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Abstract. A system architecture for achieving long-distance, high-fidelity
teleportation and long-duration quantum storage is proposed. It uses polarization-
entangled photons and trapped-atom quantum memories and is compatible with
transmission over standard telecommunication fibre. An extension of this
architecture permits long-distance transmission and storage of Greenberger–
Horne–Zeilinger states.

1. Introduction

The preeminent obstacle to the development of quantum information technology is the difficulty
of transmitting quantum information over noisy and lossy quantum communication channels,
recovering and refreshing the quantum information that is received and then storing it in a
reliable quantum memory. A team of researchers from the Massachusetts Institute of Technology
and Northwestern University (MIT/NU) is developing a singlet-based teleportation system [1]
that uses a novel ultrabright source of polarization-entangled photon pairs [2], and a trapped-
atom quantum memory [3] whose loading can be nondestructively verified and whose structure
permits all four Bell-state measurements to be performed. This paper reviews the primitives
for the MIT/NU architecture. A loss-limited-performance analysis shows that this architecture
can achieve a throughput of nearly 500 entangled pairs s−1 with 95% fidelity over a 50 km path
when there is 10 dB of fixed loss in the overall system and 0.2 dB km−1 of propagation loss in
the fibre. An additional primitive—the type-II degenerate optical parametric amplifier (OPA)—
is then introduced. This source, which is less complicated than the dual-OPA arrangement
from [2], is somewhat less effective in long-distance singlet-state teleportation. It can be used,
however, within the MIT/NU architecture to perform long-distance transmission and storage of
Greenberger–Horne–Zeilinger (GHZ) states via an alerted detection system akin to that in [4].
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Figure 1. Schematic of long-distance quantum communication system: P =
ultrabright narrowband source of polarization-entangled photon pairs; L = L km
of standard telecommunication fibre; M = trapped-atom quantum memory.

The addition of a heralded single-photon source primitive can be used to both eliminate the
need for alerted detection in this GHZ-state transmission scheme, and to greatly increase its
throughput.

The development of reliable, high-fidelity teleportation systems will enable networking of
quantum processors over macroscopic distances. Likewise, the development of a reliable, high-
fidelity distribution system for GHZ states will enable quantum secret sharing protocols [5] to
be used over macroscopic distances. The architectures described in this paper, although quite
challenging for experimental realization, are nevertheless promising starting points for bringing
these and other quantum communication applications to fruition.

2. Long-distance teleportation

The notion that singlet states could be used to achieve teleportation is due to Bennett et
al [6]. The transmitter and receiver stations share the entangled qubits of a singlet state,
|ψ−〉TR = (|0〉T|1〉R − |1〉T|0〉R)/

√
2, and the transmitter then accepts an input-mode qubit,

|Ψ〉in = α|0〉in + β|1〉in, leaving the input mode, transmitter and receiver in the joint state
|Ψ〉in|ψ−〉TR. Making the Bell-state measurements, {|ψ±〉inT = (|1〉in|0〉T ± |0〉in|1〉T)/

√
2,

|φ±〉inT = (|1〉in|1〉T ± |0〉in|0〉T)/
√

2}, on the joint input-mode/transmitter system then yields
the two bits of classical information that the receiver needs to reconstruct the input state. An initial
experimental demonstration of teleportation using singlet states was performed by Bouwmeester
et al [7, 8], but only one of the Bell states was measured, the demonstration was a table-top
experiment and it did not include a quantum memory. Our proposal for a singlet-based quantum
communication system, which is shown in figure 1, remedies all of these limitations.

An ultrabright narrowband source of polarization-entangled photon pairs [2] launches the
entangled qubits from a singlet state into two L km long standard telecommunication fibres.
The photons emerging from the fibres are then loaded into trapped-atom quantum memories [3].
These memories store the photon-polarization qubits in long-lived hyperfine levels. Because
it is compatible with fibre-optic transmission, this configuration is capable of long-distance
teleportation. Because of the long decoherence times that can be realized with trapped atoms,
this configuration supports long-duration quantum storage. We devote the rest of this section to
summarizing the basic features of our proposal.

Each M block in figure 1 is a quantum memory in which a single ultra-cold 87Rb atom
(∼6 MHz linewidth) is confined by a CO2-laser trap in an ultra-high-vacuum chamber with
cryogenic walls within a high-finesse (∼15 MHz linewidth) single-ended optical cavity. This
memory can absorb a 795 nm photon, in an arbitrary polarization state, transferring the qubit from
the photon to the degenerate B levels of figure 2(a) and thence to long-lived storage levels, by
coherently driving the B-to-D transitions. (We are using abstract symbols here for the hyperfine
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Figure 2. Essential components of the singlet-state quantum communication
system from figure 1. (a) Simplified atomic-level schematic diagram of the
trapped rubidium atom quantum memory: A-to-B transition occurs when one
photon from an entangled pair is absorbed; B-to-D transition is coherently
driven to enable storage in the long-lived D levels; A-to-C cycling transition
permits nondestructive determination of when a photon has been absorbed. (b)
Ultrabright narrowband source of polarization-entangled photon pairs: each
optical parametric amplifier (OPAs 1 and 2) is type-II phase matched; for each
optical beam the propagation direction is ẑ, and x̂ and ŷ polarizations are denoted
by arrows and bullets, respectively; PBS, polarizing beam splitter.

levels of rubidium, see [3] for the actual atomic levels involved as well as a complete description
of the memory and its operation.) With a liquid helium cryostat, so that the background pressure
is less than 10−14 Torr, the expected lifetime of the trapped rubidium atom will be more than
an hour. Fluctuations in the residual magnetic field, however, will probably limit the atom’s
decoherence time to a few minutes. By using optically off-resonant Raman (OOR) transitions,
the Bell states of two atoms in a single vacuum-chamber trap can be converted to superposition
states of one of the atoms. All four Bell measurements can then be made, sequentially, by
detecting the presence (or absence) of fluorescence as an appropriate sequence of OOR laser
pulses is applied to the latter atom [3]. The Bell-measurement results in one memory can be
sent to a distant memory, where at most two additional OOR pulses are needed to complete the
Bennett et al state transformation. The qubit stored in a trapped rubidium atom can be converted
back into a photon by reversing the Raman excitation process that occurs during memory loading.

The P -block in figure 1 is an ultrabright narrowband source of polarization-entangled
photon pairs, capable of producing ∼106 pairs s−1 in ∼30 MHz bandwidth by appropriately
combining the signal and idler output beams from two doubly resonant type-II phase-matched
OPAs, as sketched in figure 2(b) [2]. The fluorescence spectrum of the signal and idler
beams is controlled by the doubly resonant OPA cavities. These can be advantageously
and easily tailored to produce the desired (factor-of-two broader than the memory-cavity’s)
bandwidth. By using periodically poled potassium titanyl phosphate (PPKTP), a quasi-phase-
matched type-II nonlinear material, we can produce ∼106 pairs s−1 at the 795 nm wavelength
of the rubidium memory for direct memory-loading (i.e. local-storage) applications. For long-
distance transmission to remotely located memories, we use a different PPKTP crystal and pump
wavelength to generate ∼106 pairs s−1 in the 1.55 µm wavelength low-loss fibre transmission
window. After fibre propagation we then shift the entanglement to the 795 nm wavelength
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Figure 3. Schematic diagram of quantum frequency conversion: a strong pump
beam at 1570 nm converts a qubit photon received at 1608 nm (in the low-loss
fibre transmission window) to a qubit photon at the 795 nm wavelength of the
87Rb quantum memory.

needed for the rubidium-atom memory via quantum-state frequency translation, a procedure
previously proposed and demonstrated by Kumar [9, 10] and shown schematically in figure 3.
For our application, we expect that 80% conversion efficiency should be obtainable by placing
a 5 cm long periodically poled lithium niobate (PPLN) crystal inside a cavity that resonates the
1570 nm, but not the 1608 or 795 nm light, and using 0.5 W of pump power.

Successful singlet transmission requires that polarization not be degraded by the propagation
process. Because we are concerned with the transmission of very weak, narrowband light
fields, it is only the slowly varying birefringence of installed fibre that must be dealt with; i.e.
polarization-mode dispersion, guided acoustic-wave Brillouin scattering and the like need not
be considered. Our scheme for polarization maintenance, shown schematically in figure 4, relies
on time-division multiplexing. Time slices (say 400 ns long) from the signal beams from our
two OPAs are sent down one fibre in the same linear polarization but in nonoverlapping (say
200 ns separation) time slots, accompanied by a strong out-of-band laser pulse. By tracking
and restoring the linear polarization of the strong pulse, we can restore the linear polarization of
the signal-beam time slices at the far end of the fibre. After this linear-polarization restoration,
we then reassemble a time-epoch of the full vector signal beam by delaying the first time slot
and combining it on a polarizing beam splitter with the second time slot after the latter has
had its linear polarization rotated by 90◦. A similar procedure is performed to reassemble idler
time-slices after they have propagated down the other fibre in figure 1. This approach, which
is inspired by the Bergman et al two-pulse fibre-squeezing experiment [11], common-modes
out the vast majority of the phase fluctuations and the polarization birefringence incurred in the
fibre, permitting standard telecommunication fibre to be used in lieu of the lossier and much
more expensive polarization-maintaining fibre.

3. Loss-limited performance

Quantum communication is carried out in the figure 1 configuration via the following protocol.
The entire system is clocked. Time slots of signal and idler (say 400 ns long) are transmitted
down optical fibres to the quantum memories. These slots are gated into the memory cavities—
with their respective atoms either physically displaced or optically detuned so that no A-to-B
(i.e. no 795 nm) absorptions occur. After a short loading interval (a few cold-cavity lifetimes,
say 400 ns), each atom is moved (or tuned) into the absorbing position and B-to-D coherent
pumping is initiated. After about 100 ns, coherent pumping ceases and the A-to-C cycling
transition (shown in figure 2(a)) is repeatedly driven (say 30 times, taking nearly 1 µs). By
monitoring a cavity for the fluorescence from this cycling transition, we can reliably detect
whether or not a 795 nm photon has been absorbed by the atom in that cavity. If neither atom or
if only one atom has absorbed such a photon, then we cycle both atoms back to their A states and
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Figure 4. Transmission of time-division multiplexed signal beams from OPAs 1
and 2 through an optical fibre. With the use of a half-wave plate (HWP) the
signal pulses and the pilot pulse are linearly polarized the same way. The
pilot pulse—at a wavelength λp which is different from the signal or idler
wavelengths—is injected into and extracted from the fibre using a wavelength-
division multiplexer (WDM MUX) and a wavelength-division demultiplexer
(WDM DEMUX), respectively. Not shown is the final polarizing beam splitter
for combining the two signal-beam outputs, cf figure 2(b). A similar overall
arrangement is used to transmit the idler beams from OPAs 1 and 2.

start anew. If no cycling-transition fluorescence is detected in either cavity, then, because we
have employed enough cycles to ensure very high probability of detecting that the atom is in its
A state, it must be that both atoms have absorbed 795 nm photons and stored the respective qubit
information in their long-lived degenerate D levels. These levels are not resonant with the laser
driving the cycling transition, and so the loading of our quantum memory is nondestructively
verified in this manner.

We expect that the preceding memory-loading protocol can be run at rates as high as
R = 500 kHz; i.e., we can get an independent try at loading an entangled photon pair into the two
memory elements of figure 1 every 2 µs. With a high probability, Perasure, any particular memory-
loading trial will result in an erasure, i.e. propagation loss and other inefficiencies combine to
preclude both atoms from absorbing photons in the same time epoch. With a low probability,
Psuccess, the two atoms will absorb the photons from a single polarization-entangled pair, namely,
we have a memory-loading success. With a much lower probability, Perror, both atoms will have
absorbed photons but these photons will not have come from a single polarization-entangled
pair; this is the error event.

There are two key figures-of-merit for the figure 1 configuration: throughput and fidelity.
Propagation losses and other inefficiencies merely increase Perasure and hence reduce the
throughput, i.e. the number of successful entanglement-loadings/s, Nsuccess ≡ RPsuccess,
that could be achieved if the quantum memories each contained a lattice of trapped atoms
for sequential loading of many pairs. Loading errors, which occur with probability Perror,
provide the ultimate limit on the teleportation fidelity that can be realized with the figure 1
architecture. This loss-limited teleportation fidelity is defined by Fmax ≡ out〈Ψ|ρ̂out|Ψ〉out,
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where |Ψ〉out = α|0〉out + β|1〉out is the output state that is obtained from perfect teleportation
of |Ψ〉in, and ρ̂out is the density operator for the actual (mixed) state that results from the
teleportation process. Note that ρ̂out is a conditional density operator, in that teleportation
is only attempted when both memories have absorbed photons. We assume, in computing
Fmax, that perfect Bell-state measurements and post-measurement state transformation are
made, so that a loading success yields fidelity 1. We shall assume that the error event loads
independent, randomly polarized photons into each memory, from which uniform Bloch-sphere
averaging shows that a loading error yields fidelity 1/2. Combining these results we have that
Fmax = 1 − Perror/2(Psuccess + Perror), for the loss-limited teleportation fidelity of the figure 1
architecture.

3.1. OPA statistics

Assume matched signal and idler cavities, each with linewidth Γ, zero detuning and no excess
loss. Also assume anti-phased pumping at a fraction, G2, of oscillation threshold, with no pump
depletion or excess noise. From [2] we then have that the output beams from OPAs 1 and 2
are in an entangled, zero-mean Gaussian pure state, which is completely characterized by the
following normally ordered and phase-sensitive correlation functions:

〈Â†
kj

(t + τ)Âkj
(t)〉 =

GΓ
2

[
e−(1−G)Γ|τ |

1 − G
− e−(1+G)Γ|τ |

1 + G

]
, (1)

〈ÂSj
(t + τ)ÂIj

(t)〉 =
(−1)j−1GΓ

2

[
e−(1−G)Γ|τ |

1 − G
+

e−(1+G)Γ|τ |

1 + G

]
, (2)

where {Âkj
(t)e−iωkt : k = S (signal), I (idler), j = 1, 2} are positive-frequency, photon-units

OPA-output field operators.
After combining the outputs of OPAs 1 and 2 into vector fields ÂS(t) and ÂI(t), we

can show that the Fourier component of the vector-signal field at frequency ωS + ∆ω and the
vector-idler Fourier component at frequency ωI − ∆ω are in the entangled Bose–Einstein state,

|ψ〉SI =
∞∑

n=0

√√√√ N̄n

(N̄ + 1)n+1 |n〉Sx|n〉Iy

∞∑
n=0

(−1)n

√√√√ N̄n

(N̄ + 1)n+1 |n〉Sy |n〉Ix (3)

in number–ket representation, where N̄ = 4G2/[(1−G2−∆ω2/Γ2)2 +4∆ω2/Γ2] is the average
photon number per mode at detuning ∆ω. For N̄ � 1, this joint state reduces to

|ψ〉SI ≈ 1
N̄ + 1

|0〉Sx|0〉Iy |0〉Sy |0〉Ix

+

√√√√ N̄

(N̄ + 1)3 (|1〉Sx|1〉Iy |0〉Sy |0〉Ix − |0〉Sx|0〉Iy |1〉Sy |1〉Ix), (4)

i.e. it is predominantly vacuum, augmented by a small amount of the singlet state, |ψ−〉TR =
(|0〉T|1〉R − |1〉T|0〉R)/

√
2, with |0〉T ≡ |1〉Sx|0〉Sy, |1〉T ≡ |0〉Sx|1〉Sy , |0〉R ≡ |1〉Ix|0〉Iy and

|1〉R ≡ |0〉Ix|1〉Iy .
The presence of excess loss within the OPA cavities, and/or propagation loss along the

fibre can be incorporated into this OPA analysis in a straightforward manner [12]. Assuming
symmetric operation, in which the signal and idler encounter identical intracavity and fibre losses,
then the correlation-function formulae, equations (1) and (2), are merely multiplied by ηLγ/Γ,
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where ηL < 1 is the transmission through the fibre and γ < Γ is the output-coupling rate of the
OPA cavity.

3.2. Cavity-loading statistics

The internal annihilation operators of the quantum memory cavities—over the Tc s long loading
interval—are related to the incoming signal and idler field operators as follows:

âk(Tc) = âk(0)e−ΓcTc +
∫ Tc

0
dt e−Γc(Tc−t)

[√
2γcÂk(t) +

√
2(Γc − γc)Âkv(t)

]
, (5)

for k = S, I , where γc < Γc is the input-coupling rate and Γc is the linewidth of the (assumed
to be identical for signal and idler) memory cavities. The initial intracavity operators and the
loss-operators, {âk(0), Âkv(t)}, are in vacuum states.

It is now easy to show that the joint density operator (state) for {âS(Tc), âI(Tc)}, takes the
factored form, ρ̂SI = ρ̂SxIy ρ̂SyIx , where the two-mode density operators on the right-hand side
are Gaussian mixed states given by the anti-normally ordered characteristic functions,

χ
ρSxIy

A (ζ∗, ζ) ≡ tr[ρ̂SxIye
−ζ∗

S âSx−ζ∗
I âIy eζS â†

Sx
+ζI â†

Iy ] = e−(1+n̄)(|ζS |2+|ζI |2)+2ñ Re (ζSζI), (6)

and

χ
ρSyIx

A (ζ∗, ζ) ≡ tr[ρ̂SyIxe
−ζ∗

S âSy −ζ∗
I âIx eζS â†

Sy
+ζI â†

Ix ] = e−(1+n̄)(|ζS |2+|ζI |2)−2ñ Re (ζSζI), (7)

where n̄ ≡ I− − I+ and ñ ≡ I− + I+, with I∓ ≡ ηLγγcG/Γc(1 ∓ G)[(1 ∓ G)Γ + Γc].

3.3. Throughput and fidelity calculations

From the loaded-cavity state we can find the erasure, success and error probabilities via

Perasure = (Sx〈0|ρ̂Sx|0〉Sx)(Sy〈0|ρ̂Sy |0〉Sy) + (Ix〈0|ρ̂Ix|0〉Ix)(Iy〈0|ρ̂Iy |0〉Iy)
−(Sx〈0|Iy〈0|ρ̂SxIy |0〉Iy |0〉Sx)(Sy〈0|Ix〈0|ρ̂SyIx|0〉Ix|0〉Sy), (8)

Psuccess = SI〈ψ−|ρ̂SI |ψ−〉SI (9)

Perror = 1 − Perasure − Psuccess, (10)

where |ψ−〉SI ≡ (|1〉Sx|1〉Iy |0〉Sy |0〉Ix − |0〉Sx|0〉Iy |1〉Sy |1〉Ix)/
√

2 is the singlet state. In the
appendix we shall derive explicit expressions for the erasure and success probabilities, starting
from the anti-normally ordered characteristic functions given in section 3.2. Note that the atom–
field coupling is not explicitly treated in this analysis. The erasure and success probabilities
are obtained from the cold-cavity loading theory; inefficiency in the actual atom–field coupling
can be included, in this analysis, as a fixed (path-length-independent) loss in source-to-memory
transmission.

In figure 5 we have plotted the throughput, Nsuccess, and the loss-limited fidelity, Fmax,
of our quantum communication system under the following operating conditions: dual-OPA
(figure 2(b)) source with each OPA operated at 1% of its oscillation threshold (G2 = 0.01), 5 dB
of excess loss in each P -to-M block path in figure 1; 0.2 dB km−1 loss in each fibre; Γc/Γ = 0.5
ratio of memory-cavity linewidth to source-cavity linewidth and R = 500 kHz memory cycling
rate. We see from this figure that a throughput of nearly 200 pairs s−1 is achieved at an end-to-end
path length (2L) of 50 km with a loss-limited teleportation fidelity in excess of 97%.
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Figure 5. Figures of merit for the figure 1 architecture for dual-OPA and
degenerate parametric amplifier (DPA) source configurations. (a) Throughput,
Nsuccess, versus total path length, 2L. (b) Loss-limited teleportation fidelity,
Fmax, versus total path length, 2L. All curves assume OPAs operating at 1%
of their oscillation thresholds, 5 dB of excess loss per P -to-M block connection,
0.2 dB km−1 fibre-propagation loss, Γc/Γ = 0.5 ratio of memory-cavity linewidth
to source-cavity linewidth and R = 500 kHz memory cycling rate.

4. Teleportation with a degenerate parametric amplifier

The singlet-state teleportation architecture that we have just described relies on a pair of
coherently pumped OPAs for its entangled photons. It turns out that a simpler source arrangement
offers comparable quantum communication performance. Consider the doubly resonant, type-
II phase-matched DPA shown schematically in figure 6. Operated at degeneracy, the centre
frequencies of the signal and idler beams exiting the OPA cavity are both equal to ωP /2,
i.e. half the OPA’s pump frequency. Because the OPA produces signal and idler photons
in pairs, and the members of each pair are distinguishable only because of their orthogonal
polarizations, the 50/50 beam splitter in figure 6 yields output beams containing a triplet-
state component. In particular, when a signal/idler pair encounters this beam splitter there
is a 50/50 chance that one photon will appear in each output port. When this occurs, a symmetry
argument shows that the joint output state from the 50/50 beam splitter is the triplet state
|ψ+〉SI ≡ (|1〉Sx|1〉Iy |0〉Sy |0〉Ix + |0〉Sx|0〉Iy |1〉Sy |1〉Ix)/

√
2. (An initial DPA experiment [13]

has yielded a pair flux that is 104 times brighter, per unit bandwidth per unit pump power, than
the best parametric downconverter result from the literature. This experiment also provided
preliminary quantum-interference evidence of triplet-state generation.) Although the Bennett et
al teleportation protocol usually presumes that a singlet is shared by its transmitter and receiver,
a simple modification can be made so that the triplet state |ψ+〉SI can be used in lieu of the singlet
|ψ−〉SI . Alternatively, the phase of the signal-beam’s ŷ polarization can be flipped by placing
an HWP after the 50/50 beam splitter, thus converting |ψ+〉SI to |ψ−〉SI .

If the degenerate-OPA arrangement from figure 6 is used as the source block in the figure 1
architecture, the OPA statistics, cavity-loading statistics and throughput/fidelity calculations from
section 3 can easily be adapted to this new configuration. In particular, the joint density operator
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Figure 6. Doubly resonant, type-II phase-matched degenerate OPA. Signal and
idler photons emerge in frequency-degenerate, orthogonally polarized pairs from
the OPA cavity. The joint state of the beams exiting the 50/50 beam splitter is
mixed, but includes a triplet component that can be used as the entanglement
source in the figure 1 teleportation architecture.

for {âS(Tc), âI(Tc)} is a Gaussian mixed state that is given by the following anti-normally
ordered characteristic function:

χ
ρSxIxSyIy

A (ζ∗, ζ) = tr[ρ̂SxIxSyIye
−ζ∗

Sx
âSx−ζ∗

Ix
âIx−ζ∗

Sy
âSy −ζ∗

Iy
âIy eζSx â†

Sx
+ζIx â†

Ix
+ζSy â†

Sy
+ζIy â†

Iy ]

= e−(1+n̄)(|ζSx+ζIx |2+|ζSy +ζIy |2)/2+ñ Re [(ζSx+ζIx )(ζSy +ζIy )]

×e−(|ζSx−ζIx |2+|ζSy −ζIy |2)/2, (11)

where n̄ ≡ I− − I+ and ñ ≡ I− + I+, with I∓ ≡ ηLγγcG/Γc(1 ∓ G)[(1 ∓ G)Γ + Γc], as
before. Using this density operator, the erasure probability for the degenerate-OPA quantum
communication systems is found via

Perasure = (Sx〈0| Sy〈0|ρ̂SxSy |0〉Sy |0〉Sx) + (Ix〈0| Iy〈0|ρ̂IxIy |0〉Iy |0〉Ix)
−(Sx〈0| Ix〈0| Sy〈0| Iy〈0|ρ̂SxIxSyIy |0〉Iy |0〉Sy |0〉Ix |0〉Sx), (12)

its success probability is calculated from Psuccess = SI〈ψ+|ρ̂SI |ψ+〉SI and its error probability
is obtained from the closure relation, Perror = 1 − Perasure − Psuccess. Throughput and fidelity
results follow directly from these probabilities and the memory cycling rate, just at they did
for the dual-OPA source case that was treated in section 3: for the DPA source we have that
Nsuccess = RPsuccess and Fmax = 1 − Perror/2(Psuccess + Perror), where we have again assumed
that the error event loads independent, randomly polarized photons into each memory. In the
appendix we shall derive explicit results for the success and error probabilities starting from the
anti-normally ordered characteristic function given in equation (11).

Figure 5 compares the throughputs and loss-limited fidelities of the dual-OPA and the
degenerate OPA teleportation systems when the OPAs are operated at 1% of oscillation threshold
(G2 = 0.01), there is 5 dB of excess loss in each P -to-M block path in figure 1 and 0.2 dB km−1

loss in each fibre, the ratio of memory-cavity linewidth to source-cavity linewidth is 0.5
(Γc/Γ = 0.5) and the memory cycling rate is R = 500 kHz. At this pumping level the dual-OPA
source supports a throughput of nearly 200 pairs s−1 out to a 50 km end-to-end span with 97.7%
fidelity, whereas the degenerate-OPA source achieves only about 50 pairs s−1 at a slightly lower
fidelity over this same span. The 6 dB difference between the dual-OPA and degenerate-OPA
throughputs is easily explained. The degenerate-OPA configuration has half the raw flux of the
dual-OPA system, because each of the latter’s individual OPAs is pumped at 1% of threshold.
The degenerate OPA suffers an additional factor-of-two loss, relative to the dual-OPA setup,
because of the 50/50 beam splitter in figure 6. Specifically, the full flux of the dual-OPA setup
is losslessly combined by the polarizing beam splitter in figure 2(b), whereas half the time both
photons emerge from the same output port of the degenerate-OPA configuration’s 50/50 beam
splitter thus precluding formation of the triplet state needed for a loading success.
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Figure 7. Gain-optimized performance of the figure 1 architecture for dual-
OPA and DPA source configurations. (a) Throughput, Nsuccess, versus total path
length, 2L. (b) Normalized OPA gain, G2, versus total path length, 2L. All curves
assume 5 dB of excess loss per P -to-M block connection, 0.2 dB km−1 fibre-
propagation loss, Γc/Γ = 0.5 ratio of memory-cavity linewidth to source-cavity
linewidth and R = 500 kHz memory cycling rate.

Figure 7(a) compares the throughputs of the dual-OPA and degenerate OPA teleportation
systems when, for every path length, the OPA gain is adjusted to maximize Nsuccess under the
fidelity constraint Fmax = 0.95 with the other parameter values remaining as they were for
figure 5. Figure 7(b) shows the G2 values needed to obtain these gain-optimized throughputs.
Comparison of the dual-OPA throughput curve in figure 7(a) with the one shown in figure 5(a)
reveals the value of OPA gain optimization. At 50 km total path length, throughput is increased
by a factor of two by increasing OPA pumping from 1 to 2.3%. The price paid for this
throughput increase is a decrease in fidelity from 97.7 to 95%. For the DPA source, OPA
gain optimization affords a factor of two increase in throughput at 50 km total path length
by increasing the OPA gain from 1 to 1.9%. This gain increase also decreases the fidelity,
at 50 km total path length, from 97.2 to 95%. Note that after gain optimization, the dual-
OPA system continues to outperform the DPA system by about 6 dB in throughput. In our
throughput/fidelity analysis—which neglects all propagation effects other than loss, and assumes
perfect Bell-state measurements and teleportation state transformation—the fidelity falls below
one because our sources can produce more than one pair in a loading interval. In order to
meet the 95% fidelity constraint, the parametric-amplifier gains in both our dual-OPA and
DPA architectures must be kept low enough to ensure that multiple-pair events do not reduce
teleportation fidelity to an unacceptable level. As a result, the DPA system is unable to recoup
its 6 dB throughput disadvantage by increasing its pumping level to four times that of each OPA
in the figure 2(b) setup.

5. GHZ-state communication

Singlet-state teleportation relies on two-particle entanglement. There is considerable interest
currently in N -party entanglement, i.e. in the generation and application of entangled states of
N > 2 particles. Greenberger, Horne and Zeilinger showed that such multi-particle states were
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parametric amplifier (dual-DPA) is a figure 2(b) arrangement in which OPAs 1 and
2 operate at frequency degeneracy and are pumped in phase. PBS, polarizing beam
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communication architecture for GHZ states. GHZ is the source arrangement
from either (a) or (c); L denotes L km of standard telecommunication fibre. (c)
Heralded single-photon source plus DPA system for generation of GHZ states.

of fundamental importance because they led to conflicts with local realism for nonstatistical
predictions of quantum mechanics [14]. The simplest state of this GHZ class, namely

|ψ〉GHZ ≡ (|↑〉|↑〉|•〉 + |•〉|•〉|↑〉)/
√

2, (13)

has been shown, theoretically, to permit quantum secret sharing [5]. The initial experimental
demonstration of GHZ-state generation by Bouwmeester et al [4], like their earlier work on
singlet-state teleportation, was an annihilative table-top measurement. Moreover it had an
extremely low flux: 1 GHZ state every 150 s. Here we will show that the MIT/NU quantum
communication architecture can lead to long-distance transmission and storage of GHZ states
via an alerted detection scheme akin to that in [4].

Figure 8(a) is a simplified redrawing of the Innsbruck group’s GHZ-state source, in which
we have replaced their parametric downconverter with a pair of doubly resonant, type-II phase-
matched degenerate OPAs—arranged as in figure 2(b) to produce polarization entanglement—
and we have placed a trapped-atom quantum memory at the trigger-output port of the polarizing
beam splitter. Figure 8(b) shows the embedding of this GHZ-state source into a long-distance
quantum communication architecture in which L km long spans of standard telecommunication
fibre are used to connect to trapped-Rb-atom quantum memories. (As in figure 1, we have not
shown the quantum frequency conversion and time-division multiplexing arrangements that are
needed to make use of the 1.55 µm low-loss window and to suppress the ill effects of time-
varying birefringence.) The system in figures 8(a), (b) is run under a clocked protocol similar to
the one described for singlet-state transmission in section 3. In each time epoch we monitor the
cycling transitions on all four quantum memories, namely the three external memories shown
in figure 8(b) plus the fourth memory (internal to the source block in that panel) that is present
in figure 8(a). The loading protocol is repeated until all four memories absorb photons in the
same time epoch. As shown for annihilative measurements in [4], when all four memories
in figures 8(a), (b) have absorbed photons, and these photons came from the emission of two
entangled signal-idler pairs from the dual-DPA, then the three external memories have been
loaded into the GHZ state,

|ψ〉GHZ ≡ (|1〉1y |1〉2y |1〉3x|0〉1x|0〉2x|0〉3y + |0〉1y |0〉2y |0〉3x|1〉1x|1〉2x|1〉3y)/
√

2, (14)
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Figure 9. Gain-optimized performance for the figure 8 architecture. (a) GHZ-
state throughput versus source-to-memory path length, L, for dual-DPA and DPA
plus heralded single-photon sources. (b) Normalized DPA gain, G2, versus
source-to-memory path length, L. All curves assume 5 dB of excess loss per
source-to-memory connection, 0.2 dB km−1 fibre-propagation loss, Γc/Γ = 0.5
ratio of memory-cavity linewidth to source-cavity linewidth and R = 500 kHz
memory cycling rate.

in number–ket representation for the x̂ and ŷ polarizations, where {1, 2, 3} is a clockwise labeling
of the memories in figure 8(b) starting from the lower left.

A performance analysis of this GHZ-state communication scheme can be carried out using
the OPA and cavity-loading statistics that we have described in section 3; the appendix provides
some of the details. There will again be three possible outcomes for every loading trial of the
figure 8(a), (b) system: an erasure occurs when one or more the four memories fails to absorb a
photon; a success occurs when all four memories absorb photons and the three memories external
to the source share a GHZ state; an error occurs when all four memories absorb photons, but
the three external memories do not share a GHZ state. Figure 9(a) shows the throughput,
Nsuccess = RPsuccess, versus source-to-memory path length L when, for each L value, the DPA
gain is chosen to maximize throughput subject to the constraint,

PGHZ ≡ Psuccess

Psuccess + Perror
= 0.9. (15)

In other words, this figure shows the maximum throughput that can be achieved when the
conditional probability of loading a GHZ state, given that there has not been an erasure, is 0.9.
Figure 9(b) shows the DPA gain value needed to achieve these throughput results. The greatly
reduced likelihood that a dual-DPA produces two signal–idler pairs in a loading interval—
as compared with its probability of producing one such pair—is the primary reason that the
GHZ-state throughput in figure 9(a) is so much lower than the teleportation throughputs we
saw in figures 5(a) and 7(a). On the positive side, however, we see that the architecture from
figures 8(a), (b) permits a throughput comparable to what Bouwmeester et al produced in the
laboratory to be realized over a 10 km source-to-memory radius with 90% conditional probability
of success. More important, though, is the fact that the memories in the figure 8 architecture
allow the GHZ state to be stored for use in quantum secret sharing or other applications of
three-particle entanglement.
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A route to obtaining substantially higher throughputs from the figure 8(b) architecture may
be developed by examining the role of the memory element in figure 8(a). Suppose that the dual
DPA emits two entangled-photon pairs from which each of the memories in figures 8(a), (b)
captures one photon. The polarization of the photon captured by the figure 8(a) memory is
determined, by the polarizing beam splitter, as is the polarization of the photon entering the
HWP in that figure. The HWP’s orientation forces the latter photon to have a 50/50 chance of
taking either output port of the ensuing polarizing beam splitter. It then follows that the three
external memories share a GHZ state. Note that the sole purpose of the figure 8(a) memory
is to serve as a trigger, i.e. to herald (by its absorbing a photon of a definite polarization) the
presence of a photon in the orthogonal polarization at the input to the HWP. Recent work has
shown that it may be possible to construct heralded single-photon sources [15]. With such a
source, used in the configuration shown in figure 8(c), there would be a single photon entering
the HWP during every cycle of the loading protocol, as compared with the much lower flux
that prevails in the figure 8(a) version of the GHZ-state source. When this heralded source
produces one photon per loading interval in the proper spatio-temporal mode for coupling to
the trapped-atom quantum memory, vastly improved GHZ-state communication results from
using the figure 8(c) source in the figure 8(b) transmission architecture, as shown in figure 9(a).
In particular, throughput rises by three orders of magnitude, to about 15 GHZ states s−1 at 10
km radius. Note that the source-to-memory radius for which GHZ-state communication can be
achieved may be extended by teleporting the contents of any or all of the figure 8(b) memories
using the long-distance teleportation architecture shown in figure 1. Thus, it should be possible
to share GHZ states over long distances for use in quantum secret sharing or other multi-party
entanglement protocols.

6. Discussion

We have described architectures for long-distance, high-fidelity quantum teleportation and GHZ-
state transmission. Because of their nondestructive memory-loading verification, their ultrabright
entanglement sources, and their ability to employ the low-loss wavelength window in standard
telecommunication fibre, these systems can sustain appreciable throughputs and high fidelities
over loss-limited operating ranges well beyond those of previous quantum repeater proposals.
Of course, our analysis has neglected additional degradations that may arise from residual phase
errors in transmission, imperfect Bell-state measurements etc, which will reduce achievable
fidelities. Nevertheless, the figure 1 and 8 configurations offer substantial promise for bringing
quantum communications from conditional demonstrations in the laboratory to viable system
implementations.

Acknowledgments

This research was supported by US Army Research Office grant DAAD19-00-1-0177 and by
National Reconnaissance Office contract NRO000-00-C0032. The author acknowledges fruitful
technical discussions with Phillip Hemmer, Peter Hendrickson, Prem Kumar, Seth Lloyd, Selim
Shahriar, Franco Wong, and Horace Yuen, and he thanks Brent Yen for help with the GHZ state
analysis.

New Journal of Physics 4 (2002) 47.1–47.18 (http://www.njp.org/)

http://www.njp.org/


47.14

Appendix

Here we shall sketch derivations of the success and error probabilities for the dual-OPA source
and DPA source teleportation architectures, and also for the dual-DPA source and the DPA plus
heralded single-photon source GHZ-state architectures.

A.1. Dual-OPA source teleportation

The anti-normally ordered characteristic functions, χ
ρSxIy

A (ζ∗, ζ) and χ
ρSyIx

A (ζ∗, ζ), from
equations (6) and (7), respectively, are the Fourier transforms of the normally ordered forms
of their associated density operators. Thus, these density operators can be recovered from the
operator-valued inverse Fourier transforms,

ρ̂SxIy =
∫ d2ζS

π

∫ d2ζI

π
χ

ρSxIy

A (ζ∗, ζ)e−ζS â†
Sx

−ζI â†
Iy eζ∗

S âSx+ζ∗
I âIy , (A.1)

and

ρ̂SyIx =
∫ d2ζS

π

∫ d2ζI

π
χ

ρSyIx

A (ζ∗, ζ)e−ζS â†
Sy

−ζI â†
Ix eζ∗

S âSy +ζ∗
I âIx . (A.2)

The reduced density operator ρ̂Sx can be found by first obtaining the reduced anti-normally
ordered characteristic function via

χ
ρSx
A (ζ∗

S, ζS) = χ
ρSxIy

A (ζ∗ζ)|ζI=0 = e−(1+n̄)|ζS |2 , (A.3)

and then performing the operator-valued inverse Fourier transform to obtain

ρ̂Sx =
∫ d2ζ

π
χ

ρSx
A (ζ∗, ζ)e−ζâ†

Sx eζ∗âSx . (A.4)

Similarly, we have that

χ
ρSy

A (ζ∗, ζ) = χ
ρIx
A (ζ∗, ζ) = χ

ρIy

A (ζ∗, ζ) = e−(1+n̄)|ζ|2 , (A.5)

from which ρ̂Sy , ρ̂Ix and ρ̂Iy can be found as in equation (A.4).
We now observe that

χ
ρkj

A (ζ∗, ζ) =
πpkj

(ζ)
1 + n̄

, for k = S, I and j = x, y, (A.6)

where pkj
(ζ) is the classical probability density for a zero-mean, complex-valued Gaussian

random variable ζ whose second moments are 〈|ζ|2〉pkj
= 1/(1 + n̄) and 〈ζ2〉pkj

= 0. We also
have that

χ
ρSxIy

A (ζ∗, ζ) =
π2pSxIy(ζ)

(1 + n̄)2 − ñ2 , (A.7)

where pSxIy(ζ) is the classical probability density for a zero-mean, complex-valued Gaussian
random vector ζT = [ ζS ζI ] whose second-moment matrices are

〈ζζ†〉pSxIy
= ΛOPA ≡ 1

(1 + n̄)2 − ñ2

[
1 + n̄ 0

0 1 + n̄

]
, (A.8)

and

〈ζζT 〉pSxIy
= Λ̃OPA ≡ 1

(1 + n̄)2 − ñ2

[
0 ñ
ñ 0

]
. (A.9)
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Similarly, we have that

χ
ρSyIx

A (ζ∗, ζ) =
π2pSyIx(ζ)

(1 + n̄)2 − ñ2 , (A.10)

where pSyIx(ζ) is the classical probability density for a zero-mean, complex-valued Gaussian
random vector ζT = [ ζS ζI ] whose second-moment matrices are 〈ζζ†〉pSyIx

= ΛOPA, and

〈ζζT 〉pSyIx
= −Λ̃OPA. With these results in hand, we can readily find that

kj
〈0|ρ̂kj

|0〉kj
=

∫ d2ζk

1 + n̄
pkj

(ζk) =
1

1 + n̄
, for k = S, I and j = x, y, (A.11)

and

Sx〈0|Iy〈0|ρ̂SxIy |0〉Iy |0〉Sx =
∫ ∫ d2ζS d2ζI

(1 + n̄)2 − ñ2 pSxIy(ζ) =
1

(1 + n̄)2 − ñ2 , (A.12)

Sy〈0|Ix〈0|ρ̂SyIx|0〉Ix|0〉Sy =
∫ ∫ d2ζS d2ζI

(1 + n̄)2 − ñ2 pSyIx(ζ) =
1

(1 + n̄)2 − ñ2 . (A.13)

Substituting these results into equation (8) yields the dual-OPA configuration’s erasure
probability,

Perasure =
2

(1 + n̄)2 − 1
[(1 + n̄)2 − ñ2]2

. (A.14)

For the success probability, we have that

Psuccess = SI〈ψ−|ρ̂SI |ψ−〉SI =
1

2[(1 + n̄)2 − ñ2]2

× [〈(1 − |ζS|2)(1 − |ζI |2)〉pSxIy
+ 〈(1 − |ζS|2)(1 − |ζI |2)〉pSyIx

− 2 Re (〈ζSζI〉pSxIy
〈ζ∗

Sζ∗
I 〉pSyIx

)]

=
[n̄(1 + n̄) − ñ2]2 + 2ñ2

[(1 + n̄)2 − ñ2]4
, (A.15)

where the second equality follows from equations (A.1) and (A.2), and the third from the moment-
factoring theorem for complex-valued Gaussian random variables.

A.2. DPA source teleportation

Derivation of the erasure and success probabilities for DPA source teleportation closely parallels
what we have just described for the dual-OPA case. The anti-normally ordered characteristic
function χ

ρSxIxSyIy

A (ζ∗, ζ) from equation (11) satisfies

χ
ρSxIxSyIy

A (ζ∗, ζ) =
π4

(1 + n̄)2 − ñ2pSxIxSyIy(ζ), (A.16)

where pSxIxSyIy(ζ) is the classical probability density function for a zero-mean, complex-valued
Gaussian random vector ζT = [ ζSx ζIx ζSy ζIy ] whose second-moment matrices are

〈ζζ†〉pSxIxSyIy
=

[
ΛDPA 0

0 ΛDPA

]
, (A.17)
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and

〈ζζT 〉pSxIxSyIy
=

[
0 Λ̃DPA

Λ̃DPA 0

]
, (A.18)

with

ΛDPA ≡ 1
2[(1 + n̄)2 − ñ2]

[
(1 + n̄)(2 + n̄) − ñ2 −n̄(1 + n̄) + ñ2

−n̄(1 + n̄) + ñ2 (1 + n̄)(2 + n̄) − ñ2

]
, (A.19)

and

Λ̃DPA ≡ 1
2[(1 + n̄)2 − ñ2]

[
ñ ñ
ñ ñ

]
. (A.20)

We shall also need the reduced anti-normally ordered characteristic functions,

χ
ρkxky

A (ζ∗, ζ) = e−(1+n̄/2)(|ζ2
kx

|+|ζky |2)+ñ Re (ζkxζky ) (A.21)

=
π2

(1 + n̄/2)2 − (ñ/2)2pkxky(ζ), for k = S, I , (A.22)

where pkxky(ζ) is the classical probability density function for a zero-mean, complex-valued
Gaussian random vector ζT = [ ζkx ζky ] whose second-moment matrices are

Λpkxky
=

1
(1 + n̄/2)2 − (ñ/2)2

[
1 + n̄/2 0

0 1 + n̄/2

]
, (A.23)

and

Λ̃pkxky
=

1
(1 + n̄/2)2 − (ñ/2)2

[
0 ñ/2

ñ/2 0

]
. (A.24)

Using operator-valued inverse Fourier transforms to obtain the necessary density operators
and employing the properties of Gaussian probability densities, we then find that

Perasure =
2

(1 + n̄/2)2 − (ñ/2)2 − 1
(1 + n̄)2 − ñ2 , (A.25)

for the DPA system’s erasure probability, and

Psuccess =
[n̄(1 + n̄) − ñ2]2 + ñ2

2[(1 + n̄)2 − ñ2]3
, (A.26)

for its success probability.

A.3. GHZ-state communication

Our final task will be to outline derivations for the erasure and success probabilities of the
GHZ-state communication architectures shown in figure 8. Once again, the approach involves
anti-normally ordered characteristic functions, operator-valued inverse Fourier transforms and
complex-Gaussian moment factoring. Having illustrated most of the details in the dual-OPA
and DPA teleportation calculations, we shall content ourselves with a brief summary of how the
corresponding calculations are performed for GHZ-state communication.

Consider the dual-DPA architecture from figures 8(a), (b). The anti-normally ordered
characteristic function for {âTy(Tc), â1(Tc), â2(Tc), â3(Tc)}—the ŷ-polarized mode of the
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trigger memory and the x̂- and ŷ-polarized modes of the three external memories at the end
of a loading interval—can be shown to be

χ
ρTy123

A (ζ∗, ζ) = e−(1+n̄)(|ζ1x+ζ2y |2+|ζ1y +ζ3y |2)/2+ñ Re [(ζ1x+ζ2y )(ζ1y +ζ3y )]

× e−(1+n̄)(|ζTy |2+|ζ2x+ζ3x |2/2)−
√

2ñ Re [ζTy (ζ2x+ζ3x )]

× e−(|ζ1x−ζ2y |2+|ζ1y −ζ3y |2+|ζ2x−ζ3x |2)/2, (A.27)

where we have assumed that the same fixed and propagation losses are incurred from the dual-
DPA to each of the four memories. Note that this is a conservative assumption, in that it apportions
the same propagation loss on the source-to-trigger path as is encountered on the long-distance
path to the external memories. From this characteristic function, we find the erasure probability
by a tedious Venn-diagram accounting for every way in which one or more of the four memories
in figures 8(a), (b) can fail to absorb photons. The result that is obtained is

Perasure =
1

1 + n̄
+

2
(1 + n̄/2)2 +

1
(1 + n̄/2)2 − (ñ/2)2

− 2
(1 + n̄)[(1 + n̄/2)2 − (ñ/2)2]

− 4
(1 + n̄/2)[(1 + n̄/2)(1 + n̄) − ñ2/2]

+
2

[(1 + n̄/2)(1 + n̄) − ñ2/2]2
+

1
[(1 + n̄/2)2 − (ñ/2)2][(1 + n̄)2 − ñ2]

+
1

(1 + n̄)[(1 + n̄)2 − ñ2]
− 1

[(1 + n̄)2 − ñ2]2
. (A.28)

The success probability, Psuccess ≡ Ty〈1| GHZ〈ψ|ρ̂Ty123|ψ〉GHZ |1〉Ty , also follows from the
foregoing characteristic function, after a lengthy bout of complex-Gaussian moment factoring
that yields

Psuccess =
{[n̄(1 + n̄) − ñ2]2 + ñ2}2

4[(1 + n̄)2 − ñ2]6
. (A.29)

For the DPA plus the heralded single-photon source, the relevant anti-normally ordered
characteristic function is

χρ123
A (ζ∗, ζ) = (1 − η|ζ1x + ζ2y |2/2)e−|ζ1x+ζ2y |2/2

× e−(1+n̄)(|ζ1y +ζ3y |2+|ζ2x+ζ3x |2)/2+ñ Re [(ζ1y +ζ3y )(ζ2x+ζ3x )]

× e−(|ζ1x−ζ2y |2+|ζ1y −ζ3y |2+|ζ2x−ζ3x |2)/2. (A.30)

Here we have made the optimistic assumption that the heralded single photon is created
in the optimal temporal mode for loading into our trapped-atom quantum memories, but
we have tempered this assumption by applying the same loss factor, η ≡ ηLγγc/ΓΓc, to
heralded-photon source-to-memory transmission that applies to DPA-photon source-to-memory
transmission. Another round of Venn-diagram accounting, using the preceding anti-normally
ordered characteristic function, can now be used to show that the erasure probability for the DPA
plus heralded single-photon source GHZ-state architecture is given by

Perasure =
2 − η

1 + n̄/2
+

η

(1 + n̄/2)2 − (ñ/2)2

− 2 − η

(1 + n̄/2)(1 + n̄) − ñ2/2
+

1 − η

(1 + n̄)2 − ñ2 . (A.31)
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The success probability for the DPA plus heralded single-photon source system can be obtained
from the anti-normally ordered characteristic function by complex-valued Gaussian moment
factoring, with the following result:

Psuccess ≡ GHZ〈ψ|ρ̂|ψ〉GHZ =
η{[n̄(1 + n̄) − ñ2]2 + ñ2}

4[(1 + n̄)2 − ñ2]3
. (A.32)
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[6] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895–9
[7] Bouwmeester D, Pan J-W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575–9
[8] Bouwmeester D, Mattle K, Pan J-W, Weinfurter H, Zeilinger A and Zukowski M 1998 Appl. Phys. B 67

749–52
[9] Kumar P 1990 Opt. Lett. 15 1476–8

[10] Huang J M and Kumar P 1992 Phys. Rev. Lett. 68 2153–6
[11] Bergman K, Doerr C R, Haus H A and Shirasaki M 1993 Opt. Lett. 18 643–5
[12] Wong N C, Leong K W and Shapiro J H 1990 Opt. Lett. 15 891–3
[13] Kuklewicz C E, Keskiner E, Wong F N C and Shapiro J H 2002 A High-flux entanglement source based on a

doubly-resonant optical parametric amplifier J. Opt. B: Quantum Semiclass. Opt. 4 S162–8
[14] Greenberger D M, Horne M A and Zeilinger A 1989 Going beyond Bell’s theorem Bell’s Theorem, Quantum

Theory, and Conceptions of the Universe ed M Kafatos (Dordrecht: Kluwer) pp 73–6
[15] Santori C, Pelton M, Solomon G, Dale Y and Yamamoto Y 2000 Phys. Rev. Lett. 86 1502–5

New Journal of Physics 4 (2002) 47.1–47.18 (http://www.njp.org/)

http://www.njp.org/

