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Abstract—In this paper, we present algorithms for the synthesis
of encoding and decoding interface logic that minimizes the av-
erage number of transitions on heavily-loaded global bus lines at
no cost in communication throughput (i.e., one word is transmitted
at each cycle). The distinguishing feature of our approach is that it
does not rely on designer’s intuition, but it automatically constructs
low-transition activity codes and hardware implementation of en-
coders and decoders, given information on word-level statistics. We
propose an accurate method that is applicable to low-width buses,
as well as approximate methods that scale well with bus width.
Furthermore, we introduce an adaptive architecture that automat-
ically adjusts encoding to reduce transition activity on buses whose
word-level statistics are not knowna priori. Experimental results
demonstrate that our approaches well out-perform specialized low-
power encoding schemes presented in the past.

Index Terms—Bus encoding, digital systems, low-power design.

I. INTRODUCTION

OFF-CHIP and on-chip global bus lines in very large scale
integrated (VLSI) circuits are generally loaded with large

capacitances, up to three orders of magnitude larger than the
average on-chip interconnect capacitance. When using standard
CMOS signaling, the power dissipated by bus drivers is propor-
tional to the product of average number of signal transitions and
line capacitance. Hence, one way of reducing power dissipation
on bus drivers is toencodethe data sent on the bus with schemes
that reduce the average number of transitions.

Based on this observation, several researchers have proposed
encoding schemes that reduce the average number of signal tran-
sitions. Some codes [1]–[3] exploitspatial redundancy, i.e., they
increase the number of bus lines, while others exploittemporal
redundancy, i.e., they increase the number of bits transmitted
in successive bus cycles [4]. A few codes do not rely on spa-
tial/temporal redundancy [5], [6].

Theoretical issues in bus encoding for low transition activity
are investigated in [7]. In that work, the authors introduce an in-
formation-theoretic framework for studying low-transition en-
coding, and prove a useful lower bound on minimum achievable
average transition activity. Several redundant and irredundant
codes are then analyzed and compared to the theoretical bounds
to assess their quality. In [8] and [9], the same authors introduce
a generic encoder–decoder architecture that can be specialized
to obtain an entire class of low-transition coding schemes. A
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few personalizations of the generic architecture are described,
and the reductions in transition activity are compared.

In [8] and [9], no systematic method is provided for ob-
taining optimum codes from the generic architecture. Also,
the hardware complexity and cost of encoders and decoders is
not studied in detail. Finally, all presented encoding schemes
assume some knowledge of the statistical properties of the
streams that must be encoded. These issues are addressed in
this work.

We propose a generic encoder–decoder architecture and
we describe an algorithm for customizing it to obtain im-
plementations that minimize bus transition activity, given a
detailed statistical characterization of the target stream. We also
introduce two heuristic approximations of the basic algorithm
that produce low-transition codes and low-complexity encoders
and decoders. These codes are tailored for fast and wide buses,
where encoders and decoders are subject to tight performance
and hardware cost constraints, and for streams whose statis-
tical properties are not known exactly. Finally, we describe a
general-purpose, efficient encoder–decoder architecture that
can be used to reduce bus transition activity for generic data
streams with completely unknown statistical properties. This
architecture is capable ofon-line adaptationof the encoding
scheme to the data stream currently being transmitted.

One desirable feature of our approach is that not only the ab-
stract specification, but also the circuit implementation of en-
coder and decoder is automatically synthesized. In addition, we
offer the possibility of trading off bus activity reduction for in-
terface complexity. In fact, designers can exploit our approach
to rapidly explore the power-saving opportunities enabled by
low-transition encodings.

Experimental results concerning both the quality of the en-
coding schemes and the efficiency of the encoding–decoding
circuitry are very satisfactory for a large variety of data streams.

The rest of the paper is organized as follows. In Section II,
we introduce our generic encoder–decoder architecture and we
study its properties. In Section III, we describe the basic, exact
encoding algorithm, in Section IV we outline approximate vari-
ants to be used for low-cost encoding/decoding of fast and wide
buses, and in Section V we present the adaptive encoder–de-
coder architecture. Experimental results are reported in Sec-
tion VI. Finally, Section VII concludes the work.

II. BASIC CONCEPTS

Consider a data source that generates symbols over alphabet
. We assume that the cardinality of the alphabet is .

Each symbol is represented as a -bit word
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Fig. 1. General codec architecture.

. is the Boolean space such that every
-bit configuration has nonnull probability of being generated

by the data source. Symbolsmust be transmitted over time on
a bus of width . We assume here a discrete-time setting, and
we use the notation to indicate the word transmitted at time

.
The bus width and the communication throughput

1 (one word transmitted in each time period) will be taken as
tight constraints. Such constraints rule out the possibility of con-
sidering space and/or time redundant codes, as well as vari-
able-length codes. The motivation for this assumption is that
spatial redundancy is hardly tolerated in global bus organiza-
tion because it changes pinout and interface specification. Tem-
poral redundancy and variable-length coding do not change bus
width, but introduce variable latency in communication, which
may be unacceptable.

A. General Codec Architecture

We consider a general encoder–decoder (codec, for brevity)
architecture, shown in Fig. 1, which is a specialization of the
source-coding encoder–decoder frameworkintroduced in [8],
[9]. The encoder takes as input the stream of-bit input words

. It consists of three block:

• a register, that stores when the input is ;
• a combinationalencoding function, ,

that generates the encoded word from , ;
• adecorrelator, that translates one-valued bits of into

transitions on the corresponding bus lines (zero-valued
bits correspond to stationary values on the bus lines).

The decoder takes as input the word transmitted over
the bus and computes the original input word . It consists
of three blocks:

• A correlator, that computes the inverse function of the
decorrelator and reconstructs ;

• A combinationaldecoding function, ,
that reconstructs input word from and ;

• A register, that stores when the output of the
decoder is .

Fig. 1 also shows the bus and its input/output buffers (this
block is independent from the codec architecture). We assume
that information is sent over the bus using standard CMOS level
signaling. Also, notice that bus drivers and receivers are clocked
(hence, glitches on the decorrelator outputs are filtered out), and
that the “time of flight” delay of the bus may be nonnegligible.
Additional latency introduced by bus and drivers is not a concern

for our encoding scheme. In the following, wewill assume that
the bus latency is zero time periods without loss of generality.

Before describing the salient features of functionsand ,
we briefly review the operation of decorrelator and correlator.
These two blocks have transfer functions

, and , respectively (we
use symbol “ ” to denote theexclusive-oroperation). It is as-
sumed that when , . The
transfer functions of the two blocks are one the inverse of the
other. The main advantage of using correlator and decorrelator is
that they transform the problem of minimizing the number tran-
sitions on the bus into the problem of minimizing the number of
ones on the decorrelator’s input [4].

Encoding function should minimize the average number
of ones at its output while guaranteeing that the encoded value

can still be uniquely decoded by. The sole purpose of
is to compute the correct value of . Note that both

and exploit past values of the input stream for encoding and
decoding.

Clearly, the architecture of Fig. 1 is a generic scheme that can
be customized by defining functions and . It is possible to
further generalize the architecture by considering more than one
past input words for encoding and decoding. In the general case,
function takes input words to compute a single output word.
Similarly, function takes previously decoded words, as well
as the newly received word to produce the decoded output word.
We will describe the algorithms for computing functionsand

assuming a value of 2. This is for two main reasons;
first, the case 2 can be illustrated in very simple terms, and
generalization to arbitrary is straightforward, once the basic
concepts have been understood. Second, and most important,
hardware complexity of and rapidly increases with, and
schemes with may be inapplicable in practice.

III. EXACT-LOW TRANSITION ENCODING ALGORITHM

The algorithm we present moves from the assumption that a
detailed statistical characterization of the data source is avail-
able. More specifically, we assume the availability of the com-
plete probability distribution of all pairs of consecutive values
in the input stream . In symbols, the probability

is known . We call this distributionjoint prob-
ability distribution (JPD). Furthermore, we assume that JPD is
stationary, i.e., is indepen-
dent of the time index .
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Fig. 2. Code construction algorithm.

The encoding algorithm builds the specification (i.e., the truth
table) of function in an enumerative fashion. Function is
obtained as a by-product. The starting point of the algorithm
is a table (calledcode table) with three columns, labeled ,

(current and past input words) and (current en-
coded word), respectively. The table has rows, one for each
pair of input words. Initially, the third column is empty (i.e., no
encoded word is specified), while the first and second columns
contain all pairs, ordered for decreasing . The
value of the encoded wordcorresponding to each pair
is computed starting from the first row of the code table.

The pseudocode of the algorithm is shown in Fig. 2. Its only
input parameter is the initial code tableCodeTab(a matrix with

rows and three columns). First,Conflictsis initialized. This
array has one element for each row ofCodeTaband it will be
used to store forbidden values of the encoded word. Initially,
any value can be assigned to any row. The external loop scans
the table from the top. For each row, the encoded word(i.e.,
the third column of the table) is assigned by calling function

. This function assigns to the -bit word con-
taining the minimum number of ones that does not belong to
the set of forbidden codes for the row under consideration. As
the algorithm scans the table from top to bottom and assigns
values to the third column, theConflictsarray is updated. The
key point of the algorithm, discussed next, is the update rule for
arrayConflicts. The algorithm terminates when the code for the
last row has been assigned and returns the complete code table.

The need for storing and updating forbidden codes stems
from a fundamentaldecodability constraint. The encoding
function cannot be a 1-to-1 mapping, because its domain is

while its co-domain is . Thus, many input pairs
are necessarily associated to a single output

value . However, this association cannot be arbitrary,
because we need to decode . The decoder function takes
as inputs and and produces as output the correct

value (Fig. 1).
Decodability is ensured if any pair uniquely

identifies a single value . This constraint must be satisfied
for each row of the table. Hence, whenever we assign a code
to the table row with code and in the first two columns, we
must guarantee that the same code is not used for any other row
with the same value of . If this is not done and, for instance,
code is assigned to another row of the table withand
in the first two columns, then the decoder will not have a way

to know if the original data word is or , because both are
associated to the same pair and . The
nature of the decodability constraint is best illustrated through
an example.

Example 1: Consider a simple data stream with four sym-
bols ( and 2). The code table has 16
rows. The first four rows of the initial code table are shown in
Fig. 3(a). No encoded word is assigned yet. Rows are ordered for
decreasing probability. The first and second codes are assigned
in Fig. 3(b). Code word 00 is selected because it contains the
minimum number of ones. The content of arrayConflicts, when
nonempty, is shown to the right of the table.

Assigning code 00 to the first row creates forbidden codes
in rows 3 and 4, because they have the same value as row 1 in
column . For instance, code 00 cannot be assigned to
the third row because the decoder, observing 10 and

00 would not be capable of selecting between 01
and 11. Since 00 is forbidden, we must select a different
code with as few ones as possible. We assign 01 to the third row.
Notice that this choice adds one forbidden code for the fourth
row of the table, as shown in Fig. 3(c).

The complete code table is the truth table for function. The
first two columns are input minterms, the third column is the
output value. The coding function minimizes the probability of
generating ones on its outputs, within the constraints imposed by
unique decodability. Function is obtained by taking columns

and as inputs, and column as output.
It is important to notice that procedure always

finds an encoding that can be uniquely decoded. To prove this
claim, we observe that for each valuein the second column
of the table, there are rows with the same second-column
value. A conflict in code assignment arises only if we try to
assign the same to two rows with the same second-column
value. In that case, we need to choose anotherfor the row
that comes last in the ordering of the table. The worst case is
when we are trying to assign the third-column value to the last
row in the table that has a second-column value(i.e., the th
row with second-column value ), and all previous rows have
been assigned different values of. Fortunately, there are only

rows before the last one, hence there are conflicts
in the worst case, while we have available configurations to
assign the value of the third column. This guarantees that we can
always find a valid code for the third column; thus, procedure

always terminates correctly with a complete code
table.

The complexity of the algorithm is exponential in, because
the number of rows in the code table is . Clearly, compu-
tation of the complete table becomes infeasible for large bus
widths. Besides the obvious computational bottleneck, there are
a few more limitations. First, the knowledge of the JPD may be
incomplete or approximate. For instance, obtaining a reasonably
accurate estimate of for every pair of input words may
be infeasible for large streams. Second, the implementation of
functions and in hardware may be unacceptably large, slow
or power-consuming. In summary, the encoding algorithm may
become impractical for wide global buses in current VLSI cir-
cuits. Hence, we need to resort to approximate algorithms that
scale well with bus width.
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Fig. 3. Example of code construction.

IV. A PPROXIMATELOW-TRANSITION ENCODING ALGORITHMS

A. Clustered Encoding

The most intuitive approximation to the exact algorithm of
Section III consists of partitioning the set of bus lines in smaller
clusters and apply the exact algorithm to each cluster. We call
this solutionclusteredencoding. In this scheme, we privilege
temporalcorrelation with respect tospatial correlation, since
we still base the encoding/decoding process on the statistics of
all possible input pairs, yet smaller than the total bus width.
This solution exhibits an evident trade-off between accuracy and
complexity; the smaller the clusters, the smaller the reduction
in the number of transitions, because the spatial correlation be-
tween bits is partially lost. On the other hand, larger clusters
imply larger encoders and decoders and longer code construc-
tion times, as in the case of the exact algorithm. The criterion
for cluster growth is then very important. Since breaking a word
into clusters decreases the spatial correlation between bits, we
must try to keep in the same cluster bits with high mutual spatial
correlation. The clustering algorithm we have used exploits the
calculation of various types of correlations and is similar to the
one proposed in [6]; the interested reader may refer to that work
for the details.

The architecture generated by the clustered encoding consists
of a set of encoder/decoder pairs, one for each cluster. The en-
coder/decoder logic is synthesized from a two-level description
that represents the code table of each cluster.

B. Discretized Encoding

An alternative approximate solution is to consider only the
most probable pairs of consecutive words in the code, where

. Let us denote such set as. We call this approximate
solutiondiscretizedencoding. The optimality loss in this solu-
tion is due to the fact that we consider all pairs outside the first
most probable as equiprobable. In this method, spatial cor-
relation is privileged, since the statistics are computed on full
words; conversely, we neglect some temporal correlation be-
cause the encoding/decoding process is driven only by a small
set of code-words.

The implementation of the discretized scheme can be real-
ized according to the conceptual architecture of Fig. 4, where
the encoder is shown. The block imple-
ments the encoding function for set. The rest of the words in
the alphabet goes through abackgroundfunction [denoted with

].
The reason for the existence of the background function is

that the architecture of Fig. 4 represents one realization of the
block denoted with in the general architecture of Fig. 1, whose
output feeds the decorrelator. The only constraint onis

Fig. 4. Architecture of the discretized encoder.

that it should not violate the decodability constraint and it should
be invertible. For instance, if we want to transmit on the bus the
words outside without any change, block should implement
a correlator ( ) to cancel
the effect of the decorrelator that follows. Other choices are
possible: Identity and negation are two valid alternatives. Note
that the choice of is not critical because we are assuming that
words outside are transmitted with small probability.

The blockSeldetermines which of the two functions, or
, has to be applied to the current pair of words. In other terms,

Selrepresents the characteristic function of the pairs that belong
to set .

In the clustered architecture, splitting the bus width in
smaller blocks implies smaller encoding and decoding logic.
Conversely, in the discretized solution, encoder and decoder
must still be -input, -output functions. The simplification
in the hardware implementation of encoding and decoding
functions comes from the fact that the specification has a large
don’t care set, namely the set of all word pairs that are not
encoded.

The construction of the encoding function, unlike the clus-
tered approximation, requires the modification of the basic al-
gorithm of Section III.

In discretized encoding, constraints imposed by assigning a
new code to a pair may create a conflict with another pair that
does not belong to. The modified algorithm proceeds as in the
exact case for what concerns the assignment of a code to a given
pair. After the lists of conflicts have been updated, however, the
newly assigned code always affects one of thebackground pairs,
i.e., those outside .

Consider the table rowidentified by the pair ,
and assume that it has been assigned code. The conflict mech-
anism guarantees that this assignment is uniquely decodable
with respect to the pairs in. However, such assignment may
affect one of the background pairs, and precisely the one that has
the last two columns equal to those of, i.e., . This pair
is , since it implements the background
function (assuming that is a correlator).
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Because of this conflict, we are forced to change the code as-
signed to , otherwise and will not be distinguishable
by the decoder. Changing the code for (a background pair)
means bringing into , because it will not be encoded ac-
cording to the background function anymore.

When bringing into , we assign it a new code, say. Ob-
viously, code must neither conflict with any other previously
assigned pair, nor with other background pairs. A good way to
attempt satisfying these two requirements is to assignin such
a way that , that is, . The resulting line
of the code table for would then be: .

The rationale is that the entry for is now potentially con-
flicting with the background entry , because
they share the in the last two columns. After some com-
putations, this conflicting entry can be simplified to ,
which cannot belong to the background pairs, since is
exactly . In some cases not described here, conflict resolution
with background pairs requires complex operations.

The removal of conflicts with background pairs is best illus-
trated through an example.

Example 2: Consider the table at the top, where codes have
been replaced by symbols for the sake of clarity. The pair

represents the pair just assigned by the algorithm, and
is the chosen code. The horizontal line separatesfrom the

background pairs. Below this line, denotes background pair
that is conflicting with

To remove the conflict, has to be taken into , and as-
signed a new value. This value is obtained by solving the
following equation for the unknown

This translates to , that is , as shown
in the table at the bottom.

V. ADAPTIVE ENCODING

The solutions described in Sections III and IV require that
word-pair statistics are known before synthesizing the codec.
This assumption may not hold in some application domains. In

this section, we present an encoding scheme that does not re-
quire anya priori knowledge of the input statistics, and is ca-
pable of on-line adaptation of the encoding to stream statistics.
The proposed solution is approximate in the sense that it realizes
an adaptive scheme that operatesbit-wiserather than word-wise,
and therefore ignores the spatial correlation between bits of the
same code-word. Such approximate solution is needed to allow
a low-cost implementation of the encoding and decoding logic
in terms of area, delay and power.

The basic idea behind the adaptive method is to apply the
algorithm of Section III on the basis of approximate statistical
information, that are collected by observation of the bit stream
over a window of fixed size . Clearly, the window size must be
chosen as a compromise between adaptation speed and delay in
updating the statistics. In particular, the optimal value ofde-
pends on the streams of patterns that must be transmitted; there-
fore, it must be tuned by experimenting with different window
sizes and by selecting the one that performs best on average for
a given set of data. In our case, for each of the input streams
that we have considered, we have tried values ofgoing from
16 to 1024, and we have plotted the corresponding value of the
bus switching activity. From the diagram of Fig. 5, that summa-
rizes the results of our analysis (on theaxis switching activity
values are normalized), we can evince that the highest savings
are achieved, on average, for a value of 64.

The application of the exact algorithm of Section III on a
single bit requires the knowledge of the four joint probabilities

, and , whose ranking determines the op-
timal 1-bit code. In order to deal with integer quantities, that
simplifies the hardware, we will use the occurrence frequen-
cies and instead of the joint probabilities.
Clearly, since the window size is fixed, the joint probabilities
can always be computed by dividing the occurrence frequen-
cies by , e.g., .

If we analyze the frequency distribution, we note that not all
the four occurrences are required. First, the sum of the four oc-
currence frequencies is known; since there are only pairs
over a window of size , .
For practical window sizes, we can then assume that .
Second, the number of zero-to-one and one-to-zero transitions
must be balanced over the observation window, that is

. The equality should be interpreted loosely; in fact, and
differ by one at most.

In conclusion, it is sufficient to consider only two joint prob-
abilities to fully characterize the JPD, since their knowledge im-
plies the other two. Without loss of generality, we choose
and . Reducing the information that is required is beneficial
from the hardware implementation point of view, because there
are fewer quantities that need to be stored.

A. Encoder Architecture

The basic scheme of the architecture for the 1-bit encoder is
shown in Fig. 6. The input , and its previous value
feed some glue logic that triggers the two counters that store the
number of occurrences of the two consecutive pairs (, ).
The counters count over a window size, and are reset after each

cycles. This is realized by awindow counter(WinCnt) that
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Fig. 5. Experimental search of the optimal window size (S).

properly resets the two counters. The window counter is shared
across all the bits in the bus.

The shaded block on the right computes the encoding
based on the knowledge of , and the values of

and . Since there are only four possible combinations
of we can explicitly enumerate all the possible
orderings of these four configurations, that corresponds to con-
sider 24 cases. These orderings can be further reduced by
observing that . We actually need to consider only

6 cases, corresponding to all the possible orderings of three
quantities: , and one of and . For ease of no-
tation, we will denote both and with the symbol ,
to emphasize the fact that they are indistinguishable.

The enumeration of the six orderings results in only four dif-
ferent encoding functions :

a) ;
b) ;
c) ;
d) .

The block inside the shaded area denoted withSorting Net-
work serves the purpose of selecting the proper encoding func-
tion according to the JPD of the current
window. Such decision is taken as follows:

when
when
when
when

(1)

Fig. 6. Architecture of the adaptive encoder.

This selection mechanism of the encoding functions has an
intuitive interpretation; for example, in the first case, since the
most probable pair of symbols is 00, it is reasonable to leave the
bits unchanged, since a zero in the stream will result in no tran-
sition after the decorrelator in the scheme of Fig. 1. Similarly,
when (i.e., a transition) is the most probable symbol, the
transitions are first eliminated by XOR-ing two consecutive bits
(in other terms, by using a correlator). This yields a sequence
of ones, that has to be complemented before being fed to the
decorrelator. The latter example clearly shows how the general
scheme proposed includes the general framework structure of
[8], [9] as a particular case.

It is important to observe that the sorting rules of (1) rely on
two approximations, that may lead to suboptimal results in some
special cases. The first one is due to the assumption that

which is only asymptotically true. The second is that the
above inequalities are always considered asstrict inequalities.



BENINI et al.: ARCHITECTURES AND SYNTHESIS ALGORITHMS FOR POWER-EFFICIENT BUS INTERFACES 975

Fig. 7. Space of the sorting network.

Consider for example the following JPD over a given window
of size 64: 25, 12, 13, and
13. The exact ordering is clearly .
According to our computation, however, we will infer and

from and , and get another JPD: 25,
13, and 13. Therefore, we are not able to distinguish the
two orderings from ,
that require different encoding functions, according to (1).

The decision rules described in (1) can be graphically repre-
sented as in Fig. 7, where the four regions denoted with a), b),
c) and d) correspond to the four different encoding functions.
The regions are delimited by the square of sizein the plane

, and by three lines, that identify the possible rela-
tions between , and .

The boundary lines are obtained by expressing all the in-
equalities in terms of and , replacing thus with

. The line equations are derived as fol-
lows:

Notice that regions a) and b) are symmetric around the line
, denoting the fact that in these two regions the rel-

ative magnitude of and is irrelevant.

B. Implementation

Concerning the hardware implementation of the sorting net-
work, we face two possibilities. The most intuitive choice is to
generate a two-level cover of the sorting network with a software
program, by exploring all the possible orderings and associating
an output value to each of them. This solution may result in ex-
cessively large circuits.

Another option is to realize the sorting network by directly
implementing the decision regions of Fig. 7. We observe that
counters and and the sorting network can be merged
together. The inequalities of Section V-A can be rewritten as

(2)

Instead of computing and , and derive the two
left-hand sides of the above inequalities from them arithmeti-

Fig. 8. Efficient encoder implementation.

cally, we can directly store in a register the quantities needed
to take the decision, i.e., and . The
magnitude of the left-hand sides of the inequalities of (2)
is bounded by , and can then be stored in a register with

bits.
The dashed box in Fig. 8 shows the optimized schematic that

merges the two counters of Fig. 6 and the sorting network for a
window of size 64.

Each counter is replaced by a cheaper register: Registeris
used to store , while register stores .
Each register computes , where is determined
by the values that are present on the signalsand that
detect the zero-to-zero and one-to-one transitions. For example,
for register :

• 0, if ;
• 1, if ;
• , if 10.

The operations for are similar, and are obtained by ex-
changing the last two conditions. At the end of the window, the
conditions of (2) can be obtained by looking at the value con-
tained in the two registers. The values of their two most signif-
icant bits (bit 6 and 7) express the condition that the number
stored in the register exceeds the value of (and cannot
thus be represented using only six bits). By OR-ing these two
bit pairs we obtain two selection signals and that can be
used to directly drive the output multiplexor of Fig. 6. More pre-
cisely, 1 implies , that is, ; similarly,

1 implies .
The four combinations of select the proper en-

coding function, as follows:

Concerning the performance of the encoder, the critical path
runs through the block and the multiplexor, in the upper part
of Fig. 6. Since the encoding functions consist of at most
one gate, we can conclude that in the worst case we have two
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Fig. 9. Architecture of the adaptive decoder.

or three equivalent gates on the critical path, depending on the
multiplexor implementation.

C. Decoder Architecture

The architecture of the decoder, shown in Fig. 9, is very sim-
ilar to that of the encoder, and is not shown here for space
reasons. It computes the same statistics as the encoder, that is

and , that are derived by observing pairs of consecutive
values of the decoded output .

There are two main differences with respect to the encoder.
First, according to the architectural scheme of Fig. 1, the “true”
decoder must take as inputs and . Second, the
decoding functions [block ] must compute
the inverseof the functions in the encoder.

In this case, all the encoding functions of (1) are exactly the
same as their inverse. For example, if is
selected in the encoder, is selected in the
decoder. Notice that the same hardware optimization employed
for the encoder can be used in the decoder as well.

VI. EXPERIMENTAL RESULTS

In this section, we report the data we have collected through
extensive experimentation of the encoding schemes proposed in
this paper. We first consider exact and approximate encodings,
then we focus on the adaptive solution.

A. Exact and Approximate Encoding

We have applied the exact (see Section III) and the approx-
imate variants (see Section IV) of the new encoding algorithm
to a set of real-life streams with various statistical profiles. The
streams we have considered are the following, and we assume
they have to be transmitted over a 32-bit data bus:

• sound: A file;
• m31: An image in the format;
• screen: An image in raw format captured from a screen;
• html: A HTML page containing some images;
• gopher, gzip, gcc, bison, espresso, ghostview, gnuplot,

flex: Executable files.
Table I collects the data of the experiments regarding exact

encoding. ColumnInitial gives the number of transitions
occurring in the stream when no encoding is applied. Column
Exact reports the number of transitions in the stream after
encoding is applied (Trans) and the percentage of achieved
transition savings (Sav). Columnsxor-pbmanddbm-pbmshow
similar data as obtained from application of thexor-pbmand

TABLE I
RESULTS: TRANSITION SAVINGS FOR

EXACT ENCODING

dbm-pbmmethods of [8] and [9]. The motivation for choosing
xor-pbmfor the comparison is that it seems the most promising
for the case of data buses. On the other hand,dbm-pbmhas
been picked because, as pointed out in [8] and [9], it is the one
that, in general, works best.

The numbers clearly support the claim that our exact algo-
rithm out-performs bothxor-pbmanddbm-pbm. The average
savings is, in fact, 94.8% as opposed to 69.6% ofxor-pbmand
69.9% ofdbm-pbm.

Results of the application of our approximate encoding
methods are shown in Table II. Data for the discretized algo-
rithm (column Discretized) consist of three sets of numbers
(columns 20, 50, 100), corresponding
to different numbers of words considered. For the clustered
method (columnClustered), two sets of results are shown: The
first refers to the case of eight clusters of size 4, the second to
the case of four clusters of size 8.

A key observation about the data in Table II is that the
clustered algorithms perform almost as well asxor-pbmand
dbm-pbmwhen the latter are applied to the entire 32-bit bus
(see data in Table I). This is an important result, because
our exact algorithm, as well asxor-pbmanddbm-pbmare of
limited practical applicability, due to the size and complexity
of the encoders and decoders they necessitate. In fact, any code
for which the codec contains a combinational function with a
number of inputs larger than (as for our exact algorithm) or
equal to (as forxor-pbmanddbm-pbm) the bus width, may be
unusable on wide buses. This is because, as bus width grows,
it becomes more difficult building the encoding and decoding
functions with a reasonably small digital circuit.

In our specific case, since the data bus we considered was
32-bit wide, thepbmpart of the encoder could not be synthe-
sized for any of the benchmarks we used in the experiments.
Obviously, the same thing happened for our exact encoder, since
it encompasses a 64-bit combinational function. Conversely, as
the results of Section VI-A1 will show, both the clustered and
the discretized methods have been successfully implemented in
hardware; therefore, the reported savings will translate to real-
istic power reductions.

We note also that the discretized encoding is typically less ef-
fective than the clustered one; this indicates that, for the streams
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TABLE II
RESULTS: TRANSITION SAVINGS FOR APPROXIMATE ENCODING

TABLE III
RESULTS: CODEC IMPLEMENTATION FOR APPROXIMATE ENCODING

we considered, preserving temporal correlation is more impor-
tant than preserving spatial correlation.

1) Codec Implementation:Table III provides data about
codec implementation for the cases of approximate methods.
Synthesis has been carried out using Synopsys Design Com-
piler, with a 0.25 m, 2.5-V technology library from ST
Microelectronics. The circuits have been optimized for speed,
because we assumed that the latency of the encoders and
decoders is the most stringent constraint. The results report
the values of area (inm ), power (in milliwatts), and delay
(in nanoseconds) for both encoders and decoders of each
stream. Power estimates have been obtained with Synopsys
DesignPower with a clock frequency of 400 MHz.

For the discretized method, all three versions (i.e.,
20, 50, and 100) were successfully implemented. As expected,

TABLE IV
RESULTS: TRADE-OFF ANALYSIS OF BUS-LINE CAPACITANCE
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TABLE V
RESULTS: COMPARISON OFEXACT AND BEACH CODING

TABLE VI
RESULTS: COMPARISON OFAPPROXIMATE AND BEACH CODING

the complexity of the codec tends to increase rapidly for larger
values of . Concerning the clustered scheme, only the ver-
sion with eight clusters of size 4 resulted in a compact imple-
mentation. Notice that the values of area, power and delay for
the clustered method are comparable to those of the discretized
method with 50 and 100, although the latter provide
sensibly smaller savings.

We complete our analysis of the synthesized codecs by cal-
culating the break-even point of the trade-off curve between ca-
pacitance per bus line and bus power savings. In other words, for
each data stream, we determine the minimum capacitance each
bus line should have in order for the encoding to pay off. (The in-
terested reader may find a similar investigation for a number of
existing encoding schemes in [10].) From the data in Table IV
we can evince that, while discretized encoding may be appli-
cable only at the interface of off-chip buses (capacitance per bus
line is within a few tens of pF), the cost of the clustered codec is
affordable also in the case of on-chip buses, since capacitance
per bus line never exceeds 10 pF.

2) Comparison to Beach:As our exact and approximate en-
codings, also the Beach scheme introduced in [6] is applicable
in cases where statistics about the stream being transmitted over
the bus are available up-front. On the other hand, the Beach code
is specifically thought for encoding address buses, since code
construction is based on the identification of correlations that
are typical of address sequences.

Tables V and VI compare the results of the application of
exact and approximate encodings to those achieved by the
Beach code when the address streams being transmitted are
those described in [6]. For completeness in the comparison,
Table V also includes the data obtained by usingdbm-pbm
and inc-xor, the latter being the version of the source-coding
framework of [8] and [9] which is most appropriate for address
buses.

We observe that, although more general, the encoding
schemes introduced in this paper are clearly superior to the
Beach method. It is also worth noting the limited effectiveness

TABLE VII
RESULTS: ADAPTIVE ENCODING

of inc-xor. This behavior is justified by the fact that the address
streams we have used are characterized by a low sequentiality;
this in sharp contrast with the assumption on whichinc-xor is
based (i.e., most addresses are consecutive).

B. Adaptive Encoding

The same streams described in Section VI-A have been used
to benchmark the performance of the adaptive encoding scheme
introduced in Section V. Table VII collects all the results, in-
cluding savings in number of bus transitions, encoder imple-
mentation data (numbers for the decoder are not reported since
it has roughly the same realization of the encoder, as mentioned
in Section V-C), and minimum bus-line capacitance required to
guarantee an advantage in the usage of the codec.

Concerning codec implementation (one number only is re-
ported for area, power dissipation and delay, since the synthe-
sized circuit is the same for all streams), we observe that the
adaptive encoder is typically larger than the approximate so-
lutions. One desirable characteristics of the adaptive interface
logic, however, is its negligible delay (0.36 ns), which is at least
five times smaller than the fastest among the other encoders/de-
coders.
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TABLE VIII
RESULTS: COMPARISON OFADAPTIVE AND BUS-INVERT ENCODING

1) Comparison to Bus-Invert:To fairly evaluate the effec-
tiveness of the adaptive scheme, we have compared its perfor-
mance against the Bus-Invert code [4]. Although spatially re-
dundant codes were excluded from our analysis because of our
tight constraint on the bus width, we have included these ex-
periments because the Bus-Invert is the only low-power coding
scheme that does not require anya priori information about the
stream that is transmitted, and can be reasonably compared to
our general-purpose, adaptive scheme.

We have considered three versions of the Bus-Invert code:
The base case (i.e., no clustering of the 32-bit data bus), a two-
cluster solution (each cluster contains 16 bus lines) and a four-
cluster solution (each cluster is of size 8). Data are collected in
Table VIII.

The adaptive code clearly out-performs the nonclustered Bus-
Invert code, it provides results similar to those of the two-cluster
version and it is less effective than the four-cluster implemen-
tation. However, as already mentioned, the Bus-Invert code is
redundant by nature. The clustered versions imply a further in-
crease in the number of bus lines that have to be added to the
bus interface (i.e., one line for each cluster). Since pin count is
normally a scarse resource, these schemes may not be usable in
practice.

VII. CONCLUSION

We have presented novel algorithms for the automatic syn-
thesis of bus interface logic that targets the minimization of the
switching activity on global buses. In particular, we have ad-
dressed the problem of minimizing the bus activity in three dif-
ferent situations.

For buses with limited width and known statistics of the
streams being transmitted, we have proposed a method that
allows us to exactly determine the optimum encoding scheme.
For wider buses, the exact approach is no longer applicable,
since the complexity of the synthesized encoding/decoding
logic may become unmanageable. We have solved this problem
by means of two classes of encoding algorithms. The first one
reduces the size of the codec by separately considering clusters
of bus lines instead of the entire bus width; the second scheme
re-encodes only a subset of the patterns being transmitted,

namely, those with higher occurrence probability. Both these
methods still rely on the assumption of full knowledge of the
input statistics. When this assumption is no longer satisfied,
a different path must be followed. Thus, we have introduced
an adaptive strategy that dynamically modifies the encoding
function depending on the patterns that are being transmitted.

We have benchmarked the capabilities of the proposed en-
coding techniques on a set of data streams; we have also inves-
tigated the trade-off between optimality of the encoding scheme
and complexity of the encoding/decoding circuitry, and we have
pointed out possible domains of applicability of the presented
encoding approaches. The results we have obtained from an ex-
tensive experimentation are satisfactory, since they have out-
performed those produced by the most effective schemes that
are currently available.
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