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Abstract

Many types of applications can benefit from flexible and open

middleware. CORBA is an emerging middleware standard

for Object Request Brokers (ORBs) that simplifies the devel-

opment of distributed applications and services. Experience

with CORBA demonstrates that it is suitable for traditional

RPC-style applications. However, the lack of performance op-

timizations and quality of service (QoS) features in conven-

tional CORBA implementations make them unsuited for high-

performance and real-time applications.

This paper makes four contributions to the design of

CORBA ORBs for applications with high-performance and

real-time requirements. First, it describes the design of TAO,

which is our high-performance, real-time CORBA-compliant

ORB. Second, it presents TAO’s Real-time Scheduling Ser-

vice, which provides QoS guarantees for deterministic real-

time CORBA applications. Third, empirically evaluates the

effects of priority inversion and non-determinism in conven-

tional ORBs and shows how these hazards are avoided in TAO.

Fourth, it presents a case study of key patterns used to develop

TAO and quantifies the impact of applying patterns to reduce

the complexity of common ORB tasks.

1 Introduction

Distributed computing helps improve application performance

through multi-processing; reliability and availability through

replication; scalability, extensibility, and portability through

�This work was supported in part by NSF grant NCR-9628218, DARPA

contracts 9701516 and S30602-98-C-0187, Boeing, Lucent, Motorola, SAIC,

Siemens, and Sprint.

modularity; and cost effectiveness though resources sharing

and open systems. An increasingly important class of dis-

tributed applications require stringent quality of service (QoS)

guarantees. These applications include telecommunication

systems command and control systems, multimedia systems,

and simulations.

In addition to requiring QoS guarantees, distributed appli-

cations must be flexible and reusable. Flexibility is needed to

respond rapidly to evolving functional and QoS requirements

of distributed applications. Reusability is needed to yield sub-

stantial improvements in productivity and to enhance the qual-

ity, performance, reliability, and interoperability of distributed

application software.

The Common Object Request Broker Architecture

(CORBA) [1] is an emerging standard for distributed object

computing (DOC) middleware. DOC middleware resides

between clients and servers. It simplifies application develop-

ment by providing a uniform view of heterogeneous network

and OS layers.

At the heart of DOC middleware are Object Request Brokers

(ORBs), such as CORBA [1], DCOM [2], and Java RMI [3].

ORBs eliminate many tedious, error-prone, and non-portable

aspects of developing and maintaining distributed applications

using low-level network programming mechanisms like sock-

ets [4]. In particular, ORBs automate common network pro-

gramming tasks such as object location, object activation, pa-

rameter marshaling/demarshaling, socket and request demulti-

plexing, fault recovery, and security. Thus, ORBs facilitate the

development of flexible distributed applications and reusable

services in heterogeneous distributed environments.

The remainder of this paper is organized as follows:

Section 2 evaluates the suitability of CORBA for high-

performance, real-time systems; Section 3 outlines the real-

time feature enhancements and performance optimizations

supported by TAO, which is our high-performance, real-time

ORB endsystem; Section 4 describes the design of TAO’s real-
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time Scheduling Service; Section 5 qualitatively and quantita-

tively evaluates alternative ORB Core concurrency and con-

nection architectures; Section 6 qualitatively and quantita-

tively evaluates the patterns that resolve key design challenges

we faced when developing TAO; and Section 7 presents con-

cluding remarks.

2 Evaluating OMG CORBA for High-

performance, Real-time Systems

This section provides an overview of CORBA, explains why

the current CORBA specification and conventional ORB im-

plementations are currently inadequate for high-performance

and real-time systems, and outlines the steps required to de-

velop ORBs that can provide end-to-end QoS to applications.

2.1 Overview of the CORBA Reference Model

CORBA Object Request Brokers (ORBs) [1] allow clients to

invoke operations on distributed objects without concern for

the following issues [5]:

Object location: CORBA objects can be collocated with the

client or distributed on a remote server, without affecting their

implementation or use.

Programming language: The languages supported by

CORBA include C, C++, Java, Ada95, COBOL, and

Smalltalk, among others.

OS platform: CORBA runs on many OS platforms, includ-

ing Win32, UNIX, MVS, and real-time embedded systems like

VxWorks, Chorus, and LynxOS.

Communication protocols and interconnects: The com-

munication protocols and interconnects that CORBA can run

on include TCP/IP, IPX/SPX, FDDI, ATM, Ethernet, Fast Eth-

ernet, embedded system backplanes, and shared memory.

Hardware: CORBA shields applications from side-effects

stemming from differences in hardware such as storage layout

and data type sizes/ranges.

Figure 1 illustrates the components in the CORBA 2.x refer-

ence model, all of which collaborate to provide the portability,

interoperability, and transparency outlined above. Each com-

ponent in the CORBA reference model is outlined below:

Client: This program entity performs application tasks by

obtaining object references to objects and invoking opera-

tions on them. Objects can be remote or collocated rela-

tive to the client. Ideally, accessing a remote object should

be as simple as calling an operation on a local object, i.e.,
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Figure 1: Components in the CORBA 2.x Reference Model

object!operation(args). Figure 1 shows the under-

lying components described below that ORBs use to transmit

remote operation requests transparently from client to object.

Object: In CORBA, an object is an instance of an Interface

Definition Language (IDL) interface. The object is identified

by an object reference, which uniquely names that instance

across servers. An ObjectId associates an object with its ser-

vant implementation, and is unique within the scope of an Ob-

ject Adapter. Over its lifetime, an object has one or more ser-

vants associated with it that implement its interface.

Servant: This component implements the operations de-

fined by an OMG Interface Definition Language (IDL) in-

terface. In languages like C++ and Java that support object-

oriented (OO) programming, servants are implemented us-

ing one or more class instances. In non-OO languages, like

C, servants are typically implemented using functions and

structs. A client never interacts with a servant directly, but

always through an object.

ORB Core: When a client invokes an operation on an ob-

ject, the ORB Core is responsible for delivering the request to

the object and returning a response, if any, to the client. For

objects executing remotely, a CORBA-compliant ORB Core

communicates via a version of the General Inter-ORB Proto-

col (GIOP), most commonly the Internet Inter-ORB Protocol

(IIOP), which runs atop the TCP transport protocol. An ORB

Core is typically implemented as a run-time library linked into

both client and server applications.

ORB Interface: An ORB is an abstraction that can be im-

plemented various ways, e.g., one or more processes or a set

of libraries. To decouple applications from implementation

details, the CORBA specification defines an interface to an

ORB. This ORB interface provides standard operations that
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(1) initialize and shutdown the ORB, (2) convert object ref-

erences to strings and back, and (3) create argument lists for

requests made through the dynamic invocation interface (DII).

OMG IDL Stubs and Skeletons: IDL stubs and skeletons

serve as a “glue” between the client and servants, respectively,

and the ORB. Stubs provide a strongly-typed, static invoca-

tion interface (SII) that marshals application parameters into a

common data-level representation. Conversely, skeletons de-

marshal the data-level representation back into typed parame-

ters that are meaningful to an application.

IDL Compiler: An IDL compiler automatically transforms

OMG IDL definitions into an application programming lan-

guage like C++ or Java. In addition to providing program-

ming language transparency, IDL compilers eliminate com-

mon sources of network programming errors and provide op-

portunities for automated compiler optimizations [6].

Dynamic Invocation Interface (DII): The DII allows

clients to generate requests at run-time. This flexibility is

useful when an application has no compile-time knowledge

of the interface it accesses. The DII also allows clients to

make deferred synchronous calls, which decouple the request

and response portions of twoway operations to avoid blocking

the client until the servant responds. In contrast, in CORBA

2.x, SII stubs only support twoway, i.e., request/response, and

oneway, i.e., request-only operations.1

Dynamic Skeleton Interface (DSI): The DSI is the server’s

analogue to the client’s DII. The DSI allows an ORB to deliver

requests to servants that have no compile-time knowledge of

the IDL interface they implement. Clients making requests

need not know whether the server ORB uses static skeletons or

dynamic skeletons. Likewise, servers need not know if clients

use the DII or SII to invoke requests.

Object Adapter: An Object Adapter associates a servant

with objects, demultiplexes incoming requests to the servant,

and collaborates with the IDL skeleton to dispatch the appro-

priate operation upcall on that servant. CORBA 2.2 porta-

bility enhancements [1] define the Portable Object Adapter

(POA), which supports multiple nested POAs per ORB. Ob-

ject Adapters enable ORBs to support various types of ser-

vants that possess similar requirements. This design results in

a smaller and simpler ORB that can support a wide range of

object granularities, lifetimes, policies, implementation styles,

and other properties.

Interface Repository: The Interface Repository provides

run-time information about IDL interfaces. Using this infor-

mation, it is possible for a program to encounter an object

1The OMG has standardized an asynchronous method invocation interface

in the Messaging specification [7], which will appear in CORBA 3.0.

whose interface was not known when the program was com-

piled, yet, be able to determine what operations are valid on the

object and make invocations on it. In addition, the Interface

Repository provides a common location to store additional in-

formation associated with interfaces to CORBA objects, such

as type libraries for stubs and skeletons.

Implementation Repository: The Implementation Reposi-

tory [8] contains information that allows an ORB to activate

servers to process servants. Most of the information in the Im-

plementation Repository is specific to an ORB or OS environ-

ment. In addition, the Implementation Repository provides a

common location to store information associated with servers,

such as administrative control, resource allocation, security,

and activation modes.

2.2 Limitations of CORBA for Real-time Ap-

plications

Our experience using CORBA on telecommunication [9],

avionics [10], and medical imaging projects [11] indicates that

it is well-suited for conventional RPC-style applications that

possess “best-effort” quality of service (QoS) requirements.

However, conventional CORBA implementations are not yet

suited for high-performance, real-time applications for the fol-

lowing reasons:

Lack of QoS specification interfaces: The CORBA 2.x

standard does not provide interfaces to specify end-to-end QoS

requirements. For instance, there is no standard way for clients

to indicate the relative priorities of their requests to an ORB.

Likewise, there is no interface for clients to inform an ORB

the rate at which to execute operations that have periodic pro-

cessing deadlines.

The CORBA standard also does not define interfaces that

allow applications to specify admission control policies. For

instance, a video server might prefer to use available network

bandwidth to serve a limited number of clients and refuse ser-

vice to additional clients, rather than admit all clients and pro-

vide poor video quality [12]. Conversely, a stock quote service

might want to admit a large number of clients and distribute all

available bandwidth and processing time equally among them.

Lack of QoS enforcement: Conventional ORBs do not pro-

vide end-to-end QoS enforcement, i.e., from application-to-

application across a network. For instance, most ORBs trans-

mit, schedule, and dispatch client requests in FIFO order.

However, FIFO strategies can yield unbounded priority in-

versions [13, 14], which occur when a lower priority request

blocks the execution of a higher priority request for an indefi-

nite period. Likewise, conventional ORBs do not allow appli-

cations to specify the priority of threads that process requests.

Standard ORBs also do not provide fine-grained control of

servant execution. For instance, they do not terminate servants
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that consume excess resources. Moreover, most ORBs use ad

hoc resource allocation. Consequently, a single client can con-

sume all available network bandwidth and a misbehaving ser-

vant can monopolize a server’s CPU.

Lack of real-time programming features: The CORBA

2.x specification does not define key features that are nec-

essary to support real-time programming. For instance, the

CORBA General Inter-ORB Protocol (GIOP) supports asyn-

chronous messaging. However, no standard programming lan-

guage mapping exists in CORBA 2.x to transmit client re-

quests asynchronously, though the Messaging specification in

CORBA 3.0 will define this mapping. Likewise, the CORBA

specification does not require an ORB to notify clients when

transport layer flow control occurs, nor does it support timed

operations [15]. As a result, it is hard to develop portable and

efficient real-time applications that behave deterministically

when ORB endsystem or network resources are unavailable

temporarily.

Lack of performance optimizations: Conventional ORB

endsystems incur significant throughput [11] and latency [16]

overhead, as well as exhibiting many priority inversions and

sources of non-determinism [17], as shown in Figure 2. These
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Figure 2: Sources of Latency and Priority Inversion in Con-

ventional ORBs

overheads stem from (1) non-optimized presentation layers

that copy and touch data excessively [6] and overflow proces-

sor caches [18]; (2) internal buffering strategies that produce

non-uniform behavior for different message sizes [19]; (3) in-

efficient demultiplexing and dispatching algorithms [20]; (4)

long chains of intra-ORB virtual method calls [21]; and (5)

lack of integration with underlying real-time OS and network

QoS mechanisms [22, 23, 17].

2.3 Overcoming CORBA Limitations for High-

performance and Real-time Applications

Meeting the QoS needs of next-generation distributed appli-

cations requires much more than defining IDL interfaces or

adding preemptive real-time scheduling to an OS. Instead, it

requires a vertically and horizontally integrated ORB endsys-

tem that can deliver end-to-end QoS guarantees at multiple lev-

els throughout a distributed system. The key components in an

ORB endsystem include the network interfaces, operating sys-

tem I/O subsystems, communication protocols, and common

middleware object services.

Implementing an effective framework for real-time CORBA

requires ORB endsystem developers to address two types of

issues: QoS specification and QoS enforcement. First, real-

time applications must meet certain timing constraints to en-

sure the usefulness of the applications. For instance, a video-

conferencing application may require an upper bound on the

propagation delay of video packets from the source to the des-

tination. Such constraints are defined by the QoS specifica-

tion of the system. Thus, providing effective OO middleware

requires a real-time ORB endsystem that supports the mech-

anisms and semantics for applications to specify their QoS

requirements. Second, the architecture of the ORB endsys-

tem must be designed carefully to enforce the QoS parameters

specified by applications.

Section 3 describes how we are developing such an inte-

grated middleware framework called The ACE ORB (TAO)

[22]. TAO is a high-performance, real-time CORBA-

compliant ORB endsystem developed using the ACE frame-

work [24], which is a highly portable OO middleware commu-

nication framework. ACE contains a rich set of C++ compo-

nents that implement strategic design patterns [25] for high-

performance and real-time communication systems. Since

TAO is based on ACE it runs on a wide range of OS platforms

including general-purpose operating systems, such as Solaris

and Windows NT, as well as real-time operating systems such

as VxWorks, Chorus, and LynxOS.

2.3.1 Synopsis of TAO

The TAO project focuses on the following topics related to

real-time CORBA and ORB endsystems:

� Identifying enhancements to standard ORB specifica-

tions, particularly OMG CORBA, that will enable appli-

cations to specify their QoS requirements concisely and

precisely to ORB endsystems [26].

� Empirically determining the features required to build

real-time ORB endsystems that can enforce determin-

istic and statistical end-to-end application QoS guaran-

tees [23].
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� Integrating the strategies for I/O subsystem architectures

and optimizations [17] with ORB middleware to provide

end-to-end bandwidth, latency, and reliability guarantees

to distributed applications.

� Capturing and documenting the key design patterns [25]

necessary to develop, maintain, configure, and extend

real-time ORB endsystems.

In addition to providing a real-time ORB, TAO is an inte-

grated ORB endsystem that consists of a high-performance

I/O subsystem [27, 28] and an ATM Port Interconnect Con-

troller (APIC) [29]. Figure 4 illustrates the main components

in TAO’s ORB endsystem architecture.

2.3.2 Requirements for High-performance and Real-time

ORB Endsystems

The remainder of this section describes the requirements

and features of ORB endsystems necessary to meet high-

performance and real-time application QoS needs. It outlines

key performance optimizations and provides a roadmap for the

ORB features and optimizations presented in subsequent sec-

tions. Figure 3 summarizes the material covered below.
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Figure 3: Features and Optimizations for Real-time ORB

Endsystems

Policies and mechanisms for specifying end-to-end appli-

cation QoS requirements: ORB endsystems must allow ap-

plications to specify the QoS requirements of their IDL op-

erations using a small number of application-centric, rather

than OS/network-centric parameters. Typical QoS parame-

ters include computation time, execution period, and band-

width/delay requirements. For instance, video-conferencing

groupware [30, 12] may require high throughput and statisti-

cal real-time latency deadlines. In contrast, avionics mission

control platforms [10] may require rate-based periodic pro-

cessing with deterministic real-time deadlines.

QoS specification is not addressed by the CORBA 2.x spec-

ification, though there is an OMG special interest group (SIG)

devoted to this topic. Section 4.3 explains how TAO allows

applications to specify their QoS requirements using a combi-

nation of standard OMG IDL and QoS-aware ORB services.

QoS enforcement from real-time operating systems and

networks: Regardless of the ability to specify application

QoS requirements, an ORB endsystem cannot deliver end-to-

end guarantees to applications without network and OS sup-

port for QoS enforcement. Therefore, ORB endsystems must

be capable of scheduling resources such as CPUs, memory,

and network connection bandwidth and latency. For instance,

OS scheduling mechanisms must allow high-priority client re-

quests to run to completion and prevent unbounded priority

inversion.

Another OS requirement is preemptive dispatching. For ex-

ample, a thread may become runnable that has a higher priority

than one currently running a CORBA request on a CPU. In this

case, the low-priority thread must be preempted by removing

it from the CPU in favor of the high-priority thread.

Section 3.1 describes the OS I/O subsystem and network

interface we are integrating with TAO. This infrastructure is

designed to scale up to support performance-sensitive appli-

cations that require end-to-end gigabit data rates, predictable

scheduling of I/O within an ORB endsystem, and low latency

to CORBA applications.

Efficient and predictable real-time communication proto-

cols and protocol engines: The throughput, latency, and re-

liability requirements of multimedia applications like telecon-

ferencing are more stringent and diverse than those found in

traditional applications like remote login or file transfer. Like-

wise, the channel speed, bit-error rates, and services (such as

isochronous and bounded-latency delivery guarantees) of net-

works like ATM exceed those offered by traditional networks

like Ethernet. Therefore, ORB endsystems must provide a pro-

tocol engine that is efficient, predictable, and flexible enough

to be customized for different application QoS requirements

and network/endsystem environments.

Section 3.2.1 outlines TAO’s protocol engine, which pro-

vides real-time enhancements and high-performance opti-

mizations to the standard CORBA General Inter-ORB Proto-

col (GIOP) [1]. The GIOP implementation in TAO’s protocol

engine specifies (1) a connection and concurrency architecture

that minimizes priority inversion and (2) a transport protocol

that enables efficient, predictable, and interoperable process-

ing and communication among heterogeneous ORB endsys-

tems.

Efficient and predictable request demultiplexing and dis-

patching: ORB endsystems must demultiplex and dispatch

incoming client requests to the appropriate operation of the tar-

get servant. In conventional ORBs, demultiplexing occurs at
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multiple layers, including the network interface, the protocol

stack, the user/kernel boundary, and several levels in an ORB’s

Object Adapter. Demultiplexing client requests through all

these layers is expensive, particularly when a large number of

operations appear in an IDL interface and/or a large number

of servants are managed by an ORB endsystem. To minimize

this overhead, and to ensure predictable dispatching behav-

ior, TAO applies the perfect hashing and active demultiplex-

ing optimizations [20] described in Section 3.3 to demultiplex

requests in O(1) time.

Efficient and predictable presentation layer: ORB pre-

sentation layer conversions transform application-level data

into a portable format that masks byte order, alignment, and

word length differences. Many performance optimizations

have been designed to reduce the cost of presentation layer

conversions. For instance, [31] describes the tradeoffs be-

tween using compiled vs. interpreted code for presentation

layer conversions. Compiled marshaling code is efficient, but

requires excessive amounts of memory. This can be problem-

atic in many embedded real-time environments. In contrast,

interpreted marshaling code is slower, but more compact and

can often utilize processor caches more effectively.

Section 3.4 outlines how TAO supports predictable perfor-

mance guarantees for both interpreted and compiled marshal-

ing operations via its GIOP protocol engine. This protocol

engine applies a number of innovative compiler techniques [6]

and optimization principles [18]. These principles include op-

timizing for the common case; eliminating gratuitous waste;

replacing general purpose operations with specialized, effi-

cient ones; precomputing values, if possible; storing redundant

state to speed up expensive operations; passing information

between layers; and optimizing for the cache.

Efficient and predictable memory management: On mod-

ern high-speed hardware platforms, data copying consumes a

significant amount of CPU, memory, and I/O bus resources

[32]. Likewise, dynamic memory management incurs a signif-

icant performance penalty due to locking overhead and non-

determinism due to heap fragmentation. Minimizing data

copying and dynamic memory allocation requires the collab-

oration of multiple layers in an ORB endsystem, i.e., the net-

work interfaces, I/O subsystem protocol stacks, ORB Core and

Object Adapter, presentation layer, and application-specific

servants.

Section 3.5 outlines TAO’s vertically integrated memory

management scheme that minimizes data copying and lock

contention throughout its ORB endsystem.

2.3.3 Real-time vs. High-performance Tradeoffs

There is a common misconception [33] that applications with

“real-time” requirements are equivalent to application with

“high-performance” requirements. This is not necessarily the

case. For instance, an Internet audio-conferencing system may

not require high bandwidth, but it does require predictably low

latency to provide adequate QoS to users in real-time.

Other multimedia applications, such as teleconferencing,

have both real-time and high-performance requirements. Ap-

plications in other domains, such as avionics and process con-

trol, have stringent periodic processing deadline requirements

in the worst-case. In these domains, achieving predictability in

the worst-case is often more important than high performance

in the average-case.

It is important to recognize that high-performance require-

ments may conflict with real-time requirements. For instance,

real-time scheduling policies often rely on the predictability of

endsystem operations like thread scheduling, demultiplexing,

and message buffering. However, certain optimizations can

improve performance at the expense of predictability. For in-

stance, using a self-organizing search structure to demultiplex

client requests in an ORB’s Object Adapter can increase the

average-case performance of operations, which decreases the

predictability of any given operation in the worst-case.

To allow applications to select the appropriate tradeoffs be-

tween average-case and worst-case performance, TAO is de-

signed with an extensible software architecture based on key

communication patterns [25]. When appropriate, TAO em-

ploys algorithms and data structures that can optimize for both

performance and predictability. For instance, the de-layered

active demultiplexing scheme described in Section 3.3 can in-

crease ORB performance and predictability by eliminating ex-

cessive searching and avoiding priority inversions across de-

multiplexing layers [20].

3 Architectural Components and Fea-

tures for High-performance, Real-

time ORB Endsystems

TAO’s ORB endsystem contains the network interface, I/O

subsystem, communication protocol, and CORBA middleware

components shown in Figure 4. These components include the

following.

1. I/O subsystem: which send/receives requests to/from

clients in real-time across a network (such as ATM) or back-

plane (such as VME or compactPCI).

2. Run-time scheduler: which determines the priority at

which requests are processed by clients and servers in an ORB

endsystem.

3. ORB Core: which provides a highly flexible, portable,

efficient, and predictable CORBA inter-ORB protocol engine
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Figure 4: Architectural Components in the TAO Real-time

ORB Endsystem

that delivers client requests to the Object Adapter and returns

responses (if any) to clients.

4. Object Adapter: which demultiplexes and dispatches

client requests optimally to servants using perfect hashing and

active demultiplexing.

5. Stubs and skeletons: which optimize key sources of mar-

shaling and demarshaling overhead in the code generated au-

tomatically by TAO’s IDL compiler.

6. Memory manager: which minimizes sources of dy-

namic memory allocation and data copying throughout the

ORB endsystem.

7. QoS API: which allows applications and higher-level

CORBA services to specify their QoS parameters using an OO

programming model.

TAO’s I/O subsystem and portions of its run-time scheduler

and memory manager run in the kernel. Conversely, TAO’s

ORB Core, Object Adapter, stubs/skeletons, and portions of

its run-time scheduler and memory manager run in user-space.

The remainder of this section describes components 1, 3,

4, 5, and 6 and explains how they are implemented in TAO

to meet the requirements of high-performance, real-time ORB

endsystems described in Section 2.3. Section 4 focuses on

components 2 and 7, which allow applications to specify QoS

requirements for real-time servant operations. This paper dis-

cusses both high-performance and real-time features in TAO

since it is designed to support applications with a wide range

of QoS requirements.

3.1 High-performance, Real-time I/O Subsys-

tem
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Figure 5: Components in TAO’s High-performance, Real-time

I/O Subsystem

An I/O subsystem is responsible for mediating ORB and ap-

plication access to low-level network and OS resources such

as device drivers, protocol stacks, and CPU(s). The key chal-
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lenges in building a high-performance, real-time I/O subsys-

tem are to (1) make it convenient for applications to specify

their QoS requirements, (2) enforce QoS specifications and

minimize priority inversion and non-determinism, and (3) en-

able ORB middleware to leverage QoS features provided by

the underlying network and OS resources.

To meet these challenges, we have developed a high-

performance, real-time network I/O subsystem that is cus-

tomized for TAO [17]. The components in this subsystem are

shown in Figure 5. They include (1) a high-speed ATM net-

work interface, (2) a high-performance, real-time I/O subsys-

tem, (3) a real-time Scheduling Service and Run-Time Sched-

uler, and (4) an admission controller, as described below.

High-speed network interface: At the bottom of TAO’s I/O

subsystem is a “daisy-chained” interconnect containing one

or more ATM Port Interconnect Controller (APIC) chips [29].

APIC can be used both as an endsystem/network interface and

as an I/O interface chip. It sustains an aggregate bi-directional

data rate of 2.4 Gbps.

Although TAO is optimized for the APIC I/O subsystem, it

is designed using a layered architecture that can run on con-

ventional OS platforms, as well. For instance, TAO has been

ported to real-time interconnects, such as VME and compact-

PCI backplanes [17] and multi-processor shared memory en-

vironments, and QoS-enabled networks, such as IPv6 with

RSVP [34].

Real-time I/O Subsystem: Some general-purpose operat-

ing systems like Solaris and Windows NT now support real-

time scheduling. For example, Solaris 2.x provides a real-time

scheduling class [14] that attempts to bound the time required

to dispatch threads in this thread class. However, general-

purpose operating systems do not provide real-time I/O sub-

systems. For instance, the Solaris STREAMS [35] implemen-

tation does not support QoS guarantees since STREAMS pro-

cessing is performed at system thread priority, which is lower

than all real-time threads [17]. Therefore, the Solaris I/O sub-

system is prone to priority inversion since low-priority real-

time threads can preempt the I/O operations of high-priority

threads. Unbounded priority inversion is highly undesirable in

many real-time environments.

TAO enhances the STREAMS model provided by Solaris

and real-time operating systems like VxWorks and LynxOS.

TAO’s real-time I/O (RIO) subsystem minimizes priority in-

version and hidden scheduling2 that arise during protocol pro-

cessing. TAO minimizes priority inversion by pre-allocating a

pool of kernel threads dedicated to protocol processing. These

2Hidden scheduling occurs when the kernel performs work asyn-

chronously without regard to its priority. STREAMS processing in Solaris is

an example of hidden scheduling since the computation time is not accounted

for by the application or OS scheduler. To avoid hidden scheduling, the kernel

should perform its work at the priority of the thread that requested the work.

kernel threads are co-scheduled with a pool of application

threads. The kernel threads run at the same priority as the

application threads, which prevents the real-time scheduling

hazards outlined above.

To ensure predictable performance, the kernel threads be-

long to a real-time I/O scheduling class. This scheduling

class uses rate monotonic scheduling (RMS) [36, 37] to sup-

port real-time applications with periodic processing behavior.

Once a real-time I/O thread is admitted by the OS kernel,

TAO’s RIO subsystem is responsible for (1) computing its pri-

ority relative to other threads in the class and (2) dispatching

the thread periodically so that its deadlines are met.

Real-time Scheduling Service and Run-Time Scheduler:

The scheduling abstractions defined by real-time operating

systems like VxWorks, LynxOS, and POSIX 1003.1c [38] im-

plementations are relatively low-level. For instance, they re-

quire developers to map their high-level application QoS re-

quirements into lower-level OS mechanisms, such as thread

priorities and virtual circuit bandwidth/latency parameters.

This manual mapping step is non-intuitive for many applica-

tion developers, who prefer to design in terms of objects and

operations on objects.

To allow applications to specify their scheduling require-

ments in a higher-level, more intuitive manner, TAO provides

a Real-time Scheduling Service. This service is a CORBA ob-

ject that is responsible for allocating system resources to meet

the QoS needs of the applications that share the ORB endsys-

tem.

Applications can use TAO’s Real-time Scheduling Service

to specify the processing requirements of their operations in

terms of various parameters, such as computation time C, pe-

riod P, or deadline D. If all operations can be scheduled, the

Scheduling Service assigns a priority to each request. At run-

time, these priority assignments are then used by TAO’s Run-

time Scheduler. The Run-time Scheduler maps client requests

for particular servant operations into priorities that are under-

stood by the local endsystem’s OS thread dispatcher. The

dispatcher then grants priorities to real-time I/O threads and

performs preemption so that schedulability is enforced at run-

time. Section 4.2 describe the Run-Time Scheduler and Real-

time Scheduling Service in detail.

Admission Controller: To ensure that application QoS re-

quirements can be met, TAO performs admission control for

its real-time I/O scheduling class. Admission control allows

the OS to either guarantee the specified computation time or

to refuse to admit the thread. Admission control is useful for

real-time systems with deterministic and/or statistical QoS re-

quirements.

This paper focuses primarily on admission control for ORB

endsystems. Admission control is also important at higher-

levels in a distributed system, as well. For instance, admis-
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sion control can be used for global resource managers [39, 40]

that map applications onto computational, storage, and net-

work resources in a large-scale distributed system, such as a

ship-board computing environment.

3.2 Efficient and Predictable ORB Cores

The ORB Core is the component in the CORBA architecture

that manages transport connections, delivers client requests to

an Object Adapter, and returns responses (if any) to clients.

The ORB Core typically implements the ORB’s transport end-

point demultiplexing and concurrency model, as well.

The key challenges to developing a real-time ORB Core

are (1) implementing an efficient protocol engine for CORBA

inter-ORB protocols like GIOP and IIOP, (2) determining a

suitable connection and concurrency model that can share the

aggregate processing capacity of ORB endsystem components

predictably among operations in one or more threads of con-

trol, and (3) designing an ORB Core that can be adapted easily

to new endsystem/network environments and application QoS

requirements. The following describes how TAO’s ORB Core

is designed to meet these challenges.

3.2.1 TAO’s Inter-ORB Protocol Engine

TAO’s protocol engine is a highly optimized, real-time version

of the SunSoft IIOP reference implementation [18] that is in-

tegrated with the high-performance I/O subsystem described

in Section 3.1. Thus, TAO’s ORB Core on the client, server,

and any intermediate nodes can collaborate to process requests

in accordance with their QoS attributes. This design allows

clients to indicate the relative priorities of their requests and

allows TAO to enforce client QoS requirements end-to-end.

To increase portability across OS/network platforms, TAO’s

protocol engine is designed as a separate layer in TAO’s ORB

Core. Therefore, it can either be tightly integrated with the

high-performance, real-time I/O subsystem described in Sec-

tion 3.1 or run on conventional embedded platforms linked to-

gether via interconnects like VME or shared memory.

Below, we outline the existing CORBA interoperability pro-

tocols and describe how TAO implements these protocols in an

efficient and predictable manner.

Overview of GIOP and IIOP: CORBA is designed to run

over multiple transport protocols. The standard ORB interop-

erability protocol is known as the General Inter-ORB Protocol

(GIOP) [1]. GIOP provides a standard end-to-end interop-

erability protocol between potentially heterogeneous ORBs.

GIOP specifies an abstract interface that can be mapped

onto transport protocols that meet certain requirements, i.e.,

connection-oriented, reliable message delivery, and untyped

bytestream. An ORB supports GIOP if applications can use

the ORB to send and receive standard GIOP messages.

The GIOP specification consists of the following elements:

� Common Data Representation (CDR) definition: The

GIOP specification defines a common data representation

(CDR). CDR is a transfer syntax that maps OMG IDL types

from the native endsystem format to a bi-canonical format,

which supports both little-endian and big-endian binary data

formats. Data is transferred over the network in CDR encod-

ings.

� GIOP Message Formats: The GIOP specification de-

fines messages for sending requests, receiving replies, locating

objects, and managing communication channels.

� GIOP Transport Assumptions: The GIOP specifica-

tion describes what types of transport protocols can carry

GIOP messages. In addition, the GIOP specification describes

how connections are managed and defines constraints on mes-

sage ordering.

The CORBA Inter-ORB Protocol (IIOP) is a mapping of GIOP

onto the TCP/IP protocols. ORBs that use IIOP are able to

communicate with other ORBs that publish their locations in

an interoperable object reference (IOR) format.

Implementing GIOP/IIOP efficiently and predictably: In

Corba 2.x, neither GIOP nor IIOP provide support for speci-

fying or enforcing the end-to-end QoS requirements of appli-

cations.3 This makes GIOP/IIOP unsuitable for real-time ap-

plications that cannot tolerate the latency overhead and jitter

of TCP/IP transport protocols. For instance, TCP functional-

ity like adaptive retransmissions, deferred transmissions, and

delayed acknowledgments can cause excessive overhead and

latency for real-time applications. Likewise, routing proto-

cols like IPv4 lack functionality like packet admission policies

and rate control, which can lead to excessive congestion and

missed deadlines in networks and endsystems.

To address these shortcomings, TAO’s ORB Core supports

a priority-based concurrency architecture, a priority-based

connection architecture, and a real-time inter-ORB protocol

(RIOP), as described below.

� TAO’s priority-based concurrency architecture:

TAO’s ORB Core can be configured to allocate a real-time

thread4 for each application-designated priority level. Ev-

ery thread in TAO’s ORB Core can be associated with a

Reactor, which implements the Reactor pattern [43] to pro-

vide flexible and efficient endpoint demultiplexing and event

handler dispatching.

3The forthcoming real-time CORBA specification [41] will support this

capability.
4In addition, TAO’s ORB Core can be configured to support thread pool,

thread-per-connection, and single-threaded reactive dispatching [42].
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When playing the role of a server, TAO’s Reactor(s) de-

multiplex incoming client requests to connection handlers that

perform GIOP processing. These handlers collaborate with

TAO’s Object Adapter to dispatch requests to application-level

servant operations. Operations can either execute at (1) the

priority of the client that invoked the operation or (2) at the

priority of the real-time ORB Core thread that received the

operation. The latter design is well-suited for deterministic

real-time applications since it minimizes priority inversion and

non-determinism in TAO’s ORB Core [44]. In addition, it re-

duces context switching and synchronization overhead since

servant state must be locked only if servants interact across

different thread priorities.

TAO’s priority-based concurrency architecture is optimized

for statically configured, fixed priority real-time applications.

In addition, it is well suited for scheduling and analysis tech-

niques that associate priority with rate, such as rate monotonic

scheduling (RMS) and rate monotonic analysis (RMA) [36,

37]. For instance, avionic mission computing systems com-

monly execute their tasks in rates groups. A rate group assem-

bles all periodic processing operations that occur at particular

rates (e.g., 20 Hz, 10 Hz, 5 Hz, and 1 Hz) and assigns them to

a pool of threads using fixed-priority scheduling.

� TAO’s priority-based connection architecture: Fig-

ure 6 illustrates how TAO can be configured with a priority-

based connection architecture. In this model, each client

CLIENTCLIENT    ORBORB    CORECORE

20  10   5   120  10   5   1

HZHZ  HZHZ  HZHZ  HZHZ

CONNECTORCONNECTOR

20  10   5   120  10   5   1

HZHZ  HZHZ  HZHZ  HZHZ

CONNECTORCONNECTOR

20  10   5   120  10   5   1

HZHZ  HZHZ  HZHZ  HZHZ

CONNECTORCONNECTOR

SERVERSERVER    ORBORB    CORECORE

REACTORREACTOR

(20  (20  HZHZ))

REACTORREACTOR

(10  (10  HZHZ))

REACTORREACTOR

(5  (5  HZHZ))

REACTORREACTOR

(1  (1  HZHZ))

CC

OO

NN

NN

EE

CC

TT

22

AA

CC

CC

EE

PP

TT

OO

RR

CC

OO

NN

NN

EE

CC

TT

11

CC

OO

NN

NN

EE

CC

TT

33

II//OO    SUBSYSTEMSUBSYSTEMI/O  SUBSYSTEM

C

O

N

N

E

C

T

2

A

C

C

E

P

T

O

R

C

O

N

N

E

C

T

1

C

O

N

N

E

C

T

3

C

O

N

N

E

C

T

2

A

C

C

E

P

T

O

R

C

O

N

N

E

C

T

1

C

O

N

N

E

C

T

3

C

O

N

N

E

C

T

2

A

C

C

E

P

T

O

R

C

O

N

N

E

C

T

1

C

O

N

N

E

C

T

3

COMMUNICATION  LINK

CLIENT  APPLICATION

STUB STUB STUB

Figure 6: TAO’s Priority-based Connection and Concurrency

Architectures

thread maintains a Connector [45] in thread-specific stor-

age. Each Connector manages a map of pre-established

connections to servers. A separate connection is maintained

for each thread priority in the server ORB. This design en-

ables clients to preserve end-to-end priorities as requests tra-

verse through ORB endsystems and communication links [44].

Figure 6 also shows how the Reactor in each thread

priority in a server ORB can be configured to use an

Acceptor [45]. The Acceptor is a socket endpoint fac-

tory that listens on a specific port number for clients to con-

nect to the ORB instance running at a particular thread priority.

TAO can be configured so that each priority level has its own

Acceptor port. For instance, in statically scheduled, rate-

based avionics mission computing systems [46], ports 10020,

10010, 10005, 10001 could be mapped to the 20 Hz, 10 Hz,

5 Hz, and 1 Hz rate groups, respectively. Requests arriving

at these socket ports can then be processed by the appropriate

fixed-priority real-time threads.

Once a client connects, the Acceptor in the server ORB

creates a new socket queue and a GIOP connection handler to

service that queue. TAO’s I/O subsystem uses the port number

contained in arriving requests as a demultiplexing key to asso-

ciate requests with the appropriate socket queue. This design

minimizes priority inversion through the ORB endsystem via

early demultiplexing [27, 28, 29], which associates requests

arriving on network interfaces with the appropriate real-time

thread that services the target servant. As described in Sec-

tion 8, early demultiplexing is used in TAO to vertically in-

tegrate the ORB endsystem’s QoS support from the network

interface up to the application servants.

� TAO’s Real-time inter-ORB protocol (RIOP): TAO’s

connection-per-priority scheme described above is optimized

for fixed-priority applications that transfer their requests at

particular rates through statically allocated connections ser-

viced at the priority of real-time server threads. Applications

that possess dynamic QoS characteristics, or that propagate the

priority of a client to the server, require a more flexible proto-

col, however. Therefore, TAO supports a real-time Inter-ORB

Protocol (RIOP).

RIOP is an implementation of GIOP that allows ORB

endsystems to transfer their QoS attributes end-to-end from

clients to servants. For instance, TAO’s RIOP mapping can

transfer the importance of an operation end-to-end with each

GIOP message. The receiving ORB endsystem uses this QoS

attribute to set the priority of a thread that processes an opera-

tion in the server.

To maintain compatibility with existing IIOP-based ORBs,

TAO’s RIOP protocol implementation transfers QoS in-

formation in the service context member of the

GIOP::requestHeader. ORBs that do not sup-

port TAO’s RIOP extensions can transparently ignore the

service context member. Incidentally, the RIOP feature

will be standardized as a QoS property in the asynchronous

messaging portion of the CORBA 3.0 specification.

The TAO RIOP service context passed with each

client invocation contains attributes that describe the opera-

tion’s QoS parameters. Attributes supported by TAO’s RIOP

extensions include priority, execution period, and communica-

tion class. Communication classes supported by TAO include

ISOCHRONOUS for continuous media, BURST for bulk data,

MESSAGE for small messages with low delay requirements,
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and MESSAGE STREAM for message sequences that must be

processed at a certain rate [28].

In addition to transporting client QoS attributes, TAO’s

RIOP is designed to map CORBA GIOP on a variety of net-

works including high-speed networks like ATM LANs and

ATM/IP WANs [47]. RIOP also can be customized for specific

application requirements. To support applications that do not

require complete reliability, TAO’s RIOP mapping can selec-

tively omit transport layer functionality and run directly atop

ATM virtual circuits. For instance, teleconferencing or certain

types of imaging may not require retransmissions or bit-level

error detection.

3.2.2 Enhancing the Extensibility and Portability of

TAO’s ORB Core

Although most conventional ORBs interoperate via IIOP over

TCP/IP, an ORB is not limited to running over these transports.

For instance, while TCP can transfer GIOP requests reliably,

its flow control and congestion control algorithms may pre-

clude its use as a real-time protocol. Likewise, shared memory

may be a more effective transport mechanism when clients and

servants are co-located on the same endsystem. Therefore, a

key design challenge is to make an ORB Core extensible and

portable to multiple transport mechanisms and OS platforms.

To increase extensibility and portability, TAO’s ORB Core

is based on patterns in the ACE framework [24]. Section 6

describes the patterns used in TAO in detail. The following

outlines the patterns that are used in TAO’s ORB Core.

TAO’s ORB Core uses the Strategy and Abstract Factory

patterns [48] to allow the configuration of multiple scheduling

algorithms, such as earliest deadline first or maximum urgency

first [49]. Likewise, the Bridge pattern [48] shields TAO’s

ORB Core from the choice of scheduling algorithm. TAO uses

ACE components based on the Service Configurator pattern

[50] to allow new algorithms for scheduling, demultiplexing,

concurrency, and dispatching to be configured dynamically,

i.e., at runtime. On platforms with C++ compilers that opti-

mize virtual function calls, the overhead of this extensibility is

negligible [10].

Other patterns are used in TAO’s ORB Core to simplify

its connection and concurrency architectures. For instance,

the Acceptor-Connector pattern [45] defines ACE components

used in TAO to decouple the task of connection establishment

from the GIOP processing tasks performed after connection

establishment. TAO uses the Reactor pattern [43], which de-

fines an ACE component that simplifies the event-driven por-

tions of the ORB core by integrating socket demultiplexing

and the dispatching of the corresponding GIOP connection

handlers. Likewise, the Active Object pattern [51] defines an

ACE component used in TAO to configure multiple concur-

rency architectures by decoupling operation invocation from

operation execution.

TAO ports easily to many OS platforms since it is built using

ACE components based on the patterns described above. Cur-

rently, ACE and TAO have been ported to a wide range of OS

platforms including Win32 (i.e., WinNT 3.5.x/4.x, Win95, and

WinCE), most versions of UNIX (e.g., SunOS 4.x and 5.x, SGI

IRIX 5.x and 6.x, HP-UX 9.x, 10.x, and 11.x, DEC UNIX 4.x,

AIX 4.x, Linux, SCO, UnixWare, NetBSD, and FreeBSD),

real-time operating systems (e.g., VxWorks, Chorus, LynxOS,

and pSoS), and MVS OpenEdition.

Figure 7 illustrates the components in the client-side

and server-side of TAO’s ORB Core. The client-
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Figure 7: Components in the TAO’s ORB Core

side uses a Strategy Connector to create and cache

Connection Handlers that are bound to each server.

These connections can be pre-allocated during ORB initial-

ization. Pre-allocation minimizes the latency between client

invocation and servant operation execution since connections

can be established a priori using TAO’s explicit binding oper-

ation.

On the server-side, the Reactor detects new incoming

connections and notifies the Strategy Acceptor. The

Strategy Acceptor accepts the new connection and as-

sociates it with a Connection Handler that executes in

a thread with an appropriate real-time priority. The client’s

Connection Handler can pass GIOP requests (described

in Section 3.2.1) to the server’s Connection Handler.
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This handler upcalls TAO’s Object Adapter, which dispatches

the requests to the appropriate servant operation.

3.2.3 Real-time Scheduling and Dispatching of Client Re-

quests

TAO’s ORB Core can be configured to implement cus-

tom mechanisms that process client requests according to

application-specific real-time scheduling policies. To pro-

vide a guaranteed share of the CPU among application opera-

tions [28, 10], TAO’s ORB Core uses the real-time Scheduling

Service described in Section 4. One of the strategies provided

by TAO’s ORB Core is variant of periodic rate monotonic

scheduling implemented with real-time threads and real-time

upcalls (RTUs) [28].

TAO’s ORB Core contains an object reference to its Run-

Time Scheduler shown in Figure 4. This scheduler dispatches

client requests in accordance with a real-time scheduling pol-

icy configured into the ORB endsystem. The Run-Time

Scheduler maps client requests to real-time thread priorities

and connectors.

TAO’s initial implementation supports deterministic real-

time applications [17]. In this case, TAO’s Run-Time Sched-

uler consults a table of request priorities generated off-line. At

run-time, TAO’s ORB Core dispatches threads to the CPU(s)

according to its dispatching mechanism. We are have extended

TAO to support dynamically scheduling and applications with

statistical QoS requirements [46].

3.3 Efficient and Predictable Object Adapters

The Object Adapter is the component in the CORBA archi-

tecture that associates a servant with an ORB, demultiplexes

incoming client requests to the servant, and dispatches the ap-

propriate operation of that servant. The key challenges asso-

ciated with designing an Object Adapter for real-time ORBs

are determining how to demultiplex client requests efficiently,

scalably, and predictably.

TAO is the first CORBA ORB whose Object Adapter imple-

ments the OMG POA (Portable Object Adapter) specification

[1]. The POA specification defines a wide range of features,

including: user- or system-supplied Object Ids, persistent and

transient objects, explicit and on-demand activation, multiple

servant! CORBA object mappings, total application control

over object behavior and existence, and static and DSI ser-

vants [52, 53].

The demultiplexing and dispatching policies in TAO’s Ob-

ject Adapter are instrumental to ensuring its predictability

and efficiency. This subsection describes how TAO’s Ob-

ject Adapter can be configured to use perfect hashing or ac-

tive demultiplexing to map client requests directly to ser-

vant/operation tuples in O(1) time.

3.3.1 Conventional ORB Demultiplexing Strategies

A standard GIOP-compliant client request contains the iden-

tity of its remote object and remote operation. A remote ob-

ject is represented by an Object Key octet sequence and

a remote operation is represented as a string. Conventional

ORBs demultiplex client requests to the appropriate operation

of the servant implementation using the layered demultiplex-

ing architecture shown in Figure 8. These steps perform the
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Figure 8: Layered CORBA Request Demultiplexing

following tasks:

Steps 1 and 2: The OS protocol stack demultiplexes the in-

coming client request multiple times, e.g., through the data

link, network, and transport layers up to the user/kernel bound-

ary and the ORB Core.

Steps 3, 4, and 5: The ORB Core uses the addressing in-

formation in the client’s Object Key to locate the appropriate

Object Adapter, servant, and the skeleton of the target IDL op-

eration.

Step 6: The IDL skeleton locates the appropriate operation,

demarshals the request buffer into operation parameters, and

performs the operation upcall.

However, layered demultiplexing is generally inappropriate

for high-performance and real-time applications for the fol-

lowing reasons [54]:

Decreased efficiency: Layered demultiplexing reduces per-

formance by increasing the number of internal tables that

must be searched as incoming client requests ascend through

the processing layers in an ORB endsystem. Demultiplexing
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client requests through all these layers is expensive, particu-

larly when a large number of operations appear in an IDL in-

terface and/or a large number of servants are managed by an

Object Adapter.

Increased priority inversion and non-determinism: Lay-

ered demultiplexing can cause priority inversions because

servant-level quality of service (QoS) information is inacces-

sible to the lowest-level device drivers and protocol stacks in

the I/O subsystem of an ORB endsystem. Therefore, an Ob-

ject Adapter may demultiplex packets according to their FIFO

order of arrival. FIFO demultiplexing can cause higher prior-

ity packets to wait for an indeterminate period of time while

lower priority packets are demultiplexed and dispatched [17].

Conventional implementations of CORBA incur significant

demultiplexing overhead. For instance, [21, 16] show that con-

ventional ORBs spend �17% of the total server time process-

ing demultiplexing requests. Unless this overhead is reduced

and demultiplexing is performed predictably, ORBs cannot

provide uniform, scalable QoS guarantees to real-time appli-

cations.

3.3.2 TAO’s Optimized ORB Demultiplexing Strategies

To address the limitations with conventional ORBs, TAO pro-

vides the demultiplexing strategies shown in Figure 9. TAO’s
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gies

optimized demultiplexing strategies include the following:

Perfect hashing: The perfect hashing strategy shown in Fig-

ure 9(A) is a two-step layered demultiplexing strategy. This

strategy uses an automatically-generated perfect hashing func-

tion to locate the servant. A second perfect hashing function

is then used to locate the operation. The primary benefit of

this strategy is that servant and operation lookups requireO(1)
time in the worst-case.

TAO uses the GNU gperf [55] tool to generate perfect

hash functions for object keys and operation names. This per-

fect hashing scheme is applicable when the keys to be hashed

are known a priori. In many deterministic real-time systems,

such as avionic mission control systems [10, 46], the servants

and operations can be configured statically. For these appli-

cations, it is possible to use perfect hashing to locate servants

and operations.

Active demultiplexing: TAO also provides a more dynamic

demultiplexing strategy called active demultiplexing, shown

in Figure 9(B). In this strategy, the client passes an object key

that directly identifies the servant and operation in O(1) time

in the worst-case. The client obtains this object key when it

obtains a servant’s object reference, e.g., via a Naming service

or Trading service. Once the request arrives at the server ORB,

the Object Adapter uses the object key the CORBA request

header to locate the servant and its associated operation in a

single step.

Unlike perfect hashing, TAO’s active demultiplexing strat-

egy does not require that all Object Ids be known a priori.

This makes it more suitable for applications that incarnate and

etherealize CORBA objects dynamically.

Both perfect hashing and active demultiplexing can demul-

tiplex client requests efficiently and predictably. Moreover,

these strategies perform optimally regardless of the number of

active connections, application-level servant implementations,

and operations defined in IDL interfaces. [20] presents a de-

tailed study of these and other request demultiplexing strate-

gies for a range of target objects and operations.

TAO’s Object Adapter uses the Service Configurator pattern

[50] to select perfect hashing or active demultiplexing dynam-

ically during ORB installation [25]. Both strategies improve

request demultiplexing performance and predictability above

the ORB Core.

To improve efficiency and predictability below the ORB

Core, TAO uses the ATM Port Interconnect Controller (APIC)

described in Section 3.1 to directly dispatch client requests as-

sociated with ATM virtual circuits [17]. This vertically in-

tegrated, optimized ORB endsystem architecture reduces de-

multiplexing latency and supports end-to-end QoS on either a

per-request or per-connection basis.

3.4 Efficient and Predictable Stubs and Skele-

tons

Stubs and skeletons are the components in the CORBA archi-

tecture responsible for transforming typed operation param-

eters from higher-level representations to lower-level repre-

sentations (marshaling) and vice versa (demarshaling). Mar-

shaling and demarshaling are major bottlenecks in high-

performance communication subsystems [56] due to the sig-
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nificant amount of CPU, memory, and I/O bus resources they

consume while accessing and copying data. Therefore, key

challenges for a high-performance, real-time ORB are to de-

sign an efficient presentation layer that performs marshaling

and demarshaling predictably, while minimizing the use of

costly operations like dynamic memory allocation and data

copying.

In TAO, presentation layer processing is performed by

client-side stubs and server-side skeletons that are generated

automatically by a highly-optimizing IDL compiler [6]. In

addition to reducing the potential for inconsistencies between

client stubs and server skeletons, TAO’s IDL compiler sup-

ports the following optimizations:

Reduced use of dynamic memory: TAO’s IDL compiler

analyzes the storage requirements for all the messages ex-

changed between the client and the server. This enables the

compiler to allocate sufficient storage a priori to avoid re-

peated run-time tests that determine if sufficient storage is

available. In addition, the IDL compiler uses the run-time

stack to allocate storage for unmarshaled parameters.

Reduced data copying: TAO’s IDL compiler analyzes

when it is possible to perform block copies for atomic data

types rather than copying them individually. This reduces ex-

cessive data access since it minimizes the number of load and

store instructions.

Reduced function call overhead: TAO’s IDL compiler can

selectively optimize small stubs via inlining, thereby reducing

the overhead of function calls that would otherwise be incurred

by invoking these small stubs.

TAO’s IDL compiler supports multiple strategies for mar-

shaling and demarshaling IDL types. For instance, TAO’s

IDL compiler can generate either compiled and/or interpreted

IDL stubs and skeletons. This design allows applications to

select between (1) interpreted stubs/skeletons, which can be

somewhat slower, but more compact in size and (2) compiled

stubs/skeletons, which can be faster, but larger in size [31].

Likewise, TAO can cache premarshaled application data

units (ADUs) that are used repeatedly. Caching improves per-

formance when ADUs are transferred sequentially in “request

chains” and each ADU varies only slightly from one transmis-

sion to the other. In such cases, it is not necessary to marshal

the entire request every time. This optimization requires that

the real-time ORB perform flow analysis [57, 58] of applica-

tion code to determine what request fields can be cached.

Although these techniques can significantly reduce marshal-

ing overhead for the common case, applications with strict

real-time service requirements often consider only worst-case

execution. As a result, the flow analysis optimizations de-

scribed above can only be employed under certain circum-

stances, e.g., for applications that can accept statistical real-

time service or when the worst-case scenarios are still suffi-

cient to meet deadlines.

3.5 Efficient and Predictable Memory Manage-

ment

Conventional ORB endsystems suffer from excessive dynamic

memory management and data copying overhead [21]. For in-

stance, many I/O subsystems and ORB Cores allocate a mem-

ory buffer for each incoming client request and the I/O sub-

system typically copies its buffer to the buffer allocated by the

ORB Core. In addition, standard GIOP/IIOP demarshaling

code allocates memory to hold the decoded request parame-

ters. Likewise, IDL skeletons dynamically allocate and delete

copies of client request parameters before and after upcalls,

respectively.

In general, dynamic memory management is problematic

for real-time systems. For instance, heap fragmentation can

yield non-uniform behavior for different message sizes and

different workloads. Likewise, in multi-threaded ORBs, the

locks required to protect the heap from race conditions in-

crease the potential for priority inversion [44]. In general, ex-

cessive data copying throughout an ORB endsystem can sig-

nificantly lower throughput and increase latency and jitter.

TAO is designed to minimize and eliminate data copying at

multiple layers in its ORB endsystem. For instance, TAO’s

buffer management system uses the APIC network interface

to enhance conventional operating systems with a zero-copy

buffer management system [29]. At the device level, the

APIC interacts directly with the main system bus and other

I/O devices. Therefore, it can transfer client requests between

endsystem buffer pools and ATM virtual circuits with no addi-

tional data copying.

The APIC buffer pools for I/O devices described in Sec-

tion 3.1 can be configured to support early demultiplexing

of periodic and aperiodic client requests into memory shared

among user- and kernel-resident threads. These APIs allow

client requests to be sent/received to/from the network with-

out incurring any data copying overhead. Moreover, these

buffers can be preallocated and passed between various pro-

cessing stages in the ORB, thereby minimizing costly dynamic

memory management.

In addition, TAO uses the Thread-Specific Storage pattern

[59] to minimize lock contention resulting from memory al-

location. TAO can be configured to allocate its memory from

thread-specific storage. In this case, when the ORB requires

memory it is retrieved from a thread-specific heap. Thus, no

locks are required for the ORB to dynamically allocate this

memory.
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4 Supporting Real-time Scheduling in

CORBA

Section 3 described the architectural components used in TAO

to provide a high-performance ORB endsystem for real-time

CORBA. TAO’s architecture has been realized with minimal

changes to CORBA. However, the CORBA 2.x specification

does not yet address issues related to real-time scheduling.

Therefore, this section provides in-depth coverage of the com-

ponents TAO uses to implement a Real-time Scheduling Ser-

vice, based on standard CORBA features.

4.1 Synopsis of Application Quality of Service

Requirements

The TAO ORB endsystem [23] is designed to support vari-

ous classes of quality of service (QoS) requirements, includ-

ing applications with deterministic and statistical real-time

requirements. Deterministic real-time applications, such as

avionics mission computing systems [10], must meet periodic

deadlines. These types of applications commonly use static

scheduling and analysis techniques, such as rate monotonic

analysis (RMA) and rate monotonic scheduling (RMS).

Statistical real-time applications, such as teleconferenc-

ing and video-on-demand, can tolerate minor fluctuations in

scheduling and reliability guarantees, but nonetheless require

QoS guarantees. These types of applications commonly use

dynamic scheduling techniques [46], such as earliest deadline

first (EDF), minimum laxity first (MLF), or maximum urgency

first (MUF).

Deterministic real-time systems have traditionally been

more amenable to well-understood scheduling analysis tech-

niques. Consequently, our research efforts were initially di-

rected toward static scheduling of deterministic real-time sys-

tems. However, the architectural features and optimizations

that we studied and developed are applicable to real-time sys-

tems with statistical QoS requirements, such as constrained

latency multimedia systems or telecom call processing. This

section describes the static scheduling service [23] that we de-

veloped to support scheduling for hard real-time systems with

deterministic QoS requirements.

4.2 Responsibilities of a Real-time Scheduling

Service

This subsection examines the analysis capabilities and

scheduling policies provided by TAO’s Real-time Scheduling

Service. This service is responsible for allocating CPU re-

sources to meet the QoS needs of the applications that share

the ORB endsystem. For real-time applications with deter-

ministic QoS requirements, the Scheduling Service guarantees

that all processing requirements will be met. For real-time ap-

plications with statistical QoS requirements, the Scheduling

Service tries to meet system processing requirements within

the desired tolerance, while also trying to maximize CPU uti-

lization.

The initial design and implementation of TAO’s real-time

Scheduling Service [23] targeted deterministic real-time appli-

cations that require off-line, static scheduling on a single CPU.

However, the Scheduling Service is also useful for dynamic

and distributed real-time scheduling, as well [46]. Therefore,

the Scheduling Service is defined as a CORBA object, i.e.,

as an implementation of an IDL interface. This design en-

ables the Scheduling Service to be accessed either locally or

remotely without having to reimplement clients that use it.

TAO’s Real-time Scheduling Service has the following off-

line and on-line responsibilities:

Off-line scheduling feasibility analysis: TAO’s Scheduling

Service performs off-line feasibility analysis of all IDL opera-

tions that register with it. This analysis results in a determina-

tion of whether there are sufficient CPU resources to perform

all requested operations, as discussed in Section 4.5.

Request priority assignment: Request priority is the rela-

tive priority of a request5 to any other. It is used by TAO to

dispatch requests in order of their priority. Thread priority

is the priority that corresponds to that of the thread that will

invoke the request. During off-line analysis, the Scheduling

Service 1) assigns a request priority to each request and 2) as-

signs each request to one of the preconfigured thread priorities.

At run-time, the Scheduling Service provides an interface that

allows TAO’s real-time ORB endsystem to access these priori-

ties. Priorities are the mechanism for interfacing with the local

endsystem’s OS dispatcher, as discussed in Section 4.4.

A high-level depiction of the steps involved in the off-line

and on-line roles of TAO’s Scheduling Service is shown in

Figure 10. In step 1, the Scheduling Service constructs graphs

of dependent operations using the QoS information registered

with it by the application. This QoS information is stored in

RT Info structures described in Section 4.3.3. In step 2, it

identifies threads by looking at the terminal nodes of these de-

pendency graphs and populates an RT Info repository in step

3. In step 4 it assesses schedulability and assigns priorities,

generating the priority tables as compilable C++ code in step

5. These five steps occur off-line during the (static) schedule

configuration process. Finally, the priority tables generated in

step 5 are used at run-time in step 6 by TAO’s ORB endsystem.

TAO’s real-time Scheduling Service guarantees that all

RT Operations in the system are dispatched with suffi-

cient time to meet their deadlines. To accomplish this, the

5A request is the run-time representation of an operation in an IDL inter-

face that is passed between client and server.
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ing

Scheduling Service can be implemented to perform various

real-time scheduling policies. [23] describes the rate mono-

tonic scheduling implementation used by TAO’s Scheduling

Service.

Below, we outline the information that the service requires

to build and execute a feasible system-wide schedule. A feasi-

ble schedule is one that is schedulable on the available system

resources; in other words, it can be verified that none of the

operations in the critical set will miss their deadlines. The

critical set of operations is the subset of all system operations

whose failure to execute before the respective deadline would

compromise system integrity.

To simplify the presentation, we focus on ORB scheduling

for a single CPU. The distributed scheduling problem is not

addressed in this presentation. [46] outlines the approaches

we are investigating with TAO.

4.3 Specifying QoS Requirements in TAO using

Real-time IDL Schemas

Invoking operations on objects is the primary collaboration

mechanism between components in an OO system [15]. How-

ever, QoS research at the network and OS layers has not

addressed key requirements and usage characteristics of OO

middleware. For instance, research on QoS for ATM networks

has focused largely on policies for allocating bandwidth on a

per-connection basis [29]. Likewise, research on real-time op-

erating systems has focused largely on avoiding priority inver-

sion and non-determinism in synchronization and scheduling

mechanisms for multi-threaded applications [13].

Determining how to map the insights and mechanisms pro-

duced by QoS work at the network and OS layers onto an OO

programming model is a key challenge when adding QoS sup-

port to ORB middleware [15, 40]. This subsection describes

the real-time OO programming model used by TAO. TAO sup-

ports the specification of QoS requirements on a per-operation

basis using TAO’s real-time IDL schemas.

4.3.1 Overview of QoS Specification in TAO

Several ORB endsystem resources are involved in satisfying

application QoS requirements, including CPU cycles, mem-

ory, network connections, and storage devices. To support

end-to-end scheduling and performance guarantees, real-time

ORBs must allow applications to specify their QoS require-

ments so that an ORB subsystem can guarantee resource avail-

ability. In non-distributed, deterministic real-time systems,

CPU capacity is typically the scarcest resource. Therefore,

the amount of computing time required to process client re-

quests must be determined a priori so that CPU capacity can

be allocated accordingly. To accomplish this, applications

must specify their CPU capacity requirements to TAO’s off-

line Scheduling Service.

In general, scheduling research on real-time systems that

consider resources other than CPU capacity relies upon on-

line scheduling [60]. Therefore, we focus on the specification

of CPU resource requirements. TAO’s QoS mechanism for ex-

pressing CPU resource requirements can be readily extended

to other shared resources, such as network and bus bandwidth,

once scheduling and analysis capabilities have matured.

The remainder of this subsection explains how TAO sup-

ports QoS specification for the purpose of CPU scheduling

for IDL operations that implement real-time operations. We

outline our Real-time IDL (RIDL) schemas: RT Operation

interface and its RT Info struct. These schemas convey

QoS information, e.g., CPU requirements, to the ORB on a

per-operation basis. We believe that this is an intuitive QoS

specification model for developers since it maps directly onto

the OO programming paradigm.

4.3.2 The RT Operation Interface

The RT Operation interface is the mechanism for convey-

ing CPU requirements from processing tasks performed by ap-

plication operations to TAO’s Scheduling Service, as shown in

the following CORBA IDL interface:6

module RT_Scheduler

{

// Module TimeBase defines the OMG Time Service.

typedef TimeBase::TimeT Time; // 100 nanoseconds

typedef Time Quantum;

typedef long Period; // 100 nanoseconds

6The remainder of the RT Scheduler module IDL description is shown

in Section 4.5.1.
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enum Importance

// Defines the importance of the operation,

// which can be used by the Scheduler as a

// "tie-breaker" when other scheduling

// parameters are equal.

{

VERY_LOW_IMPORTANCE,

LOW_IMPORTANCE,

MEDIUM_IMPORTANCE,

HIGH_IMPORTANCE,

VERY_HIGH_IMPORTANCE

};

typedef long handle_t;

// RT_Info’s are assigned per-application

// unique identifiers.

struct Dependency_Info

{

long number_of_calls;

handle_t rt_info;

// Notice the reference to the RT_Info we

// depend on.

};

typedef sequence<Dependency_Info> Dependency_Set;

typedef long OS_Priority;

typedef long Sub_Priority;

typedef long Preemption_Priority;

struct RT_Info

// = TITLE

// Describes the QoS for an "RT_Operation".

//

// = DESCRIPTION

// The CPU requirements and QoS for each

// "entity" implementing an application

// operation is described by the following

// information.

{

// Application-defined string that uniquely

// identifies the operation.

string entry_point_;

// The scheduler-defined unique identifier.

handle_t handle_;

// Execution times.

Time worstcase_execution_time_;

Time typical_execution_time_;

// To account for server data caching.

Time cached_execution_time_;

// For rate-base operations, this expresses

// the rate. 0 means "completely passive",

// i.e., this operation only executes when

// called.

Period period_;

// Operation importance, used to "break ties".

Importance importance_;

// For time-slicing (for BACKGROUND

// operations only).

Quantum quantum_;

// The number of internal threads contained

// by the operation.

long threads_;

// The following attributes are defined by

// the Scheduler once the off-line schedule

// is computed.

// The operations we depend upon.

Dependency_Set dependencies_;

// The OS por processing the events generated

// from this RT_Info.

OS_Priority priority_;

// For ordering RT_Info’s with equal priority.

Sub_Priority subpriority_;

// The queue number for this RT_Info.

Preemption_Priority preemption_priority_;

};

};

As shown above, the RT Operation interface contains type

definitions and its key feature, the RT Info struct, which

is described below.

4.3.3 The RT Info Struct

Applications that use TAO must specify all their scheduled re-

source requirements. This QoS information is currently pro-

vided to TAO before program execution. In the case of CPU

scheduling, the QoS requirements are expressed using the fol-

lowing attributes of an RT Info IDL struct:

Worst-case execution time: The worst-case execution time,

C, is the maximum execution time that the RT Operation

requires. It is used in conservative scheduling analysis for ap-

plications with strict real-time requirements.

Typical execution time: The typical execution time is the

execution time that the RT Operation usually requires. The

typical execution time may be useful with some scheduling

policies, e.g., statistical real-time systems that can relax the

conservative worst-case execution time assumption. How-

ever, it is not currently used in TAO’s deterministic real-time

Scheduling Service.

Cached execution time: If an operation can provide a

cached result in response to service requests, then the cached

execution time is set to a non-zero value. During execution,

for periodic functions, the worst-case execution cost is only

incurred once per period if caching is enabled, i.e., if this field

is non-zero. The scheduling analysis incorporates caching by

only including one term with the worst-case execution time

for the operation, per period, no matter how many times it is
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called, and by using the cached execution time for all other

calls.

Period: The period is the minimum time between successive

iterations of the operation. If the operation executes as an ac-

tive object [50] with multiple threads of control, then at least

one of those threads must execute at least that often.

A period of 0 indicates that the operation is totally reac-

tive, i.e., it does not specify a period. Reactive operations are

always called in response to requests by one or more clients.

Although the Run-Time Scheduler in TAO need not treat re-

active operations as occurring periodically, it must account for

their execution time.

Criticality: The operation criticality is an enu-

meration value ranging from lowest criticality, i.e.,

VERY LOW CRITICALITY, up to highest criticality, i.e.,

VERY HIGH CRITICALITY. Certain scheduling strategies

implemented in the Scheduling Service (notably maximum ur-

gency first [49]) consider criticality as the primary distinction

between operations when assigning priority.

Importance: The operation importance is an enu-

meration value ranging from lowest importance, i.e.,

VERY LOW IMPORTANCE, up to highest importance, i.e.,

VERY HIGH IMPORTANCE. The Scheduling Service uses

importance as a “tie-breaker” to order the execution of

RT Operations when data dependencies or other factors

such as criticality do not impose an ordering.

Quantum: Operations within a given priority may be time-

sliced, i.e., preempted at any time by the ORB endsystem dis-

patcher resumed at a later time. If a time quantum is specified

for an operation, then that is the maximum time that it will

be allowed to run before preemption, if there are any other

runnable operations at that priority. This time-sliced schedul-

ing is intended to provide fair access to the CPU for low-

est priority operations. Quantum is not currently used in the

Scheduling Service.

Dependency Info: This is an array of handles to other

RT Info instances, one for each RT Operation that this

one directly depends on. The dependencies are used during

scheduling analysis to identify threads in the system: each

separate dependency graph indicates a thread. In addition, the

number of times that the dependent operation is called is spec-

ified, for accurate execution time calculation.

The RIDL schemas outlined above can be used to spec-

ify the run-time execution characteristics of object opera-

tions to TAO’s Scheduling Service. This information is used

by TAO to (1) validate the feasibility of a schedule and (2)

allocate ORB endsystem and network resources to process

RT Operations. A single RT Info instance is required

for each RT Operation.
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Figure 11: TAO Run-time Scheduling Participants

4.4 Overview of TAO’s Scheduling Model

TAO’s on-line scheduling model includes the following partic-

ipants, as shown in Figure 11:

Work Operation: A Work Operation is a unit of work

that encapsulates application-level processing or communi-

cation activity. For example, utility functions that read

input, print output, or convert physical units can be

Work Operations. In some real-time environments, a

Work Operation is called a module or process, but we

avoid these terms because of their overloaded usage in OO

and OS contexts.

RT Operation: An RT Operation is a type of

Work Operation that has timing constraints. Each

RT Operation is considered to be an operation defined on

a CORBA IDL interface, that has its own QoS information

specified in terms of the attributes in its run-time information

(RT Info) descriptor. Thus, an application-level object with

multiple operations may require multiple RT Operation

instances, one for each distinct class of QoS specifications.

Thread: Threads are units of concurrent execution. A

thread can be implemented with various threading APIs,

e.g., a Solaris or POSIX thread, an Ada task, a VxWorks

task, or a Windows NT thread. All threads are contained

within RT Operations. An RT Operation containing

one or more threads is an active object [51]. In contrast, an

RT Operation that contains zero threads is a passive ob-

ject. Passive objects only execute in the context of another

RT Operation, i.e., they “borrow” the calling operation’s

thread of control to run.

OS dispatcher: The OS dispatcher uses request priorities to

select the next runnable thread that it will assign to a CPU. It

removes a thread from a CPU when the thread blocks, and

therefore is no longer runnable, or when the thread is pre-

empted by a higher priority thread. With preemptive dispatch-
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ing, any runnable thread with a priority higher than any run-

ning thread will preempt a lower priority thread. Then, the

higher priority, runnable thread can be dispatched onto the

available CPU.

Our analysis assumes fixed priority, i.e., the OS does not

unilaterally change the priority of a thread. TAO currently

runs on a variety of platforms, including real-time operating

systems, such as VxWorks and LynxOS, as well as general-

purpose operating systems with real-time extensions, such as

Solaris 2.x [14] and Windows NT. All these platforms provide

fixed priority real-time scheduling. Thus, from the point of

view of an OS dispatcher, the priority of each thread is con-

stant. The fixed priority contrasts with the operation of time-

shared OS schedulers, which typically age long-running pro-

cesses by decreasing their priority over time [61].

RT Info: As described in Section 4.3, an RT Info struc-

ture specifies an RT Operation’s scheduling characteristics

such as computation time and execution period.

Run-Time Scheduler: At run-time, the primary visible ves-

tige of the Scheduling Service is the Run-Time Scheduler.

The Run-Time Scheduler maps client requests for particular

servant operations into priorities that are understood by the

local OS dispatcher. Currently, these priorities are assigned

statically prior to run-time and are accessed by TAO’s ORB

endsystem via an O(1) time table lookup.

4.5 Overview of TAO’s Off-line Scheduling

Service

To meet the demands of statically scheduled, deterministic

real-time systems, TAO’s Scheduling Service uses off-line

scheduling, which has the following two high-level goals:

1. Schedulability analysis: If the operations cannot be

scheduled because one or more deadlines could be missed,

then the off-line Scheduling Service reports that prior to run-

time.

2. Request priority assignment: If the operations can be

scheduled, the Scheduling Service assigns a priority to each

request. This is the mechanism that the Scheduling Service

uses to convey execution order requirements and constraints

to TAO’s ORB endsystem dispatcher.

4.5.1 Off-line Scheduling Service Interface

The key types and operations of the IDL interface for TAO’s

off-line Scheduling Service are defined below7:

7The remainder of the RT Scheduler module IDL description is shown

in Section 4.3.2.

module RT_Scheduler

{

exception DUPLICATE_NAME {};

// The application is trying to

// register the same task again.

exception UNKNOWN_TASK {};

// The RT_Info handle was not valid.

exception NOT_SCHEDULED {};

// The application is trying to obtain

// scheduling information, but none

// is available.

exception UTILIZATION_BOUND_EXCEEDED {};

exception

INSUFFICIENT_PRIORITY_LEVELS {};

exception TASK_COUNT_MISMATCH {};

// Problems while computing off-line

// scheduling.

typedef sequence<RT_Info> RT_Info_Set;

interface Scheduler

// = DESCRIPTION

// This class holds all the RT_Info’s

// for a single application.

{

handle_t create (in string entry_point)

raises (DUPLICATE_NAME);

// Creates a new RT_Info entry for the

// function identifier "entry_point",

// it can be any string, but the fully

// qualified name function name is suggested.

// Returns a handle to the RT_Info.

handle_t lookup (in string entry_point);

// Lookups a handle for entry_point.

RT_Info get (in handle_t handle)

raises (UNKNOWN_TASK);

// Retrieve information about an RT_Info.

void set (in handle_t handle,

in Time time,

in Time typical_time,

in Time cached_time,

in Period period,

in Importance importance,

in Quantum quantum,

in long threads)

raises (UNKNOWN_TASK);

// Set the attributes of an RT_Info.

// Notice that some values may not

// be modified (like priority).

void add_dependency

(in handle_t handle,

in handle_t dependency,

in long number_of_calls)

raises (UNKNOWN_TASK);

// Adds <dependency> to <handle>

void priority

(in handle_t handle,

out OS_Priority priority,
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out Sub_Priority subpriority,

out Preemption_Priority p_priority)

raises (UNKNOWN_TASK, NOT_SCHEDULED);

void entry_point_priority

(in string entry_point,

out OS_Priority priority,

out Sub_Priority subpriority,

out Preemption_Priority p_priority)

raises (UNKNOWN_TASK, NOT_SCHEDULED);

// Obtain the run time priorities.

void compute_scheduling

(in long minimum_priority,

in long maximum_priority,

out RT_Info_Set infos)

raises (UTILIZATION_BOUND_EXCEEDED,

INSUFFICIENT_PRIORITY_LEVELS,

TASK_COUNT_MISMATCH);

// Computes the scheduling priorities,

// returns the RT_Info’s with their

// priorities properly filled. This info

// can be cached by a Run_Time_Scheduler

// service or dumped into a C++ file for

// compilation and even faster (static)

// lookup.

};

};

Not shown are accessors to system configuration data that

the scheduler contains, such as the number of operations and

threads in the system.

In general, the Scheduling Service interface need not be

viewed by application programmers; the only interface they

need to use is the RT Info interface, described in Sec-

tion 4.3.3. This division of the Scheduling Service interface

into application and privileged sections is shown in Figure 12.
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Figure 12: TAO’s Two Scheduling Service Interfaces

The privileged interface is only used by common TAO ser-

vices, such as:

� The Event Channel in TAO’s Real-time Event Service

[10], which registers its RT Operations with the off-

line Scheduling Service;

� Application-level schedulable operations that do not use

the Event Channel;

� TAO’s real-time ORB endsystem, which accesses these

interfaces to determine client request dispatch priorities.

The remainder of this subsection clarifies the operation of

TAO’s Scheduling Service, focusing on how it assigns request

priorities, when it is invoked, and what is stored in its internal

database.

4.5.2 RT Operation Priority Assignments

The off-line Scheduling Service assigns priorities to each

RT Operation. Because the current implementation of the

Scheduling Service utilizes a rate monotonic scheduling pol-

icy, priorities are assigned based on an operation’s rate. For

each RT Operation in the repository, a priority is assigned

based on the following rules:

Rule 1: If the RT Info::period of an operation is non-

zero, TAO’s off-line Scheduling Service uses this informa-

tion to map the period to a thread priority. For instance, 100

msec periods may map to priority 0 (the highest), 200 msec

periods may map to priority 1, and so on. With rate mono-

tonic scheduling, for example, higher priorities are assigned to

shorter periods.

Rule 2: If the operation does not have a rate requirement,

i.e., its RT Info::period is 0, then its rate requirement

must be implied from the operation dependencies

field stored in the RT Info struct. The RT Info

struct with the smallest period, ie, with the fastest rate,

in the RT Info::operation dependencies list will

be treated as the operation’s implied rate requirement, which

is then mapped to a priority. The priority values com-

puted by the off-line Scheduling Service are stored in the

RT Info::priority field, which the Run-Time Sched-

uler can query at run-time via the priority operation.

The final responsibility of TAO’s off-line Scheduling Ser-

vice is to verify the schedulability of a system configuration.

This validation process provides a definitive answer to the

question “given the current system resources, what is the low-

est priority level whose operations all meet their deadlines?”

The off-line Scheduling Service uses a repository of RT Info

structures shown in Figure 14 to determine the utilization re-

quired by each operation in the system. By comparing the

total required utilization for each priority level with the known

resources, an assessment of schedulability can be calculated.

TAO’s off-line Scheduling Service currently uses the

RT Info attributes of application RT Operations to build
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the static schedule and assign priorities according to the fol-

lowing steps:

1. Extract RT Infos: Extract all RT Info instances for all

the RT Operations in the system.

2. Identify real-time threads: Determine all the real-

time threads by building and traversing operation dependency

graphs.

3. Determine schedulability and priorities: Traverse the

dependency graph for each thread to calculate its execution

time and periods. Then, assess schedulability based on the

thread properties and assign request priorities.

4. Generate request priority table: Generate a table of

request priority assignments. This table is subsequently in-

tegrated into TAO’s run-time system and used to schedule

application-level requests.

These steps are described further in the remainder of this sec-

tion.

4.5.3 Extract RT Infos

The Scheduling Service is a CORBA object that can be ac-

cessed by applications during configuration runs. To use the

Scheduling Service, users must instantiate one RT Info in-

stantiation for each RT Operation in the system. A config-

uration run is an execution of the application, TAO, and TAO

services which is used to provide the services with any infor-

mation needed for static configuration. The interactions be-

tween the and Scheduling Service during a configuration run

are shown in Figure 13.
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Figure 13: Scheduling Steps During a Configuration Run

The RT Info instantiations, Step 1, are compiled and

linked into the main program, Step 2. The application is then

executed, Step 3. It registers each RT Operation with ei-

ther TAO (currently, via TAO’s Real-time Event Service), Step

3A, or directly with the Scheduling Service, Step 3B, for oper-

ations that do not use TAO. The application notifies TAO, Step

3C, which in turn notifies the Scheduling Service, when all

registrations have finished. TAO invokes the off-line schedul-

ing process, Step 4A. Finally, the application exits, Step 4B.

With off-line scheduling, the RT Infos are not needed at

run-time. Therefore, one space-saving optimization would be

to conditionally compile RT Infos only during configuration

runs.

The application should use the destroy operation to no-

tify the Scheduling Service when the program is about to exit

so that it can release any resources it holds. It is necessary to

release memory during configuration runs in order to permit

repeated runs on OS platforms, such as VxWorks, that do not

release heap-allocated storage when a program terminates.

For consistency in application code, the Scheduling Ser-

vice configuration and run-time interfaces are identical. The

schedule operation is essentially a no-op in the run-time

version; it merely performs a few checks to ensure that all op-

erations are registered and that the number of priority values

are reasonable.

4.5.4 Identify Real-time Threads

After collecting all of the RT Info instances, the Schedul-

ing Service identifies threads and performs its schedulabil-

ity analysis. A thread is defined by a directed acyclic graph

of RT Operations. An RT Info instance is associated

with each RT Operation by the application developer;

RT Info creation has been automated using the informa-

tion available to TAO’s Real-time Event Service. RT Infos

contain dependency relationships and other information, e.g.,

importance, which determines possible run-time ordering of

RT Operation invocations. Thus, a graph of dependencies

from each RT Operation can be generated mechanically,

using the following algorithm:

1. Build a repository ofRT Info instances: This task con-

sists of the following two steps:

� Visit each RT Info instance; if not already visited, add

to repository, and

� Visit the RT Info of each dependent operation, depth

first, and add a link to the dependent operation’s internal

(to the Scheduling Service) Dependency Info array.

2. Find terminal nodes of dependent operation graphs:

As noted in Section 4.5.2, identification of real-time threads

involves building and traversing operation dependency graphs.

The terminal nodes of separate dependent operation graphs in-

dicate, and are used to identify, threads. The operation de-

pendency graphs capture data dependency, e.g., if operation
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A calls operation B, then operation A needs some data that

operation B produces, and therefore operation A depends on

operation B. If the two operations execute in the context of a

single thread, then operation B must execute before operation

A. Therefore, the terminal nodes of the dependency graphs de-

lineate threads.

3. Traverse dependent operation graphs: After identi-

fying the terminal nodes of dependent operation graphs, the

graphs are traversed to identify the operations that compose

each thread. Each traversal starts from a dependent operation

graph terminal node, and continues towards the dependent op-

eration’s roots until termination. An operation may be part of

more than one thread, indicating that each of the threads may

call that operation.

The algorithm described above applies several restrictions

on the arrangement of operation dependencies. First, a thread

may be identified by only one operation; this corresponds

directly to a thread having a single entry point. Many OS

thread implementations support only a single entry point, i.e.,

a unique function which is called when the thread is started.

This restriction imposes no additional constraints on those

platforms.

The second restriction is that cycles are prohibited in de-

pendency relationships. Again, this has a reasonable interpre-

tation. If there was a cycle in a dependency graph, there would

be no bound, known to the scheduler, on the number of times

the cycle could repeat. To alleviate this restriction, the applica-

tion can absorb dependency graph cycles into an operation that

encapsulates them. Its RT Info would reflect the (bounded)

number of internal dependency graph cycles in its worst-case

execution time.

The RT Info repository that the Scheduling Service builds

is depicted in Figure 14.
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Figure 14: The RT Info Repository

The Scheduling Service’s RT Info repository includes the

RT Info reference and an array of the RT Operations

that it depends upon. These RT Operation dependencies

are depicted by blocks with arrows to the dependent opera-

tions. The Dependency Info arrays are initialized while

first traversing the RT Info instances, to identify threads.

Terminal nodes of the dependent operation graphs are iden-

tified; these form the starting point for thread identification.

Passive RT Operations, i.e., those without any internal

threads of their own, do not appear as terminal nodes of de-

pendent operation graphs. They may appear further down a

dependent operation graph, in which case their worst-case and

typical execution times are added to the corresponding execu-

tion times of the calling thread. However, cached execution

times may be added instead, for periodic functions, depending

on whether result caching is enabled and whether the operation

has been visited already in the current period.

The algorithm for identifying real-time threads may appear

to complicate the determination of operation execution times.

For instance, instead of specifying a thread’s execution time,

an operation’s execution time must be specified. However, this

design is instrumental in supporting an OO programming ab-

straction that provides QoS specification and enforcement on

a per-operation basis. The additional information is valuable

to accurately analyze the impact of object-level caching and to

provide finer granularity for reusing RT Infos. In addition,

this approach makes it convenient to measure the execution

times of operations; profiling tools typically provide that in-

formation directly.

4.5.5 Determine Schedulability and Priorities

Starting from terminal nodes that identify threads, the

RT Info dependency graphs are traversed to determine

thread properties, as follows:

Traverse each graph: summing the worst case and typical

execution times along the traversal. To determine the period at

which the thread must run, save the minimum period of all of

the non-zero periods of all of the RT Infos visited during the

traversal.

Assign priorities: depending on the scheduling strategy

used, higher priority is assigned to higher criticality, higher

rate, etc..

Based on the thread properties, and the scheduling strat-

egy used, schedule feasibility is assessed. For example, with

RMA, EDF, or MLF, if the total CPU utilization is below the

utilization bound, then the schedule for the set of threads is

feasible. With MUF, if utilization by all operations in the

critical set is below the utilization bound, then the schedule

is feasible, even though schedulability of operations outside

the critical set may or may not be guaranteed. If the sched-

ule is feasible, request priorities are assigned according to the
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scheduling strategy, i.e., for RMS requests with higher rates

are assigned higher priorities, for MUF requests with higher

criticality levels are assigned higher priorities, etc..

4.5.6 Generate Request Priority Table

The Scheduling Service generates a table of request priority

assignments. Every thread is assigned a unique integer identi-

fier. This identifier is used at run-time by TAO’s ORB endsys-

tem to index into the request priority assignment table. These

priorities can be accessed in O(1) time because all scheduling

analysis is performed off-line.

Output from the Scheduling Service is produced in the form

of an initialized static table that can be compiled and linked

into the executable for run-time, i.e., other than configuration,

runs. The Scheduling Service provides an interface for the

TAO’s ORB endsystem to access the request priorities con-

tained in the table.

The initial configuration run may contain, at worst, initial

estimates of RT Operation execution times. Likewise, it

may include some execution times based on code simulation

or manual instruction counts. Successive iterations should in-

clude actual measured execution times. The more accurate the

input, the more reliable the schedulability assessment.

Off-line configuration runs can be used to fill in the

Dependency Info arrays and calibrate the execution times

of the RT Info instances for each of the RT Operations.

The initial implementation of the Scheduling Service requires

that this input be gathered manually. TAO’s Real-time Event

Service [10] fills in the Dependency Info arrays for its

suppliers. Therefore, applications that manage all of their real-

time activity through TAO’s Event Service do not require man-

ual collection of dependency information.

One user of the Scheduling Service has written a thin layer

interface for calibrating the RT Info execution times on Vx-

Works, which provides a system call for timing the execution

of a function. During a configuration run, conditionally com-

piled code issues that system call for each RT Operation

and stores the result in the RT Info structure.

5 Designing a Real-time ORB Core

Section 4 examined the components used by TAO to ana-

lyze and generate feasible real-time schedules based on ab-

stract descriptions of CORBA operations. To ensure that

these schedules operate correctly at run-time requires an ORB

Core that executes operations efficiently and predictably end-

to-end. This section describes alternative designs for ORB

Core concurrency and connection architectures. Sections 5.1

and 5.2 qualitatively evaluate how the ORB Core connection

and concurrency architectures manage the aggregate process-

ing capacity of ORB endsystem components and application

operations.

Sections 5.3, 5.4, and 5.5 then present quantitative results

that illustrate empirically how the concurrency architectures

used by CORBAplus, COOL, MT-Orbix, and TAO perform on

Solaris, which is a general-purpose OS with real-time exten-

sions, and Chorus Classix, which is a real-time operating sys-

tem. CORBAplus and MT-Orbix were not designed to support

applications with real-time requirements. The Chorus COOL

ORB was designed for embedded systems with small memory

footprints. TAO was designed to support real-time applica-

tions with deterministic and statistical quality of service re-

quirements, as well as best effort requirements, as described

in Section 3.

5.1 Alternative ORB Core Connection Archi-

tectures

There are two general strategies for structuring connection ar-

chitecture in an ORB Core: multiplexed and non-multiplexed.

We describe and evaluate various design alternatives for each

approach below, focusing on client-side connection architec-

tures in our examples.

5.1.1 Multiplexed Connection Architectures

Most conventional ORBs multiplex all client requests emanat-

ing from a single process through one TCP connection to their

corresponding server process. This multiplexed connection ar-

chitecture is commonly used to build scalable ORBs by min-

imizing the number of TCP connections open to each server.

When multiplexing is used, however, a key challenge is to de-

sign an efficient ORB Core connection architecture that sup-

ports concurrent read and write operations.

TCP provides untyped bytestream data transfer semantics.

Therefore, multiple threads cannot read or write from the

same socket concurrently. Likewise, writes to a socket

shared within an ORB process must be serialized. Serializa-

tion is typically implemented by having a client thread acquire

a lock before writing to a shared socket.

For oneway operations, there is no need for additional lock-

ing or processing once a request is sent. Implementing twoway

operations over a shared connection is more complicated,

however. In this case, the ORB Core must allow multiple

threads to concurrently “read” from a shared socket end-

point.

If server replies are multiplexed through a single TCP con-

nection then multiple threads cannot read simultaneously

from that socket endpoint. Instead, the ORB Core must de-

multiplex incoming replies to the appropriate client thread by
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using the GIOP sequence number sent with the original client

request and returned with the servant’s reply.

Several common ways of implementing connection multi-

plexing to allow concurrent read and write operations are

described below.

Active connection architecture: One approach is the active

connection architecture shown in Figure 15. An application
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Figure 15: Active Connection Architecture

thread (1) invokes a twoway operation, which enqueues the

request in the ORB (2). A separate thread in the ORB Core

services this queue (3) and performs a write operation on

the multiplexed socket. The ORB thread selects8 (4) on the

socket waiting for the server to reply,reads the reply from the

socket (5), and enqueues the reply in a message queue (6). Fi-

nally, the application thread retrieves the reply from this queue

(7) and returns back to its caller.

The advantage of the active connection architecture is that it

simplifies ORB implementations by using a uniform queueing

mechanism. In addition, if every socket handles packets of the

same priority level, i.e., packets of different priorities are not

received on the same socket, the active connection can han-

dle these packets in FIFO order without causing request-level

priority inversion [17].

The disadvantage with this architecture, however, is that the

active connection forces an extra context switch on all twoway

operations. To minimize their overhead, many ORBs use a

variant of the active connection architecture described next.

Leader/Followers connection architecture: An alternative

to the active connection model is the leader/followers archi-

tecture shown in Figure 16. As before, an application thread

invokes a twoway operation call (1). Rather than enqueueing

the request in an ORB message queue, however, the request is

8The select call is typically used since a client may have multiple mul-

tiplexed connections to multiple servers.
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Figure 16: Leader/Follower Connection Architecture

sent across the socket immediately (2), using the thread of the

application to perform the write. Moreover, no single thread

in the ORB Core is dedicated to handling all the socket I/O in

the leader/follower architecture. Instead, the first thread that

attempts to wait for a reply on the multiplexed connection will

block in select waiting for a reply (3). This thread is called

the leader.

To avoid corrupting the socket bytestream, only the leader

thread can select on the socket(s). Thus, all client threads

that “follow the leader” to read replies from the shared socket

will block on semaphores managed by the ORB Core. If

replies return from the server in FIFO order this strategy is

optimal since there is no unnecessary processing or context

switching. However, replies may arrive in non-FIFO order.

For instance, the next reply arriving from a server could be for

any one of the client threads blocked on semaphores.

When the next reply arrives from the server, the leader

reads the reply (4). It uses the sequence number returned

in the GIOP reply header to identify the correct thread to re-

ceive the reply. If the reply is for the leader’s own request,

the leader releases the semaphore of the next follower (5) and

returns to its caller (6). The next follower becomes the new

leader and blocks on select.

If the reply is not for the leader, however, the leader must

signal the semaphore of the appropriate thread. The signaled

thread then wakes up, reads its reply, and returns to its caller.

Meanwhile, the leader thread continues to select for the

next reply.

Compared with active connections, the advantage of the

leader/follower connection architecture is that it minimizes the

number of context switches incurred if replies arrive in FIFO

order. The drawback, however, is that the complex implemen-
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tation logic can yield significant locking overhead and prior-

ity inversion. The locking overhead stems from the need to

acquire mutexes when sending requests and to block on the

semaphores while waiting for replies. The priority inversion

occurs if the priorities of the waiting threads are not respected

by the leader thread when it demultiplexes replies to client

threads.

5.1.2 Non-multiplexed Connection Architectures

One technique for minimizing ORB Core priority inversion is

to use a non-multiplexed connection architecture, such as the

one shown in Figure 17. In this connection architecture, each
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Figure 17: Non-multiplexed Connection Architecture

client thread maintains a table of pre-established connections

to servers in thread-specific storage [59]. A separate connec-

tion is maintained in each thread for every priority level, e.g.,

P1, P2, P3, etc. As a result, when a twoway operation is

invoked (1) it shares no socket endpoints with other threads.

Therefore, the write, (2), select (3), read (4), and re-

turn (5) operations can occur without contending for ORB re-

sources with other threads in the process.

The primary benefit of a non-multiplexed connection ar-

chitecture is that it preserves end-to-end priorities and mini-

mizes priority inversion while sending requests through ORB

endsystems. In addition, since connections are not shared,

this design incurs low synchronization overhead because no

additional locks are required in the ORB Core when send-

ing/receiving twoway requests.

The drawback with a non-multiplexed connection architec-

ture is that it can use a larger number of socket endpoints

than the multiplexed connection model, which may increase

the ORB endsystem memory footprint. Therefore, it is most

effective when used for statically configured real-time applica-

tions, such as avionics mission computing systems [17], which

possess a small, fixed number of connections.

5.2 Alternative ORB Core Concurrency Archi-

tectures

There are a variety of strategies for structuring the multi-

threading architecture in an ORB. Below, we describe a num-

ber of alternative ORB Core multi-threading architectures, fo-

cusing on server-side multi-threading.

Thread pool is a common architecture for structuring ORB

multi-threading, particularly for real-time ORBs [44]. Below,

we describe and evaluate several common thread pool archi-

tectures.

5.2.1 The Worker Thread Pool Architecture

This ORB multi-threading architecture uses a design similar to

the active connection architecture described in Section 5.1.1.

As shown in Figure 18, the components in a worker thread
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Figure 18: Server-side Worker Thread Pool Multi-threading

Architecture

pool include an I/O thread, a request queue, and a pool of

worker threads. The I/O thread selects (1) on the socket

endpoints, reads (2) new client requests, and (3) inserts them

into the tail of the request queue. A worker thread in the pool

dequeues (4) the next request from the head of the queue and

dispatches it (5).

The chief advantage of the worker thread pool multi-

threading architecture is its ease of implementation. In par-

ticular, the request queue provides a straightforward pro-

ducer/consumer design. The disadvantages of this model stem

from the excessive context switching and synchronization re-

quired to manage the request queue, as well as request-level

priority inversion caused by connection multiplexing. Since
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different priority requests share the same transport connec-

tion, a high-priority request may wait until a low-priority re-

quest that arrived earlier is processed. Moreover, thread-level

priority inversions can occur if the priority of the thread that

originally reads the request is lower than the priority of the

servant that processes the request.

5.2.2 The Leader/Follower Thread Pool Architecture

The leader/follower thread pool architecture is an optimiza-

tion of the worker thread pool model. It is similar to

the leader/follower connection architecture discussed in Sec-

tion 5.1.1. As shown in Figure 19, a pool of threads is allocated
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Figure 19: Server-side Leader/Follower Multi-threading Ar-

chitecture

and a leader thread is chosen to select (1) on connections

for all servants in the server process. When a request arrives,

this thread reads (2) it into an internal buffer. If this is a valid

request for a servant, a follower thread in the pool is released to

become the new leader (3) and the leader thread dispatches the

upcall (4). After the upcall is dispatched, the original leader

thread becomes a follower and returns to the thread pool. New

requests are queued in socket endpoints until a thread in the

pool is available to execute the requests.

Compared with the worker thread pool design, the chief

advantage of the leader/follower thread pool architecture is

that it minimizes context switching overhead incurred by in-

coming requests. Overhead is minimized since the request

need not be transferred from the thread that read it to another

thread in the pool that processes it. The disadvantages of the

leader/follower architecture are largely the same as with the

worker thread design. In addition, it is harder to implement

the leader/follower model.

5.2.3 Threading Framework Architecture

A very flexible way to implement an ORB multi-threading ar-

chitecture is to allow application developers to customize hook

methods provided by a threading framework. One way of

structuring this framework is shown in Figure 20. This de-
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sign is based on the MT-Orbix thread filter framework, which

is a variant of the Chain of Responsibility pattern [48].

In MT-Orbix, an application can install a thread filter at the

top of a chain of filters. Filters are application-programmable

hooks that can perform a number of tasks. Common tasks in-

clude intercepting, modifying, or examining each request sent

to and from the ORB.

In the thread framework architecture, a connection thread

in the ORB Core reads (1) a request from a socket endpoint

and enqueues the request on a request queue in the ORB Core

(2). Another thread then dequeues the request (3) and passes

it through each filter in the chain successively. The topmost

filter, i.e., the thread filter, determines the thread to handle this

request. In the thread-pool model, the thread filter enqueues

the request into a queue serviced by a thread with the appropri-

ate priority. This thread then passes control back to the ORB,

which performs operation demultiplexing and dispatches the

upcall (4).

The main advantage of a threading framework is its flexibil-

ity. The thread filter mechanism can be programmed by server

developers to support various multi-threading strategies. For

instance, to implement a thread-per-request strategy, the filter

can spawn a new thread and pass the request to this new thread.

Likewise, the MT-Orbix threading framework can be config-
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ured to implement other multi-threading architectures such as

thread-per-servant and thread-per-connection.

There are several disadvantages with the thread framework

design, however. First, since there is only a single chain of fil-

ters, priority inversion can occur because each request must

traverse the filter chain in FIFO order. Second, there may

be FIFO queueing at multiple levels in the ORB endsystem.

Therefore, a high priority request may be processed only after

several lower priority requests that arrived earlier. Third, the

generality of the threading framework may increase locking

overhead, e.g., locks must be acquired to insert requests into

the queue of the appropriate thread.

5.2.4 The Reactor-per-Thread-Priority Architecture

The Reactor-per-thread-priority architecture is based on the

Reactor pattern [43], which integrates transport endpoint de-

multiplexing and the dispatching of the corresponding event

handlers. This threading architecture associates a group of

Reactors with a group of threads running at different priori-

ties. As shown in Figure 21, the components in the Reactor-
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Figure 21: Server-side Reactor-per-Thread-Priority Multi-

threading Architecture

per-thread-priority architecture include multiple pre-allocated

Reactors, each of which is associated with its own real-time

thread of control for each priority level in the ORB. For in-

stance, avionics mission computing systems [10] commonly

execute their tasks in fixed priority threads corresponding to

the rates, e.g., 20 Hz, 10 Hz, 5 Hz, and 1 Hz, at which opera-

tions are called by clients.

Within each thread, the Reactor demultiplexes (1) all in-

coming client requests to the appropriate connection handler,

i.e., connect1, connect2, etc. The connection handler reads

(2) the request and dispatches (3) it to a servant that executes

the upcall at its thread priority.

Each Reactor in an ORB server thread is also associated

with an Acceptor [45]. The Acceptor is a factory that

listens on a particular port number for clients to connect to that

thread and creates a connection handler to process the GIOP

requests. In the example in Figure 21, there is a listener port

for each priority level.

The advantage of the Reactor-per-thread-priority ar-

chitecture is that it minimizes priority inversion and non-

determinism. Moreover, it reduces context switching and syn-

chronization overhead by requiring the state of servants to be

locked only if they interact across different thread priorities. In

addition, this multi-threading architecture supports scheduling

and analysis techniques that associate priority with rate, such

as Rate Monotonic Scheduling (RMS) and Rate Monotonic

Analysis (RMA) [36, 37].

The disadvantage with the Reactor-per-thread-priority

architecture is that it serializes all client requests for each

Reactor within a single thread of control, which can re-

duce parallelism. To alleviate this problem, a variant of this

architecture can associate a pool of threads with each priority

level. Though this will increase potential parallelism, it can in-

cur greater context switching overhead and non-determinism,

which may be unacceptable for certain types of real-time ap-

plications.

The Reactor-per-thread-priority architecture can be inte-

grated seamlessly with the non-multiplexed connection model

described in Section 5.1.2 to provide end-to-end priority

preservation in real-time ORB endsystems, as shown in Fig-

ure 6. In this diagram, theAcceptors listen on ports that cor-

respond to the 20 Hz, 10 Hz, 5 Hz, and 1 Hz rate group thread

priorities, respectively. Once a client connects, its Acceptor

creates a new socket queue and connection handler to service

that queue. The I/O subsystem uses the port number contained

in arriving requests as a demultiplexing key to associate re-

quests with the appropriate socket queue.

The Reactor-per-thread-priority architecture minimizes

priority inversion through the entire distributed ORB endsys-

tem by eagerly demultiplexing incoming requests onto the ap-

propriate real-time thread that services the priority level of the

target servant. As shown in Section 5.4, this design is well

suited for real-time applications with deterministic QoS re-

quirements.

5.3 Benchmarking Testbed

This section describes the experimental testbed we designed

to systematically measure sources of latency and throughput

overhead, priority inversion, and non-determinism in ORB

endsystems. The architecture of our testbed is depicted in Fig-

ure 22. The hardware and software components used in the

experiments are outlined below.

27



C 1C 0

Requests

C n

������������ ��������������������

Client Server

ORB Core

Services

...

...

2

Object Adapter

ATM Switch
Ultra 2 Ultra 2

Figure 22: ORB Endsystem Benchmarking Testbed

5.3.1 Hardware Configuration

The experiments in this section were conducted using a

FORE systems ASX-1000 ATM switch connected to two

dual-processor UltraSPARC-2s running Solaris 2.5.1. The

ASX-1000 is a 96 Port, OC12 622 Mbs/port switch. Each

UltraSPARC-2 contains two 168 MHz Super SPARC CPUs

with a 1 Megabyte cache per-CPU. The Solaris 2.5.1 TCP/IP

protocol stack is implemented using the STREAMS commu-

nication framework [35].

Each UltraSPARC-2 has 256 Mbytes of RAM and an ENI-

155s-MF ATM adaptor card, which supports 155 Megabits

per-sec (Mbps) SONET multimode fiber. The Maximum

Transmission Unit (MTU) on the ENI ATM adaptor is 9,180

bytes. Each ENI card has 512 Kbytes of on-board memory.

A maximum of 32 Kbytes is allotted per ATM virtual circuit

connection for receiving and transmitting frames (for a total of

64 Kb). This allows up to eight switched virtual connections

per card. The CORBA/ATM hardware platform is shown in

Figure 23.

5.3.2 Client/Server Configuration and Benchmarking

Methodology

Server benchmarking configuration: As shown in Fig-

ure 22, our testbed server consists of two servants within an

ORB’s Object Adapter. One servant runs in a higher priority

thread than the other. Each thread processes requests that are

sent to its servant by client threads on the other UltraSPARC-2.

Solaris real-time threads [14] are used to implement ser-

vant priorities. The high-priority servant thread has the highest

real-time priority available on Solaris and the low-priority ser-

vant has the lowest real-time priority.

The server benchmarking configuration is implemented in

the various ORBs as follows:
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155155MBPSMBPS//PORTPORT,,

9,1809,180 MTU MTU))ULTRAULTRA
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Figure 23: Hardware for the CORBA/ATM Testbed

� CORBAplus: which uses the worker thread pool archi-

tecture described in Section 5.2.1. In version 2.1.1 of COR-

BAplus, multi-threaded applications have an event dispatcher

thread and a pool of worker threads. The dispatcher thread

receives the requests and passes them to application worker

threads, which process the requests. In the simplest configura-

tion, an application can choose to create no additional threads

and rely upon the main thread to process all requests.

� miniCOOL: which uses the leader/follower thread pool

architecture described in Section 5.2.2. Version 4.3 of mini-

COOL allows application-level concurrency control. The ap-

plication developer can choose between thread-per-request or

thread-pool. The thread-pool concurrency architecture was

used for our benchmarks since it is better suited than thread-

per-request for deterministic real-time applications. In the

thread-pool concurrency architecture, the application initially

spawns a fixed number of threads. In addition, when the initial

thread pool size is insufficient, miniCOOL can be configured

to dynamically spawn threads on behalf of server applications

to handle requests, up to a maximum limit.

� MT-Orbix: which uses the thread pool framework ar-

chitecture based on the Chain of Responsibility pattern de-

scribed in Section 5.2.3. Version 2.2 of MT-Orbix is used

to create two real-time servant threads at startup. The high-

priority thread is associated with the high-priority servant and

the low-priority thread is associated with the low-priority ser-

vant. Incoming requests are assigned to these threads using the

Orbix thread filter mechanism, as shown in Figure 20. Each

priority has its own queue of requests to avoid priority inver-

sion within the queue. This inversion could otherwise occur

if a high-priority servant and a low-priority servant dequeue
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requests from the same queue.

� TAO: which uses the Reactor-per-thread-priority

concurrency architecture described in Section 5.2.4. Version

1.0 of TAO integrates the Reactor-per-thread-priority con-

currency architecture with a non-multiplexed connection ar-

chitecture, as shown in Figure 21. In contrast, the other three

ORBs multiplex all requests from client threads in each pro-

cess over a single connection to the server process.

Client benchmarking configuration: Figure 22 shows how

the benchmarking test used one high-priority client C0 and n

low-priority clients, C1 . . . Cn. The high-priority client runs

in a high-priority real-time OS thread and invokes operations

at 20 Hz, i.e., it invokes 20 CORBA twoway calls per second.

All low-priority clients have the same lower priority OS thread

priority and invoke operations at 10 Hz, i.e., they invoke 10

CORBA twoway calls per second. In each call, the client sends

a value of type CORBA::Octet to the servant. The servant

cubes the number and returns it to the client.

When the test program creates the client threads, they block

on a barrier lock so that no client begins work until the others

are created and ready to run. When all threads inform the main

thread they are ready to begin, the main thread unblocks all

client threads. These threads execute in an order determined

by the Solaris real-time thread dispatcher. Each client invokes

4,000 CORBA twoway requests at its prescribed rate.

5.4 Performance Results on Solaris

Two categories of tests were used in our benchmarking exper-

iments: blackbox and whitebox.

Blackbox benchmarks: We computed the average twoway

response time incurred by various clients. In addition, we

computed twoway operation jitter, which is the standard de-

viation from the average twoway response time. High levels

of latency and jitter are undesirable for real-time applications

since they degrade worst-case execution time and reduce CPU

utilization. Section 5.4.1 explains the blackbox results.

Whitebox benchmarks: To precisely pinpoint the sources

of priority inversion and performance non-determinism, we

employed whitebox benchmarks. These benchmarks used pro-

filing tools such as UNIX truss and Quantify [62]. These

tools trace and log the activities of the ORBs and measure the

time spent on various tasks, as explained in Section 5.4.2.

Together, the blackbox and whitebox benchmarks indicate

the end-to-end latency/jitter incurred by CORBA clients and

help explain the reason for these results. In general, the re-

sults reveal why ORBs like MT-Orbix, CORBAplus, and mini-

COOL are not yet suited for applications with real-time per-

formance requirements. Likewise, the results illustrate empir-

ically how and why the non-multiplexed, priority-based ORB

Core architecture used by TAO is more suited for many types

of real-time applications.

5.4.1 Blackbox Results

As the number of low-priority clients increases, the number of

low-priority requests sent to the server also increases. Ideally,

a real-time ORB endsystem should exhibit no variance in the

latency observed by the high-priority client, irrespective of the

number of low-priority clients. Our measurements of end-to-

end twoway ORB latency yielded the results in Figure 24.
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Figure 24: Comparative Latency for CORBAplus, MT-Orbix,

miniCOOL, and TAO

Figure 24 shows that as the number of low-priority clients

increases, MT-Orbix and CORBAplus incur significantly

higher latencies for their high-priority client thread. Com-

pared with TAO, MT-Orbix’s latency is 7 times higher and

CORBAplus’ latency is 25 times higher. Note the irregular

behavior of the average latency that miniCOOL displays, i.e.,

from 10 msec latency running 20 low-priority clients down to

2 msec with 25 low-priority clients. Such non-determinism is

clearly undesirable for real-time applications.

The low-priority clients for MT-Orbix, CORBAplus and

miniCOOL also exhibit very high levels of jitter. Compared

with TAO, CORBAplus incurs 300 times as much jitter and

MT-Orbix 25 times as much jitter in the worst case, as shown

in Figure 25. Likewise, miniCOOL’s low-priority clients dis-

play an erratic behavior with several high bursts of jitter, which
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Figure 25: Comparative Jitter for CORBAplus, MT-Orbix,

miniCOOL and TAO

makes it undesirable for deterministic real-time applications.

The blackbox results for each ORB are explained below.

CORBAplus results: CORBAplus incurs priority inversion

at various points in the graph shown in Figure 24. After dis-

playing a high amount of latency for a small number of low-

priority clients, the latency drops suddenly at 10 clients, then

eventually rises again. Clearly, this behavior is not suitable for

deterministic real-time applications. Section 5.4.2 reveals how

the poor performance and priority inversions stem largely from

CORBAplus’ concurrency architecture. Figure 25 shows that

CORBAplus generates high levels of jitter, particularly when

tested with 40, 45, and 50 low-priority clients. These results

show an erratic and undesirable behavior for applications that

require real-time guarantees.

MT-Orbix results: MT-Orbix incurs substantial priority in-

version as the number of low-priority clients increase. After

the number of clients exceeds 10, the high-priority client per-

forms increasingly worse than the low-priority clients. This

behavior is not conducive to deterministic real-time applica-

tions. Section 5.4.2 reveals how these inversions stem largely

from the MT-Orbix’s concurrency architecture on the server.

In addition, MT-Orbix produces high levels of jitter, as shown

in Figure 25. This behavior is caused by priority inversions in

its ORB Core, as explained in Section 5.4.2.

miniCOOL results: As the number of low-priority clients

increase, the latency observed by the high-priority client also

increases, reaching �10 msec, at 20 clients, at which point it

decreases suddenly to 2.5 msec with 25 clients. This erratic

behavior becomes more evident as more low-priority clients

are run. Although the latency of the high-priority client is

smaller than the low-priority clients, the non-linear behavior

of the clients makes miniCOOL problematic for deterministic

real-time applications.

The difference in latency between the high- and the low-

priority client is also unpredictable. For instance, it ranges

from 0.55 msec to 10 msec. Section 5.4.2 reveals how this

behavior stems largely from the connection architecture used

by the miniCOOL client and server.

The jitter incurred by miniCOOL is also fairly high, as

shown in Figure 25. This jitter is similar to that observed

by the CORBAplus ORB since both spend approximately the

same percentage of time executing locking operation. Sec-

tion 5.4.2 evaluates ORB locking behavior.

TAO results: Figure 24 reveals that as the number of low-

priority clients increase from 1 to 50, the latency observed

by TAO’s high-priority client grows by �0.7 msecs. How-

ever, the difference between the low-priority and high-priority

clients starts at 0.05 msec and ends at 0.27 msec. In contrast,

in miniCOOL, it evolves from 0.55 msec to 10 msec, and in

CORBAplus it evolves from 0.42 msec to 15 msec. Moreover,

the rate of increase of latency with TAO is significantly lower

than MT-Orbix, Sun miniCOOL, and CORBAplus. In partic-

ular, when there are 50 low-priority clients competing for the

CPU and network bandwidth, the low-priority client latency

observed with MT-Orbix is more than 7 times that of TAO, the

miniCOOL latency is �3 times that of TAO, and CORBAplus

is �25 times that of TAO.

In contrast to the other ORBs, TAO’s high-priority client al-

ways performs better than its low-priority clients. This demon-

strates that the connection and concurrency architectures in

TAO’s ORB Core can maintain real-time request priorities

end-to-end. The key difference between TAO and other ORBs

is that its GIOP protocol processing is performed on a dedi-

cated connection by a dedicated real-time thread with a suit-

able end-to-end real-time priority. Thus, TAO shares the mini-

mal amount of ORB endsystem resources, which substantially

reduces opportunities for priority inversion and locking over-

head.

The TAO ORB produces very low jitter (less than 11 msecs)

for the low-priority requests and lower jitter (less than 1 msec)

for the high-priority requests. The stability of TAO’s latency is

clearly desirable for applications that require predictable end-

to-end performance.

In general, the blackbox results described above demon-

strate that improper choice of ORB Core concurrency and

connection software architectures can play a significant role

in exacerbating priority inversion and non-determinism. The

fact that TAO achieves such low levels of latency and jitter

when run over the non-real-time Solaris I/O subsystem further

demonstrates the feasibility of using standard OO middleware

like CORBA to support real-time applications.

30



5.4.2 Whitebox Results

For the whitebox tests, we used a configuration of ten con-

current clients similar to the one described in Section 5.3.

Nine clients were low-priority and one was high-priority. Each

client sent 4,000 twoway requests to the server, which had a

low-priority servant and high-priority servant thread.

Our previous experience using CORBA for real-time avion-

ics mission computing [10] indicated that locks constitute a

significant source of overhead, non-determinism and potential

priority inversion for real-time ORBs. Using Quantify and

truss, we measured the time the ORBs consumed perform-

ing tasks like synchronization, I/O, and protocol processing.

In addition, we computed a metric that records

the number of calls made to user-level locks

(mutex lock and mutex unlock) and kernel-level

locks ( lwp mutex lock, lwp mutex unlock,

lwp sema post and lwp sema wait). This metric

computes the average number of lock operations per-request.

In general, kernel-level locks are considerably more expensive

since they incur kernel/user mode switching overhead.

The whitebox results from our experiments are presented

below.

CORBAplus whitebox results: Our whitebox analysis of

CORBAplus reveals high levels of synchronization overhead

from mutex and semaphore operations at the user-level for

each twoway request, as shown in Figure 30. Synchroniza-

tion overhead arises from locking operations that implement

the connection and concurrency architecture used by COR-

BAplus.

As shown in Figure 26, CORBAplus exhibits high synchro-

nization overhead (52%) using kernel-level locks in the client

and the server incurs high levels of processing overhead (45%)

due to kernel-level lock operations.

For each CORBA request/response, CORBAplus’s client

ORB performs 199 lock operations, whereas the server per-

forms 216 user-level lock operations, as shown in Figure 30.

This locking overhead stems largely from excessive dynamic

memory allocation, as described in Section 5.6. Each dynamic

allocation causes two user-level lock operations, i.e., one ac-

quire and one release.

The CORBAplus connection and concurrency architectures

are outlined briefly below.

� CORBAplus connection architecture: The COR-

BAplus ORB connection architecture uses the active connec-

tion model described in Section 5.1.1 and depicted in Fig-

ure 18. This design multiplexes all requests to the same server

through one active connection thread, which simplifies ORB

implementations by using a uniform queueing mechanism.

� CORBAplus concurrency architecture: The COR-

BAplus ORB concurrency architecture uses the thread pool
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Figure 26: Whitebox Results for CORBAplus

architecture described in Section 5.2.1 and depicted in Fig-

ure 18. This architecture uses a single I/O thread to accept

and read requests from socket endpoints. This thread inserts

the request on a queue that is serviced by a pool of worker

threads.

The CORBAplus connection architecture and the server

concurrency architecture help reduce the number of simulta-

neous open connections and simplify the ORB implementa-

tion. However, concurrent requests to the shared connection

incur high overhead because each send operation incurs a con-

text switch. In addition, on the client-side, threads of different

priorities can share the same transport connection, which can

cause priority inversion. For instance, a high-priority thread

may be blocked until a low-priority thread finishes sending its

request. Likewise, the priority of the thread that blocks on

the semaphore to receive a reply from a twoway connection

may not reflect the priority of the request that arrives from the

server, thereby causing additional priority inversion.

miniCOOL whitebox results: Our whitebox analysis of

miniCOOL reveals that synchronization overhead from mu-

tex and semaphore operations consume a large percentage of

the total miniCOOL ORB processing time. As with COR-

BAplus, synchronization overhead in miniCOOL arises from

locking operations that implement its connection and concur-

rency architecture. Locking overhead accounted for�50% on

the client-side and more than 40% on the server-side, as shown

in Figure 27).

For each CORBA request/response, miniCOOL’s client

ORB performs 94 lock operations at the user-level, whereas

the server performs 231 lock operations, as shown in Fig-

ure 30. As with CORBAplus, this locking overhead stems

largely from excessive dynamic memory allocation. Each dy-

namic allocation causes two user-level lock operations, i.e.,

one acquire and one release.

The number of calls per-request to kernel-level locking

mechanisms at the server (shown in Figure 31) are unusually
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Figure 27: Whitebox Results for miniCOOL

high. This overhead stems from the fact that miniCOOL uses

“system scoped” threads on Solaris, which require kernel in-

tervention for all synchronization operations [63].

The miniCOOL connection and concurrency architectures

are outlined briefly below.

� miniCOOL connection architecture: The mini-

COOL ORB connection architecture uses a variant of the

leader/followers model described in Section 5.1.1. This ar-

chitecture allows the leader thread to block in select on

the shared socket. All following threads block on semaphores

waiting for one of two conditions: (1) the leader thread will

read their reply message and signal their semaphore or (2)

the leader thread will read its own reply and signal another

thread to enter and block in select, thereby becoming the

new leader.

� miniCOOL concurrency architecture: The Sun

miniCOOL ORB concurrency architecture uses the

leader/followers thread pool architecture described in

Section 5.2.2. This architecture waits for connections in a

single thread. Whenever a request arrives and validation

of the request is complete, the leader thread (1) signals a

follower thread in the pool to wait for incoming requests and

(2) services the request.

The miniCOOL connection architecture and the server con-

currency architecture help reduce the number of simultaneous

open connections and the amount of context switching when

replies arrive in FIFO order. As with CORBAplus, however,

this design yields high levels of priority inversion. For in-

stance, threads of different priorities can share the same trans-

port connection on the client-side. Therefore, a high-priority

thread may block until a low-priority thread finishes sending

its request. In addition, the priority of the thread that blocks on

the semaphore to access a connection may not reflect the pri-

ority of the response that arrives from the server, which yields

additional priority inversion.

MT-Orbix whitebox results: Figure 28 shows the whitebox

results for the client-side and server-side of MT-Orbix.
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Figure 28: Whitebox Results for MT-Orbix

� MT-Orbix connection architecture: Like miniCOOL,

MT-Orbix uses the leader/follower multiplexed connection ar-

chitecture. Although this model minimizes context switching

overhead, it causes intensive priority inversions.

� MT-Orbix concurrency architecture: In the MT-

Orbix implementation of our benchmarking testbed, multiple

servant threads were created, each with the appropriate pri-

ority, i.e., the high-priority servant had the highest priority

thread. A thread filter was then installed to look at each re-

quest, determine the priority of the request (by examining the

target object), and pass the request to the thread with the cor-

rect priority. The thread filter mechanism is implemented by a

high-priority real-time thread to minimize dispatch latency.

The thread pool instantiation of the MT-Orbix mechanism

described in Section 5.2.3 is flexible and easy to use. However,

it suffers from high levels of priority inversion and synchro-

nization overhead. MT-Orbix provides only one filter chain.

Thus, all incoming requests must be processed sequentially by

the filters before they are passed to the servant thread with an

appropriate real-time priority. As a result, if a high-priority

request arrives after a low-priority request, it must wait until

the low-priority request has been dispatched before the ORB

processes it.

In addition, a filter can only be called after (1) GIOP pro-

cessing has completed and (2) the Object Adapter has deter-

mined the target object for this request. This processing is

serialized since the MT-Orbix ORB Core is unaware of the re-

quest priority. Thus, a higher priority request that arrived after

a low-priority request must wait until the lower priority request

has been processed by MT-Orbix.

MT-Orbix’s concurrency architecture is chiefly responsible

for its substantial priority inversion shown in Figure 24. This

figure shows how the latency observed by the high-priority

client increases rapidly, growing from�2 msecs to�14 msecs

as the number of low-priority clients increase from 1 to 50.
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The MT-Orbix filter mechanism also causes an increase in

synchronization overhead. Because there is just one filter

chain, concurrent requests must acquire and release locks to

be processed by the filter. The MT-Orbix client-side performs

175 user-level lock operations per-request, while the server-

side performs 599 user-level lock operations per-request, as

shown in Figure 30. Moreover, MT-Orbix displays a high

number of kernel-level locks per-request, as shown in Fig-

ure 31.

TAO whitebox results: As shown in Figure 29, TAO ex-

hibits negligible synchronization overhead. TAO performs 40
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Figure 29: Whitebox Results for TAO

user-level lock operations per-request on the client-side, and

32 user-level lock operations per-request on the server-side.

This low amount of synchronization results from the design of

TAO’s ORB Core, which allocates a separate connection for

each priority, as shown in Figure 6. Therefore, TAO’s ORB

Core minimizes additional user-level locking operations per-

request and uses no kernel-level locks in its ORB Core.

� TAO connection architecture: TAO uses a non-

multiplexed connection architecture, which pre-establishes

connections to servants, as described in Section 5.1.2. One

connection is pre-established for each priority level, thereby

avoiding the non-deterministic delay involved in dynamic con-

nection setup. In addition, different priority levels have their

own connection. This design avoids request-level priority in-

version, which would otherwise occur from FIFO queueing

across client threads with different priorities.

� TAO concurrency architecture: TAO supports sev-

eral concurrency architectures, as described in [17]. The

Reactor-per-thread-priority architecture described in Sec-

tion 5.2.4 was used for the benchmarks in this paper. In this

concurrency architecture, a separate thread is created for each

priority level, i.e., each rate group. Thus, the low-priority

client issues CORBA requests at a lower rate than the high-

priority client (10 Hz vs. 20 Hz, respectively).

On the server-side, client requests sent to the high-priority

servant are processed by a high-priority real-time thread. Like-

wise, client requests sent to the low-priority servant are han-

dled by the low-priority real-time thread. Locking overhead is

minimized since these two servant threads share minimal ORB

resources, i.e., they have separate Reactors, Acceptors,

Object Adapters, etc. In addition, the two threads service sep-

arate client connections, thereby eliminating the priority inver-

sion that would otherwise arises from connection multiplex-

ing, as exhibited by the other ORBs we tested.

Locking overhead: Our whitebox tests measured user-level

locking overhead (shown in Figure 30) and kernel-level lock-
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Figure 30: User-level Locking Overhead in ORBs

ing overhead (shown in Figure 31) in the CORBAplus, MT-

Orbix, miniCOOL, and TAO ORBs. User-level locks are typ-

ically used to protect shared resources within a process. A

common example is dynamic memory allocation using global

C++ operators new and delete. These operators allocate

memory from a globally managed heap in each process.

Kernel-level locks are more expensive since they typically

require mode switches between user-level and the kernel. The

semaphore and mutex operations depicted in the whitebox re-

sults for the ORBs evaluated above arise from kernel-level

lock operations.

TAO limits user-level locking by using buffers that are pre-

allocated off the run-time stack. This buffer is subdivided to

accommodate the various fields of the request. Kernel-level
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Figure 31: Kernel-level Locking Overhead in ORBs

locking is minimized since TAO can be configured so that

ORB resources are not shared between its threads.

5.5 Performance Results on Chorus ClassiX

The performance results in Section 5.4 were obtained on

Solaris 2.5.1, which provides real-time scheduling but not

real-time I/O [14]. Therefore, Solaris cannot guarantee the

availability of resources like I/O buffers and network band-

width [17]. Moreover, the scheduling performed by the Solaris

I/O subsystem is not integrated with the rest of its resource

management strategies.

So-called real-time operating systems (RTOS)s typically

provide mechanisms for priority-controlled access to OS re-

sources. This allows applications to ensure that QoS require-

ments are met. RTOS QoS mechanisms typically include real-

time scheduling classes that enforce QoS usage policies, as

well as real-time I/O to specify processing requirements and

operation periods.

Chorus9 ClassiX is a real-time OS that can scale down to

small embedded configurations, as well as scale up to dis-

tributed POSIX-compliant platforms [64]. ClassiX provides

a real-time scheduler that supports several scheduling algo-

rithms, including priority-based FIFO preemptive scheduling.

9Chorus has been purchased by Sun Microsystems.

It supports real-time applications and general-purpose appli-

cations.

The IPC mechanism used on ClassiX, Chorus IPC, provides

an efficient, location-transparent message-based communica-

tion facility on a single board and between multiple intercon-

nected boards. In addition, ClassiX has a TCP/IP protocol

stack, accessible via the Socket API, that enables internet-

working connectivity with other OS platforms.

To determine the impact of a real-time OS on ORB perfor-

mance, this subsection presents blackbox results for TAO and

miniCOOL using ClassiX.

5.5.1 Hardware Configuration:

The following experiments were conducted using two

MVME177 VMEbus single-board computers. The

MVME177 contains a 60 MHz MC68060 processor and

64 Mbytes of RAM. The MVME177 boards are mounted on

a MVME954A 6-slot, 32-bit, VME-compatible backplane. In

addition, each MVME177 module has an 82596CA Ethernet

transceiver interface.

5.5.2 Software Configuration:

The experiments were run on version 3.1 of ClassiX. The

ORBs benchmarked were miniCOOL 4.3 and TAO 1.0. The

client/server configurations run were (1) locally, i.e., client

and server on one board and (2) remotely, i.e., between two

MVME177 boards on the same backplane.

The client/server benchmarking configuration implemented

is the same10 as the one run on Solaris 2.5.1 that is described

in Section 5.3.2. MiniCOOL was configured to use the Chorus

IPC communication facility to send messages on one board or

across boards. This is more efficient than the TCP/IP protocol

stack . In addition, we conducted benchmarks of miniCOOL

and TAO using the TCP protocol. In general, miniCOOL

performs more predictably using Chorus IPC as its transport

mechanism.

5.5.3 Blackbox results:

We computed the average twoway response time incurred by

various clients. In addition, we computed twoway operation

jitter. High levels of latency and jitter are undesirable for real-

time applications since they complicate the computation of

worst-case execution time and reduce CPU utilization.

miniCOOL using Chorus IPC: As the number of low-

priority clients increase, the latency observed by the remote

high- and low-priority client also increases. It reaches �34

10Note the number of low-priority clients used was 5 rather than 50 due to a

bug in ClassiX that caused select to fail if used to wait for events on more

than 16 sockets.
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msec, increasing linearly, when the client and the server are

on different processor boards (remote) as shown in Figure 32.
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Figure 32: Latency for miniCOOL with Chorus IPC on Clas-

siX

When the client and server are collocated, the behavior is

more stable on both the high and low-priority client, i.e., they

are essentially identical since their lines in Figure 32 over-

lap. The latencies start at �2.5 msec of latency and reaches

�12.5 msecs. Both high- and low-priority clients incur ap-

proximately the same average latency.

In all cases, the latency for the high-priority client is always

lower than the latency for the low-priority client. Thus, there is

no significant priority inversion, which is expected for a real-

time system. However, there is still variance in the latency

observed by the high-priority client, in both, the remote and

local configurations.

In general, miniCOOL performs more predictably on Clas-

siX than its version for Solaris. This is due to the use of TCP

on Solaris versus Chorus IPC on ClassiX. The Solaris latency

and jitter results were relatively erratic, as shown in the black-

box results from Solaris described in Section 5.4.1.

Figure 33 shows that as the number of low-priority clients

increases, the jitter increases progressively manner, for remote

high- and low-priority clients. In addition, Figure 33 illustrates

that the jitter incurred by miniCOOL’s remote clients is fairly

high. The unpredictable behavior of high- and low-priority

clients is more evident when the client and the server run on

separate processor boards, as shown in Figure 32. Moreover,
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Figure 33: Jitter for miniCOOL with Chorus IPC on ClassiX

Figure 32 illustrates the difference in latency between the local

and remote configurations, which appears to stem from the

latency incurred by the network I/O driver.

miniCOOL using TCP: We also configured the miniCOOL

client/server benchmark to use the Chorus TCP/IP protocol

stack. The TCP/IP implementation on ClassiX is not as ef-

ficient as Chorus IPC. However, it provided a base for com-

parison between miniCOOL and TAO (which uses TCP as its

transport protocol).

The results we obtained for miniCOOL over TCP show that

as the number of low-priority clients increase, the latency ob-

served by the remote high- and low-priority client also in-

creased linearly. The maximum latency was �59 msec, when

the client and the server are on the same processor board (lo-

cal) as shown in Figure 34.

The increase in latency for the local configuration is unusual

since one would expect the ORB to perform best when client

and server are collocated on the same processor. However,

when client and server reside in different processor boards,

illustrated in Figure 35, the average latency was more stable.

This appears to be due to the implementation of the TCP/IP

protocol stack, which may not to be optimized for local IPC.

When the client and server are on separate boards, the be-

havior is similar to the remote clients using Chorus IPC. This

indicates that at some of the bottlenecks reside in the Ethernet

driver.

In all cases, the latency for the high-priority client is al-

ways lower than the latency for the low-priority client, i.e.,

there appears to be no significant priority inversion, which is

expected for a real-time system. However, there is still vari-

ance in the latency observed by the high-priority client, in

both the remote and local configurations, as shown in Fig-

ure 36. The remote configurations incurred the highest vari-
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Figure 34: Latency for miniCOOL-TCP, miniCOOL-IPC, and

TAO-TCP on ClassiX, local configuration
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TAO-TCP on ClassiX, remote configuration
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Figure 36: Jitter for miniCOOL-TCP, miniCOOL-IPC and

TAO-TCP on ClassiX

ance, with the exception of TAO’s remote high-priority clients,

whose jitter remained fairly stable. This stability stems from

TAO’s Reactor-per-thread-priorityconcurrency architecture

described in Section 5.2.4.

TAO using TCP: Figure 34 reveals that as the number of

low-priority clients increase from 0 to 5, the latency observed

by TAO’s high-priority client grows by �0.005 msecs for the

local configuration and Figure 35 shows �1.022 msecs for

the remote one. Although the remote high-priority client per-

forms as well as the local one, the difference between the

low-priority and high-priority remote clients evolves from 0

msec to 6 msec. This increase is unusual and appears to stem

from factors external to the ORBn such as the scheduling al-

gorithm and network latency. In general, TAO performs more

predictably in other platforms tested with higher bandwidth,

e.g. 155 Mbps ATM networks. The local client/server test, in

contrast, perform very predictably and have little increase in

latency.

The TAO ORB produces very low jitter, less than 2 msecs,

for the low-priority requests and lower jitter (less than 1 msec)

for the high-priority requests. On this platform, the exception

is the remote low-priority client, which may be attributed to

the starvation of the low-priority clients by the high-priority

one, and the latency incurred by the network. The stability of

TAO’s latency is clearly desirable for applications that require

predictable end-to-end performance.
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5.6 Evaluation and Recommendations

The results of our benchmarks illustrate the non-deterministic

performance incurred by applications running atop conven-

tional ORBs. In addition, the results show that priority

inversion and non-determinism are significant problems in

conventional ORBs. As a result, these ORBs are not cur-

rently suitable for applications with deterministic real-time

requirements. Based on our results, and our prior experi-

ence [20, 21, 19, 16] measuring the performance of CORBA

ORB endsystems, we suggest the following recommendations

to decrease non-determinism and limit priority inversion in

real-time ORB endsystems.

1. Real-time ORBs should avoid dynamic connection es-

tablishment: ORBs that establish connections dynamically

suffer from high jitter. Thus, performance seen by individ-

ual clients can vary significantly from the average. Neither

CORBAplus, miniCOOL, nor MT-Orbix provide APIs for pre-

establishing connections; TAO provides these APIs as exten-

sions to CORBA.

We recommend that APIs to control the pre-establishment

of connections should be defined as an OMG standard for real-

time CORBA [65, 41].

2. Real-time ORBs should minimize dynamic mem-

ory management: Thread-safe implementations of dynamic

memory allocators require user-level locking. For instance, the

C++ new operator allocates memory from a global pool shared

by all threads in a process. Likewise, the C++ delete opera-

tion, which releases allocated memory, also requires user-level

locking to update the global shared pool. This lock sharing

contributes to the overhead shown in Figure 30. In addition,

locking also increases non-determinism due to contention and

queueing.

We recommend that real-time ORBs avoid excessive shar-

ing of dynamic memory locks via the use of mechanisms such

as thread-specific storage [59], which allocates memory from

separate heaps that are unique to each thread.

3. Real-time ORBs should avoid multiplexing requests

of different priorities over a shared connection: Sharing

connections among multiple threads requires synchronization.

Not only does this increase locking overhead, but it also in-

creases opportunities for priority inversion. For instance, high-

priority requests can be blocked until low-priority threads re-

lease the shared connection lock. Priority inversion can be

further exacerbated if multiple threads with multiple levels of

thread priorities share common locks. For instance, medium

priority threads can preempt a low-priority thread that is hold-

ing a lock required by a high-priority thread, which can lead

to unbounded priority inversion [13].

We recommend that real-time ORBs allow application de-

velopers to determine whether requests with different pri-

orities are multiplexed over shared connections. Currently,

neither miniCOOL, CORBAplus, nor MT-Orbix support this

level of control, though TAO provides this model by default.

4. Real-time ORB concurrency architectures should be

flexible, efficient, and predictable: Many ORBs, such as

miniCOOL and CORBAplus, create threads on behalf of

server applications. This design is inflexible since it prevents

application developers from customizing ORB performance

via a different concurrency architecture. Conversely, other

ORB concurrency architectures are flexible, but inefficient and

unpredictable, as shown by Section 5.4.2’s explanation of the

MT-Orbix performance results. Thus, a balance is needed be-

tween flexibility and efficiency.

We recommend that real-time ORBs provide APIs that al-

low application developers to select concurrency architec-

tures that are flexible, efficient, and predictable. For in-

stance, TAO offers a range of concurrency architectures, such

as Reactor-per-thread-priority, thread pool, and thread-per-

connection. Developers can configure TAO [25] to mini-

mize unnecessary sharing of ORB resources by using thread-

specific storage.

5. Real-time ORBs should avoid reimplementing OS mech-

anisms: Conventional ORBs incur substantial performance

overhead because they reimplement native OS mechanisms

for endpoint demultiplexing, queueing, and concurrency con-

trol. For instance, much of the priority inversion and non-

determinism miniCOOL, CORBAplus, and MT-Orbix stem

from the complexity of their ORB Core mechanisms for multi-

plexing multiple client threads through a single connection to

a server. These mechanism reimplement the connection man-

agement and demultiplexing features in the OS in a manner

that (1) increases overhead and (2) does not consider the pri-

ority of the threads that make the requests for twoway opera-

tions.

We recommend that real-time ORB developers attempt to

use the native OS mechanisms as much as possible, e.g., de-

signing the ORB Core to work in concert with the underlying

mechanisms rather than reimplementing them at a higher level.

A major reason that TAO performs predictably and efficiently

is because the connection management and concurrency model

used in its ORB Core is closely integrated with the underlying

OS features.

6. The design of real-time ORB endsystem architectures

should be guided by empirical performance benchmarks:

Our prior research on pinpointing performance bottlenecks

and optimizing middleware like Web servers [66, 67] and

CORBA ORBs [21, 20, 16, 19] demonstrates the efficacy of

a measurement-driven research methodology.

We recommend that the OMG adopt standard real-time

CORBA benchmarking techniques and metrics. These bench-

marks will simplify communication between researchers
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and developers. In addition, they will facilitate the

comparison of performance results and real-time ORB

behavior patterns between different ORBs and different

OS/hardware platforms. The real-time ORB benchmark-

ing test suite described in this section is available at

www.cs.wustl.edu/�schmidt/TAO.html.

6 Using Patterns to Build TAO’s Ex-

tensible ORB Software Architecture

The preceding sections in this paper focused largely on the

QoS requirements for real-time ORB endsystems and de-

scribed how TAO’s scheduling, connection, and concurrency

architectures are structured to meet these requirements. This

section delves deeper into TAO’s software architecture by ex-

ploring the patterns its uses to create dynamically configurable

real-time ORB middleware.

A pattern represents a recurring solution to a software

development problem within a particular context [48, 68].

Patterns help to alleviate the continual re-discovery and re-

invention of software concepts and components by captur-

ing solutions to standard software development problems [69].

For instance, patterns are useful for documenting the structure

and participants in common communication software micro-

architectures like Reactors [43], Active Objects [51], and

Brokers [68]. These patterns are generalizations of object-

structures that have proven useful to build flexible and efficient

event-driven and concurrent communication software such as

ORBs.

To focus the discussion, this section illustrates how we have

applied patterns to develop TAO. A novel aspect of TAO is

its extensible ORB design, which can be customized dynam-

ically to meet specific application QoS requirements and net-

work/endsystem characteristics. As a result, TAO can be ex-

tended and maintained more easily than conventional stati-

cally configured ORBs.

6.1 Why We Need Dynamically Configurable

Middleware

A key motivation for ORB middleware is to offload complex

distributed system infrastructure tasks from application devel-

opers to ORB developers. ORB developers are responsible

for implementing reusable middleware components that han-

dle common tasks, such as interprocess communication, con-

currency, transport endpoint demultiplexing, scheduling, and

dispatching. These components are typically compiled into a

run-time ORB library, linked with application objects that use

the ORB components, and executed in one or more OS pro-

cesses.

Although this separation of concerns can simplify applica-

tion development, it can also yield inflexible and inefficient

applications and middleware architectures. The primary rea-

son is that many conventional ORBs are configured statically

at compile-time and link-time by ORB developers, rather than

dynamically at installation-time or run-time by application

developers. Statically configured ORBs have the following

drawbacks [70, 50]:

Inflexibility: Statically-configured ORBs tightly couple

each component’s implementation with the configuration of

internal ORB components, i.e., which components work to-

gether and how they work together. As a result, extending

statically-configured ORBs requires modifications to existing

source code, which may not be accessible to application de-

velopers.

Even if source code is available, extending statically-

configured ORBs requires recompilation and relinking. More-

over, any currently executing ORBs and their associated ob-

jects must be shutdown and restarted. This static reconfigu-

ration process is not well-suited for application domains like

telecom call processing that require 7�24 availability.

Inefficiency: Statically-configured ORBs can be inefficient,

both in terms of space and time. Space inefficiency can oc-

cur if unnecessary components are always statically config-

ured into an ORB. This can increase the ORB’s memory foot-

print, forcing applications to pay a space penalty for features

they do not require. Overly large memory footprints are par-

ticularly problematic for embedded systems, such as cellular

phones or telecom switch line cards.

Time inefficiency can stem from restricting an ORB to use

statically configured algorithms or data structures for key pro-

cessing tasks. This can make it hard for application developers

to customize an ORB to handle new user-cases. For instance,

real-time avionics systems [10] often can instantiate all their

servants off-line. These systems can benefit from an ORB that

uses perfect hashing or active demultiplexing [16] to demulti-

plex incoming requests to servants. However, ORBs that are

configured statically to use a general-purpose, “one-size-fits-

all” demultiplex strategy will not perform as well for mission-

critical systems.

In theory, the drawbacks with static configuration described

above are internal to ORBs and should not affect application

developers directly. In practice, however, application devel-

opers are inevitably affected since the quality, portability, us-

ability, and performance of the ORB middleware is reduced.

Therefore, an effective way to improve ORB extensibility is to

develop ORB middleware that can be dynamically configured.

Dynamic configuration enables the selective integration of

customized implementations for key ORB strategies, such as

communication, concurrency, demultiplexing, scheduling, and
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dispatching. This allows ORB developers to concentrate on

the functionality of ORB components, without committing

themselves prematurely to a specific configuration of these

components. Moreover, dynamic configuration enables ap-

plication developers and ORB developers to make these deci-

sions very late in the design lifecycle, i.e., at installation-time

or run-time.
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Figure 37: Dimensions of ORB Extensibility

Figure 37 illustrates the following key dimensions of ORB

extensibility:

1. Extensibility to retargeting on new platforms: which

requires that the ORB be implemented using modular com-

ponents that shield it from non-portable system mechanisms,

such as those for threading, communication, and event demul-

tiplexing. OS platforms like POSIX, Win32, VxWorks, and

MVS provide a wide variety of system mechanisms.

2. Extensibility via custom implementation strategies:

which can be tailored to specific application requirements. For

instance, ORB components can be customized to meet peri-

odic deadlines in real-time systems [10]. Likewise, ORB com-

ponents can be customized to account for particular system

characteristics, such as the availability of asynchronous I/O

[16] or high-speed ATM networks [71].

3. Extensibility via dynamic configuration of custom

strategies: which takes customization to the next level by

dynamically linking only those strategies that are necessary

for a specific ORB “personality.” For example, different ap-

plication domains, such as medical systems or telecom call

processing, may require custom combinations of concurrency,

scheduling, or dispatch strategies. Configuring these strate-

gies at run-time from dynamically linked libraries (DLLs) can

(1) reduce the memory footprint of an ORB and (2) make it

possible for application developers to extend the ORB without

requiring access or changes to the original source code.

Below, we describe the patterns applied to enhance the exten-

sibility of TAO along each dimension outlined above.

6.2 Overview of Patterns that Improve ORB

Extensibility

This section uses TAO as a case study to illustrate how patterns

can help application developers and ORB developers build,

maintain, and extend communication software by reducing the

coupling between components. Figure 38 illustrates the pat-

terns used to develop an extensible ORB architecture for TAO.

It is beyond the scope of this section to describe each pattern in
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Figure 38: Relationships Among Patterns Used in TAO

detail or to discuss all the patterns used within TAO. Instead,

our goal is to focus on key patterns and show how they can

improve the extensibility, maintainability, and performance of

real-time ORB middleware. The references contain additional

material on each pattern.

The intent and usage of these patterns are outlined below:

The Wrapper Facade pattern: which simplifies the OS

system programming interface by combining multiple related

OS system mechanisms like the socket API or POSIX threads

into cohesive OO abstractions [48]. TAO uses this pattern to

avoid tedious, non-portable, and non-typesafe programming of

low-level, OS-specific system calls.

The Reactor pattern: which provides flexible event demul-

tiplexing and event handler dispatching [43]. TAO uses this

pattern to notify ORB-specific handlers synchronously when

I/O events occur in the OS. The Reactor pattern drives the

main event loop in TAO’s ORB Core, which accepts connec-

tions and receives/sends client requests/responses.

The Acceptor-Connector pattern: which decouples GIOP

protocol handler initialization from the ORB processing tasks

performed once initialization is complete [45]. TAO uses this

pattern in the ORB Core on servers and clients to passively

39



and actively establish GIOP connections that are independent

of the underlying transport mechanisms.

The Active Object pattern: which supports flexible con-

currency architectures by decoupling request reception from

request execution [51]. TAO uses this pattern to facilitate the

use of multiple concurrency strategies that can be configured

flexibly into its ORB Core at run-time.

The Thread-Specific Storage pattern: which allows mul-

tiple threads to use one logically global access point to re-

trieve thread-specific data without incurring locking overhead

for each access [59]. TAO uses this pattern to minimize lock

contention and priority inversion for real-time applications.

The Strategy pattern: which provides an abstraction for se-

lecting one of several candidate algorithms and packaging it

into an object [48]. This pattern is the foundation of TAO’s ex-

tensible software architecture and makes it possible to config-

ure custom ORB strategies for concurrency, communication,

scheduling, and demultiplexing.

The Abstract Factory pattern: which provides a single

factory that builds related objects. TAO uses this pattern to

consolidate its dozens of Strategy objects into a manageable

number of abstract factories that can be reconfigured en masse

into clients and servers conveniently and consistently. TAO

components use these factories to access related strategies

without explicitly specifying their subclass name [48].

The Service Configurator pattern: which permits dynamic

run-time configuration of abstract factories and strategies in an

ORB [50]. TAO uses this pattern to dynamically interchange

abstract factory implementations in order to customize ORB

personalities at run-time.

It is important to note that the patterns described in this sec-

tion are not limited to ORBs or communication middleware.

They have been applied in many other communication appli-

cation domains, including telecom call processing and switch-

ing, avionics flight control systems, multimedia teleconferenc-

ing, and distributed interactive simulations.

6.3 How to Use Patterns to Resolve ORB De-

sign Challenges

In the following discussion, we outline the forces that underlie

the key design challenges that arise when developing extensi-

ble real-time ORBs. We also describe which pattern(s) resolve

these forces and explain how these patterns are used in TAO.

In addition, we show how the absence of these patterns in an

ORB leaves these forces unresolved. To illustrate this latter

point concretely, we compare TAO with SunSoft IIOP, which

is a freely available11 reference implementation of the Inter-

net Inter-ORB Protocol (IIOP) written in C++. TAO evolved

from the SunSoft IIOP release, so it provides an ideal baseline

to evaluate the impact of patterns on the software qualities of

ORB middleware.

6.3.1 Encapsulate Low-level System Mechanisms with

the Wrapper Facade Pattern

Context: One role of an ORB is to shield application-

specific clients and servants from the details of low-level sys-

tems programming. Thus, ORB developers, rather than appli-

cation developers, are responsible for tedious, low-level tasks

like demultiplexing events, sending and receiving requests

from the network, and spawning threads to execute client re-

quests concurrently. Figure 39 illustrates a common approach

used by SunSoft IIOP, which is programmed internally us-

ing system mechanisms like sockets, select, and POSIX

threads directly.
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Figure 39: SunSoft IIOP Operating System Interaction

Problem: Developing an ORB is hard. It is even harder if

developers must wrestle with low-level system mechanisms

written in languages like C, which often yield the following

problems:

� ORB developers must have intimate knowledge of

many OS platforms: Implementing an ORB using system-

level C APIs forces developers to deal with non-portable, te-

dious, and error-prone OS idiosyncrasies, such as using un-

typed socket handles to identify transport endpoints. More-

over, these APIs are not portable across OS platforms. For

example, Win32 lacks POSIX threads and has subtly different

semantics for sockets and select.

� Increased maintenance effort: One way to build an

ORB is to handle portability variations via explicit conditional

compilation directives in ORB source code. Using condi-

tional compilation to address platform-specific variations at

all points of use increases the complexity of the source code,

as shown in Section 6.5. It is hard to maintain and extend such

ORBs since platform-specific details are scattered throughout

the implementation source code files.
11See ftp://ftp.omg.org/pub/interop/ for the SunSoft IIOP

source code.
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� Inconsistent programming paradigms: System mech-

anisms are accessed through C-style function calls, which

cause an “impedance mismatch” with the OO programming

style supported by C++, the language used to implement TAO.

How can we avoid accessing low-level system mechanisms

when implementing an ORB?

Solution ! the Wrapper Facade pattern: An effective

way to avoid accessing system mechanisms directly is to use

the Wrapper Facade pattern. This pattern is a variant of the

Facade pattern [48]. The intent of the Facade pattern is to sim-

plify the interface for a subsystem. The intent of the Wrapper

Facade pattern is more specific: it provides typesafe, modu-

lar, and portable class interfaces that encapsulate lower-level,

stand-alone system mechanisms, such as sockets, select,

and POSIX threads. In general, the Wrapper Facade pattern

should be applied when existing system-level APIs are non-

portable and non-typesafe.

Using the Wrapper Facade pattern in TAO: TAO accesses

all system mechanisms via the wrapper facades provided by

ACE [24]. ACE is an OO framework that implements core

concurrency and distribution patterns for communication soft-

ware. It provides reusable C++ wrapper facades and frame-

work components that are targeted to developers of high-

performance, real-time applications and services across a wide

range of OS platforms, including Win32, most versions of

UNIX, and real-time operating systems like VxWorks, Cho-

rus, and LynxOS.

Figure 40 illustrates how the ACE C++ wrapper facades

improve TAO’s robustness and portability by encapsulating

and enhancing native OS concurrency, communication, mem-

ory management, event demultiplexing, and dynamic linking

mechanisms with typesafe OO interfaces. The OO encapsu-

TAO's  ORB  CoreTAO's  ORB  Core

spawn()spawn()

acquire()acquire()

open(),open(),
close(),close(),

recv(), send()recv(), send()

dlopen()dlopen()

dlsym()dlsym()

COMMUNICATIONCOMMUNICATION

SUBSYSTEMSUBSYSTEM

VIRTUALVIRTUAL

 MEMORY MEMORY

SUBSYSTEMSUBSYSTEM

GENERALGENERAL

POSIXPOSIX    &&
    WWININ3232

SERVICESSERVICES

PROCESSPROCESS//
THREADTHREAD

SUBSYSTEMSUBSYSTEM

THREADTHREAD

WRAPPERSWRAPPERS

DYNAMIC

LINKING

SELECT/
IO  COMP

SOCKETS/
TLI

ACE
WRAPPER

FACADES

handle_events()

Figure 40: TAO’s Wrapper Facade Encapsulation

lation provided by ACE alleviates the need for TAO to access

the weakly-typed system APIs directly. Therefore, C++ com-

pilers can detect type system violations at compile-time rather

than at run-time.

The ACE wrapper facades use C++ features to eliminate

performance penalties that would otherwise be incurred from

its additional type safety and layer of abstraction. For instance,

inlining is used to avoid the overhead of calling short meth-

ods. Likewise, static methods are used to avoid the overhead

of passing a C++ this pointer to each invocation.

Although the ACE wrapper facades solve a common devel-

opment problem, they are just the first step towards developing

an extensible and maintainable ORB. The remaining patterns

described in this section build on the encapsulation provided

by the ACE wrapper facades to address more challenging ORB

design issues.

6.3.2 Demultiplexing ORB Core Events using the Reac-

tor Pattern

Context: An ORB Core is responsible for demultiplexing

I/O events from multiple clients and dispatching their asso-

ciated event handlers. For instance, a server-side ORB Core

listens for new client connections and reads/writes GIOP re-

quests/responses from/to connected clients. To ensure re-

sponsiveness to multiple clients, an ORB Core uses OS

event demultiplexing mechanisms to wait for CONNECTION,

READ, and WRITE events to occur on multiple socket handles.

Common event demultiplexing mechanisms include select,

WaitForMultipleObjects, I/O completion ports, and

threads.

Figure 41 illustrates a typical event demultiplexing se-

quence for SunSoft IIOP. In (1), the server enters its event

ORB  COREORB  CORE

1: RUN  EVENT  LOOP

OBJECTOBJECT

ADAPTERADAPTER

APPLICATIONAPPLICATION

2: GET REQUEST

3: BLOCK  FOR  CONNECTION 6: INCOMING

  MESSAGE

5: DISPATCH

SERVANTSERVANT

7: UPCALL

GIOPGIOP

EngineEngine
4: select()

serverserver

endpointsendpoints

Figure 41: SunSoft IIOP Event Loop

loop by (2) calling get request on the Object Adapter.

The get request method then (3) calls the static method

block for connection on the server endpoint.

This method manages all aspects of server-side connection

management, ranging from connection establishment to GIOP

protocol handling. The ORB remains blocked (4) on select
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until the occurrence of I/O event, such as a connection

event or a request event. When a request event occurs,

block for connection demultiplexes that request to a

specific server endpoint and (5) dispatches the event to

that endpoint. The GIOP Engine in the ORB Core then (6) re-

trieves data from the socket and passes it to the Object Adapter,

which demultiplexes it, demarshals it, and (7) dispatches the

appropriate method upcall to the user-supplied servant.

Problem: One way to develop an ORB Core is to hard-

code it to use one event demultiplexing mechanism, such as

select. Relying on just one mechanism is undesirable, how-

ever, since no single scheme is efficient on all platforms or

for all application requirements. For instance, asynchronous

I/O completion ports are very efficient on Windows NT [66],

whereas synchronous threads are the most efficient demulti-

plexing mechanism on Solaris [67].

Another way to develop an ORB Core is to tightly couple its

event demultiplexing code with the code that performs GIOP

protocol processing. For instance, the event demultiplexing

logic of SunSoft IIOP is not a self-contained component. In-

stead, it is closely intertwined with subsequent processing of

client request events by the Object Adapter and IDL skele-

tons. In this case, the demultiplexing code cannot be reused as

a blackbox component by similar communication middleware

applications, such as HTTP servers [66] or video-on-demand

applications. Moreover, if new ORB strategies for threading or

Object Adapter request scheduling algorithms are introduced,

substantial portions of the ORB Core must be re-written.

How then can an ORB implementation decouple itself from

a specific event demultiplexing mechanism and decouple its

demultiplexing code from its handling code?

Solution ! the Reactor pattern: An effective way to re-

duce coupling and increase the extensibility of an ORB Core

is to apply the Reactor pattern [43]. This pattern supports

synchronous demultiplexing and dispatching of multiple event

handlers, which are triggered by events that can arrive concur-

rently from multiple sources. The Reactor pattern simplifies

event-driven applications by integrating the demultiplexing of

events and the dispatching of their corresponding event han-

dlers. In general, the Reactor pattern should be applied when

applications or components like an ORB Core must handle

events from multiple clients concurrently, without becoming

tightly coupled to a single low-level mechanism like select.

It is important to note that applying the Wrapper Facade pat-

tern is not sufficient to resolve the event demultiplexing prob-

lems outlined above. A wrapper facade for select may im-

prove ORB Core portability somewhat. However, this pattern

does not resolve the need to completely decouple the low-level

event demultiplexing logic from the higher-level client request

processing logic in an ORB Core.

Using the Reactor pattern in TAO: TAO uses the Re-

actor pattern to drive the main event loop within its ORB

Core, as shown in Figure 42. A TAO server (1) initi-
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Figure 42: Using the Reactor Pattern in TAO’s Event Loop

ates an event loop in the ORB Core’s Reactor, where

it (2) remains blocked on select until an I/O event oc-

curs. When a GIOP request event occurs, the Reactor

demultiplexes the request to the appropriate event handler,

which is the GIOP Connection Handler that is associ-

ated with each connected socket. The Reactor (3) then calls

Connection Handler::handle input, which (4) dis-

patches the request to TAO’s Object Adapter. The Object

Adapter demultiplexes the request to the appropriate upcall

method on the servant and (5) dispatches the upcall.

The Reactor pattern enhances the extensibility of TAO

by decoupling the event handling portions of its ORB

Core from the underlying OS event demultiplexing mech-

anisms. For example, the WaitForMultipleObjects

event demultiplexing system call can be used on Win-

dows NT, whereas select can be used on UNIX plat-

forms. Moreover, the Reactor pattern simplifies the con-

figuration of new event handlers. For instance, adding a

new Secure Connection Handler that performs en-

cryption/decryption of all network traffic does not affect the

Reactor’s implementation. Finally, unlike the event demul-

tiplexing code in SunSoft IIOP, which is tightly coupled to

one use-case, the ACE implementation of the Reactor pattern

[69] used by TAO has been applied in many other OO event-

driven applications ranging from HTTP servers [66] to real-

time avionics infrastructure [10].
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6.3.3 Managing Connections in an ORB Using Acceptor-

Connector Pattern

Context: Connection management is another key respon-

sibility of an ORB Core. For instance, an ORB Core

that implements the IIOP protocol must establish TCP con-

nections and initialize the protocol handlers for each IIOP

server endpoint. By localizing connection management

logic in the ORB Core, application-specific servants can focus

solely on processing client requests, rather than dealing with

low-level network programming tasks.

An ORB Core is not limited to running over IIOP and TCP

transports, however. For instance, while TCP can transfer

GIOP requests reliably, its flow control and congestion control

algorithms can preclude its use as a real-time protocol [23].

Likewise, it may be more efficient to use a shared memory

transport mechanism when clients and servants are collocated

on the same endsystem. Ideally, an ORB Core should be flex-

ible enough to support multiple transport mechanisms.

Problem: The CORBA architecture explicitly decouples (1)

the connection management tasks performed by an ORB Core

from (2) the request processing performed by application-

specific servants. A common way to implement an ORB’s in-

ternal connection management activities, however, is to use

low-level network APIs like sockets. Likewise, the ORB’s

connection establishment protocol is often tightly coupled

with the communication protocol.

Figure 43 illustrates the connection management structure

of SunSoft IIOP. The client-side of SunSoft IIOP imple-

ORB  COREORB  CORE
1: lookup()

2: connect() 4: accept()

5: read()/write()

5: read()/write()
clientclient

endpointendpoint

clientclient
endpointendpoint

clientclient
endpointendpoint

serverserver
endpointendpoint

listenerlistener
endpointendpoint

serverserver
endpointendpoint

3: select()3: select()

SERVERCLIENT

Figure 43: Connection Management in SunSoft IIOP

ments a hard-coded connection caching strategy that uses a

linked-list of client endpoint objects. As shown in Fig-

ure 43, this list is traversed to find an unused endpoint when-

ever (1) client endpoint::lookup is called. If no un-

used client endpoint to the server is in the cache, a

new connection (2) is initiated; otherwise an existing con-

nection is reused. Likewise, the server-side uses a linked

list of server endpoint objects to generate the read/write

bitmasks required by the (3) select event demultiplexing

mechanism. This list maintains passive transport endpoints

that (4) accept connections and (5) receive requests from

clients connected to the server.

The problem with this design is that it tightly couples (1)

the ORB’s connection management implementation with the

socket network programming API and (2) the TCP/IP con-

nection establishment protocol with the GIOP communication

protocol, yielding the following drawbacks:

1. Too inflexible: If an ORB’s connection management

data structures and algorithms are too closely intertwined, sub-

stantial effort is required to modify the ORB Core. For in-

stance, tightly coupling the ORB to use the socket API makes

it hard to change the underlying transport mechanism, e.g., to

use shared memory rather than sockets. Thus, it can be hard to

port such a tightly coupled ORB Core to new networks, such

as ATM or Fibrechannel, or different network programming

APIs, such as TLI or Win32 Named Pipes.

2. Too inefficient: Many internal ORB strategies can

be optimized by allowing both ORB developers and applica-

tion developers to select appropriate implementations late in

the software development cycle, e.g., after systematic perfor-

mance profiling. For example, to reduce lock contention and

overhead, a multi-threaded, real-time ORB client may need to

store transport endpoints in thread-specific storage [59]. Sim-

ilarly, the concurrency strategy for a CORBA server might

require that each connection run in its own thread to elimi-

nate per-request locking overhead. However, it is hard to ac-

commodate efficient new strategies if connection management

mechanisms are hard-coded and tightly bound with other in-

ternal ORB strategies.

How then can an ORB Core’s connection management com-

ponents support multiple transports and allow connection-

related behaviors to be (re)configured flexibly late in the de-

velopment cycle?

Solution! the Acceptor-Connector pattern: An effective

way to increase the flexibility of ORB Core connection man-

agement and initialization is to apply the Acceptor-Connector

pattern [45]. This pattern decouples connection initialization

from the processing performed once a connection endpoint is

initialized. The Acceptor component in the pattern is re-

sponsible for passive initialization, i.e., the server-side of the

ORB Core. Conversely, the Connector component in the

pattern is responsible for active initialization, i.e., the client-

side of the ORB Core. In general, the Acceptor-Connector pat-

tern should be applied when client/server middleware must al-

low flexible configuration of network programming APIs and

must maintain proper separation of initialization roles.
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Using the Acceptor-Connector pattern in TAO: TAO uses

the Acceptor-Connector pattern in conjunction with the Reac-

tor pattern to handle connection establishment for GIOP/IIOP

communication. Within TAO’s client-side ORB Core, a

Connector initiates connections to servers in response to

an operation invocation or explicit binding to a remote object.

Within TAO’s server-side ORB Core, an Acceptor creates a

GIOP Connection Handler to service each new client

connection. Acceptors and Connection Handlers

both derive from an Event Handler, which enable them

to be dispatched automatically by a Reactor.

TAO’s Acceptors and Connectors can be configured

with any transport mechanisms, such as sockets or TLI, pro-

vided by the ACE wrapper facades. In addition, TAO’s

Acceptor and Connector can be imbued with custom

strategies to select an appropriate concurrency mechanism, as

described in Section 6.3.4.

Figure 44 illustrates the use of Acceptor-Connector strate-

gies in TAO’s ORB Core. When a client (1) invokes a
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Figure 44: Using the Acceptor-Connector Pattern in TAO’s

Connection Management

remote operation, it makes a connect call through the

Strategy Connector. The Strategy Connector

(2) consults its connection strategy to obtain a connection.

In this example the client uses a “caching connection strat-

egy” that recycles connections to the server and only creates

new connections when all existing connections are busy. This

caching strategy minimizes connection setup time, thereby re-

ducing end-to-end request latency.

In the server-side ORB Core, the Reactor notifies

TAO’s Strategy Acceptor to (3) accept newly con-

nected clients and create Connection Handlers. The

Strategy Acceptor delegates the choice of concurrency

mechanism to one of TAO’s concurrency strategies, e.g., reac-

tive, thread-per-connection, thread-per-priority, etc., described

in Section 6.3.4. Once a Connection Handler is acti-

vated (4) within the ORB Core, it performs the requisite GIOP

protocol processing (5) on a connection and ultimately dis-

patches (6) the request to the appropriate servant via TAO’s

Object Adapter.

6.3.4 Simplifying ORB Concurrency using the Active

Object Pattern

Context: Once the Object Adapter has dispatched a client

request to the appropriate servant, the servant executes the re-

quest. Execution may occur in the same thread of control as

the Connection Handler that received it. Conversely,

execution may occur in a different thread, concurrent with

other request executions.

The CORBA specification does not directly address the is-

sue of concurrency within an ORB or a servant. Instead, it

defines an interface on the POA for an application to specify

that all requests be handled by a single thread or be handled

using the ORB’s internal multi-threading policy. In particu-

lar, the POA specification does not allow applications to spec-

ify concurrency models, such as thread-per-request or thread

pools, which makes it inflexible for certain types of applica-

tions [52].

To meet application QoS requirements, it is important

to develop ORBs that manage concurrent processing effi-

ciently [42]. Concurrency allows long-running operations to

execute simultaneously without impeding the progress of other

operations. Likewise, preemptive multi-threading is crucial to

minimize the dispatch latency of real-time systems [10].

Concurrency is often implemented via the multi-threading

capabilities available on OS platforms. For instance, SunSoft

IIOP supports the two concurrency architectures shown in Fig-

ure 45: a single-threaded Reactive architecture and a thread-

per-connection architecture.

SunSoft IIOP’s reactive concurrency architecture uses

select within a single thread to dispatch each arriv-

ing request to an individual server endpoint object,

which subsequently reads the request from the appropri-

ate OS kernel queue. In (1), a request arrives and is

queued by the OS. Then, select fires, (2) notifying the

associated server endpoint of a waiting request. The

server endpoint finally (3) reads the request from the

queue and processes it.

In contrast, SunSoft IIOP’s thread-per-connection architec-

ture executes each server endpoint in its own thread

of control, servicing all requests arriving on that connection

within its thread. After a connection is established, select

waits for events on the connection’s descriptor. When (1) re-

quests are received by the OS, the thread performing select

(2) reads one from the queue and (3) hands it off to a
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server endpoint for processing.

Problem: In many ORBs, the concurrency architecture is

programmed directly using the OS platform’s multi-threading

API, such as the POSIX threads API [72]. However, there are

several drawbacks to this approach:

� Non-portable: Threading APIs are highly platform-

specific. Even industry standards, such as POSIX threads, are

not available on many widely-used OS platforms, including

Win32, VxWorks, and pSoS. Not only is there no direct syn-

tactic mapping between APIs, but there is no clear mapping

of semantic functionality either. For instance, POSIX threads

supports deferred thread cancellation, whereas Win32 threads

do not. Moreover, although Win32 has a thread termination

API, the Win32 documentation strongly recommends not us-

ing it since it does not release all thread resources on exit.

Moreover, even POSIX pthread implementations are non-

portable since many UNIX vendors support different drafts of

the pthreads specification.

� Hard to program correctly: Programming a multi-

threaded ORB is hard since application and ORB developers

must ensure that access to shared data is serialized properly in

the ORB and servants. In addition, the techniques required to

robustly terminate servants executing concurrently in multiple

threads are complicated, non-portable, and non-intuitive.

� Non-extensible: The choice of an ORB concurrency

strategy depends largely on external factors like application

requirements and network/endsystem characteristics. For in-

stance, reactive single-threading [43] is an appropriate strategy

for short duration, compute-bound requests on a uni-processor.

If these external factors change, however, an ORB’s design

should be extensible enough to handle alternative concurrency

strategies, such as thread pool or thread-per-priority.

When ORBs are developed using low-level threading APIs,

however, they are hard to extend with new concurrency strate-

gies without affecting other ORB components. For exam-

ple, adding a thread-per-request architecture to SunSoft IIOP

would require extensive changes in order to (1) store the re-

quest in a thread-specific storage (TSS) variable during proto-

col processing, (2) pass the key to the TSS variable through

the scheduling and demarshaling steps in the Object Adapter,

and (3) access the request stored in TSS before dispatching the

operation on the servant. Therefore, there is no easy way to

modify SunSoft IIOP’s concurrency architecture without dras-

tically changing its internal structure.

How then can an ORB support a simple, extensible, and

portable concurrency mechanism?

Solution! the Active Object pattern: An effective way to

increase the portability, correctness, and extensibility of ORB

concurrency strategies is to apply the Active Object pattern

[51]. This pattern provides a higher-level concurrency archi-

tecture that decouples (1) the thread that initially receives and

processes a client request from (2) the thread that ultimately

executes this request and/or subsequent requests.

While Wrapper Facades provide the basis for portability,

they are simply a thin syntactic veneer over the low-level sys-

tem APIs. Moreover, a facade’s semantic behavior may still

vary across platforms. Therefore, the Active Object pattern de-

fines a higher-level concurrency abstraction that shields TAO

from the complexity of low-level thread facades. By raising

the level of abstraction for ORB developers, the Active Object

pattern makes it easier to define more portable, flexible, and

easy to program ORB concurrency strategies.

In general, the Active Object pattern should be used when

an application can be simplified by centralizing the point

where concurrency decisions are made. This pattern gives de-

velopers the flexibility to insert decision points between each

request’s initial reception and its ultimate execution. For in-

stance, developers could decide whether or not to spawn a

thread-per-connection or a thread-per-request.

Using the Active Object pattern in TAO: TAO uses

the Active Object pattern to transparently allow a GIOP

Connection Handler to execute requests either reac-

tively by borrowing the Reactor’s thread of control or actively

by running in its own thread of control. The sequence of steps

is shown in Figure 46.

The processing shown in Figure 46 is triggered when (1) a

Reactor notifies the Connection Handler that an I/O

event is pending. Based on the currently configured strat-

egy, e.g., reactive single-threading, thread-per-connection, or

thread pool, the handler (2) determines if it should be active

or passive and acts accordingly. This flexibility is achieved

by inheriting TAO’s ORB Core connection handling classes

from an ACE class called Task. To process a request
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concurrently, therefore, the handler simply (2a) invokes the

Task::activate method. This method spawns a new

thread and invokes a standard hook method. Whether active

or passive, the handler ultimately (3) processes the request.

6.3.5 Reducing Lock Contention and Priority Inversions

with the Thread-Specific Storage Pattern

Context: The Active Object pattern allows applications and

components in the ORB to operate using a variety of concur-

rency strategies, rather than one enforced by the ORB itself.

The primary drawback to concurrency, however, is the need

to serialize access to shared resources. In an ORB, common

shared resources include the dynamic memory heap, an object

reference created by the CORBA::ORB initORB initializa-

tion factory, the Active Object Map in a POA [73], and the

Acceptor, Connector, and Reactor components de-

scribed earlier.

A common way to achieve serialization is to use mutual-

exclusion locks on each resource shared by multiple threads.

However, acquiring and releasing these locks can be expen-

sive. Often, locking overhead negates the performance bene-

fits of concurrency.

Problem: In theory, multi-threading an ORB can improve

performance by executing multiple instruction streams simul-

taneously. In addition, multi-threading can simplify inter-

nal ORB design by allowing each thread to execute syn-

chronously rather than reactively or asynchronously. In prac-

tice, multi-threaded ORBs often perform no better, or even

worse, than single-threaded ORBs due to (1) the cost of acquir-

ing/releasing locks and (2) priority inversions that arise when

high- and low-priority threads contend for the same locks [44].

In addition, multi-threaded ORBs are hard to program due to

complex concurrency control protocols required to avoid race

conditions and deadlocks.

Solution ! the Thread-Specific Storage pattern: An ef-

fective way to minimize the amount of locking required to

serialize access to resources shared within an ORB is to use

the Thread-Specific Storage pattern [59]. This pattern allows

multiple threads in an ORB to use one logically global access

point to retrieve thread-specific data without incurring locking

overhead for each access.

Using the Thread-Specific Storage Pattern in TAO: TAO

uses the Thread-Specific Storage pattern to minimize lock

contention and priority inversion for real-time applications.

Internally, each thread in the TAO uses thread-specific stor-

age to store its ORB Core and Object Adapter components,

e.g., Reactor, Acceptor, Connector, and POA. When

a thread accesses any of these components, they are retrieved

by using a key as an index into the thread’s internal thread-

specific state, as shown in Figure 47. Thus, no additional lock-

ing is required to access ORB state.
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Figure 47: Using the Thread-Specific Storage Pattern TAO

6.3.6 Support Interchangeable ORB Behaviors with the

Strategy Pattern

Context: The alternative concurrency architectures de-

scribed in 6.3.4 are just one of the many strategies that an

extensible ORB may need to support. In general, extensi-

ble ORBs must support multiple request demultiplexing and

scheduling strategies in their Object Adapters. Likewise, they

must support multiple connection establishment, request trans-

fer, and concurrent request processing strategies in their ORB

Cores.

Problem: One way to develop an ORB is to provide only

static, non-extensible strategies, which are typically config-

ured in the following ways:

46



� Preprocessor macros: Some strategies are determined

by the value of preprocessor macros. For example, since

threading is not available on all OS platforms, conditional

compilation is often used to select a feasible concurrency ar-

chitecture.

�Command-line options: Other strategies are controlled

by the presence or absence of flags on the command-line. For

instance, command-line options can be used to enable various

ORB concurrency strategies for platforms that support multi-

threading [42].

While these two configuration approaches are widely used,

they are inflexible. For instance, preprocessor macros only

support compile-time strategy selection, whereas command-

line options convey a limited amount of information to an

ORB. Moreover, these hard-coded configuration strategies are

completely divorced from any code they might affect. Thus,

ORB components that want to use these options must (1) know

of their existence, (2) understand their range of values, and (3)

provide an appropriate implementation for each value. Such

restrictions make it hard to develop highly extensible ORBs

composed from transparently configurable strategies.

How then does an ORB (1) permit replacement of subsets of

component strategies in a manner orthogonal and transparent

to other ORB components and (2) encapsulate the state and

behavior of each strategy so that changes to one component

do not permeate throughout an ORB haphazardly?

Solution! the Strategy pattern: An effective way to sup-

port multiple transparently “pluggable” ORB strategies is to

apply the Strategy pattern [48]. This pattern factors out simi-

larity among algorithmic alternatives and explicitly associates

the name of a strategy with its algorithm and state. Moreover,

the Strategy pattern removes lexical dependencies on strategy

implementations since applications access specialized behav-

iors only through common base class interfaces. In general,

the Strategy pattern should be used when an application’s be-

havior can be configured via multiple strategies that can be

interchanged seamlessly.

Using the Strategy Pattern in TAO: TAO uses a variety of

strategies to factor out behaviors that are typically hard-coded

in conventional ORBs. Several of these strategies are illus-

trated in Figure 48. For instance, TAO supports multiple re-

quest demultiplexing strategies (e.g., perfect hashing vs. active

demultiplexing [16]) and scheduling strategies (i.e., FIFO vs.

rate monotonic vs. maximal urgency first [46]) in its Object

Adapter, as well as connection management strategies (e.g.,

process-wide cached connections vs. thread-specific cached

connections) and handler concurrency strategies (e.g., Reac-

tive vs. variations of Active Objects) in its ORB Core.
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6.3.7 Consolidate ORB Strategies Using the Abstract

Factory Pattern

Context: There are many potential strategy variants sup-

ported by TAO. Table 1 shows a simple example of the strate-

gies used to create two configurations of TAO. Configuration 1

is an avionics application with deterministic real-time require-

ments [10]. Configuration 2 is an electronic medical imaging

application [11] with high throughput requirements. In gen-

eral, the forces that must be resolved to compose all ORB

strategies correctly are the need to (1) ensure the configura-

tion of semantically compatible strategies and (2) simplify the

management of a large number of individual strategies.

Problem: An undesirable side-effect of using the Strategy

pattern extensively in complex software like ORBs is that ex-

tensibility becomes hard to manage for the following reasons:

� Complicated maintenance and configuration: ORB

source code can become littered with hard-coded references

to strategy types, which complicates maintenance and config-

uration. For example, within a particular application domain,

such as real-time avionics or medical imaging, many indepen-

dent strategies must act in harmony. Identifying these strate-

gies individually by name, however, requires tedious replace-

ment of selected strategies in one domain with a potentially

different set of strategies in another domain.

� Semantic incompatibilities: It is not always possible

for certain ORB strategies to interact compatibly. For instance,

the FIFO strategy for scheduling requests shown in Table 1
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Strategy Configuration

Application Concurrency Scheduling Demultiplexing Protocol

1. Avionics Thread-per-priority Rate-based Perfect hashing VME backplane

2. Medical Imaging Thread-per-connection FIFO Active demultiplexing TCP/IP

Table 1: Example Applications and their ORB Strategy Configurations

may not work with the thread-per-priority concurrency archi-

tecture. The problem stems from semantic incompatibilities

between scheduling requests in their order of arrival, i.e., FIFO

queueing vs. dispatching requests based on their relative prior-

ities, i.e., preemptive priority-based thread dispatching. More-

over, some strategies are only useful when certain precondi-

tions are met. For instance, the perfect hashing demultiplexing

strategy is generally feasible only for systems that statically

configure all servants off-line [20].

How can a highly-configurable ORB reduce the complexi-

ties required in managing its myriad of strategies, as well as

enforce semantic consistency when combining discrete strate-

gies?

Solution ! the Abstract Factory pattern: An effective

way to consolidate multiple ORB strategies into semantically

compatible configurations is to apply the Abstract Factory pat-

tern [48]. This pattern provides a single access point that inte-

grates all strategies used to configure an ORB. Concrete sub-

classes then aggregate semantically compatible application-

specific or domain-specific strategies, which can be replaced

en masse in semantically meaningful ways. In general, the

Abstract Factory pattern should be used when an application

must consolidate the configuration of many strategies, each

having multiple alternatives that must vary together.

Using the Abstract Factory pattern in TAO: All of TAO’s

ORB strategies are consolidated into two abstract factories that

are implemented as Singletons [48]. One factory encapsulates

client-specific strategies, the other factory encapsulates server-

specific strategies, as shown in Figure 49. These abstract fac-

tories encapsulate request demultiplexing, scheduling, and dis-

patch strategies in the server, as well as concurrency strategies

in both client and server. By using the Abstract Factory pat-

tern, TAO can configure different ORB personalities conve-

niently and consistently.

6.3.8 Dynamically Configure ORBs with the Service

Configurator Pattern

Context: The cost of many computing resources, such as

memory and CPUs, continue to drop. However, ORBs must

still avoid excessive consumption of finite system resources.
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This parsimony is particularly essential for embedded real-

time systems that require small memory footprints and pre-

dictable CPU processing overhead [74]. Likewise, many ap-

plications can benefit from the ability to extend ORBs dynam-

ically, i.e., by allowing their strategies to be configured at run-

time.

Problem: Although the Strategy and Abstract Factory pat-

terns simplify the customization of ORBs for specific appli-

cation requirements and system characteristics, these patterns

can cause the following problems for extensible ORBs:

�High resource utilization: Widespread use of the Strat-

egy pattern can substantially increase the number of strategies

configured into an ORB, which can increase the system re-

sources required to run an ORB.

� Unavoidable system downtime: If strategies are con-

figured statically at compile-time or static link-time using ab-

stract factories, it is hard to enhance existing strategies or add

new strategies without (1) changing the existing source code

for the consumer of the strategy or the abstract factory, (2) re-

compiling and relinking an ORB, and (3) restarting running

ORBs and their application servants.

Although it does not use the Strategy pattern explicitly,

SunSoft IIOP does permit applications to vary certain ORB

strategies at run-time. However, the different strategies must

be configured statically into SunSoft IIOP at compile-time.

Moreover, as the number of alternatives increases, so does the

amount of code required to implement them. For instance,
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Figure 50 illustrates SunSoft IIOP’s approach to varying the

concurrency strategy.

ORB  CORE

OBJECT  ADAPTER

DEMUXING

CODE

CONCURRENCY

CODE if (do_thread)
  // take lock...

...

if (do_thread)
  // release
lock...

CONNECTION

MANAGEMENT

CODE

if (do_thread)

  // thread...

else

  // single-threaded

Figure 50: SunSoft IIOP Hard-coded Strategy Usage

Each area of code that might be affected by the choice

of concurrency strategy is trusted to act independently of

other areas. This proliferation of decision points adversely

increases the complexity of the code, complicating future

enhancement and maintenance. Moreover, the selection of

the data type specifying the strategy complicates integration

of new concurrency architectures because the type (bool)

would have to change, as well as the programmatic structure,

if (do thread) then ... else ..., that decodes

the strategy specifier into actions.

In general, static configuration is only feasible for a small,

fixed number of strategies. However, using this technique to

configure complex middleware like ORBs complicates main-

tenance, increases system resource utilization, and leads to un-

avoidable system downtime to add or change existing compo-

nents.

How then does an ORB implementation reduce the “overly-

large, overly-static” side-effect of pervasive use of the Strategy

and Abstract Factory patterns?

Solution ! the Service Configurator pattern: An ef-

fective way to enhance the dynamism of an ORB is to

apply the Service Configurator pattern [50]. This pat-

tern uses explicit dynamic linking [70] mechanisms to ob-

tain, utilize, and/or remove the run-time address bind-

ings of custom Strategy and Abstract Factory objects into

an ORB at installation-time and/or run-time. Widely

available explicit dynamic linking mechanisms include the

dlopen/dlsym/dlclose functions in SVR4 UNIX [75]

and the LoadLibrary/GetProcAddress functions in

the WIN32 subsystem of Windows NT [76]. The ACE wrap-

per facades portably encapsulate these OS APIs.

By using the Service Configurator pattern, the behavior

of ORB strategies are decoupled from when implementa-

tions of these strategies are configured into an ORB. For in-

stance, ORB strategies can be linked into an ORB from DLLs

at compile-time, installation-time, or even during run-time.

Moreover, this pattern can reduce the memory footprint of

an ORB by allowing application developers and/or system ad-

ministrators to dynamically link only those strategies that are

necessary for a specific ORB personality.

In general, the Service Configurator pattern should be used

when (1) an application wants to configure its constituent com-

ponents dynamically and (2) conventional techniques, such as

command-line options, are insufficient due to the number of

possibilities or the inability to anticipate the range of values.

Using the Service Configurator pattern in TAO: TAO

uses the Service Configurator pattern in conjunction with the

Strategy and Abstract Factory patterns to dynamically install

the strategies it requires without (1) recompiling or statically

relinking existing code or (2) terminating and restarting an ex-

isting ORB and its application servants. This design allows

the behavior of TAO to be tailored for specific platforms and

application requirements without requiring access to, or mod-

ification of, ORB source code.

In addition, the Service Configurator pattern allows appli-

cations to customize the personality of TAO at run-time. For

instance, during TAO’s ORB initialization phase, it uses the

dynamic linking mechanisms provided by the OS, and encap-

sulated by the ACE wrapper facades, to link in the appropriate

concrete factory for a particular use-case. Figure 51 shows two

factories tuned for different application domains supported by

TAO: avionics and medical imaging.

Rate-basedRate-based
DispatchingDispatching

TAOTAO
PROCESSPROCESS

DLLDLLSS

 Thread-per Thread-per
RateRate

ConcurrencyConcurrency

AvionicsAvionics
ConcreteConcrete
FactoryFactory

PerfectPerfect
HashingHashing

 Service Service
RepositoryRepository

ActiveActive
DemuxingDemuxing

MedicalMedical
ImagingImaging
ConcreteConcrete
FactoryFactory

FIFOFIFO
DispatchingDispatching

Thread-perThread-per
ConnectionConnection

ConcurrencyConcurrency

Figure 51: Using the Service Configurator Pattern in TAO

In particular configuration shown in Figure 51, the avionics

concrete factory has been installed in the process. Applica-

tions using this ORB personality will be configured with a par-

ticular set of ORB concurrency, demultiplexing, and dispatch-

ing strategies. The medical imaging concrete factory resides

in a DLL outside of the existing ORB process. To configure a
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different ORB personality, this factory could be installed dy-

namically during the ORB server’s initialization phase.

6.4 Summary of Design Challenges and Pat-

terns That Resolve Them

Table 2 summarizes the mapping between ORB design chal-

lenges and the patterns we applied to resolve these challenges

in TAO. This table focuses on the forces resolved by individual

Forces Resolving Pattern(s)

Abstracting low-level system calls Wrapper Facade

ORB event demultiplexing Reactor

ORB connection management Acceptor, Connector

Efficient concurrency models Active Object

Pluggable strategies Strategy

Group similar initializations Abstract Factory

Dynamic run-time configuration Service Configurator

Table 2: Summary of Forces and their Resolving Patterns

patterns. However, TAO also benefits from the collaborations

among multiple patterns (shown in Figure 38). For example,

the Acceptor and Connector patterns utilize the Reactor pat-

tern to notify them when connection events occur at the OS

level.

Moreover, patterns often must collaborate to alleviate draw-

backs that arise from applying them in isolation. For instance,

the reason the Abstract Factory pattern is used in TAO is to

avoid the complexity caused by its extensive use of the Strat-

egy pattern. Although the Strategy pattern simplifies the effort

required to customize an ORB for specific application require-

ments and network/endsystem characteristics, it is tedious and

error-prone to manage a large number of strategy interactions

manually.

6.5 Evaluating the Contribution of Patterns to

ORB Middleware

Section 6.3 described the key patterns used in TAO and qual-

itatively evaluated how these patterns helped to alleviate limi-

tations with the design of SunSoft IIOP. The discussion below

goes one step further and quantitatively evaluates the benefits

of applying patterns to ORB middleware.

6.5.1 Where’s the Proof?

Implementing TAO using patterns yielded significant quantifi-

able improvements in software reusability and maintainability.

The results are summarized in Table 3. This table compares

the following metrics for TAO and SunSoft IIOP:

1. The number of methods required to implement key ORB

tasks (such as connection management, request transfer,

socket and request demultiplexing, marshaling, and dis-

patching).

2. The total non-comment lines of code (LOC) for these

methods.

3. The average McCabe Cyclometric Complexity metric

v(G) [77] of the methods. The v(G) metric uses graph

theory to correlate code complexity with the number of

possible basic paths that can be taken through a code

module. In C++, a module is defined as a method.

The use of patterns in TAO significantly reduced the amount

of ad hoc code and the complexity of certain operations. For

instance, the total lines of code in the client-side Connection

Management operations were reduced by a factor of 5. More-

over, the complexity for this component was substantially re-

duced by a factor of 16. These reductions in LOC and com-

plexity stem from the following factors:

� These ORB tasks were the focus of our initial work when

developing TAO.

� Many of the details of connection management and

socket demultiplexing were subsumed by patterns and

components in the ACE framework, in particular, the Ac-

ceptor, Connector, and Reactor.

Other areas did not yield as much improvement. In par-

ticular, GIOP Invocation tasks actually increased in size and

maintained a consistent v(G). There were two reasons for this

increase:

1. The primary pattern applied in these cases was the Wrap-

per Facade, which replaced the low-level system calls

with ACE wrappers but did not factor out common strate-

gies; and

2. SunSoft IIOP did not trap all the error conditions, which

TAO addressed much more completely. Therefore, the

additional code in TAO is necessary to provide a more

robust ORB.

The most compelling evidence that the systematic applica-

tion of patterns can positively contribute to the maintainability

of complex software is shown in Figure 52. This figure illus-

trates the distribution of v(G) over the percentage of affected

methods in TAO. As shown in the figure, most of TAO’s code

is structured in a straightforward manner, with almost 70% of

the methods’ v(G) falling into the range of 1-5.

In contrast, while SunSoft IIOP has a substantial percent-

age (55%) of its methods in that range, many of the remaining

methods (29%) have v(G) greater than 10. The reason for the

difference is that SunSoft IIOP uses a monolithic coding style
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TAO SunSoft IIOP

ORB Task # Methods Total LOC Avg. v(G) # Methods Total LOC Avg. v(G)

Connection Management (Server) 2 43 7 3 190 14

Connection Management (client) 3 11 1 1 64 16

GIOP Message Send (client/Server) 1 46 12 1 43 12

GIOP Message Read (client/Server) 1 67 19 1 56 18

GIOP Invocation (client) 2 205 26 2 188 27

GIOP Message Processing (client/Server) 3 41 2 1 151 24

Object Adapter Message Dispatch (Server) 2 79 6 1 61 10

Table 3: Code Statistics: TAO vs. SunSoft IIOP
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Figure 52: Distribution of v(G) Over ORB Methods

with long methods. For example, the average length of meth-

ods with v(G) over 10 is over 80 LOC. This yields overly-

complex code that is hard to debug and understand.

In TAO, most of the monolithic SunSoft IIOP methods were

decomposed into smaller methods when integrating the pat-

terns. The majority (86%) of TAO’s methods have v(G) under

10. Of that number, nearly 70% have a v(G) between 1 and 5.

The relatively few (14%) methods in TAO with v(G) greater

than 10 are largely unchanged from the original SunSoft IIOP

TypeCode interpreter.

The use of monolithic methods not only increases the effort

of maintaining TAO, it also degrades its performance due to

reduced processor cache hits [18]. Therefore, we plan to ex-

periment with the application of other patterns, such as Com-

mand and Template Method [48], to simplify and optimize

these monolithic methods into smaller, more cohesive meth-

ods. There are a few methods with v(G) greater than 10 which

are not part of the TypeCode interpreter, and they will likely

remain that way. Sometimes solving complex problems in-

volves writing complex code; at such times, localizing com-

plexity is a reasonable recourse.

6.5.2 What are the Benefits?

In general, the use of patterns in TAO provided the following

benefits:

Increased extensibility: Patterns like Abstract Factory,

Strategy, and Service Configurator simplify the configure of

TAO for a particular application domain by allowing extensi-

bility to be “designed into” the ORB. In contrast, middleware

that lacks these patterns is significantly harder to extend. This

article illustrated how patterns were applied to make the TAO

ORB more extensible.

Enhanced design clarity: By applying patterns to TAO, not

only did we develop a more flexible ORB, we also devised a

richer vocabulary for expressing ORB middleware designs. In

particular, patterns capture and articulate the design rationale

for complex object-structures in an ORB. Moreover, patterns

help to demystify and motivate the structure of an ORB by

describing its architecture in terms of design forces that re-

cur in many types of software systems. The expressive power

of patterns enabled us to concisely convey the design of com-

plex software systems like TAO. As we continue to learn about

ORBs and the patterns of which they are composed, we expect

our pattern vocabulary to grow and evolve.

Thus, the patterns presented in this article help to improve

the maintainability of ORB middleware by reducing software

complexity, as shown in Figure 52.

Increased portability and reuse: TAO is built atop the

ACE framework, which provides implementations of many

key communication software patterns [9]. Using ACE sim-

plified the porting of TAO to numerous OS platforms since

most of the porting effort was absorbed by the ACE frame-

work maintainers. In addition, since the ACE framework is
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rich with configurable high-performance, real-time network-

oriented components, we were able to achieve considerable

code reuse by leveraging the framework. This is indicated by

the consistent decrease in lines of code (LOC) in Table 3.

6.5.3 What are the Liabilities?

The use of patterns can also incur some liabilities. We summa-

rize these liabilities below and discuss how we minimize them

in TAO.

Abstraction penalty: Many patterns use indirection to in-

crease component decoupling. For instance, the Reactor pat-

tern uses virtual methods to separate the application-specific

Event Handler logic from the general-purpose event de-

multiplexing and dispatching logic. The extra indirection in-

troduced by using these pattern implementations can poten-

tially decrease performance. To alleviate these liabilities, we

carefully applied C++ programming language features (such

as inline functions and templates) and other optimizations

(such as eliminating demarshaling overhead [18] and demul-

tiplexing overhead [16]) to minimize performance overhead.

As a result, TAO is substantially faster than the original hard-

coded SunSoft IIOP [18].

Additional external dependencies: Whereas SunSoft IIOP

only depends on system-level interfaces and libraries, TAO

depends on the ACE framework. Since ACE encapsulates a

wide range of low-level OS mechanisms, the effort required

to port it to a new platform could potentially be higher than

porting SunSoft IIOP, which only uses a subset of the OS’s

APIs. However, since ACE has been ported to many platforms

already, the effort to port to new platforms is relatively low.

Most sources of platform variation have been isolated to a few

modules in ACE.

7 Concluding Remarks

Advances in distributed object computing technology are oc-

curring at a time when deregulation and global competition are

motivating the need for increased software productivity and

quality. Distributed object computing is a promising paradigm

to control costs through open systems and client/server com-

puting. Likewise, OO design and programming are widely

touted as an effective means to reduce software cost and im-

prove software quality through reuse, extensibility, and modu-

larity.

Meeting the QoS requirements of high-performance and

real-time applications requires more than OO design and pro-

gramming techniques, however. It requires an integrated ar-

chitecture that delivers end-to-end QoS guarantees at multi-

ple levels of a distributed system. The TAO ORB endsystem

described in this paper addresses this need with policies and

mechanisms that span network adapters, operating systems,

communication protocols, and ORB middleware.

We believe the future of real-time ORBs is very promis-

ing. Real-time system development strategies will migrate to-

wards those used for “mainstream” systems to achieve lower

development cost and faster time to market. We have ob-

served real-time embedded software development projects that

have lagged in terms of design and development methodolo-

gies (and languages) by decades. These projects are extremely

costly to evolve and maintain. Moreover, they are so special-

ized that they cannot be adapted to meet new market opportu-

nities.

The flexibility and adaptability offered by CORBA make

it very attractive for use in real-time systems. If the real-

time challenges can be overcome, and the progress reported

in this paper indicates that they can, then the use of Real-time

CORBA is compelling. Moreover, the solutions to these chal-

lenges will sufficiently complex, yet general, that it will be

well worth re-applying them to other projects in domains with

stringent QoS requirements.

The C++ source code for TAO and ACE is freely available at

www.cs.wustl.edu/�schmidt/TAO.html. This re-

lease also contains the real-time ORB benchmarking test suite

described in Section 5.3.
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