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ABSTRACT 
The energy-efficient communication among wireless sensor nodes 
determines the lifetime of a sensor network and exhibits patterns 
highly dependable on the sensor application and networking 
software. This software is responsible for processing the sensor 
data and disseminating the data to other nodes or a central 
repository. In this paper we propose a node architecture that takes 
advantage of both the intelligence of the radio hardware and the 
needs of applications to efficiently handle the packet forwarding. 
It exploits principles widely used in modern firewall network 
architectures and as our analysis shows achieves considerable 
energy savings.   
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1. INTRODUCTION 
Recently wireless ad-hoc sensor networks have gained 
considerable attention by the research community because of the 
new challenges they pose to researchers. The limited power and 
computational resources as well as the distinct types of data they 
carry and the data centric applications [2] running on them call for 
a different approach in constructing the overall sensor node 
architecture.  
Figure 1 shows a simplified version of the overall sensor 
architecture widely adopted by researchers [6][9][11]. The major 
parts of a wireless microsensor system are: a) the sensor node 
processing subsystem running on the sensor node main CPU, b) 
the sensor subsystem, and c) the communication subsystem. The 
applications executing on a sensor node utilize all the subsystems 
to collect, process and receive (transmit) data from (to) other 
sensor nodes in the vicinity. Our proposed architecture strategies 
are based on the fact that the distinct communication layers shown 
in Figure 1 are not actually implemented in one board or device. 
The network communication functionality is split between the 
main CPU and the radio board, which are connected together by a 
slow serial packet link. We show later in the paper that it is 
because of this fact that a considerable amount of energy is wasted 
when packets cross the boundary between the two physical 

components. A forwarded packet crosses the slow serial link twice 
regardless of what part (application or network layer) determines 
the need for forwarding (Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
Although current radio boards have processing power in the form 
of a microcontroller unit (MCU) [6][9][11], this is only used for 
the physical and MAC layer implementation. We advocate that 
part of the functionality of the network layer can migrate from the 
main sensor CPU to the radio board in an application-defined 
manner. Devices that incorporate an MCU and some amount of 
Configurable Logic (FPGA) as the Triscend E520 [10] or the 
Atmel FPSLIC [5], can also be the host of a limited number of 
network layer functions. The advantage of these devices is that 
several operations such as link layer destination checking, CRC 
checking, can be performed in the configurable logic, thus 
alleviating the MCU and the main node CPU. Higher level and 
more complex packet processing (network layer specific) can also 
be performed in the MCU thus allowing more sophisticated 
packet filtering to take place nearer to the radio hardware. With 
the advent of these new technology devices, protocol specific 
processing can be performed in two stages, namely hardware and 
software inside the same device. 
A significant number of packets are processed in a simple manner 
and forwarded to the next hop. For the sake of overall delay and 
power consumption these packets should be processed as near to 
the radio hardware as possible [1]. To show this we measured the 
percentage of received packets (both routing and data from all the 
nodes) that were accepted, dropped or forwarded for a specific 
scenario simulated on the NS-2 network simulator. The scenario 
consists of a sensor terrain of 1000x1000 units inside of which 30 
sensor nodes are uniformly placed. The transmission range of the 
radio of each node is 250 units. Two nodes are picked at random 
to be the source and the sink of a session of a constant-rate flow 
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Figure 1. Typical Wireless Sensor Node Architecture 
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of packets. We used IEEE 802.11 MAC, and DSR [3] as the 
routing protocol. From this simulation we found that 65.567% of 
the packets were forwarded and, 34.3% of the packets were 
accepted. The rest were duplicate packets that were dropped.  
Sensor networks are application-specific data dissemination 
networks. Individual applications should have the flexibility of 
defining their own methods of processing and routing their data 
and packets. In this paper we present a network communication 
subsystem architecture which employs multiple levels of packet 
processing in order to provide: a) Ability for the communication 
subsystem to stop or redirect packet flow in a sensor node as low 
in the protocol stack as possible and b) Methods for applications 
to define their own routing protocols at run time.  
The rest of the paper is structured as follows: Section 2 describes 
the proposed architecture. Section 3 presents the analysis and 
measurements for our prototype. Finally Section 4 concludes the 
paper. 

2. ARCHITECTURE 
Our proposed application-defined forwarding architecture has its 
roots in the various packet filtering architectures like the BSD 
Packet Filter [4]. The user specifies the packet filter as a set of 
packet field matching rules connected together as an expression 
tree with AND/OR operators. The packet field matching rules 
designate the field of the packet to be checked (start byte offset, 
length, mask), the matching value and the matching operator. 
Our packet processing architecture consists of two parts: the first 
located on the radio board and the second on the sensor node 
(Figure 2). We assume that the radio board contains a MCU as the 
main processing component and some amount of configurable 
logic (FPGA). The task of the radio board part is to drop or 
redirect received packets that, according to the rules dictated by 
the applications, should not enter the sensor node. The task of the 
sensor node part (Router Manager) is to perform more 
sophisticated packet processing and packet flow demultiplexing. 
Each application dictates the routing rules for each part by using a 
filter specification explained later in the paper. In this 
specification it designates the assignment of the rules to each part. 
We assume that the application programmer has knowledge of the 
sensor node resources and capabilities, and as a result, s/he should 
assign the necessary routing rules to the appropriate parts. 

2.1 Rules and Actions 
Applications specify their routing protocols by defining two 
components: the rules against which a desired packet is matched 
and the action(s) taken upon a packet match. Simple rules and 
simple actions are specified using tuples of the general form: 
{byte_offset, bit_length, bit_mask, value, operator}.  Rules 
contain either comparison or ALU operations.  Using the 
specified tuple fields, rules perform the operation, 
Packet[byte_offset : bit_length] & bit_mask OPERATOR value.  
All rules evaluate to either true or false. Comparison rules are 
tuples that specify operators that test for equality, inequality or bit 
settings.  These operators are EQ, GT, GTE, LT, LTE, and SET 
which perform their respective tests on packets.  ALU rules use 
supplied tuple information to perform the following arithmetic 
operations on packets:  ADD, SUB, MUL, DIV, AND, OR, LSH, 
RSH, NEG.  These rules always return true.  The result of the 
evaluation is held in an accumulator A or a register X for 
evaluation using the above-mentioned comparison rules.  

Combining ALU rules allows filters to perform arbitrarily 
complex operations on packet data.  Additionally, there are two 
operators, LD and ST that perform loads and stores to and from a 
packet offset, the accumulator, or the register.  
 
 
 
 
 
 
 
 
 
 
Actions can be of the following: terminating, and non-
terminating.  Terminating Actions are actions that, when 
encountered, stop packet filtering for the current packet. These 
actions are ACCEPT, DROP, and FORWARD_EX.  ACCEPT is 
used when an application wishes to be the exclusive recipient of a 
matched packet. DROP simply drops the packet.  
FORWARD_EX (exclusive) results in the retransmission of the 
current packet over the radio channel. Non-terminating actions 
perform operations on a packet and allow subsequent rules and 
actions to be performed on the packet.  These include 
modification actions, COPY, FORWARD_SH (shared), and 
RETURN.  Modification actions allow the content of any packet 
to be changed.  Modification is realized by using the ALU rules 
described above in conjunction with the LD and ST operators.  
COPY is similar to ACCEPT, except that the packet is allowed to 
continue in processing. In the same manner, FORWARD_SH 
allows the packet to be further filtered after being forwarded. 
RETURN is an action that merely marks the end of a sequence of 
rules and actions.  Composite rules and actions are sequences of 
simple rules and simple actions joined by the logical operators 
AND/OR.  An application will typically specify a number of rules 
and actions represented as tuples and a separate AND/OR 
expression tree whose leaf nodes are these specified tuples (see 
Figure 3). Packet processing, for a given packet and filter 
specification, is the evaluation of leaf-node rules and actions 
(tuples) on the data contained in the packet during the traversal of 
the application filter's expression tree.  In Figure 3 we define two 
rule tuples namely A, B, which are connected together with 
AND/OR operators (*, + respectively) to construct the following 
composite rules: a) If rule A is false then the filter falls down to 
the Drop rule which drops the packet, b) If rules A and B are true 
then Action1 is executed. 

2.2 Two-tier Packet Processing Architecture 
Our two-tier architecture is presented in Figure 4. We assume that 
the radio hardware is a simple receiver/transmitter that is able to 
identify the start of packet and notify the configurable logic (CL) 
that this event has occurred. It is also capable of streaming the 
packet bits into the CL. Otherwise all the necessary functionality 
for packet framing within a continuous bitstream is implemented 
in the CL. Moreover, upon a packet transmission the CL should 
be able to notify the radio hardware that a packet is ready for 

Figure 2. Two tier architecture 
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transmission and next be able to stream the packet bits into the 
radio hardware. 
The block diagram of hardware packet processing component 
residing in the CL is depicted in Figure 4. 
 
 
 
 
 
 
 
 
 
 
The hardware architecture consists of the control unit (CU), 
several packet filed matchers (PFM), a receive (RX_FIFO) and a 
transmit FIFO (TX_FIFO), a CRC module and a Boolean vector. 
The CU is responsible for all the control signaling between the 
MCU and all the hardware modules residing in the configurable 
logic. This includes the programming of the PFMs and any packet 
transmissions from the TX_ FIFO. PFMs, are used to match 
incoming packet fields against fixed values or other packet fields. 
All the parameters for field matching (start bit, length, mask, fixed 
value, operator) are downloaded to the PFMs by the CU at the 
programming stage for the Configurable Logic. The CRC check 
module performs Cyclic Redundancy Check on every received 
packet and compares it with the corresponding value stored in the 
packet. The Boolean vector stores the outcome of the comparison 
operation performed in each PFM. The supported comparison 
operators are equal, not equal, greater than, less than, greater than 
or equal, less than or equal.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When signaled by the radio hardware that a new packet is 
being streamed in the CL, the control unit enables all the PFMs to 
start scanning the bitstream and perform the field matching 
according to their programmed values. At the same time the 
packet is being stored in the RX_FIFO queue and the CRC is 
being calculated. Shortly after the packet reception is finished, the 

control unit signals the MCU that a new packet is ready in the 
RX_FIFO queue. When signaled, the MCU extracts the packet 
from the FIFO and the boolean vector only if the CRC indicates a 
correct packet reception. One of the novelties of our architecture 
is the speed up of the rule matching part by the use of the boolean 
vector.  
After receiving a signal from the hardware that a packet is ready, 
the MCU applies higher-level software packet filtering on the 
received packet. The MCU evaluates the expression tree produced 
from the filter specification. Some of the simple packet field 
matching rules are assigned to hardware (CL), and therefore, the 
outcomes of those rules already exist in the boolean vector. This 
contributes to the minimization of the delay for processing a 
packet and the power consumed by the MCU.  
Clearly the MCU, being more flexible than the configurable logic, 
can perform more sophisticated operations on packets. Assisted 
by the CL, the MCU is capable of deciding if a packet is destined 
for the current node or if it must be forwarded, even for the cases 
that require complex calculations (e.g. distance calculation). Also 
the routing protocols that maintain little or no state on the sensor 
node are implemented in the MCU. Examples of these protocols 
are flooding without duplicate suppression.  
The second tier of our architecture lies in the sensor node’s 
central processing unit where the applications execute. A Router 
Manager is responsible for assigning the different sets of rules to 
the appropriate part (radio board, main CPU) and for delivering 
each packet to the appropriate application  
All the routing protocols that need to maintain state for their 
proper functionality are implemented on the sensor node. In order 
to maintain this required state a routing agent should be executing 
on each node. The special functions that they need (e.g. CRC 
check, packet modification) can be provided by the first tier when 
the agents register with the Router Manager (Figure 2). 

3. ANALYSIS AND MEASUREMENTS 
In our prototype implementation an iKit2000 [7] development 
board is connected to a WINS sensor node [11] through a serial 
port (115.2Kbps). In our case the built-in radio was not used. 
Instead our prototype radio board on the iKit2000 was used. The 
iKit2000 has a Triscend E520 [10] chip, which is essentially a 
8032 microcontroller core as well as 40K of FPGA. The 
development board is connected to an RFM [8] radio module 
(10Kbps, 256-byte packets), which is the actual radio hardware 
used. The current stage of prototype implementation includes 
software packet transmission and reception as well as the first 
stage of packet processing in the 8032 MCU. The second stage of 
packet processing is performed on the CPU of the WINS node. 
We are also in the process of building the hardware filters in the 
FPGA part of the Triscend E520 device. 
Next, we present an analytical study and measurement data for the 
prototype implementation. Our analytical study considers both the 
incurred delay and the energy consumed by one packet. 
Suppose that DRX, DTX are the delays to receive and transmit a 
packet for the software receiver/transmitter respectively. Assume 
for the MCU that DMCUFW  is the filter processing delay for 
packets that are going to be forwarded to other nodes, DMCUAC  is 
the filter processing delay for packets that are actually accepted by 
a node, and DSR is the delay of the serial port between the radio 
board and the main node processor. Also assume that the 

tuple_t Tuples[] = { 

  {A_offset, A_length, A_mask, A_value, A_operator}, // A 

  {B_offset, B_length, B_mask, B_value, B_operator}, // B 

  {0, 0, 0, Action1_value, OP_Action1}, // Action1 

  {0, 0, 0, 0, OP_DROP} // Drop 

}; 

filter_tree_t App_Example_filter { 

  "A*(B*Action1)+Drop;" //expression 

}; 

Figure 3: Example of a C-code application-defined 
routing filter specification 

Figure 4. Configurable Logic Architecture 
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corresponding delays for the main node CPU are DCPUFW and 
DCPUAC respectively. PrAC and PrFW are the corresponding 
probabilities of a packet being accepted and being forwarded 
respectively. We don’t consider the case of the dropped packets 
because most dropped packets are duplicate packets that are 
detected in the main sensor node and will cross the serial link 
anyway. 
The delays without and with filtering in the MCU are:  
 
 
 
 
The difference in delays is: 
 
 
Our prototype implementation measurements are shown in Table 
2. Given this data and packet acceptance and forwarding 
probabilities PrAC, PrFW the difference in delays is:   
 
In order for this difference to be zero PrFW must be PrFW=0.0297 
PrAC which is satisfied for the simulation data and for most 
practical sensor network protocols. 
On the other hand the corresponding energy calculations are: 
 
 
 
 
And the difference in energy consumption is: 
 
 
 
If we assume that the power consumption of the main node CPU 
is α times the power consumption of the MCU and the serial port 
power consumption is the sum of the power consumption of the 
CPU and the MCU (because both devices should be on durinf 
serial port operation) then the difference in energy is: 
 
 
 
 Typical power consumption values for e.g. the Atmel AVR MCU 
and the E520 15mW and 470mw respectively. The actual power 
consumption of the WINS node is 351mW. This data result in two 
values of α: i) 23.4 for the WINS node/AVR combination and ii) 
0.747 for the WINS node/E520 combination. For the two values 
of α the difference in energy is dominated by the DSR, which is 
essentially the penalty paid for crossing the boundary between the 
radio board and the CPU. 

The value of α is expected to be much greater than one in most 
cases of sensor nodes although in one (bad) case above α is less 
than one. This is due to the fact that the E520 device hosts a 8032 
MCU and a small amount of FPGA on the same die. However, for 

both values of α, the data on Table 1 and the probabilities of 
packets being accepted and forwarded (simulation data) we have 
values of Ediff, which are 1167 and 79 times the value of the MCU 
power consumption.  
 
 
 
 
 
 
 

4. CONCLUSIONS  
As we have seen from the simulation data a considerable 
percentage of packets that enter a node are processed in a 
straightforward manner and are either redirected to the radio 
board, forwarded to the main processor or simply dropped. We 
proposed a two-tier architecture that enables the lower 
communication layers to perform the simple processing, drop or 
redirection of the packets as low as the radio board of a sensor 
node. As an additional feature, our architecture also enables the 
sensor applications to define methods for routing their own 
packets. We demonstrated a realization of the two-tier architecture 
in our prototype implementation, which includes a packet 
processor in the MCU of a system-on-a-chip.  
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Table 1. Measured parameters on prototype 
Parameter Value(ms) 
DMCUAC 
DMCUFW 
DCPUAC 
DCPUFW 

DSR 

4.182 
4.894 
0.111 
0.125 

36.532 
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