ARCHITECTURES FOR RF FREQUENCY SYNTHESIZERS

THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE

ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor: Mohammed Ismail. Ohio State University

Related Titles:

DATA CONVERTERS FOR WIRELESS STANDARDS C. Shi and M. Ismail ISBN: 0-7923-7623-4 AUTOMATIC CALIBRATION OF MODULATED FREQUENCY SYNTHESIZERS D. McMahill ISBN: 0-7923-7589-0 MODEL ENGINEERING IN MIXED-SIGNAL CIRCUIT DESIGN S. Huss ISBN: 0-7923-7598-X CONTINUOUS-TIME SIGMA-DELTA MODULATION FOR A/D CONVERSION IN RADIO RECEIVERS L. Breems, J.H. Huijsing ISBN: 0-7923-7492-4 DIRECT DIGITAL SYNTHESIZERS: THEORY, DESIGN AND APPLICATIONS J. Vankka, K. Halonen ISBN: 0-7923 7366-9 SYSTEMATIC DESIGN FOR OPTIMISATION OF PIPELINED ADCs J. Goes, J.C. Vital, J. Franca ISBN: 0-7923-7291-3 **OPERATIONAL AMPLIFIERS: Theory and Design** J. Huijsing ISBN: 0-7923-7284-0 HIGH-PERFORMANCE HARMONIC OSCILLATORS AND BANDGAP REFERENCES A. van Staveren, C.J.M. Verhoeven, A.H.M. van Roermund ISBN: 0-7923-7283-2 HIGH SPEED A/D CONVERTERS: Understanding Data Converters Through SPICE A. Moscovici ISBN: 0-7923-7276-X ANALOG TEST SIGNAL GENERATION USING PERIODIC ΣΛ-ENCODED DATA STREAMS B. Dufort, G.W. Roberts ISBN: 0-7923-7211-5 HIGH-ACCURACY CMOS SMART TEMPERATURE SENSORS A. Bakker, J. Huijsing ISBN: 0-7923-7217-4 DESIGN, SIMULATION AND APPLICATIONS OF INDUCTORS AND TRANSFORMERS FOR Si RF ICs A.M. Niknejad, R.G. Meyer ISBN: 0-7923-7986-1 SWITCHED-CURRENT SIGNAL PROCESSING AND A/D CONVERSION CIRCUITS: DESIGN AND IMPLEMENTATION B.E. Jonsson ISBN: 0-7923-7871-7 **RESEARCH PERSPECTIVES ON DYNAMIC TRANSLINEAR AND LOG-DOMAIN** CIRCUITS W.A. Serdijn, J. Mulder ISBN: 0-7923-7811-3 CMOS DATA CONVERTERS FOR COMMUNICATIONS M. Gustavsson, J. Wikner, N. Tan ISBN: 0-7923-7780-X DESIGN AND ANALYSIS OF INTEGRATOR-BASED LOG -DOMAIN FILTER CIRCUITS G.W. Roberts, V. W. Leung ISBN: 0-7923-8699-X VISION CHIPS A. Moini ISBN: 0-7923-8664-7

ARCHITECTURES FOR RF FREQUENCY SYNTHESIZERS

by

Cicero S. Vaucher

Philips Research Laboratories Eindhoven

with a Foreword by

Bram Nauta

KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW eBook ISBN: 0-306-47955-9 Print ISBN: 1-4020-7120-5

©2003 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow

Print ©2002 Kluwer Academic Publishers Dordrecht

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: and Kluwer's eBookstore at: http://kluweronline.com http://ebooks.kluweronline.com

To Viviane

Foreword

The progress in the semiconductor industry has brought us advanced electronic systems available for large groups of people. By putting more and more functionality on an integrated circuit (IC) these systems could become cheap in mass production. This is the reason why scientists and engineers put constant effort in integrating more functions into ICs.

Many of these electronic systems need internal signals with a tunable, stable and accurate frequency. An example of this is a radio-frequency receiver, where a signal with a stable frequency is used to tune to a radio-station of interest. In the past this frequency was generated with the help of bulky passive mechanically tunable components. But if one wishes to integrate such a receiver on a chip, other components are needed to generate the tunable frequency. In this case, one needs to integrate a so-called frequency synthesizer, which relies on a clean fixed reference frequency, usually derived from a crystal, to create a variety of other frequencies.

A frequency synthesizer is usually realized with a phase-locked loop (PLL) which in turn can be implemented with on-chip components like transistors, resistors and capacitors. Such a synthesizer is far more complex than the olddays mechanically tuned resonators and can contain thousands of components. But still they are cheaper, more reliable, and easier in use: everybody wants a "digitally tunable" radio.

The application of synthesizers has gone through an enormous growth in the past years. Today they are widely used in wireless telecommunication systems like mobile phones but also in optical communication systems and cable modems. PLL circuits are also widely used as clock generators for microprocessors. PLL frequency synthesizers, and in particular radio-frequency (RF) synthesizers, are therefore important components of modern electronic systems.

A PLL frequency synthesizer may be cheap in mass production, but it is certainly not a simple circuit to design. Phase-locked loops are non-linear systems with very complex behaviour. Furthermore, PLLs are hard to simulate because time-constants are involved which may differ by many orders of magnitude. The output of a synthesizer has inaccuracies which are characterised as jitter and phase noise. These effects are very difficult to understand and to simulate. Finally, PLL design requires deep insight in system level design as well as transistor level design. So it is no surprise that there is a large need for design know-how on frequency synthesizers.

This book deals with the design of RF frequency synthesizers. It contains basic information for the beginner as well as in-depth knowledge for the experienced designer. Since frequency synthesizers are used in many different applications, different performance aspects are important in every case. Sometimes settling-time is important, sometimes residual phase deviation is important and sometimes residual frequency deviation is important. In all cases the design must be optimized in a completely different way. This book describes a conceptual framework for the different optimisations. It is, furthermore, widely illustrated with practical design examples used in industrial products.

The book was originally the Ph.D. thesis of Cicero Vaucher, who wrote it after 10 years of experience in RF frequency synthesizers at Philips Research Laboratories. I really enjoyed working with Cicero during the preparation of his thesis and now I feel very happy that it has been published as a book. Cicero has a natural talent in clear writing and therefore I believe this book is really worth reading for a broad group of scientists and engineers.

BRAM NAUTA Professor IC Design University of Twente, The Netherlands

Preface

Frequency synthesizers are an essential building block of RF communication products. Digital tuning has become commonplace in traditional market segments, such as TVs and AM/FM radios, and is fundamental to the operation of personal cellular communication systems, in which the RF channels are dynamically allocated as the users move within the network, and the mobile hand-sets have to automatically and transparently re-tune to different RF carrier frequencies.

The design of high-performance frequency synthesizers involves familiarity with system optimization techniques and knowledge of state-of-the-art system and building block architectures. Common technical requirements which need to be considered during the design phase include high spectral purity, fast settling time and low power dissipation. These are the main aspects treated in this book.

The main body of the text presents a theoretical analysis of different PLL properties, followed by descriptions of innovative architectures, circuit implementations and measurement results. The analysis of the PLL properties is performed with the use of the open-loop bandwidth and phase margin concepts, to enable the influence of higher-order poles to be taken into account from the beginning of the design process. The common concepts of undamped natural frequency and damping factor, originated in the analysis of second-order systems, are therefore not used in the text.

Chapters 1, 2 and 3 are of a tutorial nature. Chapters 1 and 2 review basic communication techniques and the main specification points of frequency synthesizers for tuning system applications. Chapter 3 focuses on single-loop architectures, with a discussion of the properties of PLL building blocks on the

x Preface

system level and a review of single-loop architectures in which the minimum step size is not equal to the reference frequency.

When organising this book I had the option to place the system-level analysis of different performance aspects in different chapters, that is, separated from more practical considerations such as the description of the application requirements and the implementation of the building blocks. Instead, I have chosen to "frame" the theoretical analysis within a few chapters which also describe the requirements of the intended applications. In this way, I hope that the reader will have a better understanding of the background and of the need for the theoretical system analysis being presented. Chapter 4, for example, focuses on tuning systems for phase-modulation communication systems, having as a practical application an L-band tuner for digital satellite reception. Here, a crucial specification point is the residual phase deviation of the oscillator signal; as such, Chapter 4 includes an in-depth analysis of the residual phase deviation of PLL frequency synthesizers.

Chapter 5 is the result of a frequency-modulation receiver project for carradio applications, where the challenge was the combination of fast settling time with low residual frequency deviation. An analysis of the settling time performance as a function of the open-loop bandwidth and phase margin is presented, followed by an analysis of the residual frequency deviation performance. This analysis led to the perception that the design procedure which optimises the residual phase deviation performance, described in Chapter 4, must be avoided in frequency-modulation applications, as it always results in a suboptimal residual frequency deviation performance. In other words, it is necessary to consider, during the optimization of the PLL frequency synthesizer parameters, whether it will be used in a phase-modulation or in a frequencymodulation communication system.

Chapter 6 focuses on programmable frequency dividers, having as practical application a low-power paging receiver. Among others, a truly-modular and an adaptive-power architecture for low-power multi-band applications are presented. Chapter 7 presents a summary of conclusions. Appendix A looks at the stability limits of PLLs using a PFD/CP combination, and Appendix B links the design of clock-conversion PLLs for optical networks to the wide-band loop design techniques developed in Chapter 4.

The circuit design of VCOs and crystal oscillators is not treated in this work. However, extensive reference lists to literature on VCO design have been included at the end of Chapters 1 and 3.

Acknowledgements

Many persons contributed to the development of this book. I would especially like to thank Dieter Kasperkovitz for his support and motivation during the execution of the projects described in the text. Dieter is also acknowledged for his valuable inputs to the circuits and architectures presented in Chapters 4, 5 and 6. I would also like to thank Prof. Bram Nauta for his continuous assistance and constructive remarks during the preparation of the manuscript. The circuits described in the text were realised in close cooperation with many colleagues, mainly from Philips Semiconductors. In particular, I want to acknowledge the following persons: Jon Stanley, Onno Kuijken, Philippe Gorisse, Alain Vigne, Pascal Walbrou and Johan van der Tang for contributions to the work described in Chapter 4. For contributions to Chapter 5, I would like to thank Kave Kianush, Huub Vereijken, Bert Egelmeers, Jan Meeuwis and Gerrit van Werven. I am also grateful to Zhenhua Wang and Gerrit van Veenendaal for contributions to Chapter 6. Pieter Hooijmans is gratefully acknowledged for the support provided for this work. Finally, I would like to thank everyone who proposed improvements to earlier versions of the text.

> CICERO S. VAUCHER Eindhoven, The Netherlands April 2002

Contents

Fo	rewo	rd	vii
Pr	eface		ix
Lis	st of A	Acronyms	xix
Lis	st of S	Symbols	xxi
1	1.1	Description Overview of the Book	1 5 7
2	 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 	ng System Specifications Tuning Range Minimum Step Size Settling Time Spurious Signals Phase Noise Sidebands Power Dissipation Integration Level Interference Generation ences	11 11 12 13 14 18 22 24 24 24 25
3	Sing 3.1 3.2 3.3	Ie-Loop Architectures Introduction Integer-N PLL Architecture PLL Building Blocks	27 27 28 28

		3.3.1	Voltage-Controlled Oscillators	28
		3.3.2	Frequency Dividers	30
		3.3.3	Phase Detectors	31
		3.3.4	The Phase-Frequency Detector/Charge-Pump Combi-	
			nation	33
		3.3.5	Loop Filter	38
	3.4	Dimen	sioning of the PLL Parameters	42
		3.4.1	Open- and Closed-loop Transfer Functions	42
		3.4.2	Open-loop Bandwidth f_c and Phase Margin ϕ_m	43
	3.5	Spectra	al Purity Performance	49
		3.5.1	Spurious Reference Breakthrough	49
		3.5.2	Phase Noise Performance	53
	3.6	Design	of the Loop Filter	62
		3.6.1	Spurious Reference Breakthrough	63
		3.6.2	Phase Noise Contribution from the Loop Filter Resistor	64
		3.6.3	Dimensioning of Time Constant τ_2 and Capacitance C_1	66
	3.7	The Ch	noice of the Reference Frequency	70
	3.8	Single	loop PLL with Divided Oscillator Output	70
	3.9	Fractio	nal-N PLL Techniques	75
		3.9.1	Phase Error Compensation	77
		3.9.2	$\Sigma \Delta$ Modulation Techniques	80
	3.10	Transla	ation Loops	85
	3.11	Direct	Digital Frequency Synthesizers	87
	3.12	Archite	ectures Combining PLL and DDS Synthesizers	89
	3.13	Summa	ary of Conclusions on Single-Loop Architectures	90
	Refe	rences .		91
4	Wide	-Band	Architectures	99
	4.1	Introdu	ction	99
	4.2	Receive	er Architectures	99
	4.3		al Phase Deviation	102
		4.3.1	The Residual Phase Deviation Power Φ_{res}^2	102
		4.3.2	The Open-Loop Bandwidth for Optimum Phase Noise	
			Performance	104
		4.3.3	Minimum Approximated Residual Phase Deviation	107
		4.3.4	Influence of the Phase Margin on the Residual Phase	
			Deviation	109

Contents xv

	4.3.5	The Influence of the Open-Loop Bandwidth f_c on the	
		Residual Phase Deviation Φ_{res}	113
	4.3.6	The Condition for the Implementation of the Optimum	
		Loop Bandwidth $f_c = f_{xover}$	115
4.4	Single	-Loop Design	116
	4.4.1	Specification of the PLL Building Blocks	117
	4.4.2	Single-Loop Architectures	120
	4.4.3	Wide-Band Loop Design	122
4.5	Multi-	Loop Design	125
	4.5.1	Phase Noise Performance	125
	4.5.2	Specification of the Different Loops	128
	4.5.3	The Limiting Values for the Reference Frequency	130
4.6	Satelli	te Tuning System	132
	4.6.1	Double-loop Tuning System Architecture	133
	4.6.2	Phase Noise Performance	135
4.7	Divide	rs in Bipolar Technology	137
	4.7.1	Architecture	137
	4.7.2	Logic Implementation of the Divider Cells	138
	4.7.3	Circuit Implementation	139
	4.7.4	Power Dissipation Optimization and Sensitivity Mea-	
		surements	141
4.8	VHF I	PFD/CP Architectures	145
	4.8.1	Architecture	145
	4.8.2	Circuit Implementation	148
	4.8.3	Measurement Results	149
4.9	Conclu	isions	153
Refe	rences .		153
	•	LL Architecture	157
5.1		uction	157
5.2		Car-Radio Application	157
5.3		Band Tuner Architecture	158
5.4		g Time	160
	5.4.1	Settling Behaviour	160
	5.4.2	Open-Loop Bandwidth, Phase Margin and Settling	1.6.
- -	a	Time Specifications	164
5.5	Settlin	g Time Requirements	167

5

	5.6	Residu	al Frequency Deviation	167
		5.6.1	Introduction	167
		5.6.2	Basic Concepts	168
		5.6.3	Simplified Treatment of the Residual Frequency Devi-	
			ation of a PLL	170
		5.6.4	Numerical Results with Analytic Transfer Functions .	174
		5.6.5	Conclusions	178
	5.7	Terrest	rial FM Broadcasting	180
	5.8	Referen	nce Spurious Signals and Loop Filter Attenuation	182
	5.9	Limitat	tions of Existing PLL Architectures	183
	5.10	Adaptiv	ve PLL Architecture	183
		5.10.1	Basic Architecture	184
		5.10.2	Loop Filter Implementation	185
		5.10.3	Dead-Zone Implementation	187
	5.11	Circuit	Implementation	191
		5.11.1	Programmable Dividers	191
		5.11.2	Oscillators	192
		5.11.3	Charge-Pumps	192
	5.12	Measur	rements	193
	5.13	Conclu	sions	196
	Refe	rences .		198
6	Prog	rammal	ble Dividers	201
	6.1		ction	201
	6.2		Architectures	202
		6.2.1	Architecture Based on a Dual-Modulus Prescaler	203
		6.2.2	Presettable Programmable Counters	205
		6.2.3	Basic Programmable Prescaler	205
		6.2.4	Adaptive Power Prescaler Architecture for Multi-Band	
			Applications	207
		6.2.5	Prescaler with Extended Programmability	209
	6.3	Divider	s in CMOS Technology	210
		6.3.1	Logic Implementation of the Divider Cells	212
		6.3.2	Circuit Implementation of the Divider Cells	213
		6.3.3	Power Dissipation Optimization	214
		6.3.4	Input Amplifier	216

	6.3.5 Input Sensitivity Measurements and Maximum Oper-	
	ation Frequencies	217
	6.3.6 Phase Noise Measurements	222
	6.4 Conclusions	225
	References	225
7	Conclusions	229
Δ	PLL Stability Limits Due to the Discrete-Time PFD/CP Operation	237
~		
Λ	A.1 Stability Limits	
Λ	•	237
В	A.1 Stability Limits	237
	A.1 Stability Limits	237 240 241
в	A.1 Stability Limits	237 240 241

List of Acronyms

ADC	Analog-to-Digital Converter
AFC	Automatic Frequency Control
AM	Amplitude Modulation
BER	Bit Error Rate
СР	Charge-Pump
DAC	Digital-to-Analog Converter
dBc	dB with respect to the Carrier
DDS	Direct Digital Synthesizer
D-FF	D-type Flip-flop
dg	Degree
DSB	Double Sideband
EMC	Electromagnetic Compatibility
EXOR	Exclusive-OR
FM	Frequency Modulation
FSW	Frequency Setting Word
GFSK	Gaussian Frequency Shift Keying
GMSK	Gaussian Minimum Shift Keying
IF	Intermediate Frequency
J	Joule
Κ	Kelvin
LO	Local Oscillator
LPF	Low-Pass Filter
MASH	Multi-Stage Noise Shaping Modulator
PC	Personal Computer
PFD	Phase-Frequency Detector
PLL	Phase-Locked Loop

xx List of Acronyms

PM	Phase Modulation
QPSK	Quadrature Phase Shift Keying
RDS	Radio Data System
RF	Radio Frequency
rms	Root-Mean-Square
ROM	Read Only Memory
S-H	Sample-and-Hold
SNR	Signal-to-Noise Ratio
SSB	Single Sideband
VCO	Voltage-Controlled Oscillator
VHF	Very High Frequency
VLSI	Very Large Scale Integration

List of Symbols

Page

·	0	0
acc	Output of a digital accumulator	79
ALO	Amplitude of the carrier signal (V)	15
A_{sp}	Amplitude of a spurious signal (V)	16
a_{sp}	Relative amplitude of a spurious signal with respect	16
	to the carrier (dBc)	
b	Ratio of the time constants of the loop filter τ_2/τ_3	39
C_1, C_2	Capacitances of the loop filter (F)	40
F	Fractional (decimal) part of division ratio	75
Fout	Output frequency of a PLL (Hz)	28
f_c	Open-loop bandwidth, 0 dB cross-over frequency	44
	(Hz)	
fcenter	Output frequency of a VCO when $V_{tune} = 0$ V (Hz)	28
fc,min	Minimum value of the open-loop bandwidth (Hz)	124
fclock	Clock frequency of a DDS synthesizer (Hz)	88
fdiv	Frequency of the signal at the output of a frequency	28
	divider (Hz)	
$f_{eq,r}$	Reference frequency at which the equivalent phase	58
ferror	noise floor is specified (Hz)	
	Maximum frequency error with respect to f_{lock} (Hz)	13
f_h	Higher offset frequency for integration of noise power density (Hz)	103
f_{in}	Input frequency to a frequency divider or PFD/CP	30
	(Hz)	

Symbol

Meaning

flo	Output frequency of the tuning system (Hz)	4
f_l	Lower offset frequency for integration of noise power density (Hz)	103
flock	Target frequency after a frequency step (Hz)	13
fnek fm	Fourier frequency (offset, modulation or baseband	15
Jm	frequency) (Hz)	15
f_{max}	Frequency of maximum phase advance of the open-	45
Jmax	loop transfer function (Hz)	
f_{min}	Minimum step size of the tuning system (Hz)	12
f_r	Offset frequency at which the free-running VCO	104
5.	phase noise power density is specified (Hz)	
f_{ref}	Operation frequency of the PFD (Hz)	28
fref,max	Maximum PFD operation frequency at which fre-	36
	quency discrimination can be realized (Hz)	
fref,min	Minimum value of the reference frequency in a	131
	wide-band loop (Hz)	
f_S	Symbol rate in a digital communication system (Hz)	103
fshift	Mixing frequency in a translation loop (Hz)	86
fstart	Operation frequency before a frequency step (Hz)	13
fstep	Magnitude of a frequency step (Hz)	162
f_{xtal}	Frequency of crystal oscillator (Hz)	28
fxover	Phase noise cross-over frequency (Hz)	106
G(s)	Open-loop transfer function of a PLL	43
H(s)	Closed-loop transfer function of a PLL	43
$H_d(j2\pi f_m)$	Low-pass transfer function (de-emphasis network)	169
I_{cp}	Amplitude of the output current of a charge pump	33
	(A)	-
Ileak	Leakage current in the tuning line of the VCO (A)	50
I _{out} i	Instantaneous output current of a charge pump (A)	34
	An integer	E 4
$i_{np}(f_m)$	rms current noise density originated in the charge	54
Κ	pump (A/\sqrt{Hz})	75
	Binary input to a digital accumulator	75 25
K _{pd} K _{vco}	Gain of PFD/CP combination (A/rad) VCO gain factor (Hz/V)	35 28
k k	Gain factor which depends on the configuration of	28 39
N	the loop filter	37

k _B	Boltzmann constant; 1.37×10^{-23} J/K	59
$\mathcal{L}(f_m)$	SSB phase noise power density in a 1 Hz band-	20
	width to total signal power, at offset frequency f_m	
	(dBc/Hz)	
\mathcal{L}_{eq}	SSB equivalent synthesizer phase noise floor at the	58
	input of the phase detector (dBc/Hz)	
$\mathcal{L}_{\Sigma\Delta}(f_m)$	SSB phase noise power density due to quantization	83
	noise from a $\Sigma \Delta$ modulator (dBc/Hz)	
$\mathcal{L}_{vco}(f_m)$	SSB free-running phase noise power density of the	109
	VCO (dBc/Hz)	
l	An integer	
loopnoise	Upper limit to the sum of the noise specification of	118
	the building blocks (dB)	
M	Integer denoting frequency division	71
т	Number of bits, word-width of a digital accumulator	75
maxspurious	Maximum (specified) magnitude of spurious signals	63
	(dBc)	
Ν	Main divider division ratio, integer	28
N _{max}	Maximum value of N which leads to compliance to	123
	$\Phi_{spec,wb}$	
n	An integer	
n'	Effective length of a programmable divider chain	209
Pcomp	Proportionality factor	79
p	Order of a $\Sigma \Delta$ modulator	81
p_i	Binary number	138
R	Reference divider division ratio, integer	28
R_1	Resistor used in the loop filter (Ω)	40
R_p	Ratio of the limiting values of the residual frequency	173
	deviation	
$s = \sigma + j\omega$	Laplace transform complex variable	
Т	Absolute temperature (K)	64
$T_{hp}(s)$	High-pass transfer function	60
T _{in}	Period of the input signal to a frequency divider (s)	206
Tout	Period of the output signal of a frequency divider (s)	206
T_{ref}	Period of the input signal to the PFD, $= 1/f_{ref}$ (s)	
t	Time (s)	
tlock	Locking time after a frequency step (s)	13

xxiv List of Symbols

V _{mismatch}	Magnitude of the ripple voltage due to mismatch in the CP current sources (V)	53
V_{ripple}	Magnitude of the ripple voltage at the VCO tuning line (V)	51
V_{tune} $v_{nf}(f_m)$	Voltage at the tuning input of a VCO (V) rms voltage noise density originated in the loop filter (V/\sqrt{Hz})	28 54
$Z_f(s)$ x	Transimpedance of the loop filter (Ω) A positive number, expresses the dependency of the equivalent phase noise floor on the reference fre- quency	39 58
$\alpha_{lf}(f_m)$	Relative magnitude of the phase noise due to loop filter elements	64
$\gamma(\phi_m)$	Excess noise factor	109
$\Delta f_e(t)$	Remaining frequency error with respect to final value (Hz)	162
Δf	Peak frequency deviation (Hz)	51
Δf_{res}^2	Residual frequency deviation power (Hz ²)	169
$\Delta f_{vco,fr}^2$	VCO free-running frequency deviation power (Hz ²)	172
$\Delta loopnoise$	Expresses the influence of the phase margin on <i>loop-noise</i> (dB)	120
ΔR	Reset time of the D-FFs when the loop is phase-locked (s)	36
$\Delta \theta$	Phase difference at the input of a phase frequency detector (rad)	35
$\Delta heta_{hf}$	Maximum phase difference that can be detected be- fore PFD/CP switches polarity of the output pulses (rad)	37
δ_{cp}	Duty-cycle of the output pulse of a charge-pump	38
$\delta f_o^2(f_m)$	Frequency deviation power spectral density (Hz ² /Hz)	169
$\delta f^2_{vco,fr}$	Free-running VCO frequency deviation power den- sity (Hz ² /Hz)	174
5e	Effective damping coefficient	164
$\theta(t)$	Excess phase of a sinusoidal signal (rad)	15
$ heta_{div}$	Phase of the output signal of a frequency divider (rad)	30

θ_{error}	Phase error at the input of PFD/CP (rad)	78
θ_{in}	Phase of the input signal to a frequency divider (rad)	30
θ_{max}	Maximum value of θ_{error} during a settling transient	166
	(rad)	
θ_p	Peak phase deviation of phase modulation (rad)	15
θ_{ref}	Phase of the output signal of the reference divider	35
	(rad)	
$\theta_{rms,i}$	rms phase deviation associated with a pair of PM	17
	spurious signals (rad)	
$\theta_{rms,total}$	rms phase deviation due to several pairs of PM spu-	17
	rious signals (rad)	
$\theta_{rms,single}$	rms phase deviation associated with a single spuri-	18
	ous signal (rad)	
τ	Active time of the charge pump output signal (s)	38
τ_2, τ_3	Time constants of the loop filter (s)	39
$\tau_{3,sp}$	Time constant determined from spectral purity con-	68
	siderations (s)	
τ_{dz}	Single-sided magnitude of the dead-zone (s)	187
Φ^2_{min}	Minimum residual phase deviation power (rad ²)	109
$\Phi^2_{min,app}$	Minimum approximated residual phase deviation power (rad ²)	108
Φ^2_{rac}	Residual phase deviation power (rad^2)	103
Φ^2_{res} $\Phi^2_{res,app}$ $\Phi^2_{res,ml}$	Approximated residual phase deviation power (rad^2)	105
Φ^2_{rac} w	Residual phase deviation power of a multi-loop tun-	125
105,000	ing system (rad ²)	
$\Phi_{spec,max}$	Specification for the maximum residual phase devi-	116
	ation of the LO (rad rms)	
Φ_{spec}	Specification for the residual phase deviation due to	116
10 4 - 1943	stochastic phase noise sources (rad rms)	
$\Phi_{spec,spur}$	Specification for the residual phase deviation due to	116
	spurious signals (rad rms)	
$\Phi_{spec.wb}$	Residual phase deviation specification for a wide-	122
	band loop (rad rms)	
$\Phi^2_{tr,i}$	Residual phase deviation power transferred to the	125
	output of a multi-loop tuning system (rad ²)	
$\phi_d(f_m)$	rms phase noise power density of main divider	54
	(rad/\sqrt{Hz})	

xxvi List of Symbols

$\phi_{div}^2(f_m)$	Phase noise power density at the output of a fre- quency divider (rad^2/Hz)	71
$\phi_{eq}^2(f_m)$	Equivalent synthesizer phase noise floor at the input of the phase detector (rad^2/Hz)	55
$\phi_{lf}^2(f_m)$	Open-loop phase noise power density generated by	60
$\varphi_{lf}(J_m)$	the loop filter elements (rad^2/Hz)	00
<i>d</i>	Phase margin (radians in equations, degrees in fig-	44
ϕ_m	ures)	44
ϕ_{max}	Maximum phase advance of function $\Psi(j\omega)$ (rad)	45
$\phi_o^2(f_m)$	Phase noise power density of the PLL output signal	54
	(rad ² /Hz)	
$\phi_{olp}^2(f_m)$	"Low-pass" phase noise power component of	55
. orp to my	$\phi_{\alpha}^{2}(f_{m}) (\mathrm{rad}^{2}/\mathrm{Hz})$	
$\phi_{ohp}^2(f_m)$	"High-pass" phase noise power component of	60
i onp (o m)	$\phi_a^2(f_m) (\mathrm{rad}^2/\mathrm{Hz})$	
$\phi_{pd}(f_m)$	rms phase noise power density of phase frequency	54
	detector (rad/\sqrt{Hz})	
$\phi_{ref}(f_m)$	rms phase noise power density of reference divider	54
	(rad/\sqrt{Hz})	
$\phi_{vco}(f_m)$	rms phase noise power density of free-running VCO	54
	(rad/\sqrt{Hz})	
$\phi_x(f_m)$	rms phase noise power density of crystal oscillator	54
1.03 07030000	(rad/\sqrt{Hz})	
х	Ratio of f_{xover} and the effective noise bandwidth f_h	173
$\Psi(j\omega)$	Phase of the open-loop transfer function $G(j\omega)$	45
1205 (1993)	(rad)	
$\psi_p(f_m)$	DSB peak phase noise power density (rad/\sqrt{Hz})	20
$\omega = 2\pi f_m$	Angular frequency (rad/s)	
$\omega_c = 2\pi f_c$	Open-loop bandwidth (rad/s)	44
ω _{max}	Frequency of maximum phase advance of the open-	45
2.100 C 200	loop transfer function (rad/s)	