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Abstract 

Architecture reconstruction is the process where the “as-built” architecture of an imple-
mented system is obtained from the existing legacy system. This is done through a detailed 
analysis of the system using tool support. The tools extract information about the system and 
aid in building and aggregating successive levels of abstraction. If the reconstruction is suc-
cessful, the end result is an architectural representation of the system that aids in reasoning 
about the system. In some cases, it may not be possible to generate a useful representation 
due to the system.   

Architecture reconstruction generates an architectural representation that can be used in sev-
eral ways. One of the main uses is for documenting the existing architecture. If no documen-
tation exists or it is out of date, the recovered architectural representation can be used as a 
basis for redocumenting the architecture. The recovered “as-built” architecture of the system 
can be used to check conformance against an “as-designed” architecture. The architectural 
representation can also be used as a starting point for reengineering the system to a new de-
sired architecture. Finally, the representation can be used to help identify components for re-
use, or to help establish a software product line. 

In this report, we describe the process of architecture reconstruction using the Dali architec-
ture reconstruction workbench. We outline guidelines for reconstructing the architectural rep-
resentations of existing systems. The process that is undertaken to reconstruct an architecture 
can be supported by other tools and in fact can be done manually. 
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1 Introduction 

Architecture reconstruction is the process where the “as-built” architecture of an imple-
mented system is obtained from an existing legacy system. This is done through a detailed 
system analysis using tool support. The tools extract information about the system and aid in 
building and aggregating successive levels of abstraction. If the reconstruction is successful, 
the end result is an architectural representation that aids in reasoning about the system. In 
some cases, it may not be possible to generate a useful representation due to the system.   

Architecture reconstruction generates an architectural representation that can be used in sev-
eral ways. One of the main uses is for documenting the existing architecture. If no documen-
tation exists or it is out of date, the recovered architectural representation can be used as a 
basis for redocumenting the architecture. The approach can be used either during develop-
ment or when development has been completed to recover the “as-built” architecture of the 
system, so that it can be used to check conformance against an “as-designed” architecture. 
The architectural representation can also be used as a starting point for reengineering the sys-
tem to a new desired architecture. Finally, the representation can be used as a means for iden-
tifying components for reuse, or for establishing an architecture-based software product line. 

Architecture reconstruction has been used in a variety of projects ranging from Magnetic 
Resonance Imaging (MRI) scanners to public telephone switches, and from helicopter guid-
ance systems to classified National Aeronautics and Space Administration (NASA) systems. 
The SEI has used architecture reconstruction to  

• Redocument architectures for physics simulations. 

• Understand architectural dependencies in embedded control software for reengineering. 

• Evaluate conformance of a satellite ground station system’s implementation to its refer-
ence architecture.  

• Reconstruct three automobile systems and evaluate their potential for conversion to a 
product line.  

• Recover the architecture of several network management systems. 

Architecture reconstruction is a complex task that requires a range of activities and skills.  
Software engineers familiar with compiler construction techniques and Unix environments 
(especially utilities such as grep, sed, awk, perl, python, lex/yacc, etc.) have the necessary 
skills to undertake architecture reconstruction. However, with the large amount of software in 
most systems, it is impossible to undertake all architecture reconstruction activities manually.  
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Tool support for these activities is needed, and in general, no single tool or set of tools is ade-
quate. There is often diversity in the number of implementation languages and dialects in 
which a software system is implemented. For example, a mature MRI scanner easily contains 
software written in 15 different languages. During fixes applied to solve the Y2K problem, 
each additional language was estimated to add 5% to repair costs. Given such diversity, we 
cannot hope to have a full, universally applicable tool set that can operate with the push of a 
button. Instead we are led to a particular design philosophy for a tool set to support architec-
ture reconstruction activities: the workbench.  

An architecture reconstruction workbench should be open (easy to integrate new tools as re-
quired) and provide a lightweight integration framework whereby new tools that are added to 
the tool set do not impact the existing tools or data unnecessarily. The Software Engineering 
Institute (SEI) has developed Dali, which is such a workbench [Kazman 99]. Other examples 
include Sneed’s reengineering workbench [Sneed 98], the software renovation factories of 
Verhoef and associates [Brand 97], and the rearchitecting tool suite by Philips Research 
[Krikhaar 99]. 

Using the tool support provided by the Dali workbench, the software architecture reconstruc-
tion process comprises the following five phases: 

1. View Extraction 

In the View Extraction phase, information is obtained from various sources. 

2. Database Construction 

The Database Construction phase involves converting the extracted information into the 
Rigi Standard Form [Müller 93] (a tuple-based data format in the form of “relation <en-
tity1> <entity2>”) and an SQL database format from which the database is created. 

3. View Fusion 

The View Fusion phase combines various views of the information stored in the data-
base. 

4. Architecture Reconstruction 

In the Architecture Reconstruction phase, the main work of building abstractions and 
representations and generating an architectural representation takes place. 

5. Architecture Analysis 

The Architecture Analysis phase involves analyzing the resulting architecture. 

All five phases are highly iterative. Figure 1 depicts the structure of the Dali workbench and 
situates the tasks of architecture reconstruction within it.  
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Figure 1: Outline of the Dali Workbench and Its Phases 
 

Several people are required to carry out the reconstruction process. Those who should be in-
volved include the person doing the reconstruction (reconstructor) and one or more people 
who are familiar with the system being reconstructed (e.g., the architect and software engi-
neers familiar with the system). 

The reconstructor extracts the information from the system and, either manually or with the 
use of tools, abstracts the architecture. First the reconstructor generates a set of hypotheses 
about the system. These hypotheses reflect the set of inverse mappings from the set of source 
artifacts to the design (ideally the opposite of the design mappings). The hypotheses are then 
tested by generating and applying these inverse mappings to the extracted information and 
validating the result. In order to generate these hypotheses and validate them, the reconstruc-
tor needs the support of people who are familiar with the system, including the system archi-
tect or engineers who initially developed or currently maintain it. 

The following sections describe the architecture reconstruction process in more detail. They 
also present guidelines that can be used to carry out each phase. We do not discuss the Archi-
tecture Analysis phase in this particular report. Architecture Analysis is the topic of a separate 
report [Kazman 00]. Most of these guidelines are not specific to the Dali tool and could be 
applied if other tools were used, even if the architecture reconstruction was carried out manu-
ally. 
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2 View Extraction Phase 

The View Extraction phase involves analyzing the existing design and implementation arti-
facts of a system to construct a model based upon multiple views. From the source artifacts 
(e.g., code, header files, build files) and other artifacts (e.g., execution traces) of the system, 
you can identify and capture the elements of interest and their relations to extract several fun-
damental views of the system. Table 1 shows a list of typical elements and several relations 
among these elements that might be extracted from a system.  

Table 1: A Typical Set of Source Elements and Relations 
Source 

Element 

Relation Target 

Element 

Description  

 

File includes File A C preprocessor #include of one file by 
another 

File contains Function A definition of a function in a file 

File defines_var Variable A definition of a variable in a file 

Function calls Function A static function call 

Function access_read Variable A read access on a variable 

Function access_write Variable A write access on a variable 

 

Each of the relations between the elements constitutes a different view of the system. The 
“calls” relation between the functions yields the call graph of the system. This shows how the 
various functions in the system interact. The “includes” relation between files shows us a de-
pendence view between files in the system. The “access_read” and “access_write” relation 
between functions and variables, show how data is used in the system. Certain functions may 
write a set of data and others may read it. This information is used to determine how data is 
passed between various parts of the system. For example, we can determine whether or not a 
global data store is used (similar to a blackboard architectural style) or whether most infor-
mation is passed through function calls. 

If the system being analyzed is large and is divided into a particular directory structure on a 
file system, capturing that directory structure may be important to the reconstruction process. 
Certain components or subsystems may be stored in particular directories and capturing rela-
tions such as “dir_contains_file” and “dir_contains_dir” would be useful in trying to identify 
components later in the reconstruction process.  
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The set of elements and relations that are extracted will depend on the type of system that is 
being analyzed and the extraction support tools that are available. If the system to be recon-
structed is object-oriented, classes and methods would be added to the list of elements to be 
extracted, and relations such as “Class is_subclass Class” and “Class contains Method” could 
be extracted and used in the reconstruction process. 

Extracted views can be categorized as either static or dynamic. Static views are those ob-
tained by observing only the artifacts of the system, while dynamic views are those that are 
obtained by observing the system during execution. In many cases, static and dynamic views 
can be fused to create a more complete and accurate representation of the system. (This will 
be discussed in Section 4.) If the architecture of the system changes at runtime, for example, 
a configuration file is read in by the system and certain components are loaded at runtime, 
then that runtime configuration should be captured and used when carrying out the recon-
struction. 

To extract a source view, you can apply whatever tools are available, appropriate, or neces-
sary for a given target system. The types of tools that we have used regularly in our 
extractions include 

• parsers (e.g., Imagix, SNiFF+, CIA, rigiparse) 

• abstract syntax tree-based (AST-based) analyzers (e.g., Gen++, Refine) 

• lexical analyzers (e.g., LSME) 

• profilers (e.g., gprof)  

• code instrumentation 

• ad hoc (e.g., grep, perl) 

These tools are applied to the raw source code. Parsers analyze the code and generate internal 
representations from it (for the purpose of generating machine code). Typically, it is possible 
to save this internal representation to obtain a source view. AST-based analyzers do a similar 
job, but they build an explicit tree representation of the parsed information. One can build 
analysis tools that traverse the AST and output selected pieces of architecturally relevant in-
formation in an appropriate format.  

Lexical analyzers examine source artifacts purely as strings of lexical elements or tokens. 
The user of a lexical analyzer can specify a set of patterns to be matched and the elements 
output. An example of a lexical pattern would be a pattern that recognizes the “#include 
<filename>” directive in source files and the output elements would be the source file in 
which the “#include” appeared and the file within the “< >”. Applying this pattern yields the 
dependencies that exist between files.  

Similarly, we have used a collection of ad hoc tools such as grep and perl to carry out pattern 
matching and searching within the code in order to output some required information. All of 
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these tools—code-generating parsers, AST-based analyzers, lexical analyzers, and ad hoc pat-
tern matchers—are used to output purely static information.  

Profilers and code coverage analysis tools can be used to output information about the code 
as it is being executed. They usually do not involve adding any new code to the system. On 
the other hand, code instrumentation, which has wide applicability in the field of testing, in-
volves adding code to the system to output some specific information (such as what processes 
connect with each other at runtime) while the system is executing [McCabe 00]. These tools 
generate dynamic views of the system.  

Tools to analyze design models, build files, makefiles, and executables can also be used to 
extract further information as required. For instance, build files and makefiles include infor-
mation on module or file dependencies that may not be reflected in the source code.  

Much architecture-related information may be extracted statically from source code, compile-
time artifacts, and design artifacts. However, this may not be enough for the architecture re-
covery process. Some architecturally relevant information may not exist in the source arti-
facts, due to late binding. Examples of late binding include 

• polymorphism  

• function pointers  

• runtime parameterization 

There are other reasons why the precise topology of a system may not be determined until 
runtime. For example, multiprocess and multiprocessor systems, using middleware such as 
Common Object Request Broker Architecture (CORBA), Jini, or Component Object Model 
(COM), frequently establish their topology dynamically, depending on the availability of sys-
tem resources. The topology of such systems does not live in its source artifacts and hence 
cannot be reverse engineered using static extraction tools. 

Therefore, it may be necessary to use tools that can generate dynamic information about the 
system (e.g., profiling tools). In some instances, this may not be possible, because tools that 
can obtain this dynamic information may not be available on the system platform. Also, there 
may be no way to collect the results from code instrumentation. This usually occurs with em-
bedded systems, where there is no means to output the information generated from code in-
strumentation. 

2.1 Guidelines 
The following guidelines apply to the View Extraction phase: 

• Use the “least effort” extraction. Consider what information you need to extract from a 
source corpus and choose the most appropriate tool. Is the information lexical in nature?  
Does it require the comprehension of complex syntactic structures?  Does it require some 
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semantic analysis?  In each of these cases, a different tool could be applied successfully. 
In general, lexical approaches are the cheapest to use, and they should be considered if 
your reconstruction goals are simple. 

 

Guiding Principles Type of Extraction Required 

The information that is to be extracted is 
lexical in nature. A set of patterns can be 
written that allows one to extract that 
information. 

Lexical Analysis (You may be able to use 
simple lexical analysis utilities such as 
perl and grep.) 

The information that needs to be ex-
tracted cannot be identified lexically. 
Through the use of a grammar for a lan-
guage, it is possible to identify elements 
and relations. 

Parsing 

More contextual information (semantic 
information) must be available to clearly 
identify certain elements and relations. 

AST-based analyzers (These allow for an 
AST to be built and updated after parsing 
with semantic information.) 

 

• Validate source views. Before starting to fuse or manipulate the various views that have 
been obtained, make sure that the correct information has been captured in the view. It is 
important that the tools being used to analyze the source artifacts are carrying out their 
job correctly. A detailed manual examination and verification of a subset to the elements 
and relations against the underlying source code should be carried out to establish that the 
correct information is being captured. The precise amount of information that needs to be 
verified manually is up to the individual. Assuming that this is a process of statistical 
sampling, the reconstructor can choose a desired confidence level. In general, the more 
information that is validated manually, the higher the confidence in the results. 

• Extract dynamic information where required. If there is a lot of runtime or late binding 
and the architecture is dynamically configurable, dynamic information about system run-
time is essential and should be extracted using whatever technique is most appropriate. If 
a profiler is available, then use it to extract runtime information. If the system runs on a 
platform where no profiler is available, it may be necessary to instrument the code to ob-
tain the runtime information. When it is not possible to extract the dynamic information, 
only static information may be available for architectural representations.  
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3 Database Construction Phase 

The set of extracted views are converted into the Dali format and stored in a relational data-
base during the Database Construction phase. Several tools and techniques have been incor-
porated into the Dali workbench to assist in this process. These mainly consist of perl scripts 
that read the data and convert it into a file in the Rigi Standard Format. The extracted views 
may be in many different formats depending on the tools used to extract them. For example, 
an extraction tool like Imagix-4D can be used to load the source code of a system into its in-
ternal representation and this information is dumped to a set of flat files indexed by file or by 
function. These files have a uniform structure, and tools can be developed in perl to read 
these files and output information about elements and relations. 

Once the elements and relations (Extracted View) file is converted to Rigi Standard Format, it 
is read by another perl script. The data is output in a format that includes the necessary SQL 
code to build and populate the relational tables with the extracted information. Figure 2 de-
picts this process. 

 

 

 

 
 

Figure 2: Conversion of the Extracted View to SQL Format 

Figure 3, next page, shows a typical example of the SQL code that is generated.

Extracted 
View 

SQL code Rigi  
Standard 
Format perl 

scripts 
perl 
scripts 
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Figure 3: Example of SQL Code Generated in Dali 
 

Dali currently uses the PostgreSQL1 relational database. When the data is entered into the 
database, two additional tables are generated: components and relationships. The components 
table lists the set of source and target elements that has been extracted from the system, and 
the relationships table lists the set of relations that has been extracted from the system.  

It is possible to create new tools and techniques other than those currently available in Dali, 
to carry out the conversion from whatever format(s) an extraction tool uses. For example, if a 
tool is required to convert the output from a tool not currently supported, it can be built. Then 
the output from the new tool can be converted into Rigi Standard Format and converted to 
SQL code. The conversion tool that does this can become part of the Dali workbench.  

In the current version of the Dali workbench, the PostgreSQL relational database provides 
functionality through the use of SQL and perl for generating and manipulating the architec-
tural views [Stonebraker 90] (examples are shown in Section 5). Changes could easily be 
made to the SQL scripts to make them compatible with other SQL implementations.  
 
 

                                                 
1 http://www.postgresql.org 

create table calls( caller text, callee text ); 

create table accesses( func text, variable text ); 
create table defines_var( file text, variable text ); 
… 
insert into calls values( ‘main’, ‘control’ ); 
insert into calls values( ‘main’, ‘clock’ ); 
… 
insert into accesses values( ‘main’, ‘stat1’ ); 
… 
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3.1 Guidelines 
The following guidelines apply to the Database Construction phase: 

• Build database tables from the extracted relations to make processing the data views eas-
ier. For example, create a table that stores the results of a particular query such as group-
ing the files into components or subsystems. Then you don’t have to run that query again. 
If the results of that query are required in building further queries, you can access them 
easily through that table. 

• As with any database construction, carefully consider the database design before you get 
started. What will the primary (and possibly secondary) key be? Will any database joins 
be particularly expensive, spanning multiple tables?  

• Use perl, awk, and other similar lexical tools to change the format of data extracted using 
any tools into the Rigi Standard Format so that the Dali workbench can use the data. 
These tools are less expensive in terms of development time and resource utilization than 
writing more complex tools using other languages. 
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4 View Fusion Phase 

The View Fusion phase involves defining a set of queries that manipulate the extracted views 
to create fused views. For example, a static call view may be fused with a dynamic call view. 
As we said earlier, a static view may not give us all of the architecturally relevant informa-
tion. In the case of late binding in the system, some function calls may not be identifiable 
until runtime, so there is a need to generate a dynamic call view. These two views need to be 
reconciled and fused to produce the complete call graph for the system. 

The View Fusion phase reconciles and establishes connections between views that provide 
complimentary information. Fusion is illustrated using the following examples. The first 
shows the improvement of a static view of an object-oriented system with dynamic informa-
tion. The other shows the fusion of several views to identify function calls in a system. 

4.1 Improving a View 
 

Consider the two excerpts shown in Figure 4. They are from the sets of methods extracted 
from a system implemented in C++. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Static and Dynamic Data Views 

These views include a static view and a dynamic view of an object-oriented piece of code. 
The differences between them are shaded in Figure 5. 

 

InputValue::GetValue 
InputValue::SetValue 
List::[] 
List::length 
List::attachr 
List::detachr 
PrimitiveOp::Compute 

Static Extraction Dynamic Extraction 

InputValue::GetValue 
InputValue::SetValue 
InputValue::~InputValue 
InputValue::InputValue  
List::[]  
List::length  
List::getnth 
List::List 
List::~List 
ArithmeticOp::Compute 
AttachOp::Compute 
 . . . 
StringOp::Compute 
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Figure 5:  The Difference Between Static and Dynamic Views 
 

We can see from an examination of the dynamic view that, for example, List::getnth is 
called. However, this method is not included in the static analysis view. Also, the calls to the 
constructor and destructor methods of InputValue and List are not included in the static 
view. These missing methods must be added to the overall (reconciled) architecture view. 

In addition, in this example we have a situation where the static extraction shows that the 
PrimitiveOp class has a method called Compute.  The dynamic extraction results show no 
such class, but does show classes such as: ArithmeticOp, AttachOp, StringOp, each of 
which has a Compute method and is in fact a subclass of PrimitiveOp. PrimitiveOp is 
purely a superclass; it is never actually called in an executing program. But it is the call to 
PrimitiveOp that a static extractor sees when scanning the source code, since the polymor-
phic call to one of PrimitiveOp’s subclasses occurs at runtime. So, to get an accurate view 
of the architecture, we need to reconcile the static and dynamic views of PrimitiveOp. To 
do this, we perform a fusion using SQL queries over the extracted calls, actually_calls, and 
has_subclass relations. In this way, we can see that the calls to PrimitiveOp::Compute in 
the static view and to its various subclasses in the dynamic view are really the same thing. 

The lists in Figure 6 show the items that would be added to the fused view (in addition to the 
methods that the static and dynamic views agreed upon) and those that are removed from the 
fused view (even though one of the static or dynamic views included them). 

InputValue::GetValue 
InputValue::SetValue 
List::[] 
List::length 
List::attachr 
List::detachr 
PrimitiveOp::Compute 

Static Extraction 

InputValue::GetValue 
InputValue::SetValue 
InputValue::~InputValue 
InputValue::InputValue  
List::[]  
List::length  
List::getnth 
List::List 
List::~List 
ArithmeticOp::Compute 
AttachOp::Compute 
 . . . 
StringOp::Compute 

Dynamic Extraction 
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Figure 6: Items That Were Added to and Omitted from the Overall View 
 

4.2 Disambiguating Function Calls 
In a multiprocess application, name clashes are likely to occur. For example, several of the 
processes might have a procedure called “main.” It is important to identify and disambiguate 
these name clashes within the extracted views. Once again, by fusing information that can be 
extracted easily, we can remove this potential ambiguity.  In this case, we would need to fuse 
the static “calls” view with a “file/function containment” view (to determine which functions 
are defined in which source files) and a “build dependency” view (to determine which files 
are compiled together to produce which executables). The fusion of these three information 
sources makes potentially ambiguous procedure or method names unique, and hence unam-
biguously referred to in the architecture reconstruction process. Without the view fusion, this 
ambiguity flaw would persist, and the reconstruction results would be ambiguous. 

4.3 Guidelines 
The following guidelines apply to the View Fusion phase: 

• Fuse views when no single view provides the needed information for architecture recon-
struction. For example, we need the calls view to show the functional decomposition of 
the system. If we have a static calls view and a dynamic call view, these are fused to pro-
duce a single calls view that shows the decomposition. 

• Fuse views when there is ambiguity within a view, and it is not possible to disambiguate 
using a single view. 

• Consider different extraction techniques to extract different view information. For exam-
ple, you can use different extraction techniques, such as dynamic and static. Or you 
might want to use different instances of the same kind of technique, if you feel that a sin-
gle instance might provide erroneous or incomplete information. For example, you might 
use different parsers for the same language if each provides different information. 

 

Added to Fused View Not Added 

ArithmeticOp::Compute 
AttachOp::Compute 
 . . . 
StringOp::Compute 

InputValue::InputValue 
InputValue::~InputValue 
List::List 
List::~List  
List::getnth 



16 CMU/SEI-2001-TR-026 

 



CMU/SEI-2001-TR-026 17 

5 Architecture Reconstruction Phase 

The Architecture Reconstruction phase consists of two primary activity areas: visualization 
and interaction and pattern definition and recognition.   

Visualization and interaction provides a mechanism by which the user may interactively 
visualize, explore, and manipulate views. Rigi is used to present views to the user as a hierar-
chically decomposed graph [Wong 94]. An example presentation of an architecture view is 
shown in Figure 7. 

 

 
 

Figure 7: An Architecture Represented at the Highest Hierarchical Level 
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Pattern definition and recognition provides facilities for architectural reconstruction: the 
definition and recognition of architectural patterns. Dali’s architecture reconstruction facili-
ties allow a user to construct more abstract views from more detailed ones by identifying ag-
gregations of elements. Patterns are defined in Dali using a combination of SQL and perl pat-
terns. An SQL query is used to identify elements from the Dali repository that will contribute 
to a new aggregation and perl’s expressions are used to transform names and perform other 
manipulations of the results of the query. Patterns are captured in a patterns file and users can 
selectively apply and reuse various patterns. 

Architecture reconstruction is not a straightforward process. For one thing, architectural con-
structs are not represented explicitly in the source code. Additionally, architectural constructs 
are realized by many diverse mechanisms in an implementation. Usually these are a collec-
tion of functions, classes, files, objects, and so forth. When a system is initially developed, its 
high-level design/architectural elements are mapped to implementation elements. Therefore, 
when we “reconstruct” architectural elements, we need to apply the inverses of the mappings. 

Architecture reconstruction is an interpretive, interactive, and iterative process; it is not an 
automatic process. It requires the skills and attention of both the reverse engineering expert 
and the architect (or someone who has substantial knowledge of the architecture). Based 
upon the architectural patterns that the architecture expert expects to find in the system, the 
reverse engineer can build various queries using the Dali tool. These queries result in new 
aggregations that show various abstractions or clusterings of the lower level elements (which 
may be source artifacts or abstractions). By interpreting these views and actively analyzing 
them, it is possible to refine the queries and aggregations to produce several hypothesized 
architectural views of the system. These views can be interpreted, further refined, or rejected. 
There are no universal completion criteria for this process; it is complete when the architec-
tural representation is sufficient to support the analysis needs of Dali users. 

Suppose we have the subset of elements and relations shown in Figure 8. 

Figure 8: Subset of the Elements and Relations 
 

In this example variables a and b are defined in function f, that is, they are local to f. We can 
graphically represent this information as shown in Figure 9.  

 

 

Element Relation Element
f defines_var a
f defines_var b
g calls f
f calls h
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Figure 9: Graphical Representation of Elements and Relations 

When carrying out an architecture reconstruction we are not interested in the local variables 
because they lend very little insight into the architecture of the system. Therefore we can ag-
gregate instances of local variables to the functions in which they occur. We can write two 
patterns that do this. An example of the patterns that can be written is shown in Figure 10. 

 

 

 

 

 

Figure 10: Patterns to Aggregate Local Variables to the Function in 
Which They Are Defined 

The first pattern updates the visual representation in Dali by adding a “+” after each function 
name, which means that the function is now an aggregate of the function and the local vari-
ables defined within it. The SQL query selects functions from the components table. The perl 
expression d is executed for each line of the result of the SQL query. The $fields array is 
automatically populated with the fields resulting from the query. In this case, only one field is 
selected (tName) from the table, so $fields[0] will store the value of this field for each tuple 
selected. The expression generates lines of the form: 

   <function>+  <function>  Function 

This line specifies that the element <function> should be aggregated into <function>+, which 
will have the type Function.  

#Local Variable aggregation 
SELECT tName 
 FROM Components 
 WHERE tType=’Function’; 
print ’’$fields[0]+ $fields[0] Function\n’’; 
 
SELECT d1.func, d1.local_variable 
 FROM  defines_var d1; 
print ’’$fields[0] $fields[1] Function\n’’;  

 

calls 
calls 

defines_var defines_var 

g 

f h 

a b 
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The second pattern hides the local variables from the visualization. The SQL query will iden-
tify the local variables for each function defined by selecting each tuple in the defines_var 
table. Thus in the perl expression $fields[0] corresponds to the func field and $fields[1] cor-
responds to the local_variable field. So the output is of the form 

   <function>+  <variable>  Function 

Each local variable for a function is to be added to the <function>+ aggregate for the func-
tion. The order of execution of these two patterns is not important as the final results of ap-
plying both of these queries is sorted. 

The result of applying the pattern is represented graphically in Figure 11. Most patterns in 
Dali are developed in a similar manner.  

 

 

 

 

 

 

Figure 11: Result of Applying the Pattern 
 

The primary mechanism for manipulating the views is the application of patterns (i.e., inverse 
mappings). Examples include patterns that 

• Identify types. 

• Aggregate local variables with functions. 

• Aggregate members with classes. 

• Compose architecture-level elements. 
 

An example of a pattern that identifies an architectural level component is shown in Figure 
12. This query identifies the Logical_Interaction architectural component. The query says 
that if the class name is Presentation, Bspline, or Color or the class is a subclass of Presenta-
tion, it belongs in the Logical_Interaction component. 

 

calls composite 

composite 

defines_var 
calls 

defines_var 

g 

f h 

a b 

f+ 
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Figure 12: Query to Identify the Logical_Interaction Component 
 

Patterns are written in this way to abstract from the lower level information to generate archi-
tecture-level views. The reconstructor builds these patterns to test hypotheses about the sys-
tem. If a particular pattern does not yield useful results then it can be discarded. The recon-
structor iterates through this process until useful architectural views have been obtained. 

5.1 Guidelines 
These guidelines apply to the Architecture Reconstruction phase: 

• Be prepared to work with the architect closely and to iterate several times on the architec-
tural abstractions that you create.  This is particularly so in cases where the system has no 
explicit, documented architecture. In such cases, you can create architectural abstractions 
as hypotheses, and test these hypotheses by creating the views and showing them to the 
architect and other stakeholders. Based upon the false negatives and false positives 
found, the architect may decide to create new abstractions, resulting in new Dali patterns 
to apply (or perhaps even new extractions that need to be done). 

• When developing patterns, try to build ones that are succinct and do not list every source 
element. The pattern shown in Figure 12 is an example of a good pattern; an example of a 
bad pattern is shown in Figure 13. The source elements that comprise the component are 
simply listed. This makes the pattern difficult to use, understand, and reuse.  

• Patterns can be based on naming conventions, if the naming conventions are used consis-
tently throughout the system. An example of a naming convention is where all functions, 
data, and files that belong to the Interface component have names that begin with “i_”. 

• Patterns can be based on the directory structure where files and functions are located. 
Component aggregations can be based on these directories. 

• As architecture reconstruction is the effort of re-determining architectural decisions, 
given only the result of these decisions in the actual artifacts (i.e., the code that imple-
ments the decisions). As the reconstruction process proceeds, information must be added 
to re-introduce the architectural decisions. This process introduces bias from the  
reconstructor, thus reinforcing the need to have an architecture expert involved. 
 

SELECT tSubclass 
 FROM has_subclass 
 WHERE tSuperclass=’Presentation’; 
print ’’Logical_Interaction $fields[0]’’; 
 
SELECT tName 
 FROM components 
 WHERE tName=’Presentation’ 
 OR tName=’BSpline’ 
 OR tName=’Color’; 
print ’’Logical_Interaction $fields[0]’’;  
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Figure 13: Example of a Bad Pattern 

 

 

SELECT tName 
 FROM components 
 WHERE tName=’vanish-xforms.cc’ 
 OR tName=’PrimitiveOp’ 
 OR tName=’Mapping’ 
 OR tName=’MappingEditor’ 
    .   .   . 
 OR tName=’InputValue’ 
 OR tName=’Point’ 
 OR tName=’VEC’ 
 OR tName=’MAT’ 
 OR ((tName ~ ’Dbg$’ OR tName ~ ’Event$’) 

    AND tType=’Class’); 
print ‘’Dialogue $fields[0]’’; 
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6 Other Architecture Reconstruction 
Approaches 

There have been several other efforts in architecture analysis and reconstruction.  

6.1 Bowman and Associates 
Bowman and associates outline a similar method to that of Dali for extracting architectural 
documentation from the code of an implemented system [Bowman 99]. In one example, they 
reconstructed the architecture of the Linux system. They analyzed source code using the cfx 
program (c-code fact extractor) to obtain symbol (elements in Dali) information from the 
code and generated a set of relations between the symbols. Then, they manually created a 
tree-structured decomposition of the Linux system into subsystems and assigned the source 
files to these subsystems. Next, they used the grok fact manipulator tool to determine rela-
tions between the identified subsystems, and the lsedit visualization tool to visualize the ex-
tracted system structure. Refinement of the resulting structure was carried out by moving 
source files between subsystems.  

The difference between this approach and that used in Dali is that this approach is mainly a 
manual approach, where the reconstructor carries out subsystem and component identifica-
tion by manually selecting source file elements to belong to these views. Dali is more auto-
mated in that queries can be written to carry out these tasks. The first step in Bowman and 
associates’ approach was to develop a conceptual architecture. This is not done in the phases 
outlined earlier using Dali but developing a conceptual architecture view with the help of the 
developers, maintainers, or architecture is certainly part of the overall approach when Dali is 
used. This helps to guide the reconstruction effort in the generation and testing of hypotheses. 
The visualization using Rigi allows for more interaction by the reconstructor. By selecting a 
particular component in Dali, one can see the lower level elements that comprise those com-
ponents; and by selecting a link between two components, one can see the relations repre-
sented. This level of interaction does not seem to be provided in Bowman’s approach. 

6.2 Harris and Associates 
Harris and associates outline a framework for architecture reconstruction using a combined 
bottom-up and top-down approach [Harris 95]. The framework consists of three components: 
the architectural representation, the source code recognition engine and supporting library of 
recognition queries, and a “bird’s eye” program overview capability. The bottom-up analysis 
uses the bird’s eye view to display the system’s file structure and components, and to  
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reorganize information into more meaningful clusters. The top-down analysis uses particular 
architectural styles to define components that should be found in the software. Recognition 
queries are then run to determine if the expected components exist. 

Harris’s approach is based upon a set of implementation language independent queries that 
are applied to an Abstract Syntax Tree (AST). Parsing the source code of a system generates 
the AST, which is specific to a particular programming language. The application mechanism 
of the queries is specific for each programming language (AST specific). Thus if a new lan-
guage needs to be handled, then a new AST has to be developed, a parser has to be written, 
and a new application mechanism has to be derived. This is not the case in Dali. There, views 
can be extracted from different languages using the appropriate tools and the development of 
queries to generate architectural representations does not depend on any particular program-
ming language. In fact, Dali can be used on code that cannot be parsed. Thus Dali is more 
easily applicable across a wider set of programming languages. Harris’ approach does pro-
vide some metrics information about the amount of code that is covered by particular archi-
tectural styles in the system. This information may be useful for maintenance and reengineer-
ing purposes. For example, when one has to change or reimplement a particular architectural 
style in the system, one has an idea as to the magnitude of the problem. This type of informa-
tion is not provided in the Dali workbench. 

6.3 Guo and Associates 
Guo and associates outline the semi-automatic architecture recovery method called ARM, 
which assists in architecture recovery for systems that are designed and developed using pat-
terns [Guo 99]. It consists of four major phases: 1) developing a concrete pattern recognition 
plan, 2) extracting a source model, 3) detecting and evaluating pattern instances, and 4) re-
constructing and analyzing the architecture. Case studies have been presented showing the 
use of the ARM method to reconstruct systems and check the conformance of these systems 
against their documented architectures. Pattern rules are transformed into pattern queries, 
which can be applied automatically to detect pattern instances from the source model. Re-
finement of the pattern queries can help to improve the precision of pattern recognition. Visu-
alizations of the recovered patterns are presented to the tool user and aligned with the de-
signed pattern instances.  

Guo and associates used the Dali workbench to perform the architectures recovery work. An 
abstract pattern rule was mapped into a concrete pattern rule and was converted into an SQL 
query. This query was then applied to the database to extract instances of the pattern. This 
method is aimed particularly at systems that have been developed using design patterns. This limits 
the applicability of the method so that it may only apply to systems developed using design patterns 
or in cases where one can be sure that design pattern implementations have not eroded over time.  
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7 Summary 

In this report, we outlined the major phases in architecture reconstruction:  

• View Extraction 

• Database Construction 

• View Fusion 

• Architecture Reconstruction 

We described the activities that are carried out to complete these steps and provided examples 
of tool support for each activity. We also outlined guidelines for carrying out these activities 
to obtain a satisfactory architecture representation from an existing system. Most of these 
guidelines are applicable even if other tools are used to support the reconstruction effort or 
even if the reconstruction is carried out manually. 

In our work at the SEI, we have used Dali to support the reconstruction efforts on several sys-
tems in a wide variety of domains. One of the reasons why Dali has been very useful is be-
cause of its language independence. It can be used to analyze information from many differ-
ent languages, systems and from many different domains. The Dali workbench continues to 
evolve and be applied on new projects. 
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