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Abstract Embedded systems are becoming more and more complex, thus demanding

innovative means to tame their challenging development. Among others, early architec-

ture optimization represents a crucial activity in the development of embedded systems

to maximise the usage of their limited resources and to respect their real-time require-

ments. Typically, architecture optimization seeks good architecture candidates based on

model-based analysis. Leveraging abstractions and estimates, this analysis usually produces

approximations useful for comparing architecture candidates. Nonetheless, approximations

do not provide enough accuracy in estimating crucial extra-functional properties. In this arti-

cle, we provide an architecture optimization framework that profits from both the speed of

model-based predictions and the accuracy of execution-based measurements. Model-based

optimization rapidly finds a good architecture candidate, which is refined through opti-

mization based on monitored executions of automatically generated code. Moreover, the

framework enables the developer to leverage her optimization experience. More specifically,

the developer can use runtime monitoring of generated code execution to manually adjust

task allocation at modeling level, and commit the changes without halting execution. In the

article, our architecture optimization mechanism is first described from a general point of

view and then exploited for optimizing the allocation of software tasks to the processing

cores of a multicore embedded system; we target extra-functional properties that can be
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concretely represented and automatically compared for different architectural alternatives

(such as memory consumption, energy consumption, or response-time).

Keywords Architecture optimization · Software quality · Model-driven engineering ·

Model transformations · Back-propagation · Execution · Monitoring · Multicore ·

Embedded systems

1 Introduction

Currently, embedded systems can be found in most electronic and electrical products. Soft-

ware running on them is becoming more complex at daunting pace. To tame the intricacy

of embedded software and its development, it is profitable to boost abstraction in the form

of models which allow to (i) ease the reasoning about the system’s architecture, (ii) auto-

mate certain stages of the development, and (iii) early analyse and optimise software quality

attributes.

Pivotal is to provide means to seek good architecture candidates with respect to quality

attributes; architecture optimization is a well-studied problem in the research community

(Aleti et al. 2013). Commonly, a model representation of the software system under develop-

ment is analysed to gather performance predictions. These values are exploited by exploring

the search space of architecture candidates, iterating on a set of variable aspects of the

architecture.

In order to do so, architecture optimization approaches have historically exploited some

of the postulates of Model-Driven Engineering (MDE), where the core concept is rep-

resented by the model, considered as an abstraction of the system under development.

Rules and constraints for building models are described through a corresponding language

definition and, in this respect, a metamodel describes the set of available concepts and

wellformedness rules a correct model must conform to Kent (2002). Following the MDE

paradigm, a software system is developed by designing models and refining them starting

from higher and moving to lower levels of abstraction until code is generated; refinements

and analyses based on models are commonly performed through model manipulations.

Architecture optimization based on models is very profitable to efficiently scrutinise

a large number of possible architecture candidates and to allow optimization early in the

development. However, model-based analysis, which naturally relies on abstractions and

estimations, provides approximations that in some cases need a verification at runtime in the

form of execution-based measurements. These measurements are gathered by monitoring

the execution of automatically generated code. Correctness-by-construction1 of full-fledged

code is essential to disclose the opportunity to rightfully combine model- and execution-

based optimization.

In this article, we present a framework that promotes a novel combination of model-based

and execution-based mechanisms for achieving fast and accurate architecture optimiza-

tion. A good architecture candidate is meant to be rapidly reached by prediction-based

optimization at modeling level. Afterwards, the identified architecture candidate is refined

by carrying on with the same optimization mechanism, but capitalising on measurements

1By correctness-by-construction we mean the adherence of generated code to source models, once the trans-
formation process is validated (Chapman 2006). Anyhow, mechanisms for ensuring correctness of models
(and thereby code) are not in the scope of this work.
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gathered by monitoring. Augmenting optimization with runtime measurements increases

the accuracy of the performance metrics used for optimization, with respect to the system

properties of interest.
In the article, we describe our architecture optimization mechanism which combines

model-based analysis and system execution and demonstrate its usefulness by employing

it for optimizing allocation of software tasks to the cores of a multicore embedded system.

Since in several domains, the expert’s knowledge still plays an important role in optimiza-

tion activities, we also introduce the infrastructure needed for the developer to manually

tune allocation of tasks to cores at modeling level and dynamically apply changes at run-

time. This feature introduces observability of the running system at modeling level, and

allows the developer to only focus on modeling activities and operate in the modeling envi-

ronment. The developer can exploit execution monitoring results to fine-tune allocation at

modeling level without having to investigate nor manually modify the running code and

propagate model modifications to the running system without halting its execution.

The article is organised as follows. In Section 2, we discuss the motivation for enhancing

model-based architecture optimization with monitored system execution, while in Section 3,

we describe our proposed method. In Section 4, we apply our method to embedded systems;

more specifically, we describe how we instantiated the method to create a framework for

optimising the allocation of software tasks to the cores of a multicore embedded system.

A set of experiments are presented in Section 5, where we demonstrate the feasibility of

the approach and the usefulness of combined model- and execution-based optimization. In

Section 6, we provide a snapshot of the related work documented in the literature, and we

conclude the article with a summary and a set of possible future enhancements in Section 7.

2 Boosting architecture optimization

Among the many activities that characterise the development of software systems, archi-

tectural design is commonly considered as one of the most important. Decisions taken

when outlining the architecture usually have substantial impact on system properties, both

functional and more importantly extra-functional, but even on development-related aspects,

such as costs and time-to-market. Classic examples of architectural decisions are the selec-

tion of software and hardware components, the allocation of software to hardware, and the

configuration of the system topology.

Historically, design decisions have been taken by exploring, often manually, the search

space to identify the most suitable choices. Considering the dramatic pace at which

complexity of modern software systems is increasing, manual exploration of massive

search spaces has become infeasible. This has made automated architecture optimization

a prominent research topic (Aleti et al. 2013) that, over the recent years, has considered

various system domains (e.g., enterprise systems and embedded systems), various sys-

tem representations (e.g., mathematical models and architecture description languages),

and extra-functional properties (e.g., reliability and timing), with diversified dimensional-

ity (optimization of a single or multiple extra-functional properties), degrees of freedom

(e.g., component selection, allocation, and scheduling) and strategies (e.g., local search and

genetic algorithms).

In general, architecture optimization mechanisms employ model-based analysis to pre-

dict extra-functional properties which are used to compare architecture candidates; analysis

is paired with an optimization strategy (i.e., search mechanism). Analysis based on mod-

els naturally leverages abstractions of the software system under development and relies on
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estimations. Model-based analysis is needed to efficiently handle the large number of possi-

ble candidates and to allow optimization in early stages of development, but there is always

a limit to how accurate the optimization can be, since model-based analysis inherently relies

on abstractions and estimations, and thus gives approximate results. On the other hand,

we have the more accurate execution-based optimization which uses performance measure-

ments for comparing different architecture candidates. However, optimization-based purely

on runtime measurements is typically too time consuming to be feasible, as each candidate

has to be implemented and executed. Even when it is possible to specify candidate-specific

information as parameters external to the code, and thus reuse the same code for all can-

didates, many extra-functional properties are still faster to simulate than to measure during

execution.
Exploiting MDE and more specifically model transformations, we can employ design

models not only for performance prediction but also for automatic full code generation.

A model of the software system can be used to generate the complete implementation,

instrumented with specific code for measuring extra-functional properties of interest. This

makes it possible to combine model-based and execution-based optimization, and leverage

the speed of the former and the accuracy of the latter. It is important to stress the fact that

the ability to produce full code from models, when applicable, strengthens the combination

of model-based and execution-based optimizations since consistency between models and

code is ensured by-construction. In case full code generation cannot be achieved, an alterna-

tive way to ensure consistency between models and code shall be chosen in order to benefit

from the combined optimization.

Please note that we only target extra-functional properties that can be concretely repre-

sented and automatically compared for different architectural alternatives (such as memory

consumption, energy consumption, or response-time). The approach is not intended for

more abstract properties or those that emerge from the architecture as a whole, such as

evolvability or safety. Moreover, the presented approach assumes that test generation and

execution can be fully automated, possibly after an initial manual setup. If this is not the

case, and manual configuration is required for each test, it would still be possible to benefit

from a combination of model-based and execution-based optimization but this scenario is

outside the scope of this paper.

3 Fast and accurate architecture optimization through combined model-
and execution-based mechanisms

In this section, we formalise our model- and execution-based optimization method as the

result of a set of domain-specific research efforts whose previous results are documented in

the literature (Feljan et al. 2015; Ciccozzi et al. 2013a; Ciccozzi et al. 2013b; Bucaioni et al.

2015) and which highlight the malleability of the method. The method is depicted in Fig. 1.

The targeted user of the framework is the software architect. As part of the architecture

design phase, the software architect defines the software and hardware models of the system

using the designated modeling language(s). The former defines the software architecture of

the system being built, in terms software components and connections among them, while

the latter specifies the hardware platform. Additionally, the architect might need to define

an initial configuration in terms of, e.g., allocation of software components to processes

in a telecom application or timing elements of the software model intended as clocks and

triggers on specific software circuits in a vehicular application. This initial configuration is
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Fig. 1 Combined model- and execution-based optimization

used as starting point for the optimization mechanism. This step is not always needed since,

depending on the instantiation scenario, the framework might be able to autonomously gen-

erate one or a set of initial configurations. Furthermore, the software architect is asked to

specify extra-functional constraints (not visible in Fig. 1). These represent the rules that

must not be violated by the candidate configurations considered during the optimization.

For instance, in the case of timing analysis for seeking the optimal configuration of clocks

and triggers, these rules would be represented by timing constraints to be obeyed by the

configurations. Finally, the software architect has to specify the requirements (not visible in

Fig. 1) for the extra-functional properties that are to be optimized, or in other words, define

the stop criteria for the optimization mechanism. Besides reaching a certain value for a par-

ticular extra-functional property, other possible stop criteria can be a predefined number of

iterations, a given time limit, a number of consecutive iterations that have not resulted in an

improvement, or a combination of the above.
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3.1 Automatic generation of analysis models and code

One of the pillars of MDE is the provision of automation in terms of model manipula-

tions and refinement, which is performed through so called model transformations. A model

transformation translates a source model to a target model (or text) while preserving their

wellformedness (Czarnecki and Helsen 2003). In our approach, we exploit the following

kinds of model transformation:

– Model-to-text (M2T): which translates source models to target artefacts represented

by text;

– Text-to-model (T2M): that operates in the opposite direction as the M2T, generating a

model from a textual representation.

Moreover, any of these types of model transformations can be defined as in-place, meaning

that source (or one of the sources) and target are represented by the same model; in this

case, the transformation provides as output an updated version of (one of) the model(s)

in input. Except for in-place transformations, which are by nature endogenous, the other

transformations are exogenous meaning that they operate between artefacts expressed using

different languages (Czarnecki and Helsen 2003). In our framework, M2T transformations

are developed with Xtend (Xtend 2014), and T2M transformations are developed with the

Operational QVT2 language.

The method’s workflow starts with the navigation of software and hardware models,

and through M2T transformations, it proposes the generation of (i) an analysis model (not

needed in some cases) and (ii) instrumented executable code. The former can be repre-

sented by the very same prescriptive software and hardware models if processable by the

given simulator or a processable version of them which is automatically generated. The

latter represents an implementation of the system, instrumented with code to extract the

extra-functional properties of interest.3 The analysis model and the code are used to obtain

performance predictions and performance measurements, respectively.

3.2 Performing optimization

Once the needed artefacts have been produced, optimization (depicted by the two grey

rounded rectangles in Fig. 1) can be run. The optimization mechanism tries to optimise

the particular extra-functional property (e.g., minimisation of memory usage or maximisa-

tion of CPU throughput), while not violating extra-functional constraints. The optimization

mechanism is run for each of the initial configurations on top of the analysis model.

The two optimization modules display the same structure, as it can be seen in Fig. 1.

Each iteration starts with the optimization framework producing a new architecture candi-

date by applying a small change to the best candidate found thus far. The new candidate is

analysed to derive relevant performance metrics, which are compared to the ones derived

from the current best candidate; if the new candidate displays better performance metrics,

it becomes the new best candidate. This process is carried on until the stop criteria (e.g.,

given time limit and max number of iterations) are met. The difference between model-

and execution-based modules resides in how relevant performance metrics are derived: in

2http://www.eclipse.org/mmt/?project=qvto
3Note that the overhead related to the instrumentation in terms of execution time shall be negligible in
comparison to the system’s execution time.

http://www.eclipse.org/mmt/?project=qvto
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the case of the model-based optimization module, we leverage performance predictions

obtained by model-based analysis, while in the case of the execution-based optimization

module we profit from performance measurements obtained by executing the generated sys-

tem code. These complementary ingredients, one based on model-based analysis and the

other based on system execution, represent the novelty of the optimization mechanism we

propose.

Model-based optimization module The optimization process starts with the model-

based module (grey rounded rectangle on the left-hand side of Fig. 1). At each iteration,

the analysis model is complemented with information about a particular configuration and,

as such, it represents a particular architecture candidate. Upon having analysed the analy-

sis model, from the data obtained, we derive extra-functional property values specific to the

instantiation scenario. Examples could be end-to-end delay in case of optimisation of tim-

ing configuration of a vehicular application or execution time and memory usage in case of

a telecom application. These performance metrics are used to compare different configura-

tions against each other. The current best candidate is used to generate a new candidate to

be tested in the next iteration. Since model-based analysis is faster than system execution,

we run model-based optimization to quickly converge to a good affinity specification.

Execution-based optimization module The good candidate identified by the model-

based module is used as starting point for the continuation of the optimization process,

carried out by the execution-based module (grey rounded rectangle on the right-hand side

of Fig. 2). Similarly to the previous module, at each iteration, the generated code is com-

plemented with a particular configuration, representing a particular architecture candidate.

As aforementioned, executing the system in order to obtain performance measurements

is slower than performing model-based analysis. Therefore, execution-based optimization

is typically done for fewer iterations compared to model-based optimization. Performance

measurements gathered at each iteration are used to compute the concrete performance met-

rics, which are in turn used to compare the different configurations against each other. Also,

this module uses the best candidate to propose a new candidate for the next iteration.

The whole optimization process is restarted for each configuration provided by the soft-

ware architect as well as for the generated ones. When the optimization mechanism stops, it

compares the best configurations identified in each restart and outputs the best one among

them as the final configuration. The two optimization modules can either use a common set

of candidate comparison criteria and search heuristics or tailored module-specific criteria.

The output of the optimization mechanism is represented by the best configuration. Through

in-place T2M transformations, the configuration is used to update the initial deployment

model for consistency reasons, but even for the developer to be able to scrutinise, and

eventually adjust, the proposed configuration.

4 The specific case of task allocation optimization

In this section, we show an instantiation of our combined model- and execution-based opti-

mization method for the domain of embedded multicore systems. By extending our previous

works (Feljan et al. 2012; Feljan and Carlson 2014; Feljan et al. 2015), we developed a

framework for optimizing the allocation of software modules (in the domain of embedded

systems called tasks) to the processing cores of the hardware platform. The framework is
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Fig. 2 Framework for task allocation optimization

built on the combination of (i) model-based, (ii) execution-based, and (iii) manual optimiza-

tion. In the remainder of this section, we contextualise our solution (Section 4.1). Moreover,

we describe the specific details of the instantiated model- and execution-based modules as

well as their interplay (Section 4.2) and the manual tuning module (Section 4.3).

4.1 Context

Our research work targets architecture optimization for multicore embedded systems. The

fact that modern embedded systems are expected to provide an increasing number of com-

plex software functionalities has triggered a drastic increase in performance demands. The

mainstream way to tackle this issue has been the introduction of multicore technology in

the recent years. The earliest examples of multicore embedded systems are networking

(or more specifically packet-processing) systems, such as routers. However, multicore is

becoming reality for most domains of embedded systems (e.g., software-defined radio and

vision-based driver assistance in modern cars) (Moyer 2013).
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On the one hand, increasing the number of processing units does increase the perfor-

mance power. On the other hand, developing software to run on multiple processing units

must face a new challenge: how to allocate (deploy) software tasks to the processing cores

available in the hardware platform. Besides obvious functional consequences, allocation

can have a significant impact on pivotal extra-functional properties. An intuitive example

is schedulability—if too many tasks are allocated to the same core, the core will become

overloaded and the tasks will miss their deadlines.

4.1.1 Domain

The domain of our work is represented by embedded soft real-time systems, where accu-

rate timing behavior is crucial for the correct functioning of the system, (a logically correct

result that is produced at the wrong time point is equivalent to a logically incorrect result),

but occasional deadline misses are tolerated (as opposed to hard real-time systems where

the absence of deadline misses must be guaranteed beforehand). Timing plays a crucial

role, therefore, the extra-functional properties in our focus are timing-related attributes such

as: end-to-end response time (elapsed time between the point when the task starting the

chain becomes ready for execution, and the point when the last task in the chain finishes

the corresponding execution instance), deadline misses and core load (percentage of core’s

busy portion). Furthermore, since we consider soft real-time, we focus on average-case

behaviours (as opposed to worst-case behaviours typical of hard real-time systems). Since

these properties depend on the dynamic interplay between the tasks and there are no analyt-

ical methods to statically derive them from task and platform parameters, we use dynamic

model-based analysis in form of model simulation.

4.1.2 Modeling and execution environment

The reference modeling language we employed in our approach is represented by

UML4 and its profile for Modeling and Analysis of Real-Time and Embedded systems

(MARTE) (OMG 2014) for modeling software in terms of tasks, hardware in terms of cores

and allocations of tasks to cores. We leverage concepts from the Generic Resource Model-

ing (GRM) and the Allocation Modeling (Alloc) packages in MARTE. More specifically,

we exploit the following concepts (i.e., stereotypes): "swSchedulableResource" for mod-

elling software schedulable tasks, "hwProcessor" for modeling cores and "scheduler" for

modeling schedulers available in the platform, and "allocate" for stereotyping dependency

links for modeling allocation of tasks to cores. The used MARTE stereotypes are accounted

by the model transformations to correctly discern among the various modeling elements

when navigating the source model for translation to simulation model or executable code.

That is to say, MARTE concepts are not directly leveraged by the optimisation mechanism,

but they are pivotal for correctly generating input artefacts for the optimisation mechanism.

The approach is implemented and runs on top of the Eclipse Papyrus Project (Gérard

et al. 2007), an open source integrated environment for editing EMF (Budinsky et al.

2003) models and particularly supporting UML and related profiles, on the Eclipse plat-

form. Regarding the target language, execution environment, and monitoring features, in the

4http://www.omg.org/spec/UML/2.3/.

http://www.omg.org/spec/UML/2.3/
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current version of the approach we provide code generation from UML/MARTE models to

multithreaded C to be run on Linux with a real-time kernel.5

4.2 Method instantiation for task allocation optimization

Our framework for task allocation optimization is depicted in Fig. 2. As part of the archi-

tecture design phase, using UML and the MARTE profile, the software architect defines the

software and hardware models of the system. Additionally, the architect can also define a

set of deployment models in terms of allocations of tasks to cores, so called initial affin-

ity specifications, to be used as starting points for the optimization mechanism; this can

be done by either exploiting the allocation stereotypes provided by MARTE, or simply

describing the allocations in a textual format. This step is optional since the framework

can autonomously generate the desired number of initial affinity specifications. An affinity

specification defines for each task which core it is allocated to. Furthermore, the soft-

ware architect can specify affinity constraints. These represent more complex affinity rules

that must be satisfied for all allocation candidates considered during the optimization. For

instance, the software architect can define that a particular task can be allocated only to a

subset of the available cores, or that two tasks must be allocated to the same core, or to dif-

ferent cores. This is useful in scenarios where we, for example, want to keep tasks used for

diagnostic purposes and tasks that implement the actual functionality separated to differ-

ent cores. Eventually, the software architect specifies the stop criteria for the optimization

mechanism too.

The framework navigates software and hardware models designed using UML and

MARTE, and through M2T transformations it generates (i) a simulation model and (ii)

instrumented executable code. The former is defined in terms of Java objects and represents

an executable model of the software system to be fed as input to our task simulator. The lat-

ter represents an implementation of the system in C, instrumented with code to extract the

extra-functional properties of interest.6 Regarding code generation, tasks are transformed

through a 1-to-1 mapping to POSIX (Opengroup 2013) threads. Depending on the task type,

specific triggering code (according to the modeled period for periodic tasks, at triggering

task completion for event-triggered tasks) is generated too.

The optimization mechanism tries to minimise end-to-end response times for a particular

task chain, while keeping the overall number of deadline misses in the system below a

desired limit; both task chains to be entailed and maximum deadline misses are parameters

that can be customised by the software architect. Task allocation is the supported degree

of freedom, i.e., the aspect of the system that the optimization mechanism is allowed to

change. As task allocation is a bin-packing-like problem, which is NP-hard (Johnson 1973),

rather than finding the optimal solution, the goal of our framework is to find a good solution

quickly. We have therefore opted for a fairly simple optimization strategy, namely local

search paired with a domain-specific heuristic (Feljan and Carlson 2014). The optimization

mechanism is run for each of the initial affinity specifications, and in order to avoid local

optima, it is beneficial to have a large number of initial affinity specifications (some of

which can be provided explicitly by the software architect, while the rest can be randomly

generated, as mentioned above).

5https://rt.wiki.kernel.org/
6The overhead related to the instrumentation in terms of execution time is negligible in comparison to the
system’s execution time.

https://rt.wiki.kernel.org/
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Model-based optimization module The model-based module is run as first optimization

step (grey rounded rectangle on the left-hand side of Fig. 2). At each optimization iteration,

the simulation model is complemented with a particular affinity specification and as such

represents a particular architecture candidate. After the execution of the simulation model,

we derive average end-to-end response times and deadline misses for task chains, and infor-

mation about core load. This performance information is derived from the data obtained by

the simulation and is used to compare different affinity specifications against each other.

The current best candidate is used to generate a new candidate to be tested in the next opti-

mization round. As aforementioned, since model simulation is faster than system execution,

we run model-based optimization to quickly converge to a good affinity specification.

Execution-based optimization module The model-based module has now identified a

good candidate, which is used as starting point for the execution-based optimization module

(grey rounded rectangle on the right-hand side of Fig. 2). At each iteration, the generated

code is complemented with a particular affinity specification, and together, they represent

a specific architecture candidate. Also, in this case, the module uses the best candidate to

propose a new candidate for the next iteration.

The whole optimization process is restarted for each initial affinity specification provided

by the software architect as well as for a desired number of randomly generated starting

allocations. When the optimization mechanism stops, it compares the best affinity specifi-

cations identified in each restart, and outputs the best one among them as the final affinity

specification. The output of the optimization mechanism is represented by the best affinity

specification. Through in-place T2M transformations, the affinity specification is used to

update the initial deployment model for consistency reasons and for the developer to inspect,

and eventually tune, the proposed affinity specification as described in the next section.

4.3 Exploiting developer’s experience for further task allocation tuning

Although automatic mechanisms are pivotal for effectively investigating large search

spaces, expert knowledge can still play an important role in optimization activities. That is

why we provide the mechanisms needed for the developer to manually tune allocation of

tasks to cores at modeling level and dynamically apply changes at runtime (Manual tuning

in Fig. 2). The developer can exploit execution monitoring results to fine-tune allocation at

modeling level without having to investigate nor manually modify the running code, and

propagate model modifications to the running system without halting its execution. Man-

ual tuning is meant to be performed either at the beginning of the optimization process, for

defining appropriate starting points to be employed by the automatic optimization mecha-

nism, and/or when automatic optimization is completed, to assess and possibly further tune

the proposed affinity specification.

The support for manual tuning is depicted in Fig. 3. From the design model (A in Fig. 4),

we automatically generate an executable multithreaded C application (C exec in Fig. 3),

which, without any manual adjustment, can be run directly from the modeling framework.

When the execution of the generated application is triggered by the developer (exec in

Fig. 3), and more specifically when threads are initialised, an identity file (part of Allocation

files in Fig. 3) is generated for keeping track of the current thread unique identifiers. During

execution, information about single tasks (e.g., core load) are monitored (monitoring in

Fig. 3) through the interactive process viewer for Linux (htop) and shown to the developer in

the modeling framework itself (return in Fig. 3). This is achieved by exploiting the Terminal
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Fig. 3 Support for manual optimization

view in Eclipse and re-directing the Linux command line directly to an integrated window

in the modeling environment (C in Fig. 4).

Specific automatic mechanisms for improving tasks allocation might have already been

run, and the developer can now decide to manually tune those allocations (allocations adjust

in Fig. 3). When the model is updated, the developer can commit her changes which are

automatically propagated to the running system as follows. Firstly, a M2T transformation

defined in Xtend navigates the design model and generates (or updates in case it already

exists, update in Fig. 3) an allocation file (part of Allocation files in Fig. 3) that contains the

updated allocations of tasks to cores. At this point, a specific trigger defined in C (C trigger

in Fig. 3) is automatically called (re-allocate in Fig. 3). The trigger accesses identity and

allocation files and uses that information for matching thread identifiers and thereby setting

thread affinities (through sched_setaffinity, API available for POSIX threads) as

specified by the developer in the design. This feature is meant to ease manual tuning by

providing automatic means to back-propagate runtime values to the modeling level and

thereby to propagate model changes to the running application without halting its execution.

All the steps, except for the modeling activities, are fully automated and integrated in the

Papyrus environment in terms of plugins. For each of the automatic activities which can

be triggered by the developer, namely code generation, code execution, and re-allocation,

we defined specific actions, exposed by the plugins. These actions can be accessed directly

from the Eclipse project explorer by right-clicking on a Papyrus design model (B in Fig. 4).
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Fig. 4 Support for dynamic re-allocation in the modeling environment

5 Experiment

In this section, we present an experiment performed using our framework to demonstrate

the feasibility of the combined model-based and execution-based architecture optimiza-

tion approach. We start by describing the experiment setup, and then present and discuss

the results. Since manual tuning is not a compulsory phase of the automated optimization

mechanism, but rather a useful accessory to it, we deliberately did not include it in the exper-

iment. Nevertheless, we used it to check the outcomes of the experiment by monitoring the

execution of the final code and trying out alternative allocations.

5.1 Experiment setup

The software and hardware models of the experiment system are shown in Fig. 5. We aimed

for a system that contains task chains of varying length. The optimization goal was to min-

imise the average end-to-end response time for the task chain consisting of tasks t1 to t10.

The execution platform had two cores, each running a preemptive priority-based scheduler.

The experiment consisted of four parts: pure model-based optimization, pure execution-

based optimization, and two runs of combined optimization with different settings. In each

experiment part, we repeated 100 optimization runs, in order to be able to generalize the

results. All optimization runs started from the same initial affinity specification with an

equal number of tasks allocated to each core: tasks t1 to t3 allocated to core 0, tasks t4 to t6
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Fig. 5 Software and hardware models of the experiment system

allocated to core 1, tasks t7 to t9 to core 0, and so on. The following stop criteria were used

for the different parts of the experiment:

1. Model-based optimization — 1250 optimization iterations,

2. Execution-based optimization — 270 optimization iterations,
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3. Combined optimization 1 — 1000 model-based optimization iterations followed by 50

execution-based optimization iterations,

4. Combined optimization 2 — 350 model-based optimization iterations followed by 200

execution-based optimization iterations.

These numbers were chosen so that all four parts of the experiment take roughly the same

time, allowing for more straightforward comparison of the end results, since each execution

took about 4.5 times longer than each simulation.

Each candidate simulation in the model-based optimization was performed for 4000 sim-

ulation steps (clock ticks), while the execution-based optimization monitored the resulting

system during 4 s. This was chosen in order to (i) run the system long enough (10 hyper-

periods) to capture the average behaviour and (ii) result in a similar number of activations

of the optimised chain during simulation and execution.

In all optimization runs, for proposing the candidate to be tested in the next iteration,

we used a simple heuristic that randomly relocated one task to a different core. The

heuristic was deliberately kept simple, compared to the heuristic we have proposed (Feljan

and Carlson 2014), in order for the experiment to focus on the core novelty of the approach

rather than on the heuristic.

Before running the optimization, from the models defined in UML and MARTE, the

framework automatically generated:

1. a simulation model in Java, to be fed as input to the model-based optimization module,

and

2. an instrumented implementation in C, to be used by the execution-based optimization

module.

Simulation model and instrumented C are generated by M2T transformations, and no

additional manual activity is needed in order for them to be simulated and executed,

respectively.

In the implementation, each task was represented by a POSIX (Opengroup 2013) thread

with read-execute-write semantics—it first reads input data, then performs calculations and

finally writes output data. Since the input model did not contain a specification of task

behaviour, task calculations were represented by a loop that repeats a simple addition oper-

ation. The number of loop iterations were selected for each task instance to result in random

execution times within the ranges defined in the software model. The implementation was

also instrumented with code for measuring the end-to-end response times for a particular

chain.

The hardware and software environment consisted of an Intel Core 2 Duo E6700 pro-

cessor (Intel 2014), running the 32-bit version of the Ubuntu 12.04 LTS operating system

(kernel version 3.2.29). The operating system was patched with the PREEMPT RT patch

(version 3.2.29-rt44) (RT-linux 2014), which turns the stock Linux kernel into a hard real-

time kernel. By reducing the overall jitter and enabling the tasks to run at the highest levels

of priority, and in combination with a high resolution timer, this setup reduces unwanted

interference in the experiments and increases the accuracy of the measurements.

5.2 Experiment results

Figure 6 shows the results of the experiment. Each point in the diagrams shows the

selected chain’s end-to-end response time for the best affinity specification found after

a particular number of optimization iterations, as an average of 100 optimization runs.
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Model-based optimization iterations are depicted with squares, while execution-based

optimization iterations are depicted with triangles.

Note that there is a significant jump in the response time value when changing from

model-based to execution-based optimization (at iteration 1001 in Fig. 6c and iteration 351

in Fig. 6d). This is not a deterioration or a step back in the optimization, but rather depends

on the limited accuracy of the model-based performance prediction, and could in the general

case be a negative as well as a positive jump. This is also the reason why we added a single

execution-based measurement after the final iteration in Fig. 6a, in order to make all final

results measurements which allows for a fair comparison.

In Fig. 7, we can see all four experiment parts plotted against time rather than optimiza-

tion iteration. The colors are used to make it easier to identify which line in the figure

corresponds to which subfigure of Fig. 6.

Fig. 6 Experiment results
showing the selected chain’s
end-to-end response time for the
best affinity specification;
model-based optimization
iterations are depicted with
squares, while execution-based
optimization iterations are
depicted with triangles
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Fig. 6 (continued)

We can see that in this experiment, the model-based optimization converges towards a

solution that is not, in fact, optimal in reality. For example, if we compare the first mea-

sured value after switching from the model-based optimization module in the blue and red

experiments, the blue value at roughly 27 min is not much better than the red value at

Fig. 7 Experiment results over
time showing all four experiment
parts plotted against time
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roughly 8 min, despite the fact that the blue curve showed a steady improvement through-

out the experiment. The difference in what simulation and execution consider to be a good

allocation also means that a candidate which cannot be further improved by model-based

optimization still has quite a lot of optimization potential when switching to execution-based

optimization. This can be seen quite clearly in the two combined optimizations, where the

allocation improves rapidly just after the switch. The generated tasks in this experiment have

a uniform execution time distribution, and with task code generated from detailed functional

specifications, the difference between model-based analysis and simulation would be even

bigger, thus further increasing the motivation for the execution-based optimization module.

The model-based optimization converges faster in the beginning, although the difference in

this particular experiment is rather small since the difference in time between measurement

and model simulation is only a factor 4.5. This small difference also meant that 270 itera-

tions were sufficient to reach a good candidate also with pure execution-based optimization.

However, if the time available for the optimization was shorter, e.g., 10 min, the combined

approach (in this case the red variant) finds a better allocation than pure execution-based

optimization.

An important aspect of the combined optimization method is thus choosing the point

when to perform the change from the model-based to the execution-based optimization

module. Providing a general rule that works for all approaches is not possible, since

this depends on how well model-based analysis and execution agree on what is a good

allocation, and on the difference in duration between obtaining performance predictions

and performance measurements. For instance, if performance prediction is imprecise, the

model-based optimization module could guide the search in a slightly wrong direction

before handing over to the execution-based module. Also, the smaller the difference in dura-

tion between model-based analysis and execution, the smaller the motivation for running

the model-based optimization module for a large number of iterations. On the other hand,

the closer that model-based analysis comes to execution in terms of accuracy, the better

it is to run many iterations of the model-based module before switching to the execution-

based one. The same is valid when model-based analysis is much faster than execution. For

instance, when performance predictions can be obtained analytically (without simulation),

the difference in duration between model-based analysis and execution is bigger than in the

experiment, meaning that the model-based module could process a much larger part of the

search space than the execution-based module in the same amount of time.

It is also worth pointing out that this experiment presents the average result of 100 opti-

mization runs with a fixed number of iterations and no restarts. With respect to improving

individual optimization runs, a promising alternative would be to switch from model-based

to execution-based optimization earlier than after the fixed number of iterations if we get

stuck in a local optimum (a number of consecutive iterations without an improvement), in

order to have time for more restarts.

6 Related work

The literature is rich of different software architecture optimization methods that focus on

various aspects. A systematic literature review (Aleti et al. 2013) provides an analysis of

the solutions provided by the different research groups. In addition, it provides a taxonomy

aiming at classifying existing approaches in order to establish a common reference for the

many problem variations as well as solutions within software architecture optimization.
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In the embedded domain, the natural dependency between software architecture and

quality has been the focal point of numerous research works (Sharma et al. 2005; Bondarev

et al. 2005). Especially, the evaluation of the different quality concerns of a system in rela-

tion to its architectural aspects, such as a specific deployment configuration, is of paramount

importance and it should be performed as early as at modeling level. There are a num-

ber of model-driven approaches that provide ways to model specific quality attributes and

push them to the software level (Islam et al. 2006; Grunske et al. 2007). Zhu et al. (2012)

present model-driven mechanisms for the optimization of task allocation, signal to message

mapping, and assignment of priorities to tasks and messages in order to meet end-to-end

deadline constraints and minimise latencies.
In the scope of deployment optimization, techniques have been defined to automati-

cally explore the space of deployment options to identify the near optimal candidate. A

relevant body of these solutions aim at only satisfying predefined constraints (Martens

and Koziolek 2009), while the rest seeks a near optimal deployment candidate with-

out violating a set of given constraints (Medvidovic and Malek 2007; Fredriksson et al.

2005). Model-driven approaches usually provide good approximations, which are although

often not enough for embedded systems where runtime measurements are needed in

order to assess certain critical performance-related quality attributes. A systematic review

(Koziolek 2010) reports on the approaches dealing with optimization based on measure-

ments at system implementation level that can be found in the literature. The COMPAS

framework by Mos and Murphy (2002) is a performance monitoring approach for J2EE

systems. For performance prediction of the modeled scenarios, the approach suggests using

existing simulation techniques, which are not part of the approach. Based on the COM-

PAS framework, two further approaches have been proposed: AQUA, by Diaconescu and

Murphy (2005), and PAD, by Parsons and Murphy (2008).

The common characteristic of these approaches is that they provide optimization at one

specific abstraction level. That is to say, they either provide optimization based on the mod-

elled architecture (at model level) or to identify performance issues in the running system

and adapt the corresponding code to make it able to fulfil specified constraints (at code

level). In fact, to the best of our knowledge, there are no documented optimization meth-

ods that combine performance prediction and performance measurement, regardless of the

system domain. Sailer et al. (2013) come close in their approach for allocating tasks to

multicore electronic control units (ECUs) in the automotive domain. However, rather than

combining simulation- and execution-based optimization, they run only simulation-based

optimization which uses a system description in AUTOSAR and runtime measurements of

the related runnables in hardware traces as input. A genetic algorithm is then used to create

and evaluate solutions to the task allocation problem. While leveraging runtime values for

generating simulation models, the approach does not provide any execution-based optimiza-

tion mechanism. The uniqueness of our approach consists in fact in providing a software

architecture optimization mechanism that incrementally leverages model-based predictions

and runtime measurements gathered at system implementation level. Moreover, automatic

optimization can be aided by manual intervention of the experienced developer.

On the one hand, when measurements at system implementation level are considered,

besides runtime monitoring other code level verification techniques (e.g., static analysis) not

based on execution can be employed, even though their application for large and complex

systems may not always be practically and economically favorable (Wall et al. 2003). In fact,

conditions that may cause invalidation of the analysis results at runtime can occur. A typi-

cal example of this is the differences between the ideal execution environment (considered
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for performing analysis) and the actual one which can lead to the violation of the assump-

tions taken into account when performing static analysis (Chodrow et al. 1991). On the

other hand, the information gathered through monitoring system execution is useful for

(i) observing the actual system’s behavior and to detect violations at runtime, and for (ii)

making adaptation decisions. For instance, in Saadatmand et al. (2012), the authors use

monitoring information for balancing timing and security properties in embedded real-time

systems. Huselius and Andersson (2005) describe a method for the generation of design

models of embedded real-time systems from the monitoring information gathered at run-

time. In our framework, we profit from monitoring results from which observed values for

selected system properties are computed and used to improve the architecture.

7 Conclusion and future work

Modern embedded systems become more and more advanced and complex, thus exhibit-

ing increasing performance demands. Over the recent years, we have seen that multicore

technology, previously successfully used in general-purpose computer systems, made an

entry into the embedded domain. While on the one side, it does provide higher performance

capabilities; on the other side, it introduces a problem that was not present with singlecore

processors—how to best allocate software tasks to the cores of the hardware platform to

achieve satisfactory performance.

Since model-based analysis leverages abstractions and approximations to provide per-

formance predictions, architecture optimization based only on this kind of analysis has

limited accuracy. Nevertheless, one of the core facilities typical of model-driven approaches,

namely automatic full-fledged code generation, can be leveraged to generate the complete

system implementation instrumented with code for extracting performance measurements

for the extra-functional properties of interest. Doing so, model-based optimization can

be combined with execution-based optimization that uses performance measurements for

candidate comparison.

In this research work, we presented a novel method for combined model-based and

execution-based architecture optimization. The method relies on model-based optimization

to quickly converge to a good architecture candidate, which is then used as the starting point

for the slower but more accurate execution-based optimization. We instantiated the method

for the specific problem of optimizing task allocation based on response time and we car-

ried out an experiment that, although limited in size and scope, demonstrated the feasibility

and value of the approach. The experiment showed that, for the used system, combined

optimization found on average a slightly better solution than both pure execution-based

and pure model-based optimization. It was performed optimizing only chain end-to-end

response time using a simple random heuristic. Support for enabling the combination of

several optimization factors, such as chain end-to-end response times and deadline misses,

could be a notable improvement. Furthermore, an interesting experiment would be to use

separate heuristics for the two optimization modules, each specially tailored to the respec-

tive optimization module. Moreover, to assess the reusability of our approach, we would

like to apply the idea of combined model- and execution-based optimization in a frame-

work that is significantly different from ours (for instance, one that does not employ model

simulation, but rather obtains performance predictions analytically).
In many domains, the expert’s knowledge is an important factor in optimization activi-

ties. To allow the expert developer to leverage her knowledge, we provide an infrastructure

for her to manually tune allocation of tasks to cores at modeling level and dynamically
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apply changes at runtime. This capability gives the developer the chance to focus on mod-

eling activities and operate in the modeling environment only. Execution monitoring results

are used by the developer to (i) fine-tune allocation at modeling level without having to

investigate the code and (ii) propagate model modifications to the running system without

halting its execution. These manual activities can be useful at two different stages: (i) at the

beginning of the optimization process, for defining smart starting points for the automatic

optimization mechanism and (ii) when automatic optimization is completed, to assess and

possibly further tune the architecture.

Concerning the support for manual tuning of task allocation, in this work, we do not pro-

vide any specific monitoring feature, but rather rely on the information gathered by htop,

such as core load (even per thread). Even by just monitoring this kind of information, a

change in the task allocation propagated from the design model can be noticed in terms of

core load change. On the one hand, this is enough to appreciate the possibility for the devel-

oper to only focus on modeling activities and operate solely in the modeling environment,

without interacting directly with code and platform, but still affecting them. On the other

hand, a broader set of extra-functional properties need to be taken into account for meaning-

ful model optimizations. In this sense, we aim at including monitoring of properties such as

average end-to-end response times, deadline misses, and more detailed information about

core load as in Ciccozzi and Feljan (2014). Moreover, since re-allocation of tasks at runtime

can create unexpected states in the running system, we aim at investigating these situations

too. While in this solution monitoring is reported to the developer in its original format (in

command line style), the next step would be to enable back-propagation of the values to

the model elements themselves through specific in-place model-to-model transformations

similarly to what is shown in Ciccozzi et al. (2013b). This information will be shown as

extra-functional decorations of model elements to enhance understandability of values in

direct relation to the model.

Acknowledgments This work was supported by the Swedish Foundation for Strategic Research via the
Ralf 3 project (IIS11-0060) and by the Knowledge Foundation through the projects SMARTCore (20140051)
and ORION (20140218).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., & Meedeniya, I. (2013). Software architecture optimiza-
tion methods: a systematic literature review. IEEE Transactions on Software Engineering.

Bondarev, E., de With, P., Chaudron, M., & Muskens, J. (2005). Modelling of input-parameter dependency
for performance predictions of component-based embedded systems. In 31st EUROMICRO Conference

on Software Engineering and Advanced Applications (SEAA), pages 36–43. IEEE.
Bucaioni, A., Cicchetti, A., Ciccozzi, F., Eramo, R., Mubeen, S., & Sjödin, M. (2015). Anticipating

implementation-level timing analysis for driving design-level decisions in east-adl. In International

Workshop on Modelling in Automotive Software Engineering.
Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., & Grose, T.J. (2003). Eclipse Modeling Framework.

Addison Wesley.
Chapman, R. (2006). Correctness by construction: a manifesto for high integrity software. In Procs of SCS.
Chodrow, S.E., Jahanian, F., & Donner, M. (1991). Run-time monitoring of real-time systems. In Real-time

systems symposuim (RTSS).

http://creativecommons.org/licenses/by/4.0/


682 Software Qual J (2018) 26:661–684

Ciccozzi, F., & Feljan, J. (2014). Model-driven deployment optimization for multicore embedded real-time
systems: the optimall approach. In Procs of WATERS. http://www.es.mdh.se/publications/3621-.

Ciccozzi, F., Cicchetti, A., & Sjödin, M. (2013a). Round-trip support for extra-functional property man-
agement in model-driven engineering of embedded systems Information. Information & Software

Technology, 55(6), 1085–1100.
Ciccozzi, F., Saadatmand, M., Cicchetti, A., & Sjödin, M. (2013b). An automated round-trip support towards

deployment assessment in component-based embedded systems. In Procs of CBSE.
Czarnecki, K., & Helsen, S. (2003). Classification of Model Transformation Approaches. In Procs of

OOPSLA.
Diaconescu, A., & Murphy, J. (2005). Automating the performance management of component-based enter-

prise systems through the use of redundancy. In 20th IEEE/ACM international Conference on Automated
Software Engineering (ASE). ACM.

Feljan, J., & Carlson, J. (2014). Task allocation optimization for multicore embedded systems. In 40th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA).

Feljan, J., Carlson, J., & Seceleanu, T. (2012). Towards a model-based approach for allocating tasks to mul-
ticore processors. In 38th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA) (pp. 117–124).

Feljan, J., Ciccozzi, F., Carlson, J., & Crnkovic, I. (2015). Enhancing model-based architecture optimization
with monitored system runs. In 41st Euromicro Conference on Software Engineering and Advanced
Applications. http://www.es.mdh.se/publications/3926-. copyright IEEE.

Fredriksson, J., Sandström, K., & Åkerholm, M. (2005). Optimizing resource usage in component-based
real-time systems. In International Symposium on Component-Based Software Engineering (CBSE)
(pp. 49–65): Springer.

Gérard, S., Dumoulin, C., Tessier, P., & Selic, B. (2007). Papyrus A UML2 Tool for Domain-Specific
Language Modeling. In Model-Based Engineering of Embedded Real-Time Systems (pp. 361–368).

Grunske, L., Lindsay, P., Bondarev, E., Papadopoulos, Y., & Parker, D. (2007). An outline of an architecture-
based method for optimizing dependability attributes of software-intensive systems. In Architecting
dependable systems IV (pp. 188–209): Springer.

Huselius, J., & Andersson, J. (2005). Model Synthesis for Real-Time Systems. In Ninth European
Conference on Software Maintenance and Reengineering (CSMR).

Intel (2014). Intel Core 2 Duo E6700 processor. http://ark.intel.com/products/27251/Intel-Core2-Duo-
Processor-E6700-4M-Cache-2_66-GHz-1066-MHz-FSB, [Accessed: 2014-12-19].

Islam, S., Lindstrom, R., & Suri, N. (2006). Dependability driven integration of mixed criticality SW
components. In Ninth IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC). IEEE.

Johnson, D.S. (1973). Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of Technol-
ogy, Department of Mathematics.

Kent, S. (2002). Model Driven Engineering. In Third International Conference on Integrated Formal

Methods (iFM).
Koziolek, H. (2010). Performance evaluation of component-based software systems: A survey, Performance

Evaluation, Special Issue on Software and Performance.
Martens, A., & Koziolek, H. (2009). Automatic, model-based software performance improvement for

component-based software designs. Electronic Notes in Theoretical Computer Science, 253(1), 77–93.
Medvidovic, N., & Malek, S. (2007). Software deployment architecture and quality-of-service in per-

vasive environments. In International workshop on Engineering of software services for pervasive

environments: in conjunction with the 6th ESEC/FSE (pp. 47–51).
Mos, A., & Murphy, J. (2002). A framework for performance monitoring, modelling and prediction of com-

ponent oriented distributed systems. In Third International Workshop on Software and Performance

(WOSP).
Moyer, B. (2013). Real World Multicore Embedded Systems. Newnes. ISBN 0124160182, 9780124160187.
OMG (2014). The UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded Systems.

http://www.omgmarte.org/, [Accessed: 2014-11-28].
Opengroup (2013). POSIX. http://pubs.opengroup.org/onlinepubs/9699919799, [Accessed: 2013-08-20].
Parsons, T., & Murphy, J. (2008). Detecting Performance Antipatterns in Component Based Enterprise

Systems Journal of Object Technology.
RT-linux (2014). PREEMPT RT patch, 2014. https://rt.wiki.kernel.org/index.php/Main_Page, [Accessed:

2014-12-19].
Saadatmand, M., Cicchetti, A., & Sjödin, M. (2012). Design of adaptive security mechanisms for real-

time embedded systems. In 4th International conference on Engineering Secure Software and Systems

(ESSoS).
Sailer, A., Schmidhuber, S., Deubzer, M., Alfranseder, M., Mucha, M., & Mottok, J. (2013). Optimizing

the task allocation step for multi-core processors within AUTOSAR. In International Conference on

Applied Electronics (AE) (pp. 1–6).

http://www.es.mdh.se/publications/3621-
http://www.es.mdh.se/publications/3926-
http://ark.intel.com/products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2_{6}6-GHz-1066-MHz-FSB
http://ark.intel.com/products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2_{6}6-GHz-1066-MHz-FSB
http://www.omgmarte.org/
http://pubs.opengroup.org/onlinepubs/9699919799
https://rt.wiki.kernel.org/index.php/Main_{P}age


Software Qual J (2018) 26:661–684 683

Federico Ciccozzi is Assistant Professor at Mälardalen University, Sweden, School of Innovation, Design
and Engineering where he received his PhD degree in 2014. His research focuses on the definition of
metamodels and model transformations for several automation aspects in the model-driven development
of component-based embedded real-time systems, such as code generation, preservation of system proper-
ties, back-propagation, to mention a few. Moreover, he carries out research in the area of multi-paradigm
modelling, model versioning, (co)evolution and synchronisation, as well as application of model-driven and
componentbased techniques to (multi-)robot systems. He has co-authored over 40 publications in journals
and international conferences and workshops in these areas. In his research activity he has collaborated with
several companies and research institutions such as Ericsson, ABB, Alten, Thales, CEA list, etc. He is a
member of the IEEE. More information is available at http://www.es.mdh.se/staff/266-Federico_Ciccozzi.

Juraj Feljan received his Ph.D. in Computer Science in 2015 from Mälardalen University, Sweden and his
M.Sc. degree in Software Engineering in 2008 from the University of Zagreb, Croatia. His main research
interests are software architecture and model-driven engineering, primarily for the domain of multicore
embedded real-time systems.

Sharma, V.S., Jalote, P., & Trivedi, K.S. (2005). Evaluating performance attributes of layered software archi-
tecture. In International Symposium on Component-Based Software Engineering (CBSE) (pp. 66–81):
Springer.

Wall, A., Kraft, J., Neander, J., Norström, C., & Lembke, M. (2003). Introducing Temporal Analyzability Late
in the Lifecycle of Complex Real-Time Systems. In 9th IEEE International Conference on Embedded

and RealTime Computing Systems and Application (RTCSA). Springer Berlin Heidelberg.
Xtend (2014). Xtend programming language, 2014. http://www.eclipse.org/xtend/documentation.html,

[Accessed: 2014-11-28].
Zhu, Q., Zeng, H., Zheng, W., Di Natale, M., & Sangiovanni-Vincentelli, A. (2012). Optimization of task allo-

cation and priority assignment in hard real-time distributed systems. ACM Transactions on Embedded

Computing Systems (TECS), 11(4), 85.

http://www.eclipse.org/xtend/documentation.html


684 Software Qual J (2018) 26:661–684

Jan Carlson is an associate professor at Mälardalen University, Sweden. He received his M.Sc. degree in
Computer Science from Linköping University in 2000, and his doctoral degree from Mälardalen University
in 2007. His research interests include component- and model-based development of embedded systems,
safety contracts and model-level timing analysis.
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