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Abstract—Wireless communication standards are developed

at an ever-increasing rate of pace, and significant amounts of

effort is put into research for new communication methods and

concepts. On the physical layer, such topics include MIMO,

cooperative communication, and error control coding, whereas

research on the medium access layer includes link control,

network topology, and cognitive radio. At the same time, imple-

mentations are moving from traditional fixed hardware archi-

tectures towards software, allowing more efficient development.

Today, field-programmable gate arrays (FPGAs) and regular

desktop computers are fast enough to handle complete baseband

processing chains, and there are several platforms, both open-

source and commercial, providing such solutions. The aims of this

paper is to give an overview of five of the available platforms and

their characteristics, and compare the features and performance

measures of the different systems.

I. INTRODUCTION

Two of the trends within future wireless communication

to allow higher data rates and lower probabilities of outage

are more aggressive use of the spectrum as well as nodes

cooperating in transmission, allowing relaying of data. One

approach for increased spectrum utilization is cognitive radio

[1], [2], where the nodes can adapt their spectrum usage to

what is currently available, even if these unused frequencies

are within licensed bands. The cooperative approaches are

based around nodes that allow relaying of data. While this

approach has been known for several decades it has had a

recent resurgence [3].

For cognitive radio communication techniques to get closer

to actual implementation and in the end deployment, an impor-

tant step is to demonstrate it using a fully working over-the-air

implementation. Furthermore, a testbed can significantly speed

up simulation and evaluation. By using existing architectures

the development time is reduced. However, there exist several

different architectures that a potential research entity would

like to consider. The objective of this work is to provide

an overview of five of these architectures. Three are already

openly available, namely USRP/GNU Radio, WARP, and

OpenAirInterface, while the other two, WiNC2R and COBRA,

are currently in internal use only. We aim at providing an

overview of these architectures and for the reader to be able

to compare pros and cons in a simple way.

II. USRP/USRP2 AND GNU RADIO

GNU Radio and the Universal Software Radio Peripheral

(USRP) are the software and hardware parts, respectively, of

a complete low-cost SDR platform that has gained widespread

use [4]–[7]. The USRP is a product developed by Ettus

Research, and follows a basic concept with a motherboard

containing ADC/DAC, an FPGA performing sampling rate

conversion, host interface, and plug-in daughterboards contain-

ing frequency-specific RF front-ends. USRP2, shown in Fig. 1,

was developed to improve on the limited communication band-

width of USRP1. In addition, USRP2 provides improvements

in ADC/DAC resolution, an SD card for FPGA image and

firmware, a MIMO connector and synchronization between

units. The USRP 2 connects to the host PC using Gigabit

Ethernet where USRP1 uses USB 2.0.

The USRP1 has slots for two TX and two RX daugh-

terboards with synchronization capabilities allowing 2 × 2

MIMO applications. In contrast, the USRP2 has slots for only

one TX and one RX daughterboard, but allows MIMO with

up to 8 antennas using external synchronization with other

USRP2 units. The available daughterboards are compatible

with both of the USRP versions. Schematics and source

code for the FPGA firmware are provided for both units,

and both schematics and PCB layouts are provided for the

daughterboards, allowing users to easily adjust the hardware
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Fig. 1. The USRP2 perched on top of its host computer.

to specific needs. Performance measurements for one of the

more widely used daughter boards are provided in [8].

All signal processing is done using the open source GNU

Radio software on the host PC. GNU Radio is a hybrid

software package using signal processing primitive blocks

implemented in C++, and applications defined as flow graphs.

Performance can be ensured by a low-level implementation of

computations, whereas applications can be simplified by the

high-level development in Python.

One of the main drawbacks of the platform is that the data

processing latency is severe. The delays are mainly imposed

by the flow graph block structure by which the software is

designed, which leads to large buffers between each block. In

addition, the host interface also imposes delays, especially for

the USRP1, which can not easily be overcome. Typical turn-

around time from reception to transmission can reach several

hundreds of microseconds. However, a stand-alone version

of the USRP2 featuring a larger FPGA, where all the signal

processing is done in the hardware, may solve the problem,

although at an increased application development complexity.

III. WARP: WIRELESS OPEN-ACCESS RESEARCH

PLATFORM

Rice University’s WARP is a scalable, extensible and pro-

grammable wireless platform, built from the ground up, to pro-

totype wireless networks. The platform architecture consists

of four key components: custom hardware, platform support

packages, open-access repository and research applications;

all together providing a reconfigurable wireless testbed for

students and faculty. Figure 2 shows the WARP board along

with radio daughtercards.

A Xilinx Virtex-4 FPGA is the primary communication

processor on the main board. The PowerPC processors embed-

ded in the FPGA provide a complete embedded programming

environment for MAC and network layer design [11], [13].

The dedicated multi-gigabit transceivers (MGTs) provide high

speed board-to-board connections which make the WARP

platform scalable and extendable.

Fig. 2. WARP board with radio daughtercards.

For physical layer design, the platform supports different

levels of design flows from low level VHDL/Verilog RTL

coding to system level MATLAB modeling. Xilinx System

Generator is one of the system-level modeling tools integrated

in MATLAB that provides abstractions for building and debug-

ging high-performance DSP systems in MATLAB/Simulink

using the Xilinx Blockset. Moreover, the WARP board sup-

ports Simulink “hardware co-simulation” that expedites the

simulation and debugging steps.

For MAC and network layer design, the WARP platform

supports C based applications on the PowerPC while interfac-

ing the physical layer implementations in the FPGA fabric.

The Xilinx Platform Studio tool is an integrated programming

environment that is used to control both the physical layer and

MAC layer implementations as shown in Figure 3.
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Fig. 3. WARP system tools and design flow.

The Xilinx FPGAs deployed in WARP boards provide

significant processing resources to implement and test com-

plicated physical (PHY) layers. Currently, two different PHY

have been implemented and fully verified in over-the-air tests.

The single-input single-output (SISO) Orthogonal Frequency

Division Multiplexing (OFDM) transceiver uses the FPGA for

all the baseband processing. The up-conversion to the RF band

is carried out using one radio daughtercard [10] in each WARP

node. Furthermore, a 2 × 2 MIMO OFDM transceiver, i.e.

two daughtercard radio boards for each WARP node, has been

designed for the WARP hardware.
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In addition to the full real-time physical layer, a second

design flow, called WARPLab, can be used for system explo-

ration, as in the case of cooperative communication algorithms

[12]. WARPLab allows rapid prototyping of physical layer

algorithms over the air, by exposing WARP hardware to

MATLAB.

IV. OPENAIRINTERFACE.ORG

OpenAirInterface.org provides open-source hardware and

software solutions for experimental radio network experimen-

tation. The platform is developed by Eurecom. The activity

consists of two hardware platforms, one targetting air interface

experimentation which is mostly software and PC-oriented for

maximum flexibility [14]. The second is FPGA-based and aims

at innovation in system-on-chip architectures [15] for multi-

modal baseband subsystems.

The OpenAirInterface software-based platform currently

aligns its air-interface development with the evolving LTE

standard but provides extensions for mesh networking, par-

ticularly in the MAC and Layer 3 protocol stack. It can be

seen as a mock standard which retains the salient features of

a real radio system, without all the required mechanisms one

would find in a standard used in deployment of commercial

networks. Deployment of tens of nodes with two-way real-time

communication in both cellular and mesh topologies has been

demonstrated in the context of several collaborative projects.

The aim is to study techniques such as multi-cell cooperative

techniques, distributed synchronization, interference coordina-

tion and cancellation.

OpenAirInterface features an open-source software modem

written in C comprising physical and link layer functionali-

ties for cellular and mesh network topologies. This software

modem can be used either for extensive computer simulations

using different channel models or it can be used for real-time

operation with the available hardware. In the latter case, it

is run under the control of the real-time application interface

(RTAI) which is an extension of the Linux operating system. A

picture of the software-based platform (CBMIMO1) is shown

in Fig. 4. It has a native dual RF chain (2 × 2 MIMO

or multiple-frequency) with TDD multiplexing comprising 5

MHz channels at 1900 MHz.

The SoC experimentation platform (ExpressMIMO) is flex-

ible enough to use the same baseband processing resources

for multiple standards. The control is in the software part of

the design, which passes the relevant paremeters to hardware

for specific functionalities. The challenge in the design is

to synchronize all the processing at air-interface in an ef-

ficient manner with minimum resource utilization and high

accuracy. The identified operations are implemented as seven

independent processing blocks, and can be called as hardware

accelerators:

• Pre-processor

• Frontend processor

• Mapper

• Detector

• Channel encoder

(a) (b)

Fig. 4. (a) CBMIMO1 card and (b) CBMIMO1 card with PC.
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• Channel decoder

• Interleaver/de-interleaver

The pre-processor block is used as an interface with the

external A/D and D/A converters (I/Q multiplexing, control

signaling). It also provides several basic signal processing

functionalities like filtering, sample rate adjustment, carrier

frequency adjustment. The mapper and the detector implement

all the modulation schemes ranging from BPSK to QAM256.

The (de)interleaver block, apart from (de)interleaving the data

streams with all options in the different standards, performs the

frame equalization and rate matching operations. The frontend

processor provides the digital signal processing operations

at the air-interface, like channel estimation, data detection,

carrier phase offset (CPO) estimation etc. The channel encoder

implements convolutional encoding, block cyclic codes and

m-sequences. The channel decoder IP block realizes trellis-

based decoding algorithms; Viterbi and Turbo, to decode

convolutional and turbo codes, respectively.

The proposed hardware architecture is subdivided in two

main parts: a high level control module and a digital signal

processing engine. They are implemented in high end Xilinx

Virtex- V FPGAs. Figure 5 depicts the architectural overview

of the system.

a) The control module is based on a SPARC CPU (LEON3

from Gaisler Research) surrounded by its usual pe-
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ripherals, external memories (DRAM, Flash), a PCI-

Express/ExpressCard interface and a dedicated interface

with the DSP engine. The control module is in charge

of controlling the DSP engine, implements some low-

demanding processing (PHY and MAC) and interfaces

the system with the host PC through the PCI-Express /

ExpressCard interface. Most of the MAC layer processing

runs on the host PC while the DSP engine executes most

of the PHY layer processing tasks.

b) The DSP engine is a collection of data processing IP

blocks plugged on a crossbar interconnect. Each IP block

is a highly configurable and parametrizable processing unit

dedicated to one class of algorithms (Fourier transforms,

channel coding, channel decoding, modulation/ demodu-

lation, etc.) The chosen interface between the IP blocks

and the interconnect is a 64 bits Advanced VCI interface.

Each IP block embeds a DMA engine and an 8 bits

microcontroller. The synchronization (inter or intra-blocks)

is based on a set of interrupts signaling the end of memory

transfers and of data processing. The control module pro-

grams the DSP engine by configuring the parameters and

local software routines of the IP blocks.

The baseband architecture is separated into two FPGAs

which can function as stand alone (i.e. without host PC). This

helps to design and implement the architecture, and is also

fruitful to test the design later on. The Interface and Con-

trol FPGA (control module) is responsible to transfer MAC

requests to the Processing-Engine FPGA and control data

direction flow. The Processing-Engine FPGA (DSP Engine)

is responsible for all up-link/downlink signal processing.

The prototype card contains four high-speed dual data

converters (dual A/D and dual D/A) which can be connected

to an external RF. Eurecom can provide a 200MHz–8GHz

flexible RF chain which interconnects with SoC system.

V. WINC2R: THE WINLAB NETWORK CENTRIC

COGNITIVE RADIO HARDWARE PLATFORM

The architecture of the WiNC2R cognitive radio platform,

developed by WINLAB at Rutgers University, is based on

the recognition of the workload characteristic of multi-layer

wireless communication protocol processing, which are quite

different from the embedded computing applications, and even

more so from the ones of the general purpose computing

applications. To name a few, the context switching is very

frequent (it is needed for every packet, or even for every packet

processing unit), there is no spatial and temporal locality of

data, workload size is small, processing time constraints are

very stringent, and the data input and output is very intensive.

Most importantly the processing flow is driven by the events

rather than by the program counter as in the stored program

paradigm. The events driving the flow can be time or data

based, and both can be generated by the environment, or as

the result of internal processing. Given these sharp differences

of the SDR applications and the traditional application work-

load, we need a different architectural framework to address

both functional requirements and workload characteristics of

programmable radio applications. The WiNC2R architecture

framework addresses the workload characteristics of wireless

communication protocols with programmable control mech-

anisms that engage both hardware and software modules in

a uniform manner in order to satisfy both functional and

performance requirements.

We observe that processing consists of a number of func-

tional modules operating and generating the events consisting

of signals and data. The run time control has to respond rapidly

to the event by detecting and decoding it and activating the

processing function in charge of handling it. The sequencing

of events and their causal relationships need to be maintained

by the control mechanisms. Given the short processing time

for the packet, or parts of it, the fast context switching needs

to be supported by both software function execution entities

(CPUs), as well as hardware functional modules, otherwise

the utilization of the units will be low. For the systems

targeting hundreds of megabits per second data throughput

the unit processing time is sub-microsecond, dictating the use

of hardware assisted and controlled context switching.

The Virtual Flow Pipelining (VFP) [16] architecture ap-

proach is designed to satisfy the workload characteristics and

functional requirements of radio communication protocol pro-

cessing applications. The following are the key characteristics

of the VFP framework:

a) System level control structure implemented in hardware

will support the protocol processing flow requirements:

function synchronization, scheduling, performance guar-

anties, sequencing, and communication;

b) The set of functional units will be comprised of generic

hardware modules and software programmable processors.

Both will be controlled by the system level Virtual Flow

Pipeline controller;

c) Function switching will be fast, on a per packet basis,

regardless whether it is performed in hardware or software;

d) Hardware based central processing units scheduling will

enable fast context switching and, hence, obviate the need

for an embedded operating system.

A fully hardware based solution lacks flexibility for the

future changes, and quite often generalization to effectively

accommodate multiple protocols. On the other hand such

solutions do accommodate the processing flow functional and

performance requirements. Our Virtual Flow Pipeline archi-

tecture adds the required flexibility to the hardware pipelining

approach, while retaining performance guaranties. Figure 6

illustrates the VFP processing flow for the OFDM transmitter

implemented in a first version of WiNC2R platform.

The experimental test setup at WINLAB with two back-to-

back WiNC2R boards is shown in Fig. 7.

VI. COBRA: COGNITIVE BASEBAND RADIO

One of the key requirements towards a truly cognitive radio

is that the digital and analog parts of the radio are flexible.

In other words the radio has to be software defined. IMEC’s

first generation baseband radio platform called BEAR [18]

was developed to be software defined and support different

Digital Object Identifier: 10.4108/ICST.CROWNCOM2010.9290 

http://dx.doi.org/10.4108/ICST.CROWNCOM2010.9290



Fig. 6. VFP processing flow for the OFDM transmitter.

Fig. 7. Two-node WiNC2R setup used for prototyping.

standards including cellular (LTE), connectivity (WLAN) and

also broadcasting (different DVB standards). An instance of

this platform was fabricated and is shown in Fig. 8. In such

software platform, there is a different flexibility need in the

digital front end, inner modem and the outer-modem across

different standards.

The second generation IMEC’s platform COBRA is a much

more advanced platform template. One instance of a COBRA

platform is shown in Fig. 9. The COBRA platform can be

customized to not only handle very high data rates, but also

low throughputs in a scalable way. This platform largely

consists of four types of cores:

a) DIFFS: A digital front end capable of sensing and synchro-

nization;

b) ADRES [18]: A reconfigurable core capable of doing inner

modem processing;

c) FlexFEC [19]: A flexible forward error correction capable

of doing different outer modem processing and;

Fig. 8. IMEC’s first generation BEAR platform.
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d) ARM core for controlling the tasks on the platform.

All cores of this digital platform can be customized based

on the requirements and the target standards that need to be

supported. Also all parts of the platform are programmable in

C or high level assembly.

VII. COMPARISON OVERVIEW

To provide an easier comparison between the different

platforms, we have summarized some key facts in Table I.

VIII. CONCLUSION

In this work we have provided an overview of five different

platform suitable for testbeds and demonstrators in the area

of cognitive and cooperative communication. This overview

should be seen as an aid for selecting a platform for proving

current and future algorithms in an over-the-air setting.

REFERENCES

[1] J. Mitola III and G. Q. Maguire, Jr., “Cognitive radio: making software
radios more personal,” IEEE Personal Comm. Mag., vol. 6, no. 4, pp.
13–18, Aug. 1999.

[2] S. Haykin, “Cognitive Radio: Brain-empowered Wireless Communica-
tions,” IEEE J. Sel. Areas Comm., vol. 23, no. 2, pp. 201–220, Feb.
2005.

[3] A. Nosratinia, T. E. Hunter, and A. Hedayat, “Cooperative communi-
cation in wireless networks,” IEEE Comm. Mag., vol. 42, no. 10, pp.
74–80, Oct. 2004.

[4] P. Eliardsson and D. Andersson, “A modular cognitive radio testbed
architecture for dynamic spectrum access,” FOI Memo 3040, FOI,
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14bits (USRP2), Output:
128 MSps, 14 bits
(USRP1), 400 MSps, 16
bits (USRP2)

14-bit I/Q at 40MSps
typical; supports up to
65MSps

7.68 MSps (PF1 = CB-
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Input: 125 MSps, 14
bits Output: 500 MSps
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40MHz per RF in-
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5 MHz (PF1), 20 MHz
(PF2)
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Frequency bands
(MHz ranges)
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Transmit: 0.1–200,
DC–30, Transceive:
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2400–2500/4900–5850

2400–2500, 4900–
5875

1900 (PF1), 200–8000
(PF2)

2400–2500, 4900–
5300, 5400–5875

100–5000

MIMO support 2 × 2 (USRP1), 8 × 8

(USRP2)
4× 4 2×2 (PF1), 4×4 (PF2) No 4× 4

Programmable
hardware

Xilinx Spartan 3-2000
FPGA (USRP2, mainly
LUTs left)

Xilinx Virtex-4 FX100
FPGA: Example full
2x2 MIMO OFDM +
CSMA MAC design
leaves about 50%

20% Virtex 2 3000
(PF1), 50% of Virtex 5
LX330, 50% of Virtex
5 LX110T (PF2)

Yes, Virtual Flow
Pipelining API

Yes

Approximate
cost

$700 (USRP1), $1400
(USRP2), $75–450 (RF
boards)

$6500 (academic) 2500 euros (PF1), 8000
euros, 10000 with RF
(PF2)

N/A N/A

Programming
languague

Python/C++ (GNU Ra-
dio)

Real-time designs:
FPGA for PHY, C
for MAC, WARPLab
designs: MATLAB

C C/C++; Setting up con-
trol tables

C and assembly

Requirement on
host computer

- (USRP2 can be stand
alone)

No host required;
FPGA can implement
full wireless design

PC with native-Intel
CPU

Can be stand alone None (stand alone)

Interface to host
computer

USB 2.0 (USRP), Gigabit
Ethernet (USRP2)

Gigabit Ethernet, when
host PC is used

PCI, PCI Express, Ex-
pressCard (PF1), PCI
Express (PF2)

PCI Express N/A

Max. data trans-
fer rate

FPGA can saturate gi-
gabit Ethernet

30.72 Mbytes/s RX,
15.36 Mbytes/s TX
(PF1)

10 Mbps up to 1 Gbps

Public common
code base

GIT/wiki SVN/wiki SVN/wiki Non-public SVN No
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