

TECHNICAL REPORT
CMU/SEI-2001-TR-026

ESC-TR-2001-026

 Architecture
Reconstruction
Guidelines

Rick Kazman
Liam O’Brien
Chris Verhoef

August 2001

Pittsburgh, PA 15213-3890

Architecture
Reconstruction
Guidelines

CMU/SEI-2001-TR-026
ESC-TR-2001-026

Rick Kazman
Liam O’Brien
Chris Verhoef

August 2001

Architecture Tradeoff Analysis Initiative

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-2001-TR-026 i

Table of Contents

Abstract vii

1 Introduction 1

2 View Extraction Phase 5
2.1 Guidelines 7

3 Database Construction Phase 9
3.1 Guidelines 11

4 View Fusion Phase 13
4.1 Improving a View 13
4.2 Disambiguating Function Calls 15
4.3 Guidelines 15

5 Architecture Reconstruction Phase 17
5.1 Guidelines 21

6 Other Architecture Reconstruction
Approaches 23
6.1 Bowman and Associates 23
6.2 Harris and Associates 23
6.3 Guo and Associates 24

7 Summary 25

References 27

ii CMU/SEI-2001-TR-026

CMU/SEI-2001-TR-026 iii

List of Figures

Figure 1: Outline of the Dali Workbench
and Its Phases 3

Figure 2: Conversion of the Extracted View
to SQL Format 9

Figure 3: Example of SQL Code Generated in
Dali 10

Figure 4: Static and Dynamic Data Views 13

Figure 5: The Difference Between Static and
Dynamic Views 14

Figure 6: Items That Were Added to and
Omitted from the Overall View 15

Figure 7: An Architecture Represented at the
Highest Hierarchical Level 17

Figure 8: Subset of the Elements
and Relations 18

Figure 9: Graphical Representation of Elements
and Relations 19

Figure 10: Patterns to Aggregate Local
Variables to the Function in
Which They Are Defined 19

Figure 11: Result of Applying the Pattern 20

Figure 12: Query to Identify the
Logical_Interaction Component 21

Figure 13: Example of a Bad Pattern 22

iv CMU/SEI-2001-TR-026

CMU/SEI-2001-TR-026 v

List of Tables

Table 1: A Typical Set of Source Elements and
Relations 5

vi CMU/SEI-2001-TR-026

CMU/SEI-2001-TR-026 vii

Abstract

Architecture reconstruction is the process where the “as-built” architecture of an imple-
mented system is obtained from the existing legacy system. This is done through a detailed
analysis of the system using tool support. The tools extract information about the system and
aid in building and aggregating successive levels of abstraction. If the reconstruction is suc-
cessful, the end result is an architectural representation of the system that aids in reasoning
about the system. In some cases, it may not be possible to generate a useful representation
due to the system.

Architecture reconstruction generates an architectural representation that can be used in sev-
eral ways. One of the main uses is for documenting the existing architecture. If no documen-
tation exists or it is out of date, the recovered architectural representation can be used as a
basis for redocumenting the architecture. The recovered “as-built” architecture of the system
can be used to check conformance against an “as-designed” architecture. The architectural
representation can also be used as a starting point for reengineering the system to a new de-
sired architecture. Finally, the representation can be used to help identify components for re-
use, or to help establish a software product line.

In this report, we describe the process of architecture reconstruction using the Dali architec-
ture reconstruction workbench. We outline guidelines for reconstructing the architectural rep-
resentations of existing systems. The process that is undertaken to reconstruct an architecture
can be supported by other tools and in fact can be done manually.

viii CMU/SEI-2001-TR-026

CMU/SEI-2001-TR-026 1

1 Introduction

Architecture reconstruction is the process where the “as-built” architecture of an imple-
mented system is obtained from an existing legacy system. This is done through a detailed
system analysis using tool support. The tools extract information about the system and aid in
building and aggregating successive levels of abstraction. If the reconstruction is successful,
the end result is an architectural representation that aids in reasoning about the system. In
some cases, it may not be possible to generate a useful representation due to the system.

Architecture reconstruction generates an architectural representation that can be used in sev-
eral ways. One of the main uses is for documenting the existing architecture. If no documen-
tation exists or it is out of date, the recovered architectural representation can be used as a
basis for redocumenting the architecture. The approach can be used either during develop-
ment or when development has been completed to recover the “as-built” architecture of the
system, so that it can be used to check conformance against an “as-designed” architecture.
The architectural representation can also be used as a starting point for reengineering the sys-
tem to a new desired architecture. Finally, the representation can be used as a means for iden-
tifying components for reuse, or for establishing an architecture-based software product line.

Architecture reconstruction has been used in a variety of projects ranging from Magnetic
Resonance Imaging (MRI) scanners to public telephone switches, and from helicopter guid-
ance systems to classified National Aeronautics and Space Administration (NASA) systems.
The SEI has used architecture reconstruction to

• Redocument architectures for physics simulations.

• Understand architectural dependencies in embedded control software for reengineering.

• Evaluate conformance of a satellite ground station system’s implementation to its refer-
ence architecture.

• Reconstruct three automobile systems and evaluate their potential for conversion to a
product line.

• Recover the architecture of several network management systems.

Architecture reconstruction is a complex task that requires a range of activities and skills.
Software engineers familiar with compiler construction techniques and Unix environments
(especially utilities such as grep, sed, awk, perl, python, lex/yacc, etc.) have the necessary
skills to undertake architecture reconstruction. However, with the large amount of software in
most systems, it is impossible to undertake all architecture reconstruction activities manually.

2 CMU/SEI-2001-TR-026

Tool support for these activities is needed, and in general, no single tool or set of tools is ade-
quate. There is often diversity in the number of implementation languages and dialects in
which a software system is implemented. For example, a mature MRI scanner easily contains
software written in 15 different languages. During fixes applied to solve the Y2K problem,
each additional language was estimated to add 5% to repair costs. Given such diversity, we
cannot hope to have a full, universally applicable tool set that can operate with the push of a
button. Instead we are led to a particular design philosophy for a tool set to support architec-
ture reconstruction activities: the workbench.

An architecture reconstruction workbench should be open (easy to integrate new tools as re-
quired) and provide a lightweight integration framework whereby new tools that are added to
the tool set do not impact the existing tools or data unnecessarily. The Software Engineering
Institute (SEI) has developed Dali, which is such a workbench [Kazman 99]. Other examples
include Sneed’s reengineering workbench [Sneed 98], the software renovation factories of
Verhoef and associates [Brand 97], and the rearchitecting tool suite by Philips Research
[Krikhaar 99].

Using the tool support provided by the Dali workbench, the software architecture reconstruc-
tion process comprises the following five phases:

1. View Extraction

In the View Extraction phase, information is obtained from various sources.

2. Database Construction

The Database Construction phase involves converting the extracted information into the
Rigi Standard Form [Müller 93] (a tuple-based data format in the form of “relation <en-
tity1> <entity2>”) and an SQL database format from which the database is created.

3. View Fusion

The View Fusion phase combines various views of the information stored in the data-
base.

4. Architecture Reconstruction

In the Architecture Reconstruction phase, the main work of building abstractions and
representations and generating an architectural representation takes place.

5. Architecture Analysis

The Architecture Analysis phase involves analyzing the resulting architecture.

All five phases are highly iterative. Figure 1 depicts the structure of the Dali workbench and
situates the tasks of architecture reconstruction within it.

CMU/SEI-2001-TR-026 3

Database

 View Fusion View Fusion

Lexical ...

View Extraction

Parsing Profiling

Architectural
Analysis

Architecture
Analysis

Pattern Definition
and Recognition

Visualization
and Interaction

Architecture
Reconstruction

Presentation

Database Construction

Documentation

Figure 1: Outline of the Dali Workbench and Its Phases

Several people are required to carry out the reconstruction process. Those who should be in-
volved include the person doing the reconstruction (reconstructor) and one or more people
who are familiar with the system being reconstructed (e.g., the architect and software engi-
neers familiar with the system).

The reconstructor extracts the information from the system and, either manually or with the
use of tools, abstracts the architecture. First the reconstructor generates a set of hypotheses
about the system. These hypotheses reflect the set of inverse mappings from the set of source
artifacts to the design (ideally the opposite of the design mappings). The hypotheses are then
tested by generating and applying these inverse mappings to the extracted information and
validating the result. In order to generate these hypotheses and validate them, the reconstruc-
tor needs the support of people who are familiar with the system, including the system archi-
tect or engineers who initially developed or currently maintain it.

The following sections describe the architecture reconstruction process in more detail. They
also present guidelines that can be used to carry out each phase. We do not discuss the Archi-
tecture Analysis phase in this particular report. Architecture Analysis is the topic of a separate
report [Kazman 00]. Most of these guidelines are not specific to the Dali tool and could be
applied if other tools were used, even if the architecture reconstruction was carried out manu-
ally.

4 CMU/SEI-2001-TR-026

CMU/SEI-2001-TR-026 5

2 View Extraction Phase

The View Extraction phase involves analyzing the existing design and implementation arti-
facts of a system to construct a model based upon multiple views. From the source artifacts
(e.g., code, header files, build files) and other artifacts (e.g., execution traces) of the system,
you can identify and capture the elements of interest and their relations to extract several fun-
damental views of the system. Table 1 shows a list of typical elements and several relations
among these elements that might be extracted from a system.

Table 1: A Typical Set of Source Elements and Relations
Source

Element

Relation Target

Element

Description

File includes File A C preprocessor #include of one file by
another

File contains Function A definition of a function in a file

File defines_var Variable A definition of a variable in a file

Function calls Function A static function call

Function access_read Variable A read access on a variable

Function access_write Variable A write access on a variable

Each of the relations between the elements constitutes a different view of the system. The
“calls” relation between the functions yields the call graph of the system. This shows how the
various functions in the system interact. The “includes” relation between files shows us a de-
pendence view between files in the system. The “access_read” and “access_write” relation
between functions and variables, show how data is used in the system. Certain functions may
write a set of data and others may read it. This information is used to determine how data is
passed between various parts of the system. For example, we can determine whether or not a
global data store is used (similar to a blackboard architectural style) or whether most infor-
mation is passed through function calls.

If the system being analyzed is large and is divided into a particular directory structure on a
file system, capturing that directory structure may be important to the reconstruction process.
Certain components or subsystems may be stored in particular directories and capturing rela-
tions such as “dir_contains_file” and “dir_contains_dir” would be useful in trying to identify
components later in the reconstruction process.

6 CMU/SEI-2001-TR-026

The set of elements and relations that are extracted will depend on the type of system that is
being analyzed and the extraction support tools that are available. If the system to be recon-
structed is object-oriented, classes and methods would be added to the list of elements to be
extracted, and relations such as “Class is_subclass Class” and “Class contains Method” could
be extracted and used in the reconstruction process.

Extracted views can be categorized as either static or dynamic. Static views are those ob-
tained by observing only the artifacts of the system, while dynamic views are those that are
obtained by observing the system during execution. In many cases, static and dynamic views
can be fused to create a more complete and accurate representation of the system. (This will
be discussed in Section 4.) If the architecture of the system changes at runtime, for example,
a configuration file is read in by the system and certain components are loaded at runtime,
then that runtime configuration should be captured and used when carrying out the recon-
struction.

To extract a source view, you can apply whatever tools are available, appropriate, or neces-
sary for a given target system. The types of tools that we have used regularly in our
extractions include

• parsers (e.g., Imagix, SNiFF+, CIA, rigiparse)

• abstract syntax tree-based (AST-based) analyzers (e.g., Gen++, Refine)

• lexical analyzers (e.g., LSME)

• profilers (e.g., gprof)

• code instrumentation

• ad hoc (e.g., grep, perl)

These tools are applied to the raw source code. Parsers analyze the code and generate internal
representations from it (for the purpose of generating machine code). Typically, it is possible
to save this internal representation to obtain a source view. AST-based analyzers do a similar
job, but they build an explicit tree representation of the parsed information. One can build
analysis tools that traverse the AST and output selected pieces of architecturally relevant in-
formation in an appropriate format.

Lexical analyzers examine source artifacts purely as strings of lexical elements or tokens.
The user of a lexical analyzer can specify a set of patterns to be matched and the elements
output. An example of a lexical pattern would be a pattern that recognizes the “#include
<filename>” directive in source files and the output elements would be the source file in
which the “#include” appeared and the file within the “< >”. Applying this pattern yields the
dependencies that exist between files.

Similarly, we have used a collection of ad hoc tools such as grep and perl to carry out pattern
matching and searching within the code in order to output some required information. All of

CMU/SEI-2001-TR-026 7

these tools—code-generating parsers, AST-based analyzers, lexical analyzers, and ad hoc pat-
tern matchers—are used to output purely static information.

Profilers and code coverage analysis tools can be used to output information about the code
as it is being executed. They usually do not involve adding any new code to the system. On
the other hand, code instrumentation, which has wide applicability in the field of testing, in-
volves adding code to the system to output some specific information (such as what processes
connect with each other at runtime) while the system is executing [McCabe 00]. These tools
generate dynamic views of the system.

Tools to analyze design models, build files, makefiles, and executables can also be used to
extract further information as required. For instance, build files and makefiles include infor-
mation on module or file dependencies that may not be reflected in the source code.

Much architecture-related information may be extracted statically from source code, compile-
time artifacts, and design artifacts. However, this may not be enough for the architecture re-
covery process. Some architecturally relevant information may not exist in the source arti-
facts, due to late binding. Examples of late binding include

• polymorphism

• function pointers

• runtime parameterization

There are other reasons why the precise topology of a system may not be determined until
runtime. For example, multiprocess and multiprocessor systems, using middleware such as
Common Object Request Broker Architecture (CORBA), Jini, or Component Object Model
(COM), frequently establish their topology dynamically, depending on the availability of sys-
tem resources. The topology of such systems does not live in its source artifacts and hence
cannot be reverse engineered using static extraction tools.

Therefore, it may be necessary to use tools that can generate dynamic information about the
system (e.g., profiling tools). In some instances, this may not be possible, because tools that
can obtain this dynamic information may not be available on the system platform. Also, there
may be no way to collect the results from code instrumentation. This usually occurs with em-
bedded systems, where there is no means to output the information generated from code in-
strumentation.

2.1 Guidelines
The following guidelines apply to the View Extraction phase:

• Use the “least effort” extraction. Consider what information you need to extract from a
source corpus and choose the most appropriate tool. Is the information lexical in nature?
Does it require the comprehension of complex syntactic structures? Does it require some

8 CMU/SEI-2001-TR-026

semantic analysis? In each of these cases, a different tool could be applied successfully.
In general, lexical approaches are the cheapest to use, and they should be considered if
your reconstruction goals are simple.

Guiding Principles Type of Extraction Required

The information that is to be extracted is
lexical in nature. A set of patterns can be
written that allows one to extract that
information.

Lexical Analysis (You may be able to use
simple lexical analysis utilities such as
perl and grep.)

The information that needs to be ex-
tracted cannot be identified lexically.
Through the use of a grammar for a lan-
guage, it is possible to identify elements
and relations.

Parsing

More contextual information (semantic
information) must be available to clearly
identify certain elements and relations.

AST-based analyzers (These allow for an
AST to be built and updated after parsing
with semantic information.)

• Validate source views. Before starting to fuse or manipulate the various views that have
been obtained, make sure that the correct information has been captured in the view. It is
important that the tools being used to analyze the source artifacts are carrying out their
job correctly. A detailed manual examination and verification of a subset to the elements
and relations against the underlying source code should be carried out to establish that the
correct information is being captured. The precise amount of information that needs to be
verified manually is up to the individual. Assuming that this is a process of statistical
sampling, the reconstructor can choose a desired confidence level. In general, the more
information that is validated manually, the higher the confidence in the results.

• Extract dynamic information where required. If there is a lot of runtime or late binding
and the architecture is dynamically configurable, dynamic information about system run-
time is essential and should be extracted using whatever technique is most appropriate. If
a profiler is available, then use it to extract runtime information. If the system runs on a
platform where no profiler is available, it may be necessary to instrument the code to ob-
tain the runtime information. When it is not possible to extract the dynamic information,
only static information may be available for architectural representations.

CMU/SEI-2001-TR-026 9

3 Database Construction Phase

The set of extracted views are converted into the Dali format and stored in a relational data-
base during the Database Construction phase. Several tools and techniques have been incor-
porated into the Dali workbench to assist in this process. These mainly consist of perl scripts
that read the data and convert it into a file in the Rigi Standard Format. The extracted views
may be in many different formats depending on the tools used to extract them. For example,
an extraction tool like Imagix-4D can be used to load the source code of a system into its in-
ternal representation and this information is dumped to a set of flat files indexed by file or by
function. These files have a uniform structure, and tools can be developed in perl to read
these files and output information about elements and relations.

Once the elements and relations (Extracted View) file is converted to Rigi Standard Format, it
is read by another perl script. The data is output in a format that includes the necessary SQL
code to build and populate the relational tables with the extracted information. Figure 2 de-
picts this process.

Figure 2: Conversion of the Extracted View to SQL Format

Figure 3, next page, shows a typical example of the SQL code that is generated.

Extracted
View

SQL code Rigi
Standard
Format perl

scripts
perl
scripts

10 CMU/SEI-2001-TR-026

Figure 3: Example of SQL Code Generated in Dali

Dali currently uses the PostgreSQL1 relational database. When the data is entered into the
database, two additional tables are generated: components and relationships. The components
table lists the set of source and target elements that has been extracted from the system, and
the relationships table lists the set of relations that has been extracted from the system.

It is possible to create new tools and techniques other than those currently available in Dali,
to carry out the conversion from whatever format(s) an extraction tool uses. For example, if a
tool is required to convert the output from a tool not currently supported, it can be built. Then
the output from the new tool can be converted into Rigi Standard Format and converted to
SQL code. The conversion tool that does this can become part of the Dali workbench.

In the current version of the Dali workbench, the PostgreSQL relational database provides
functionality through the use of SQL and perl for generating and manipulating the architec-
tural views [Stonebraker 90] (examples are shown in Section 5). Changes could easily be
made to the SQL scripts to make them compatible with other SQL implementations.

1 http://www.postgresql.org

create table calls(caller text, callee text);

create table accesses(func text, variable text);
create table defines_var(file text, variable text);
…
insert into calls values(‘main’, ‘control’);
insert into calls values(‘main’, ‘clock’);
…
insert into accesses values(‘main’, ‘stat1’);
…

CMU/SEI-2001-TR-026 11

3.1 Guidelines
The following guidelines apply to the Database Construction phase:

• Build database tables from the extracted relations to make processing the data views eas-
ier. For example, create a table that stores the results of a particular query such as group-
ing the files into components or subsystems. Then you don’t have to run that query again.
If the results of that query are required in building further queries, you can access them
easily through that table.

• As with any database construction, carefully consider the database design before you get
started. What will the primary (and possibly secondary) key be? Will any database joins
be particularly expensive, spanning multiple tables?

• Use perl, awk, and other similar lexical tools to change the format of data extracted using
any tools into the Rigi Standard Format so that the Dali workbench can use the data.
These tools are less expensive in terms of development time and resource utilization than
writing more complex tools using other languages.

12 CMU/SEI-2001-TR-026

CMU/SEI-2001-TR-026 13

4 View Fusion Phase

The View Fusion phase involves defining a set of queries that manipulate the extracted views
to create fused views. For example, a static call view may be fused with a dynamic call view.
As we said earlier, a static view may not give us all of the architecturally relevant informa-
tion. In the case of late binding in the system, some function calls may not be identifiable
until runtime, so there is a need to generate a dynamic call view. These two views need to be
reconciled and fused to produce the complete call graph for the system.

The View Fusion phase reconciles and establishes connections between views that provide
complimentary information. Fusion is illustrated using the following examples. The first
shows the improvement of a static view of an object-oriented system with dynamic informa-
tion. The other shows the fusion of several views to identify function calls in a system.

4.1 Improving a View

Consider the two excerpts shown in Figure 4. They are from the sets of methods extracted
from a system implemented in C++.

Figure 4: Static and Dynamic Data Views

These views include a static view and a dynamic view of an object-oriented piece of code.
The differences between them are shaded in Figure 5.

InputValue::GetValue
InputValue::SetValue
List::[]
List::length
List::attachr
List::detachr
PrimitiveOp::Compute

Static Extraction Dynamic Extraction

InputValue::GetValue
InputValue::SetValue
InputValue::~InputValue
InputValue::InputValue
List::[]
List::length
List::getnth
List::List
List::~List
ArithmeticOp::Compute
AttachOp::Compute
 . . .
StringOp::Compute

14 CMU/SEI-2001-TR-026

Figure 5: The Difference Between Static and Dynamic Views

We can see from an examination of the dynamic view that, for example, List::getnth is
called. However, this method is not included in the static analysis view. Also, the calls to the
constructor and destructor methods of InputValue and List are not included in the static
view. These missing methods must be added to the overall (reconciled) architecture view.

In addition, in this example we have a situation where the static extraction shows that the
PrimitiveOp class has a method called Compute. The dynamic extraction results show no
such class, but does show classes such as: ArithmeticOp, AttachOp, StringOp, each of
which has a Compute method and is in fact a subclass of PrimitiveOp. PrimitiveOp is
purely a superclass; it is never actually called in an executing program. But it is the call to
PrimitiveOp that a static extractor sees when scanning the source code, since the polymor-
phic call to one of PrimitiveOp’s subclasses occurs at runtime. So, to get an accurate view
of the architecture, we need to reconcile the static and dynamic views of PrimitiveOp. To
do this, we perform a fusion using SQL queries over the extracted calls, actually_calls, and
has_subclass relations. In this way, we can see that the calls to PrimitiveOp::Compute in
the static view and to its various subclasses in the dynamic view are really the same thing.

The lists in Figure 6 show the items that would be added to the fused view (in addition to the
methods that the static and dynamic views agreed upon) and those that are removed from the
fused view (even though one of the static or dynamic views included them).

InputValue::GetValue
InputValue::SetValue
List::[]
List::length
List::attachr
List::detachr
PrimitiveOp::Compute

Static Extraction

InputValue::GetValue
InputValue::SetValue
InputValue::~InputValue
InputValue::InputValue
List::[]
List::length
List::getnth
List::List
List::~List
ArithmeticOp::Compute
AttachOp::Compute
 . . .
StringOp::Compute

Dynamic Extraction

CMU/SEI-2001-TR-026 15

Figure 6: Items That Were Added to and Omitted from the Overall View

4.2 Disambiguating Function Calls
In a multiprocess application, name clashes are likely to occur. For example, several of the
processes might have a procedure called “main.” It is important to identify and disambiguate
these name clashes within the extracted views. Once again, by fusing information that can be
extracted easily, we can remove this potential ambiguity. In this case, we would need to fuse
the static “calls” view with a “file/function containment” view (to determine which functions
are defined in which source files) and a “build dependency” view (to determine which files
are compiled together to produce which executables). The fusion of these three information
sources makes potentially ambiguous procedure or method names unique, and hence unam-
biguously referred to in the architecture reconstruction process. Without the view fusion, this
ambiguity flaw would persist, and the reconstruction results would be ambiguous.

4.3 Guidelines
The following guidelines apply to the View Fusion phase:

• Fuse views when no single view provides the needed information for architecture recon-
struction. For example, we need the calls view to show the functional decomposition of
the system. If we have a static calls view and a dynamic call view, these are fused to pro-
duce a single calls view that shows the decomposition.

• Fuse views when there is ambiguity within a view, and it is not possible to disambiguate
using a single view.

• Consider different extraction techniques to extract different view information. For exam-
ple, you can use different extraction techniques, such as dynamic and static. Or you
might want to use different instances of the same kind of technique, if you feel that a sin-
gle instance might provide erroneous or incomplete information. For example, you might
use different parsers for the same language if each provides different information.

Added to Fused View Not Added

ArithmeticOp::Compute
AttachOp::Compute
 . . .
StringOp::Compute

InputValue::InputValue
InputValue::~InputValue
List::List
List::~List
List::getnth

16 CMU/SEI-2001-TR-026

CMU/SEI-2001-TR-026 17

5 Architecture Reconstruction Phase

The Architecture Reconstruction phase consists of two primary activity areas: visualization
and interaction and pattern definition and recognition.

Visualization and interaction provides a mechanism by which the user may interactively
visualize, explore, and manipulate views. Rigi is used to present views to the user as a hierar-
chically decomposed graph [Wong 94]. An example presentation of an architecture view is
shown in Figure 7.

Figure 7: An Architecture Represented at the Highest Hierarchical Level

18 CMU/SEI-2001-TR-026

Pattern definition and recognition provides facilities for architectural reconstruction: the
definition and recognition of architectural patterns. Dali’s architecture reconstruction facili-
ties allow a user to construct more abstract views from more detailed ones by identifying ag-
gregations of elements. Patterns are defined in Dali using a combination of SQL and perl pat-
terns. An SQL query is used to identify elements from the Dali repository that will contribute
to a new aggregation and perl’s expressions are used to transform names and perform other
manipulations of the results of the query. Patterns are captured in a patterns file and users can
selectively apply and reuse various patterns.

Architecture reconstruction is not a straightforward process. For one thing, architectural con-
structs are not represented explicitly in the source code. Additionally, architectural constructs
are realized by many diverse mechanisms in an implementation. Usually these are a collec-
tion of functions, classes, files, objects, and so forth. When a system is initially developed, its
high-level design/architectural elements are mapped to implementation elements. Therefore,
when we “reconstruct” architectural elements, we need to apply the inverses of the mappings.

Architecture reconstruction is an interpretive, interactive, and iterative process; it is not an
automatic process. It requires the skills and attention of both the reverse engineering expert
and the architect (or someone who has substantial knowledge of the architecture). Based
upon the architectural patterns that the architecture expert expects to find in the system, the
reverse engineer can build various queries using the Dali tool. These queries result in new
aggregations that show various abstractions or clusterings of the lower level elements (which
may be source artifacts or abstractions). By interpreting these views and actively analyzing
them, it is possible to refine the queries and aggregations to produce several hypothesized
architectural views of the system. These views can be interpreted, further refined, or rejected.
There are no universal completion criteria for this process; it is complete when the architec-
tural representation is sufficient to support the analysis needs of Dali users.

Suppose we have the subset of elements and relations shown in Figure 8.

Figure 8: Subset of the Elements and Relations

In this example variables a and b are defined in function f, that is, they are local to f. We can
graphically represent this information as shown in Figure 9.

Element Relation Element
f defines_var a
f defines_var b
g calls f
f calls h

CMU/SEI-2001-TR-026 19

Figure 9: Graphical Representation of Elements and Relations

When carrying out an architecture reconstruction we are not interested in the local variables
because they lend very little insight into the architecture of the system. Therefore we can ag-
gregate instances of local variables to the functions in which they occur. We can write two
patterns that do this. An example of the patterns that can be written is shown in Figure 10.

Figure 10: Patterns to Aggregate Local Variables to the Function in
Which They Are Defined

The first pattern updates the visual representation in Dali by adding a “+” after each function
name, which means that the function is now an aggregate of the function and the local vari-
ables defined within it. The SQL query selects functions from the components table. The perl
expression d is executed for each line of the result of the SQL query. The $fields array is
automatically populated with the fields resulting from the query. In this case, only one field is
selected (tName) from the table, so $fields[0] will store the value of this field for each tuple
selected. The expression generates lines of the form:

 <function>+ <function> Function

This line specifies that the element <function> should be aggregated into <function>+, which
will have the type Function.

#Local Variable aggregation
SELECT tName
 FROM Components
 WHERE tType=’Function’;
print ’’$fields[0]+ $fields[0] Function\n’’;

SELECT d1.func, d1.local_variable
 FROM defines_var d1;
print ’’$fields[0] $fields[1] Function\n’’;

calls
calls

defines_var defines_var

g

f h

a b

20 CMU/SEI-2001-TR-026

The second pattern hides the local variables from the visualization. The SQL query will iden-
tify the local variables for each function defined by selecting each tuple in the defines_var
table. Thus in the perl expression $fields[0] corresponds to the func field and $fields[1] cor-
responds to the local_variable field. So the output is of the form

 <function>+ <variable> Function

Each local variable for a function is to be added to the <function>+ aggregate for the func-
tion. The order of execution of these two patterns is not important as the final results of ap-
plying both of these queries is sorted.

The result of applying the pattern is represented graphically in Figure 11. Most patterns in
Dali are developed in a similar manner.

Figure 11: Result of Applying the Pattern

The primary mechanism for manipulating the views is the application of patterns (i.e., inverse
mappings). Examples include patterns that

• Identify types.

• Aggregate local variables with functions.

• Aggregate members with classes.

• Compose architecture-level elements.

An example of a pattern that identifies an architectural level component is shown in Figure
12. This query identifies the Logical_Interaction architectural component. The query says
that if the class name is Presentation, Bspline, or Color or the class is a subclass of Presenta-
tion, it belongs in the Logical_Interaction component.

calls composite

composite

defines_var
calls

defines_var

g

f h

a b

f+

CMU/SEI-2001-TR-026 21

Figure 12: Query to Identify the Logical_Interaction Component

Patterns are written in this way to abstract from the lower level information to generate archi-
tecture-level views. The reconstructor builds these patterns to test hypotheses about the sys-
tem. If a particular pattern does not yield useful results then it can be discarded. The recon-
structor iterates through this process until useful architectural views have been obtained.

5.1 Guidelines
These guidelines apply to the Architecture Reconstruction phase:

• Be prepared to work with the architect closely and to iterate several times on the architec-
tural abstractions that you create. This is particularly so in cases where the system has no
explicit, documented architecture. In such cases, you can create architectural abstractions
as hypotheses, and test these hypotheses by creating the views and showing them to the
architect and other stakeholders. Based upon the false negatives and false positives
found, the architect may decide to create new abstractions, resulting in new Dali patterns
to apply (or perhaps even new extractions that need to be done).

• When developing patterns, try to build ones that are succinct and do not list every source
element. The pattern shown in Figure 12 is an example of a good pattern; an example of a
bad pattern is shown in Figure 13. The source elements that comprise the component are
simply listed. This makes the pattern difficult to use, understand, and reuse.

• Patterns can be based on naming conventions, if the naming conventions are used consis-
tently throughout the system. An example of a naming convention is where all functions,
data, and files that belong to the Interface component have names that begin with “i_”.

• Patterns can be based on the directory structure where files and functions are located.
Component aggregations can be based on these directories.

• As architecture reconstruction is the effort of re-determining architectural decisions,
given only the result of these decisions in the actual artifacts (i.e., the code that imple-
ments the decisions). As the reconstruction process proceeds, information must be added
to re-introduce the architectural decisions. This process introduces bias from the
reconstructor, thus reinforcing the need to have an architecture expert involved.

SELECT tSubclass
 FROM has_subclass
 WHERE tSuperclass=’Presentation’;
print ’’Logical_Interaction $fields[0]’’;

SELECT tName
 FROM components
 WHERE tName=’Presentation’
 OR tName=’BSpline’
 OR tName=’Color’;
print ’’Logical_Interaction $fields[0]’’;

22 CMU/SEI-2001-TR-026

Figure 13: Example of a Bad Pattern

SELECT tName
 FROM components
 WHERE tName=’vanish-xforms.cc’
 OR tName=’PrimitiveOp’
 OR tName=’Mapping’
 OR tName=’MappingEditor’
 . . .
 OR tName=’InputValue’
 OR tName=’Point’
 OR tName=’VEC’
 OR tName=’MAT’
 OR ((tName ~ ’Dbg$’ OR tName ~ ’Event$’)

 AND tType=’Class’);
print ‘’Dialogue $fields[0]’’;

CMU/SEI-2001-TR-026 23

6 Other Architecture Reconstruction
Approaches

There have been several other efforts in architecture analysis and reconstruction.

6.1 Bowman and Associates
Bowman and associates outline a similar method to that of Dali for extracting architectural
documentation from the code of an implemented system [Bowman 99]. In one example, they
reconstructed the architecture of the Linux system. They analyzed source code using the cfx
program (c-code fact extractor) to obtain symbol (elements in Dali) information from the
code and generated a set of relations between the symbols. Then, they manually created a
tree-structured decomposition of the Linux system into subsystems and assigned the source
files to these subsystems. Next, they used the grok fact manipulator tool to determine rela-
tions between the identified subsystems, and the lsedit visualization tool to visualize the ex-
tracted system structure. Refinement of the resulting structure was carried out by moving
source files between subsystems.

The difference between this approach and that used in Dali is that this approach is mainly a
manual approach, where the reconstructor carries out subsystem and component identifica-
tion by manually selecting source file elements to belong to these views. Dali is more auto-
mated in that queries can be written to carry out these tasks. The first step in Bowman and
associates’ approach was to develop a conceptual architecture. This is not done in the phases
outlined earlier using Dali but developing a conceptual architecture view with the help of the
developers, maintainers, or architecture is certainly part of the overall approach when Dali is
used. This helps to guide the reconstruction effort in the generation and testing of hypotheses.
The visualization using Rigi allows for more interaction by the reconstructor. By selecting a
particular component in Dali, one can see the lower level elements that comprise those com-
ponents; and by selecting a link between two components, one can see the relations repre-
sented. This level of interaction does not seem to be provided in Bowman’s approach.

6.2 Harris and Associates
Harris and associates outline a framework for architecture reconstruction using a combined
bottom-up and top-down approach [Harris 95]. The framework consists of three components:
the architectural representation, the source code recognition engine and supporting library of
recognition queries, and a “bird’s eye” program overview capability. The bottom-up analysis
uses the bird’s eye view to display the system’s file structure and components, and to

24 CMU/SEI-2001-TR-026

reorganize information into more meaningful clusters. The top-down analysis uses particular
architectural styles to define components that should be found in the software. Recognition
queries are then run to determine if the expected components exist.

Harris’s approach is based upon a set of implementation language independent queries that
are applied to an Abstract Syntax Tree (AST). Parsing the source code of a system generates
the AST, which is specific to a particular programming language. The application mechanism
of the queries is specific for each programming language (AST specific). Thus if a new lan-
guage needs to be handled, then a new AST has to be developed, a parser has to be written,
and a new application mechanism has to be derived. This is not the case in Dali. There, views
can be extracted from different languages using the appropriate tools and the development of
queries to generate architectural representations does not depend on any particular program-
ming language. In fact, Dali can be used on code that cannot be parsed. Thus Dali is more
easily applicable across a wider set of programming languages. Harris’ approach does pro-
vide some metrics information about the amount of code that is covered by particular archi-
tectural styles in the system. This information may be useful for maintenance and reengineer-
ing purposes. For example, when one has to change or reimplement a particular architectural
style in the system, one has an idea as to the magnitude of the problem. This type of informa-
tion is not provided in the Dali workbench.

6.3 Guo and Associates
Guo and associates outline the semi-automatic architecture recovery method called ARM,
which assists in architecture recovery for systems that are designed and developed using pat-
terns [Guo 99]. It consists of four major phases: 1) developing a concrete pattern recognition
plan, 2) extracting a source model, 3) detecting and evaluating pattern instances, and 4) re-
constructing and analyzing the architecture. Case studies have been presented showing the
use of the ARM method to reconstruct systems and check the conformance of these systems
against their documented architectures. Pattern rules are transformed into pattern queries,
which can be applied automatically to detect pattern instances from the source model. Re-
finement of the pattern queries can help to improve the precision of pattern recognition. Visu-
alizations of the recovered patterns are presented to the tool user and aligned with the de-
signed pattern instances.

Guo and associates used the Dali workbench to perform the architectures recovery work. An
abstract pattern rule was mapped into a concrete pattern rule and was converted into an SQL
query. This query was then applied to the database to extract instances of the pattern. This
method is aimed particularly at systems that have been developed using design patterns. This limits
the applicability of the method so that it may only apply to systems developed using design patterns
or in cases where one can be sure that design pattern implementations have not eroded over time.

CMU/SEI-2001-TR-026 25

7 Summary

In this report, we outlined the major phases in architecture reconstruction:

• View Extraction

• Database Construction

• View Fusion

• Architecture Reconstruction

We described the activities that are carried out to complete these steps and provided examples
of tool support for each activity. We also outlined guidelines for carrying out these activities
to obtain a satisfactory architecture representation from an existing system. Most of these
guidelines are applicable even if other tools are used to support the reconstruction effort or
even if the reconstruction is carried out manually.

In our work at the SEI, we have used Dali to support the reconstruction efforts on several sys-
tems in a wide variety of domains. One of the reasons why Dali has been very useful is be-
cause of its language independence. It can be used to analyze information from many differ-
ent languages, systems and from many different domains. The Dali workbench continues to
evolve and be applied on new projects.

26 CMU/SEI-2001-TR-026

CMU/SEI-2001-TR-026 27

References

[Bowman 99] Bowman, T.; Holt, R.C.; & Brewster, N.V. “Linux as a Case Study:
Its Extracted Software Architecture.” 555-563. Proceedings of the
21st International Conference on Software Engineering. Los Ange-
les, CA, May 16-22, 1999. New York, NY: ACM Press, 1999.

[Brand 97]

van den Brand, M. G. J.; Sellink, M. P. A.; & Verhoef, C. “Genera-
tion of Components for Software Renovation Factories From Con-
text-Free Grammars.” 144-153. Proceedings of the Fourth Working
Conference on Reverse Engineering. Amsterdam, The Netherlands,
October 6-8, 1997. New York, NY: ACM Press, 1997.

[Guo 99]

Guo, G.; Atlee, J.; & Kazman, R. “A Software Architecture Recon-
struction Method.” 225-243. Proceedings of the First Working IFIP
Conference on Software Architecture (WICSA1). San Antonio,
Texas, February 22-24, 1999. Norwell, Massachusetts: Kluwer
Academic Publishers, 1999.

[Harris 95] Harris, D. R.; Reubenstein, H. B.; & Yeh, A. S. “Reverse Engineer-
ing to the Architectural Level.” 186-195. Proceedings of the 17th
International Conference on Software Engineering (ICSE). Seattle,
Washington, April 23-30, 1995. New York, NY: ACM Press, 1995.

[Kazman 99] Kazman, R.; & Carriere, S. J. “Playing Detective: Reconstructing
Software Architecture from Available Evidence.” Journal of Auto-
mated Software Engineering 6, 2 (April, 1999): 107-138.

[Kazman 00] Kazman, R.; Klein, M.; & Clements, P. ATAM: Method for Archi-
tecture Evaluation (CMU/SEI-2000-TR-004, ADA382629). Carne-
gie Mellon University, Pittsburgh, PA. WWW: <URL:
http://www.sei.cmu.edu/publications/documents/
00.reports/00tr004.html> (2000).

[Krikhaar 99] Krikhaar, R. Software Architecture Reconstruction, Ph.D. Thesis.
University of Amsterdam, Amsterdam, The Netherlands, 1999.

28 CMU/SEI-2001-TR-026

[McCabe 00]

McCabe IQ2 (an integrated set of products and processes). WWW:
<URL: http://www.mccabe.com> (2000).

[Müller 93] Müller, H. A.; Mehmet, O. A.; Tilley, S. R.; & Uhl, J. S. “A Reverse
Engineering Approach to System Identification.” Journal of Soft-
ware Maintenance: Research and Practice 5, 4 (December, 1993):
181-204.

[Sneed 98] Sneed, H. M. “Architecture and Functions of a Commercial Soft-
ware Reengineering Workbench.” 2-10. Proceedings of the Second
Euromicro Conference on Maintenance and Reengineering.
Florence, Italy, March 8-11, 1998. Los Alamitos, California: IEEE
Computer Society Press, 1998.

[Stonebraker 90]

Stonebraker, M.; Rowe, L.; & Hirohama, M. “The Implementation
of POSTGRES.” 125-141. IEEE Transactions on Knowledge and
Data Engineering 2, 1. March, 1990.

[Wong 94] Wong, K.; Tilley, S.; Müller, H.; & Storey, M. “Programmable Re-
verse Engineering.” International Journal of Software Engineering
and Knowledge Engineering 4, 4 (December 1994): 501-520.

CMU/SEI-2001-TR-026 29

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services,
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management
and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY
(LEAVE BLANK)

2. REPORT DATE

August 2001

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE
Architecture Reconstruction Guidelines

5. FUNDING NUMBERS

C — F19628-00-C-0003

6. author(s)
Rick Kazman, Liam O’Brien, Chris Verhoef

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2001-TR-026

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
ESC-2001-TR-026

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
Architecture reconstruction is the process where the “as-built” architecture of an imple-
mented system is obtained from the existing legacy system. This is done through a de-
tailed analysis of the system using tool support. The tools extract information about the
system and aid in building and aggregating successive levels of abstraction. If the recon-
struction is successful, the end result is an architectural representation of the system that
aids in reasoning about the system. In some cases, it may not be possible to generate a
useful representation due to the system.

In this report, we describe the process of architecture reconstruction using the Dali archi-
tecture reconstruction workbench. We outline guidelines for reconstructing the architec-
tural representations of existing systems. The process that is undertaken to reconstruct
an architecture can be supported by other tools and in fact can be done manually.

14. SUBJECT TERMS

architecture representation, architecture

reconstruction, architecture re-engineering

NUMBER OF PAGES
41

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY
CLASSIFICATION OF
THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	Contents
	Tables
	Abstract
	1 Introduction
	2 View Extraction Phase
	3 Database Construction Phase
	4 View Fusion Phase
	5 Architecture Reconstruction Phase
	6 Other Architecture Reconstruction Approaches
	7 Summary
	References

