to the deeper

positioned, equally dispersed calbindin-positive neurons. In LEC of the mouse

(bottom-right), a more equal distribution is seen, although two superficially

located reelin clusters are present (white arrowheads). Scale bars equal

100 µm. (B) Schematic representation of the relationships of morphologically,

electrophysiologically and connectionally defined cell types, and their chemical

phenotype in LEC and MEC. Abbreviations: Fan, fan cell; IMSC, intermediate

stellate cell; IMPC, intermediate pyramidal cell; multi, multipolar cell; ObPC,

oblique pyramidal cell; PC, pyramidal cell; SC, stellate cell.

the anteroposterior and lateromedial axes, are composed of

the large multipolar reelin positive layer II cells, described

as the pre-alfa neurons by Braak (Braak and Braak, 1985;

Tunon et al., 1992; Kobro-Flatmoen et al., 2016; Naumann

et al., 2016). Moreover, the marked clustering of calbindin-

positive neurons in all species studied is limited to a restricted

posterior part of MEC (Naumann et al., 2016). In our view,

it is therefore confusing to refer to calbindin-positive cells

in layer II as island cells embedded in an ocean of reelin-

positive cells (Kitamura et al., 2014), since this organization

is likely opposite for the larger part of EC. Reelin-positive

cells in both entorhinal areas project to the dentate gyrus

and CA3, whereas calbindin-positive neurons project to several

other targets including the CA1 and the contralateral EC,

the olfactory bulb and piriform cortex (Varga et al., 2010;

Kitamura et al., 2014; Fuchs et al., 2016; Leitner et al., 2016;

Ohara et al., 2016). The two chemically defined cell groups

are composed of several morphological subgroups that can

be distinguished based on somatic and dendritic features

(Canto and Witter, 2012a,b; Fuchs et al., 2016; Leitner et al.,

2016).

In MEC, SCs make up the largest subgroup of principal

cells. They have multiple primary dendrites that radiate out

from a round soma. SCs are typically reelin-positive and

calbindin-negative. Medium to large pyramidal cells (PCs)

make up the other main principal cell type in layer II of

the MEC. PCs are typically calbindin-positive, although a few

reelin-positive PC have been described (Fuchs et al., 2016;

Figure 1B). There are at least two intermediate cell groups in

between stellate and pyramidal morphologies, here referred to

as intermediate SCs (IMSCs) and intermediate PCs (IMPCs).

IMSCs all express reelin, but a few of them co-express calbindin,

the IMPCs tend to be calbindin-positive, but are more diverse

and come in both reelin-positive and reelin and calbindin

co-expressing varieties. The four principal cell types in the

MEC can also be distinguished from each other based on their

electrophysiological profiles (Canto and Witter, 2012b; Fuchs

et al., 2016).

In LEC layer II, there are also at least four subgroups

of principal cells (Canto and Witter, 2012a; Leitner et al.,

2016). Fan cells are similar in morphology to SCs, but lack a

distinctive basal dendritic tree (Tahvildari and Alonso, 2005;

Canto andWitter, 2012a). Most are reelin-positive, though some

may express calbindin. PCs make up the other large group

of principal cells in LEC, they are morphologically similar to

those described in MEC. They are largely calbindin-positive,

but some may be reelin-positive. Oblique PCs (ObPCs) and

multipolar cell make up the intermediate cell types in the

LEC (Canto and Witter, 2012a; Leitner et al., 2016). Oblique

pyramidals display a morphology similar to PCs, but are tilted

relative to the pial surface, and they predominantly express

calbindin. Multipolar cells, on the other hand, have a more

diverse morphology, and express both calbindin and reelin

(Figure 1B). Electrophysiologically, the four cell groups in LEC

are not as easily distinguishable as in MEC, however recent

data suggest that there may be subtle physiological differences

between the overarching reelin and calbindin classes (Tahvildari

and Alonso, 2005; Canto and Witter, 2012a; Leitner et al.,

2016).

Similar to what has been reported for neocortical areas, EC has

been suggested to contain three main subgroups of interneurons,

parvalbumin (PV), somatostatin (SOM) and 5HT3a expressing

cells (Rudy et al., 2011; Fuchs et al., 2016; Leitner et al.,

2016). PV-positive interneurons constitute approximately half

of the interneuron population across EC, making them the

largest subgroup of interneurons in the area (Wouterlood et al.,

1995; Miettinen et al., 1996). Layer II of MEC has a large

number of PV expressing somata and heavy neuropil staining.

Layer II of LEC has comparatively weak PV staining, with
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few somata and light neuropil staining. Particularly layer IIa

appears to lack PV-positive cells (Wouterlood et al., 1995;

Fujimaru and Kosaka, 1996; Miettinen et al., 1996; Leitner

et al., 2016). In both LEC and MEC, there is a clear gradient

of PV staining, with portions close to the rhinal fissure

expressing more than ventral portions (Wouterlood et al.,

1995; Fujimaru and Kosaka, 1996; Leitner et al., 2016). A

comparable, and strikingly strong gradient has been reported in

relation to the collateral and rhinal sulcus in primates (human:

Tunon et al., 1992; monkey: Pitkanen and Amaral, 1993; for

a detailed comparative description, see Kobro-Flatmoen and

Witter, 2017).

Like PV cells in other parts of the brain (Hu et al.,

2014), those in layer II of MEC are known to display a

fast spiking physiological profile (Couey et al., 2013; Pastoll

et al., 2013; Armstrong et al., 2016; Fuchs et al., 2016;

Leitner et al., 2016). The existence of PV-positive baskets

surrounding principal cells in layer II is supported by both

histological and electrophysiological studies (Jones and Bühl,

1993; Wouterlood et al., 1995; Varga et al., 2010; Armstrong

et al., 2016; Fuchs et al., 2016). Another type of basket

cell in layer II of MEC is the CCK-expressing basket cell

(Varga et al., 2010; Armstrong et al., 2016). These cells

are less abundant than PV-expressing cells, and constitute a

subgroup of the 5HT3aR expressing interneurons (Lee et al.,

2010). Whereas CCk-positive basket cells preferentially target

calbindin-positive principal cells, single PV-positive basket

cells innervate both reelin- and calbindin-positive neurons

(Armstrong et al., 2016). Basket cells have also been described

in layer II of the LEC, but no details are available about

different types and abundance, nor how they are part of the LEC

microcircuit.

A second, common type of GABAergic interneuron that

expresses PV in layer II, also present in layer III, is the

chandelier or axo-axonic cell. Chandelier cells are characterized

by vertical aggregations of axonal boutons, called candles

which mainly make synapses on the initial axon segments

of principal cells. In MEC, both vertical and horizontal

chandelier cells are present, and in LEC the horizontal subtype

is dominant. The local axon branches of these neurons

are largely confined to layers II and III (Soriano et al.,

1993).

Immunohistochemical studies describing the distribution

of somatostatin expressing somata in EC are conflicting,

particularly with regards to distribution in superficial layers.

However, no major differences between entorhinal subdivisions

have been described (Köhler and Chan-Palay, 1983; Wouterlood

and Pothuizen, 2000). Somatostatin cells in MEC are generally

multipolar low threshold spiking neurons (Couey et al., 2013;

Fuchs et al., 2016). Available data indicate that only a small

percentage of somatostatin neurons in EC are GABAergic

(Wouterlood and Pothuizen, 2000), but our own data in

mice show that most somatostatin neurons in EC are

GABAergic (Figure 2). The last major interneuron group

in EC, the 5HT3aR cells, consist of several subgroups,

including calretinin-, VIP- and CCK-expressing cells (Lee

et al., 2010; Fuchs et al., 2016; Leitner et al., 2016). 5HT3aR

cells in layer II of MEC have diverse morphological and

physiological profiles (Canto et al., 2008; Fuchs et al.,

2016).

The regular grid pattern, typically seen in layer II of MEC has

been hypothesized to emerge from the structure of microcircuits

within layer II (Fuhs and Touretzky, 2006; McNaughton

et al., 2006; Burak and Fiete, 2009; Bonnevie et al., 2013;

FIGURE 2 | Somatostatin neurons are GAD67 positive. The left hand side main panel shows a low power image of a horizontal section obtained from a

GAD67 transgenic line expressing GFP (Tanaka et al., 2003), stained for the expression of somatostatin. The colored squares indicate the position of the high power

images shown on the right. Blue square is LEC, red square is MEC. The solid blueish staining at the edge of EC is an artifact due to overlying cerebellar tissue. On

the right hand side, high power images show the indicated areas in LEC and MEC in three different fluorescent channels from left to right: somatostatin (yellow), GFP

(cyan) and overlay of somatostatin and GFP. Scale bars equal 200 µm in the left main panel and 50 µm for the six panels on the right-hand side.
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FIGURE 3 | Local circuits in layer II of MEC. The two main principal neurons, stellate (cyan; left side) and pyramidal (magenta; right side) cells form two specific

networks. SCs are not monosynaptically connected and that seems true for PCs as well. They are disynaptically connected preferentially by way of different

interneuron subtypes, the fast-spiking PV positive basket cell in case of SCs and the 5HT3a/CCK-type in case of pyramidal neurons. The two networks are likely

interconnected by way of intermediate pyramidal neurons (light blue), and PV interneurons may also target intermediate pyramidal and SCs. See text for further

details. Abbreviations: IMSC, intermediate stellate cell; IMPC, intermediate pyramidal cell; PC, pyramidal cell; PV, parvalbumin expressing fast spiking basket cell; SC,

stellate cell; SOM, somatostatin-expressing interneuron; 5HT3a/CCK, basket cell that expresses CCK and likely belongs to larger group of interneurons that express

the 5HT3a receptor.

Couey et al., 2013). The majority of grid cells in MEC are

observed in layer II (Hafting et al., 2005; Sargolini et al., 2006),

and the anatomical correlates of grid cells likely comprise both

stellate-like and pyramidal-like cells (Domnisoru et al., 2013;

Schmidt-Hieber and Häusser, 2013; Tang et al., 2014). The

local circuit of SCs has been probed in several studies

using in vitro patch clamp recordings, and it is now well

established that individual SCs do not form monosynaptic

connections with other SCs. Communication between SCs

occurs through an intermediate inhibitory interneuron, in

a mechanism by which activation of one or more SCs

evokes disynaptic inhibitory currents in neighboring SCs.

Paired recordings have revealed strong connectivity in both

directions between SCs and fast-spiking cells and, to a

much lesser extent, between SCs and low-threshold spiking

interneurons (Couey et al., 2013; Pastoll et al., 2013; Fuchs

et al., 2016). The functional disynaptic link that illustrates

the core principle of the stellate microcircuit is mediated

by a single type of inhibitory neuron, the PV positive fast

spiking cell (Figure 3; Buetfering et al., 2014; Armstrong et al.,

2016).

The local network of PCs has been explored using similar

methods, and like the SC network, very sparse monosynaptic

connectivity was detected between PCs. These results suggest that

the general principle of disynaptic connectivity as described for

the SC network also applies to the layer II PCs. An important

distinction however is that PCs seem to communicate through

different subsets of interneurons. In contrast to SCs, PCs are not

connected, in either direction, to PV positive fast-spiking cells

or somatostatin positive low threshold spiking cells, but instead

form synaptic connections solely with the heterogeneous 5HT3A

expressing population of interneurons (Figure 3; Fuchs et al.,

2016).

Synaptic interaction between the pyramidal and SC networks

is limited, as available data points to little monosynaptic

connectivity between stellate and PCs (Couey et al., 2013;

Fuchs et al., 2016). This suggest the existence of two isolated

subcircuits within layer II of MEC, where information relayed to

the dentate gyrus by reelin positive SCs is processed separately

from information relayed by calbindin positive PCs to other

downstream areas. However, it should be kept in mind that the

networks may be coordinated through one of the intermediate

cell types, e.g., the IMPCs, which have been shown to form

synaptic connections with both pyramidal and SCs (Figure 3;

Fuchs et al., 2016).

If the local microcircuit design of layer II MEC excitatory

cells is crucial for generating grid cell firing, the absence of grid

cells in LEC predicts a different organization of the layer II

principal cell microcircuit. Given the observation that inhibition

dominates microcircuits of both pyramidal and SCs in MEC,

albeit provided by different types of interneurons, comparable

cell types in the LEC, e.g., the fan and PC, may have a

circuit structure where monosynaptic connectivity prevails. Our

preliminary data from paired recordings of fan cells indicates

that direct communication between cells of this type is present,

but not prevalent (Nilssen et al., 2015). Potential microcircuit
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differences between layer II of MEC and LEC might also reflect

different contributions from the local interneuron population.

In LEC, 5HT3aR expressing interneurons constitute the largest

interneuron group in layer II, unlike in the MEC, where PV cells

are thought to be the predominant interneuron group (Leitner

et al., 2016). This finding indicates that the inhibitory systems in

MEC and LEC layer II are dominated by different subtypes of

interneurons.

Layer III
Compared with what is known about neurons and connectivity

in layers II and V, Layer III is still largely terra incognita.

Layer III in both LEC and MEC comprises a homogenous

population of spiny excitatory pyramidal neurons that project

to CA1 and subiculum (Tahvildari and Alonso, 2005; Canto

and Witter, 2012a,b; Tang et al., 2015). Layer III neurons also

project contralaterally to the hippocampus and EC (Steward

and Scoville, 1976). About 40% of the layer III hippocampal

projecting cells in MEC send collaterals to the contralateral MEC

(Tang et al., 2015). The axons of the commissural projecting

cells in MEC apparently distribute mainly to layer III, thus

contrasting to the small percentage of commissural calbindin-

positive neurons in layer II, of which the axons preferentially

distribute in layer I of the contralateral MEC (Fuchs et al., 2016).

In addition, layer III also contains a population of non-spiny

PCs, sending axons towards the angular bundle. Collaterals

originate from the main axon close to the cell body and those

traveling towards the superficial layers distribute over the

own dendritic extent (Gloveli et al., 1997). The third principal

neuron type in layer III is formed by multipolar neurons.

These contribute to the hippocampal projections (Germroth

et al., 1989). Layer III contains a variety of interneurons,

exhibiting various morphologies, including multipolar,

pyramidal and bipolar neurons. Chemical characterization

of layer III interneurons in the MEC shows that they express

several markers including somatastatin, calbindin, vasoactive

intestinal peptide and substance-P (Köhler and Chan-Palay,

1983; Köhler et al., 1985; Gloveli et al., 1997; Wouterlood

and Pothuizen, 2000; Wouterlood et al., 2000; Kumar and

Buckmaster, 2006).

The microcircuits of layer III are only sparsely known, but

seem to be markedly different from those seen in layer II,

showing a much stronger monosynaptic principal to principal

neuron connectivity (van der Linden and Lopes da Silva, 1998;

Dhillon and Jones, 2000; Kloosterman et al., 2003; Tang et al.,

2015). Neurons in layer III are the main recipients of the local

deep-to-superficial projections, which apparently predominantly

originate fromneurons in layer Vb (see below; Kloosterman et al.,

2003; van Haeften et al., 2003). Currently, no correlations have

been reported between morphology, connectional profile and

electrophysiological in vitro and in vivo properties (Canto and

Witter, 2012a,b; Tang et al., 2015).

Layer V
As described above, layer V is commonly subdivided into

a layer Va and Vb. The superficial layer Va, adjacent to

layer IV (lamina dissecans), comprises mainly large pyramidal

neurons that are unequally distributed along the extent of

both MEC and LEC. Cells in layer Vb appear smaller, more

uniform in soma size and are more densely packed than their

counterparts in layer Va (Canto and Witter, 2012a,b; Boccara

et al., 2015).

In mice, the expression pattern of the transcription factors

Etv1 and Ctip2 provide for the differentiation between

two molecularly distinct sublayers Va and Vb, respectively.

This organization prevails across the whole mediolateral and

dorsoventral extent of EC (Ramsden et al., 2015; Surmeli

et al., 2015; Onodera et al., 2016). In both MEC and LEC,

layer Va cells are the major output neurons projecting to diverse

cortical and subcortical structures. Surprisingly, layer Vb cells

are selectively targeted by the outputs from the hippocampus,

originating in CA1 and subiculum as well as by projections

originating in layer II of EC (Figure 4; Surmeli et al., 2015;

Onodera et al., 2016). In MEC, these layer II inputs apparently

arise specifically from reelin positive MEC II SCs and not

from the calbindin positive MEC II PCs (Surmeli et al., 2015).

The latter report of axon collaterals from layer II SCs in

layer V in mice conflicts with previous reports in rats and

monkeys, that layer II SCs issue a well-developed axonal

plexus in layers I and II, but that collaterals in layer V are

sparse (Tamamaki and Nojyo, 1993; Klink and Alonso, 1997;

Buckmaster et al., 2004; Canto and Witter, 2012b). Whether

this points to species differences or a lack of sensitivity in

the older studies is not known. Irrespective of the details of

this circuit, MEC layer Vb neurons could be ideally suited

to integrate inputs from superficial MEC and hippocampus.

Own preliminary data show these network features to be true

in LEC as well, and show that layer Vb neurons in both

LEC and MEC innervate layer Va as well as layers II and III

(Onodera et al., 2016), which is in line with sparse data

indicating that neurons in layer Vb issue superficially directed

axon collaterals (Hamam et al., 2000, 2002; Canto and Witter,

2012a,b). This indicates that at least a subpopulation of layer Vb

neurons form a major component of the intrinsic deep to

superficial circuit.

Layer V is also innervated by additional cortical projections

from frontal and cingular domains (see above). Whereas

information about the postsynaptic targets of these cortical

inputs is sparse, projections from the retrosplenial cortex (RSC)

to MEC layer V target, among others, spiny pyramidal neurons

that issue axons to superficial layers (Czajkowski et al., 2013). If

the assertion is correct that in particular layer Vb neurons are the

main elements mediating this deep to superficial connection, it

is logical to conclude that retrosplenial inputs terminate onto a

subpopulation of Vb neurons (Figure 4). These data are thus in

line with own preliminary observations that neurons in layer V

receive convergent inputs from subiculum and RSC (Simonsen

et al., 2012).

Layer Vb of both MEC and LEC also contains multipolar

neurons (Hamam et al., 2000; Canto and Witter, 2012b) and

a population of GABA-negative/calretinin positive neurons

(Miettinen et al., 1997) providing additional markers for

principal cell types in the layer V network. Electrophysiologically,

PCs in layer V show regular spiking, strongly adapting
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FIGURE 4 | Schematic representation of the layer V network as part of the EC network. Layer V comprises two sublayers Va and Vb, based on the differential

expression of two transcription factors, Etv1 and Ctip 2, respectively. Layer Va neurons are the main origin of projections to cortical and subcortical structures in the

brain. Layer Vb neurons receive inputs from the hippocampus and RSC and project locally to Va and superficial layers. Superficial inputs likely form synapses onto

dendrites of principal neurons in layers II, III and V of EC. Neurons in layer II and III provide the main input to the hippocampus, which is returned to layer VB and

subsequently made available to layer Va neurons, which originate the main outbound projections of EC. Neurons in layer Vb are also the main source of back

projections to layer II and III neurons. The scheme clearly shows that we lack detailed connectional data on layer III as well as on input specificity to layer Va and Vb

neurons. Abbreviations: Re, reelin-expressing neurons; RSC, retrosplenial cortex.

physiological profiles, whereas multipolar neurons respond to

a depolarization with delayed firing and slow little adaptation

(Egorov et al., 2002b). It is currently not known if any of

these layer V cell types correlate with the electrophysiologically

defined persistent firing neurons, which can be found in

EC when muscarinic acetylcholine receptors are activated

(Egorov et al., 2002a). Finally, we currently lack a detailed

comparison of the organization of layer V in LEC and

MEC. For example, what would be the functional implication

that MEC layer Va hosts pyramidal neurons with extensive

basal dendritic trees restricted to the somatic layer, whereas

such a neuron type has not been reported in LEC (Hamam

et al., 2000, 2002; Canto and Witter, 2012a,b; Surmeli et al.,

2015).

CONCLUDING REMARKS

The comparison of main trends in extrinsic and intrinsic

connectivity patterns of MEC and LEC suggests that the

different phenotypes of both EC subdivisions likely depend

on the combinatorial effects of small differences in intrinsic

organization and substantial differences in extrinsic inputs.

Although this conclusion and the following details are mainly

based on studies in rodents, the more sparse data in non-human

and human primates seem to support a comparable organization.

To understand the functional relevance of the subtle intrinsic

differences, more data are needed, for which we likely will

depend on the emergence of even more specific genetic tools to

identify and manipulate the activity of single classes of neurons.

Eventually, detailed imaging studies in humans are expected

to contribute to an increased understanding of the functional

diversification within EC. The extrinsic input differences as

summarized above are still in overall support with the notion

that two functionally different input streams to the hippocampus

are mediated by two entorhinal domains. MEC provides

connectional routes with extensive posterior parts of the cortex,

including posterior parahippocampal, retrosplenial, parietal and

occipital networks, allowing the representation of intrinsically

generated signals about perceived and/or planned movements in

stable contexts. In contrast, LEC mediates routes to and from the

hippocampus with more anterior parahippocampal, sensory and

pre- and orbitofrontal domains, providing access to evaluated

information about the ever-changing external world. From a

functional anatomical perspective, the above provides a suitable

framework to keep adding the details needed to mechanistically

understand the role(s) of EC. The connectional scheme as

presented here (Figure 4) assumes that the functionally different

parts of EC share the network structure to mediate cortical-

hippocampal interactions in a comparable matter. Neurons in

layers II and III provide various combinations of information

Frontiers in Systems Neuroscience | www.frontiersin.org 8 June 2017 | Volume 11 | Article 46

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Witter et al. Entorhinal Architecture

to the hippocampal circuit, and a copy of that input is made

available to neurons in layer V. The latter step might either be

monosynaptic through inputs targeting the extensive apical tufts

of some of the layer V pyramidal neurons or disynaptic through

intrinsic projections from layer II (and layer III) to layer Vb. In

view of the strict topology of the reciprocal connectivity between

EC and CA1/subiculum, it is likely that at least some of these

layer Vb neurons receive a hippocampally processed copy of that

original input information. Layer Vb neurons are in a position to

integrate those inputs with additional sets of information, and to

send the resulting representations back to layers II and III. In case

of layer Va neurons, which apparently are the origin of the main

output pathway of EC, the hippocampally processed copy might

be disynaptical, mediated through Vb neurons, and it is currently

not known whether other inputs integrate at the level of these Va

neurons. In view of their apical dendrites reaching the superficial

layers of EC, it is likely that they, like layer Vb neurons, do receive

superficially terminating inputs.

If correct, the connectional data strongly argue that

differences in cortical inputs form a main feature underlying

the phenotypic differences between LEC and MEC. However,

we have not yet included the potential differences between

LEC and MEC in local inhibitory architecture, as suggested by

the yet sparse data on layer II. One additional feature of the

proposed scheme needs to be discussed. The overarching strict

reciprocal topology of the entorhinal-CA1-subicular network

predicts that inbound information will be reciprocated with

outbound information. It is exactly this last prediction, which

is not supported by data. Admittedly, the available data are

sparse, but the data obtained in the few studies in which this

input-output dogma was addressed point to another direction.

In one study in the cat, EEG recordings in freely behaving

animals indicated a functional separation between LEC and

MEC, where LEC is coupled to the olfactory domain, whereas

MEC is coupled to the hippocampus (Boeijinga and Lopes da

Silva, 1988). In more elaborate studies using the isolated guinea

pig ex vivo brain preparation, olfactory stimulation resulted in a

sequential activation in LEC, hippocampus and MEC, followed

by LEC (Biella and de Curtis, 2000). These sparse data seem to

indicate that hippocampal output, resulting from olfactory input,

is preferentially distributed back to MEC, not to LEC. To our

knowledge, this output pathway specificity has not been explored

and thus presents us with a, yet underexplored, challenge, which

might very well be open to imaging studies in the human.
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