
Architecture Strategies for Energy-Efficient Packet
Forwarding in Wireless Sensor Networks

ABSTRACT
The energy-efficient communication among wireless sensor nodes
determines the lifetime of a sensor network and exhibits patterns
highly dependable on the sensor application and networking
software. This software is responsible for processing the sensor
data and disseminating the data to other nodes or a central
repository. In this paper we propose a node architecture that takes
advantage of both the intelligence of the radio hardware and the
needs of applications to efficiently handle the packet forwarding.
It exploits principles widely used in modern firewall network
architectures and as our analysis shows achieves considerable
energy savings.

Keywords
Energy-efficient packet forwarding, sensor networks

1. INTRODUCTION
Recently wireless ad-hoc sensor networks have gained
considerable attention by the research community because of the
new challenges they pose to researchers. The limited power and
computational resources as well as the distinct types of data they
carry and the data centric applications [2] running on them call for
a different approach in constructing the overall sensor node
architecture.
Figure 1 shows a simplified version of the overall sensor
architecture widely adopted by researchers [6][9][11]. The major
parts of a wireless microsensor system are: a) the sensor node
processing subsystem running on the sensor node main CPU, b)
the sensor subsystem, and c) the communication subsystem. The
applications executing on a sensor node utilize all the subsystems
to collect, process and receive (transmit) data from (to) other
sensor nodes in the vicinity. Our proposed architecture strategies
are based on the fact that the distinct communication layers shown
in Figure 1 are not actually implemented in one board or device.
The network communication functionality is split between the
main CPU and the radio board, which are connected together by a
slow serial packet link. We show later in the paper that it is
because of this fact that a considerable amount of energy is wasted
when packets cross the boundary between the two physical

components. A forwarded packet crosses the slow serial link twice
regardless of what part (application or network layer) determines
the need for forwarding (Figure 1).

Although current radio boards have processing power in the form
of a microcontroller unit (MCU) [6][9][11], this is only used for
the physical and MAC layer implementation. We advocate that
part of the functionality of the network layer can migrate from the
main sensor CPU to the radio board in an application-defined
manner. Devices that incorporate an MCU and some amount of
Configurable Logic (FPGA) as the Triscend E520 [10] or the
Atmel FPSLIC [5], can also be the host of a limited number of
network layer functions. The advantage of these devices is that
several operations such as link layer destination checking, CRC
checking, can be performed in the configurable logic, thus
alleviating the MCU and the main node CPU. Higher level and
more complex packet processing (network layer specific) can also
be performed in the MCU thus allowing more sophisticated
packet filtering to take place nearer to the radio hardware. With
the advent of these new technology devices, protocol specific
processing can be performed in two stages, namely hardware and
software inside the same device.
A significant number of packets are processed in a simple manner
and forwarded to the next hop. For the sake of overall delay and
power consumption these packets should be processed as near to
the radio hardware as possible [1]. To show this we measured the
percentage of received packets (both routing and data from all the
nodes) that were accepted, dropped or forwarded for a specific
scenario simulated on the NS-2 network simulator. The scenario
consists of a sensor terrain of 1000x1000 units inside of which 30
sensor nodes are uniformly placed. The transmission range of the
radio of each node is 250 units. Two nodes are picked at random
to be the source and the sink of a session of a constant-rate flow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED ’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008…$5.00.

Figure 1. Typical Wireless Sensor Node Architecture

Sensor node CPU
Network Layer

Communication
Subsystem

Wireless Channel

Sensors

Forwarded Packet
Path

Radio
board

Slow Serial Link

Application Layer

MAC Layer
Physical Layer

Vlasios Tsiatsis, Scott A. Zimbeck, Mani B. Srivastava
Networked & Embedded Systems Laboratory, E.E. Dept, UCLA

Los Angeles, CA, 90095

{tsiatsis, szimbeck, mbs}@ee.ucla.edu

92

of packets. We used IEEE 802.11 MAC, and DSR [3] as the
routing protocol. From this simulation we found that 65.567% of
the packets were forwarded and, 34.3% of the packets were
accepted. The rest were duplicate packets that were dropped.
Sensor networks are application-specific data dissemination
networks. Individual applications should have the flexibility of
defining their own methods of processing and routing their data
and packets. In this paper we present a network communication
subsystem architecture which employs multiple levels of packet
processing in order to provide: a) Ability for the communication
subsystem to stop or redirect packet flow in a sensor node as low
in the protocol stack as possible and b) Methods for applications
to define their own routing protocols at run time.
The rest of the paper is structured as follows: Section 2 describes
the proposed architecture. Section 3 presents the analysis and
measurements for our prototype. Finally Section 4 concludes the
paper.

2. ARCHITECTURE
Our proposed application-defined forwarding architecture has its
roots in the various packet filtering architectures like the BSD
Packet Filter [4]. The user specifies the packet filter as a set of
packet field matching rules connected together as an expression
tree with AND/OR operators. The packet field matching rules
designate the field of the packet to be checked (start byte offset,
length, mask), the matching value and the matching operator.
Our packet processing architecture consists of two parts: the first
located on the radio board and the second on the sensor node
(Figure 2). We assume that the radio board contains a MCU as the
main processing component and some amount of configurable
logic (FPGA). The task of the radio board part is to drop or
redirect received packets that, according to the rules dictated by
the applications, should not enter the sensor node. The task of the
sensor node part (Router Manager) is to perform more
sophisticated packet processing and packet flow demultiplexing.
Each application dictates the routing rules for each part by using a
filter specification explained later in the paper. In this
specification it designates the assignment of the rules to each part.
We assume that the application programmer has knowledge of the
sensor node resources and capabilities, and as a result, s/he should
assign the necessary routing rules to the appropriate parts.

2.1 Rules and Actions
Applications specify their routing protocols by defining two
components: the rules against which a desired packet is matched
and the action(s) taken upon a packet match. Simple rules and
simple actions are specified using tuples of the general form:
{byte_offset, bit_length, bit_mask, value, operator}. Rules
contain either comparison or ALU operations. Using the
specified tuple fields, rules perform the operation,
Packet[byte_offset : bit_length] & bit_mask OPERATOR value.
All rules evaluate to either true or false. Comparison rules are
tuples that specify operators that test for equality, inequality or bit
settings. These operators are EQ, GT, GTE, LT, LTE, and SET
which perform their respective tests on packets. ALU rules use
supplied tuple information to perform the following arithmetic
operations on packets: ADD, SUB, MUL, DIV, AND, OR, LSH,
RSH, NEG. These rules always return true. The result of the
evaluation is held in an accumulator A or a register X for
evaluation using the above-mentioned comparison rules.

Combining ALU rules allows filters to perform arbitrarily
complex operations on packet data. Additionally, there are two
operators, LD and ST that perform loads and stores to and from a
packet offset, the accumulator, or the register.

Actions can be of the following: terminating, and non-
terminating. Terminating Actions are actions that, when
encountered, stop packet filtering for the current packet. These
actions are ACCEPT, DROP, and FORWARD_EX. ACCEPT is
used when an application wishes to be the exclusive recipient of a
matched packet. DROP simply drops the packet.
FORWARD_EX (exclusive) results in the retransmission of the
current packet over the radio channel. Non-terminating actions
perform operations on a packet and allow subsequent rules and
actions to be performed on the packet. These include
modification actions, COPY, FORWARD_SH (shared), and
RETURN. Modification actions allow the content of any packet
to be changed. Modification is realized by using the ALU rules
described above in conjunction with the LD and ST operators.
COPY is similar to ACCEPT, except that the packet is allowed to
continue in processing. In the same manner, FORWARD_SH
allows the packet to be further filtered after being forwarded.
RETURN is an action that merely marks the end of a sequence of
rules and actions. Composite rules and actions are sequences of
simple rules and simple actions joined by the logical operators
AND/OR. An application will typically specify a number of rules
and actions represented as tuples and a separate AND/OR
expression tree whose leaf nodes are these specified tuples (see
Figure 3). Packet processing, for a given packet and filter
specification, is the evaluation of leaf-node rules and actions
(tuples) on the data contained in the packet during the traversal of
the application filter's expression tree. In Figure 3 we define two
rule tuples namely A, B, which are connected together with
AND/OR operators (*, + respectively) to construct the following
composite rules: a) If rule A is false then the filter falls down to
the Drop rule which drops the packet, b) If rules A and B are true
then Action1 is executed.

2.2 Two-tier Packet Processing Architecture
Our two-tier architecture is presented in Figure 4. We assume that
the radio hardware is a simple receiver/transmitter that is able to
identify the start of packet and notify the configurable logic (CL)
that this event has occurred. It is also capable of streaming the
packet bits into the CL. Otherwise all the necessary functionality
for packet framing within a continuous bitstream is implemented
in the CL. Moreover, upon a packet transmission the CL should
be able to notify the radio hardware that a packet is ready for

Figure 2. Two tier architecture

Radio
Board

Sensor Node

App1

Slow
Packet Link

App2 AppN

Router Manager

MCU
Configurable logic

Radio Hardware

93

transmission and next be able to stream the packet bits into the
radio hardware.
The block diagram of hardware packet processing component
residing in the CL is depicted in Figure 4.

The hardware architecture consists of the control unit (CU),
several packet filed matchers (PFM), a receive (RX_FIFO) and a
transmit FIFO (TX_FIFO), a CRC module and a Boolean vector.
The CU is responsible for all the control signaling between the
MCU and all the hardware modules residing in the configurable
logic. This includes the programming of the PFMs and any packet
transmissions from the TX_ FIFO. PFMs, are used to match
incoming packet fields against fixed values or other packet fields.
All the parameters for field matching (start bit, length, mask, fixed
value, operator) are downloaded to the PFMs by the CU at the
programming stage for the Configurable Logic. The CRC check
module performs Cyclic Redundancy Check on every received
packet and compares it with the corresponding value stored in the
packet. The Boolean vector stores the outcome of the comparison
operation performed in each PFM. The supported comparison
operators are equal, not equal, greater than, less than, greater than
or equal, less than or equal.

When signaled by the radio hardware that a new packet is
being streamed in the CL, the control unit enables all the PFMs to
start scanning the bitstream and perform the field matching
according to their programmed values. At the same time the
packet is being stored in the RX_FIFO queue and the CRC is
being calculated. Shortly after the packet reception is finished, the

control unit signals the MCU that a new packet is ready in the
RX_FIFO queue. When signaled, the MCU extracts the packet
from the FIFO and the boolean vector only if the CRC indicates a
correct packet reception. One of the novelties of our architecture
is the speed up of the rule matching part by the use of the boolean
vector.
After receiving a signal from the hardware that a packet is ready,
the MCU applies higher-level software packet filtering on the
received packet. The MCU evaluates the expression tree produced
from the filter specification. Some of the simple packet field
matching rules are assigned to hardware (CL), and therefore, the
outcomes of those rules already exist in the boolean vector. This
contributes to the minimization of the delay for processing a
packet and the power consumed by the MCU.
Clearly the MCU, being more flexible than the configurable logic,
can perform more sophisticated operations on packets. Assisted
by the CL, the MCU is capable of deciding if a packet is destined
for the current node or if it must be forwarded, even for the cases
that require complex calculations (e.g. distance calculation). Also
the routing protocols that maintain little or no state on the sensor
node are implemented in the MCU. Examples of these protocols
are flooding without duplicate suppression.
The second tier of our architecture lies in the sensor node’s
central processing unit where the applications execute. A Router
Manager is responsible for assigning the different sets of rules to
the appropriate part (radio board, main CPU) and for delivering
each packet to the appropriate application
All the routing protocols that need to maintain state for their
proper functionality are implemented on the sensor node. In order
to maintain this required state a routing agent should be executing
on each node. The special functions that they need (e.g. CRC
check, packet modification) can be provided by the first tier when
the agents register with the Router Manager (Figure 2).

3. ANALYSIS AND MEASUREMENTS
In our prototype implementation an iKit2000 [7] development
board is connected to a WINS sensor node [11] through a serial
port (115.2Kbps). In our case the built-in radio was not used.
Instead our prototype radio board on the iKit2000 was used. The
iKit2000 has a Triscend E520 [10] chip, which is essentially a
8032 microcontroller core as well as 40K of FPGA. The
development board is connected to an RFM [8] radio module
(10Kbps, 256-byte packets), which is the actual radio hardware
used. The current stage of prototype implementation includes
software packet transmission and reception as well as the first
stage of packet processing in the 8032 MCU. The second stage of
packet processing is performed on the CPU of the WINS node.
We are also in the process of building the hardware filters in the
FPGA part of the Triscend E520 device.
Next, we present an analytical study and measurement data for the
prototype implementation. Our analytical study considers both the
incurred delay and the energy consumed by one packet.
Suppose that DRX, DTX are the delays to receive and transmit a
packet for the software receiver/transmitter respectively. Assume
for the MCU that DMCUFW is the filter processing delay for
packets that are going to be forwarded to other nodes, DMCUAC is
the filter processing delay for packets that are actually accepted by
a node, and DSR is the delay of the serial port between the radio
board and the main node processor. Also assume that the

tuple_t Tuples[] = {

 {A_offset, A_length, A_mask, A_value, A_operator}, // A

 {B_offset, B_length, B_mask, B_value, B_operator}, // B

 {0, 0, 0, Action1_value, OP_Action1}, // Action1

 {0, 0, 0, 0, OP_DROP} // Drop

};

filter_tree_t App_Example_filter {

 "A*(B*Action1)+Drop;" //expression

};

Figure 3: Example of a C-code application-defined
routing filter specification

Figure 4. Configurable Logic Architecture

Boolean
Vector

Control Channel

Input
Bitstream
Output
Bitstream

From/To Radio Hardware From/To MCU

Control Unit

Packet Field Matcher

Packet Field Matcher

CRC check

TX_FIFO

RX_FIFO

94

corresponding delays for the main node CPU are DCPUFW and
DCPUAC respectively. PrAC and PrFW are the corresponding
probabilities of a packet being accepted and being forwarded
respectively. We don’t consider the case of the dropped packets
because most dropped packets are duplicate packets that are
detected in the main sensor node and will cross the serial link
anyway.
The delays without and with filtering in the MCU are:

The difference in delays is:

Our prototype implementation measurements are shown in Table
2. Given this data and packet acceptance and forwarding
probabilities PrAC, PrFW the difference in delays is:

In order for this difference to be zero PrFW must be PrFW=0.0297
PrAC which is satisfied for the simulation data and for most
practical sensor network protocols.
On the other hand the corresponding energy calculations are:

And the difference in energy consumption is:

If we assume that the power consumption of the main node CPU
is α times the power consumption of the MCU and the serial port
power consumption is the sum of the power consumption of the
CPU and the MCU (because both devices should be on durinf
serial port operation) then the difference in energy is:

 Typical power consumption values for e.g. the Atmel AVR MCU
and the E520 15mW and 470mw respectively. The actual power
consumption of the WINS node is 351mW. This data result in two
values of α: i) 23.4 for the WINS node/AVR combination and ii)
0.747 for the WINS node/E520 combination. For the two values
of α the difference in energy is dominated by the DSR, which is
essentially the penalty paid for crossing the boundary between the
radio board and the CPU.

The value of α is expected to be much greater than one in most
cases of sensor nodes although in one (bad) case above α is less
than one. This is due to the fact that the E520 device hosts a 8032
MCU and a small amount of FPGA on the same die. However, for

both values of α, the data on Table 1 and the probabilities of
packets being accepted and forwarded (simulation data) we have
values of Ediff, which are 1167 and 79 times the value of the MCU
power consumption.

4. CONCLUSIONS
As we have seen from the simulation data a considerable
percentage of packets that enter a node are processed in a
straightforward manner and are either redirected to the radio
board, forwarded to the main processor or simply dropped. We
proposed a two-tier architecture that enables the lower
communication layers to perform the simple processing, drop or
redirection of the packets as low as the radio board of a sensor
node. As an additional feature, our architecture also enables the
sensor applications to define methods for routing their own
packets. We demonstrated a realization of the two-tier architecture
in our prototype implementation, which includes a packet
processor in the MCU of a system-on-a-chip.

5. ACKNOWLEDGEMENTS
This paper is based in part on research performed under DARPA
Power Aware Computing and Communications program through
AFRL contract # F30602-00-C-0154 and Sensor Information
Technology program through AFRL contract # F30602-99-C-
0128.

6. REFERENCES
[1] Chien C. et al, “Design experience with an integrated testbed

for wireless multimedia computing”, MoMuC ’96, p.231-8.

[2] Estrin D., Govindan R., Heidemann J., Kumar S., “Scalable
Coordination in Sensor Networks”, MobiCOM '99, pp. 263-
70.

[3] Johnson D., Maltz D., “Dynamic Source Routing in Ad Hoc
Wireless Networks”, Mobile Computing, pp. 153-181,
Kluwer Academic Publishers, 1996.

[4] McCanne S., Jacobson V., “The BSD Packet Filter: a New
Architecture for User-level Packet Capture”, Proceedings of
the Winter 1993 USENIX Conference, pp. .259-69, 1993.

[5] Atmel FPSLIC, http://www.atmel.com/atmel/products/

[6] Cots Dust, http://www-
bsac.eecs.berkeley.edu/~pister/SmartDust/

[7] Ikit2000 Development Kit, http://www.ikit2000.com

[8] RF Monolithics, http://www.rfm.com

[9] Sensoria Corporation, http://www.sensoria.com

[10] Triscend Corp, http://www.triscend.com

[11] WINS Architecture, http://wins.rsc.rockwell.com

()
() FWTXSRCPUFWSRRX

ACCPUACSRRXNF
DDDDD

DDDD
Pr

Pr
⋅++++
+⋅++=

()
() FWTXMCUFWRX

ACSRMCUACRXF
DDD

DDDD
Pr

Pr
⋅++

+⋅++=

()
() FWMCUFWCPUFWSR

ACMCUACCPUAC

FNFdiff

DDD
DD

DDD

Pr2
Pr

⋅−+⋅
+⋅−

=−=

FWACdiffD Pr281.68Pr0285.2 ⋅+⋅−=

()
() FWTXSRCPUFWSRRX

ACCPUACSRRXNF
EEEEE

EEEE
Pr

Pr
⋅++++
+⋅++=

()
() FWTXMCUFWRX

ACSRMCUACRXF
EEE

EEEE
Pr

Pr
⋅++

+⋅++=

()
() FWMCUFWCPUFWSR

ACMCUACCPUAC

FNFdiff

EEE
EE

EEE

Pr2
Pr

⋅−+⋅
+⋅−

=−=

()
()() FWMCUMCUFWCPUFWSR

ACMCUMCUACCPUAC

FNFdiff

PDDD
PDD

EEE

Pr12
Pr

⋅⋅−⋅+⋅+⋅
+⋅⋅−⋅

=−=

αα
α

Table 1. Measured parameters on prototype
Parameter Value(ms)
DMCUAC
DMCUFW
DCPUAC
DCPUFW

DSR

4.182
4.894
0.111
0.125

36.532

95

