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High-performance intrusion detection and prevention systems are needed by

network administrators in order to protect Internet systems from attack. Researchers

have been working to implement components of intrusion detection and prevention

systems for the highly popular Snort system in reconfigurable hardware. While con-

siderable progress has been made in the areas of string matching and header process-

ing, complete systems have not yet been demonstrated that effectively combine all

of the functionality necessary to perform intrusion detection and prevention for real

network systems.

In this thesis, three architectures to perform rule processing, the heart of in-

trusion detection and prevention, are presented. The first system, called Snort Lite,



implements a subset of the features necessary for rule processing in a single Xilinx

Virtex XCV2000E field programmable gate array. The second system, called Snort

Intrusion Filter for TCP (SIFT), limits the amount of traffic an intrusion detection

PC needs to examine by searching for rule criteria. The final architecture presents

a framework for implementing the entire rule processing system in reconfigurable

hardware. The framework integrates the functionality to scan data flows for regular

expressions, fixed strings, and header values. Additional processing modules can be

added to the system to perform specific functionality required for some Snort rules.

Reconfigurability and flexibility are key features of the system that enable it to adapt

to protect Internet systems from threats including malicious worms, computer viruses,

and network intruders. The framework allows experimentation with new techniques

to perform the functionality required for intrusion systems.

Each architecture uses the Field-programmable Port eXtender (FPX) platform

to scan all bytes of Transmission Control Protocol/Internet Protocol (TCP/IP) traf-

fic entering and leaving a network’s gateway at multi-gigabit rates. The combined

circuits perform deep-packet inspection to search for thousands of signatures. The

rule processing framework supports up to 32,768 complex rules at data rates of 2.5

Gbps on the FPX platform.
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Chapter 1

Introduction

The world is now networked together. People, businesses, and governments share

information and communicate nearly instantaneously. Individuals use the network

for today’s everyday tasks, such as banking, shopping, investing, or transferring pic-

tures to friends. With sensitive information now available on-line, measures must be

taken to ensure security and privacy. The electronic database of customer’s credit

card numbers, addresses, and phone numbers must be secured against identity theft.

Similarly, medical institutions must secure patient information to protect medical

information and maintain privacy.

High-speed network connections have dramatically increased the amount of

information that can be communicated. However, these same high speed links have

also aided the spread of malicious software. This ‘malware’ has been used to cripple

businesses and bring servers to a standstill. Worm attacks by Nimda, Code Red,

Slammer, SoBigF, and MSBlast have infected computers globally, clogged large com-

puter networks, and degraded productivity, costing billions of dollars.

In order to protect networked systems, intrusion detection and prevention

is necessary. Intrusion detection determines when harmful activities are being at-

tempted. Intrusion prevention systems stop malware from infecting additional ma-

chines over the network. In the remainder of this chapter, the need for high speed

rule processing systems is motivated, intrusion detection is defined, and the notion of

rule processing for intrusion detection is explored. Finally, the contributions of the

work are presented.
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1.1 Motivation

Intrusions are unlikely to stop anytime soon. As more people, institutions, govern-

ments, and companies are networked together, the threat of intrusions increases. It

is exceedingly difficult to build and maintain systems that are totally foolproof and

have no security holes. Due to time-to-market constraints and because it takes too

long to test all possible permutations of events that can produce an intrusion, it is

unlikely that systems will ever be built that are totally secure. Network systems that

can detect intrusions and prevent future intrusions are critical for security.

The work that was performed for this thesis had two main motivating factors.

First, the monetary costs of intrusions, such as from spam, worms, and viruses is expo-

nentially increasing. Solutions are needed now to combat this growing trend. Second,

current rule processing systems are almost entirely implemented using software that

runs on processors that cannot scale to process data on fast links. Hardware imple-

mentations allow for higher throughput, increase rule capacity, and take advantage

of the parallelism that is inherent in rule processing.

1.1.1 Economic Impact of Intrusions and Spam

The proliferation of spam and malicious software circulating on the public network

is extraordinary. First, the lost productivity costs institutions billions of dollars per

year. Spam messages (that get by filters) require time to be deleted by the human

recipients. The emergence of the billion-dollar security and spam industry is proof

that this is a wide-scale problem, as evidenced by the emergence of companies like

Symantec and McAfee and projects like SpamAssassin.

Second, the severity of malware forces companies to devote entire departments

of full-time staff members to ensure that computing systems are patched with the

latest software. Consider the MSBlast worm, a particularly annoying worm that

affected more than eight million vulnerable Windows-based machines [63]. This worm

rebooted computers after a minute of being operational, which was too little time to

recognize the problem and install the patch. Future worms are expected to be more

dangerous and could modify or delete data on infected computers. The estimated

costs of certain worm and virus instances are summarized in Table 1.1. Nearly all

major worm or virus outbreaks have cost billions of dollars [1, 123].
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Table 1.1: A summary of the cost of malicious code by incident [1, 123].

Year Incident Worldwide Impact (US Dollars)

2004 Netsky $11 Billion
Sasser $6.25 Billion

Mydoom.F $22.6 Billion
2003 Sobig.F $2 Billion

Blaster $1.3 Billion
Slammer $1.2 Billion

2002 KLEZ $9 Billion
2001 Nimda $635 Million

Code Red $2.62 Billion
SirCam $1.15 Billion

2000 Love Bug $8.75 Billion
1999 Melissa $1.1 Billion

Explorer $1.02 Billion

Finally, recent scams seek information from recipients. This tactic, known as

phishing, has become very sophisticated and is difficult to prevent. In such cases, peo-

ple unknowingly give sensitive information directly to the phishers who fraudulently

pose as a reputable institution such as PayPal, Citibank, or Washington Mutual. In

some cases, entire bank accounts are emptied and people are left wondering what hap-

pened. This scheme has become a major issue for law enforcement agencies. Many

of the sources of such malware and phishing scams originate in countries with few

laws to prevent such actions. The estimated worldwide impact of malware has grown

exponentially, as shown in Figure 1.1.

1.1.2 Scalability

Databases of rules have been developed to identify malware. As new threats emerge,

these rules increase in complexity. It was shown in [94] that the current volume of

rules cannot be processed completely in software using today’s PCs even at 100 Mbps

rates. As link speeds increase to 1 Gbps, OC-48 (2.5 Gbps), OC-192 (10 Gbps), and

beyond, systems are needed that accelerate the processing functions in hardware.

A hardware circuit can scale to process the increasingly complex rules at higher

data rates. Hardware affords a higher degree of parallelism, which allows higher

throughput to be maintained. A hardware device can be placed in line with a near

zero increase in end-to-end latency. All network communication traverses through the
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Figure 1.1: The cost of malicious code is increasing exponentially [1, 2, 123].

intrusion detection and prevention device so that as long as a rule for an intrusion

has been written, the intrusion system discovers it. Only recently have components

of intrusion systems been moved over to hardware to take advantage of parallelism,

as discussed in detail in Chapter 2.

1.2 Intrusion Detection

Intrusion detection, in the general sense, identifies anomalous, inappropriate, or incor-

rect access to a system. There has been much work on defining the types of intrusions

[9, 32, 34, 40, 80], distinguishing an intrusion from normal activity [16, 17, 57], and

prototyping various intrusion systems [8, 31, 62, 70, 101, 105].

A high-level view of the components necessary to assemble an intrusion system

is shown in Figure 1.2. At the center of the system is a component that detects

intrusions. Four elements surround the detector that send and receive information.

First, the detector has to know what events are classified as intrusions. When a

new event occurs, the detector uses information about the current settings of the

system as well as information about known intrusions to determine if this event is

suspect. If the detector determines that the event is an intrusion, the event can be

logged, a countermeasure can be taken, and an alarm can be raised. The potential

countermeasures are represented as a database because multiple types of responses

are available. An alarm could be signaled or the system could be modified to prevent

similar events. When an alarm is triggered, an authority decides what further steps

to take.
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Database of

System being monitored

Detector

Events

Countermeasures

Logs

System
Parameters

Settings Response

Alarm

Intrusions
Known/Learned

Figure 1.2: An intrusion system consists of a detector that recognizes known intru-
sions, learns new types of intrusions, and takes actions based on events that occur,
raising an alarm if necessary. A similar diagram is given in [32].

Feedback from the detector to the database of known intrusions indicates that

the ideal detector can discover new intrusions. The event may be an abnormal event

or it may be patterned after a similar known intrusion. An authority can be consulted

to determine whether the event is deemed an intrusion or not.

In the case of data networks, intrusion detection refers to the transfer of un-

wanted, malicious, or dangerous content over a network, and the system being mon-

itored can be a web server, a database, or a cluster of computers. The intrusion may

be as benign as spam or as harmful as a trojan horse [34] that infects a computer

system by reading, writing, or even deleting files.

1.2.1 Types of Intrusions

Intrusions can take several forms. They can occur as abnormal, unauthorized, or

unwanted system usage. Examples related to networking follow.
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Unauthorized Access

Unauthorized access occurs when an individual gains access to a system they have

no right to use. For example, a user may view web pages containing proprietary

information that they have not been authorized to view.

Authorized Access

An intrusion can occur even if the credentials of the individual accessing the system

are correct. For example, an intruder can fraudulently obtain account information

such as login names and passwords. This is known as masquerading [16, 34, 40]. The

system believes the intruder is authorized. This is the most difficult type of intrusion

to detect since the detector must consider what is being accessed and what operations

are being performed.

Spam

Spam is an unwanted electronic message from individuals or companies who send

the message to people that may not desire to receive the message. These messages

generally try to sell items, such as medication, loan applications, or pornography.

Phishing is a heinous form of spam where a message supposedly from an au-

thoritative institution, such as a bank, e-commerce site, or government agency, directs

the recipient to reply to the message or go to a web page and enter sensitive informa-

tion. These messages can be quite persuasive, claiming accounts will be deactivated

unless information is verified. Institutions have been formed in order to combat this

problem [4], and tools are needed to protect network users.

Virus

A virus is a piece of malware hidden in files or emails. Once activated by the host, the

virus replicates itself and spreads to additional hosts. Viruses generally spread via

email, requesting that the recipient view an attachment. Clever virus writers writer

code to search an infected host’s address book to find additional recipients. The virus

assumes the host identity when sending new email messages, increasing the likelihood

that the target becomes infected.
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Worm

A worm exploits a vulnerability in a system to execute code without the user actively

starting it. The most common form of worm exploits buffer overflows, whereby the

processor stack is subverted. Malicious code extends beyond the allocated buffer and

is executed.

Worms take advantage of software flaws that may be difficult to find but are

quick to exploit. The authors of [85] predicted that a worm could be written that

infects all vulnerable hosts in less than 15 minutes. The prediction became reality

in January 2003 when the Slammer worm infected over 90% of the vulnerable hosts

within the first ten minutes [74, 75].

Internet users have been lucky so far in that the worms released have not

appeared to be exceedingly malicious. However, even a fast propagating benign worm

has the consequence of clogging networks with a flood of traffic. The authors of [76]

developed guidelines to help stop the spread of such malicious code.

Denial of Service

Denial of Service (DoS) prevents legitimate users from accessing a system. DoS

is accomplished by flooding a system with data that takes time to process. This

inundation of events grinds services provided by the system to a standstill as each

request is processed sequentially.

Web servers and email servers are frequent targets of such attacks, and the

effects of a DoS attack can be very detrimental to those providing the service. E-

commerce is especially sensitive to such attacks, since any loss of service can mean

the loss of a customer’s business.

1.2.2 Methods of the Detection

There are three basic ways to detect an intrusion: anomaly detection, signature

detection, and learning. The detector should signal an alarm when a breach of security

is attempted.

Anomaly Detection

In anomaly detection, the detector recognizes deviations from standard behavior. Ab-

normal behavior is considered suspect. For example, a flood of traffic to a particular
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TCP port could signal the beginning of a worm/virus outbreak or a DoS attack.

However, anomaly detection can result in false alarms. The event in question may

be a previously unseen event that is perfectly legitimate, such as the distribution of

a software update. The use of thresholds and statistical analysis is used heavily to

prevent false alarms [43, 55, 71, 72, 116].

Signature Detection

The second method of detection is to search packets or flows for known signatures.

This requires that the detector know what to search for in advance. This could involve

searching packet headers for suspect port numbers or IP addresses, or it could trigger

searching payload for worm or virus signatures.

Learning

Finally, an effective detector should be able to learn about and react to new intrusion

attempts. Learning requires training time for the system to determine what consti-

tutes normal behavior and who are legitimate users [59]. Once trained, the system

reacts to abnormal behavior and makes decisions on what actions to take.

One technique to learn about new signatures is to use thresholds to determine if

a signature appears to be occurring too frequently. The authors of [71] used thresholds

in conjunction with a timeout period to detect suspect occurrences of signatures.

1.2.3 Responses

Once an intrusion is detected, a response should be taken. The response could be to

write to a log file or to email an administrator. The type of response depends on the

way the system is configured. An intrusion detection and prevention system (IDPS)

can be configured as either passive or active.

If the system is configured to be passive, as intrusion detection systems are,

countermeasures cannot be performed to stop the intrusion because the system is

only being monitored. Passive systems just inform an authority of security breaches.

It is left to that authority to determine what to do about the problem.

Intrusion prevention systems can take countermeasures. In-line, active systems

stop the flood of worms, which otherwise infect all vulnerable hosts in a matter of

minutes. Countermeasures may include dropping an offending packet, terminating a

user’s connection, or blacklisting an IP or email address.
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Effects of False Alarms

False alarms in intrusion detection systems are a serious problem. A false alarm

occurs when an event or sequence of events causes an alarm to trigger even though

the event was legitimate. For example, a false alarm may be raised at a web server if

a certain web page becomes popular. A flash crowd, for example, occurs when there

is a sudden surge of interest in a particular page. A term called “slashdotted” has

been coined to describe the effect of large scale access to a web page when the URL

is posted in an article on the www.slashdot.org website. An intrusion detection

system (IDS) may determine this is a distributed DoS attack when, in fact, the web

server cannot meet the demand of all the legitimate users who want to access the

content.

When an alarm is raised, the reason for the alarm should be genuine. A system

that generates many false alarms results in real alarms being overlooked. Addition-

ally, when events occur too often, the logging and alarming mechanisms become

overloaded. The authors of [12] and [90] discussed methodologies for benchmarking

intrusion detection systems.

1.2.4 Who is the Authority?

Intrusion detection systems are used by many different types of people, ranging from

individuals on home computers to the staff at large corporations. The focus of this

work is for systems operating on large data networks, including local area networks

(LANs) and wide are networks (WANs).

Members of an Information Technology (IT) department are generally granted

authority to access networked systems, enforce networking policies, ensure the net-

work is properly maintained, install new system software, and ensure the data within

the network is only accessible by those with proper credentials. When an intrusion is

detected, they respond and make the decisions about how to combat the intrusion.

1.3 Rule Processing for Intrusion Detection

Rule processing enables an authority to describe what constitutes an intrusion in his

or her network. Rules can be written to perform header processing and/or payload

signature detection. The rules are then used by the detector to scan events as they

occur in the system being monitored.
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Rule processing requires many resources and much computing power. Anomaly

detection and learning algorithms could be used in tandem with rule processing sys-

tems by defining new intrusion rules.

Writing useful intrusion rules requires care. A poorly written rule can result

in the generation of a large number of false alarms. New rules should be created

so they uniquely define an intrusion. The architectures to be described report rule

matches when the criteria specified in the rule is detected. Whether the circumstances

surrounding the match actually represent an intrusion is left as future work.

1.3.1 Necessary Characteristics

To be an effective intrusion detection and prevention system, several key character-

istics must be present. The system must operate in real-time, rather than using

off-line processing that could occur hours after the malicious content has infected the

network. This point implies that the IDPS must operate at network link rates.

The system must be highly adaptable in order to create a defense against

malware [130]. Rule updates must occur quickly and be put into effect with minimal

overhead. Taking the system down to change the rules is not an option. Forms of

intrusion are continually changing, and systems must be flexible to counteract new

security issues.

The system must also be efficient. It must concisely inform network admin-

istrators of what is occurring in the network. Ideally, the system reports enough

information so future intrusions are blocked. For instance, future traffic from the

same source could be dropped or given a lower priority. Additionally, a full record of

the events leading up to the intrusion and the occurrence of the intrusion should be

logged so that an authority can examine the circumstances surrounding the breach.

1.4 Thesis Objectives

This thesis set out to explore rule processing architectures to perform intrusion de-

tection and prevention for networked systems with the following goals in mind:

• Provide a scalable architecture that supports processing of databases that con-

tain a complete set of IDPS rules

• Provide mechanisms that do not disrupt normal traffic but block malicious

attacks
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• Provide an intuitive interface for modifying rules and processing alerts

• Provide an useful tool for network administrators

• Be implementable in a form factor that is cost-effective and space-efficient

If this system is to be placed between systems, it should operate in a non-

intrusive way so as not to damage communication between the end systems.

If a tool is to be adopted, it should be intuitive, well documented, and serve

an useful purpose. It should provide easy mechanisms to add or remove rules to the

system and coherently report alarms to an authority.

Finally, the cost of the system should be considered. Current software-based

intrusion systems can require racks of computers to monitor a connection [54]. If

this functionality can be reduced to a single device, numerous benefits in terms of

reducing power, space, and cooling can be achieved.

1.5 Contributions

This thesis presents three separate architectures to perform rule processing for net-

work intrusion detection systems (NIDS) in reconfigurable hardware. The primary

contributions of the work are:

• The development of a scalable rule processing framework for intrusion detection.

• The comparison of different approaches to rule processing.

• The development of reconfigurable modules that can be reused. Components

that include Bloom filter hardware, a communication wrapper, and a statistics

engine were developed that can be re-targeted for new projects.

• The analysis of real network traffic to determine the frequency of rule matches,

benefiting architects in optimizing designs for actual network systems.

1.6 Thesis Outline

This thesis explores architectures to perform rule processing, laying a foundation for

an efficient intrusion detection and prevention system in reconfigurable hardware.
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In Chapter 2, background information on processing technologies and net-

working protocols is provided. Snort, the most common IDS currently available, is

discussed, with a focus on the algorithms used and the difficulties of directly porting

Snort into hardware. Using Snort rules, the elements involved in rule processing are

discussed: flow reconstruction, header processing, and pattern-matching. Related

work is also provided.

Snort Lite is introduced in Chapter 3. This architecture implemented a subset

of Snort rules on a single FPGA device. The complexity of the problem forced

a number of simplifying assumptions. The design decisions are discussed, as well

as some key observations that aid the design of the other two architectures. This

architecture is considered the baseline implementation of an IDPS system.

In Chapter 4, the Snort Intrusion Filter for TCP (SIFT) architecture is pre-

sented. This architecture explored a hardware and software approach to rule process-

ing. In SIFT, questionable data is sent to software for further processing. Question-

able data is determined by a combination of header processing and content scanning.

Only packets with a matching header or a keyword in the payload are forwarded

to software. A key observation about rule match frequency was learned from this

architecture.

In Chapter 5, the rule processing framework is described. This framework

provided the most flexibility and the greatest amount of scalability. The architecture

divided the header processing and content-scanning into separate modules and relied

on an adjacent hardware processing circuit, called the rule processor, to determine

whether intrusion rules matched.

In Chapter 6, system analysis and testing results are presented. Rather than

present the individual testing results for each of the architectures in their respective

chapters, these aspects are presented together here. All systems have their own unique

benefits and excel in different ways.

In Chapter 7, the work is summarized. A discussion of potential future work

in this area is provided.

The appendices are provided for reference. Appendix A discusses the control

software for the three systems. Appendix B discusses the laboratory configuration

to test each architecture. Appendix C explains the source code directory structure

and how to use the provided scripts. The location of the source files is also given.

Appendix D gives additional figures associated with system testing. Appendix E

provides a list of acronyms used throughout this thesis.
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Chapter 2

Background

In order to present rule processing architectures, a background on related work is

needed. First, an overview of the technologies available to perform rule processing

is given. Second, a brief description of the main networking protocols used by the

system is given. Third, current rule processing systems are presented. Fourth, Snort

is examined in detail, focusing on the underlying mechanics and its limitations. The

rules currently found in Snort are analyzed, giving careful attention to rule charac-

teristics. In the remaining three sections, details about the three main aspects of

rule processing are given: TCP flow reconstruction, header processing, and string

matching. Relevant related work is presented in the appropriate sections.

2.1 Implementation Medium

Techniques to perform rule processing can be implemented on a variety of mediums,

from general purpose processors to custom hardware.

2.1.1 General Purpose Processors

The general purpose processor (GPP) offers the most flexibility to implement features

for rule processing. Through the use of network interface cards (NICs), an ordinary

PC can become a NIDS. Software exists today that can perform the tasks of rule

processing. However, what advantage the PC gains in flexibility, it loses in raw

computing power.
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2.1.2 Network Processors

Network processors, such as the Intel IXP 2800 [52], are built specifically for network-

ing applications. A standard programming language allows the application designer to

perform operations directly on network data at speeds much greater than a standard

PC. This allows for relatively quick implementations.

The IXP 2800 has 16 parallel microengine processors, each of which can support

up to eight processing threads. With large numbers of fast general purpose registers

and multiple interfaces to external memory, a network processor can sustain high

processing rates.

2.1.3 Field Programmable Gate Array

Field programmable gate array (FPGA) technology enables a fully-custom, high-

speed, and flexible hardware implementation of data processing circuits. FPGAs use

configurable logic blocks (CLBs) that contain look-up tables (LUTs) and flip-flops.

Boolean logic functions are implemented using the CLBs. The speed of a design

is determined by the location of the CLBs used and the routing delays incurred by

connecting them. Fast, on-chip memories are also spread throughout current FPGAs.

By allowing soft modification of the hardware, the non recurring expense

(NRE) of FPGA designs is lower than for ASIC designs. For low-volume applica-

tions or prototyping, FPGAs are the most cost-effective solution. The design cycle

for a FPGA is considerably shorter than a fully-custom hardware solution. A devel-

oper writes VHDL [11, 126] or Verilog descriptions of hardware circuits, compiles the

design for simulation, synthesizes the design, and finally maps the design into the

appropriate part.

The architectures to be described use FPGA technology. Low-cost prototyping

and reconfigurability are key factors for this decision.

2.1.4 Application Specific Integrated Circuit

An application specific integrated circuit (ASIC) is a fully-custom circuit that pro-

vides a low-power, high-speed solution to perform rule processing. However, due to

the rigidity of the medium’s fabrication method, once the design has returned from

a fabrication plant, changes cannot be made without re-fabricating another circuit.

This is not desirable for rule processing IDS since system requirements frequently
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change. The NRE associated with an ASIC design is prohibitive for an application

that needs to adapt continually. ASIC designs are generally only profitable for appli-

cations that produce hundreds of thousands of units.

2.2 Networking Protocols

The Internet can be described using a seven-layer model [86]. Starting at the lowest

level, the layers are physical, data link, network, transport, session, presentation,

and application. The physical layer is concerned with how bits of information are

transferred from one location to another. The data link layer defines frame formats

to specify where information begins and ends. The network layer defines how data

is forwarded between hosts. The transport layer defines how data is transferred

reliably. The session layer determines how communication sessions are created and

authenticated. The presentation layer defines how data is internally represented for

transmission. Finally, the application layer generates and/or interprets the data that

has been transferred [56, 86, 117]. Rule processing resides in layers three and above.

2.2.1 Asynchronous Transfer Mode

The asynchronous transfer mode (ATM) protocol consists of 53-byte cells containing

a virtual path identifier (VPI), virtual circuit identifier (VCI), header error correct

code (HEC), and 48 bytes of payload data. The VPI and VCI are used to forward

cells between destinations. An ATM network requires connections to be pre-allocated

before data can be transferred. An allocation consists of configuring all VPI/VCI

routing tables between the source and destination. The VPI field is used to route

groups of VCIs together [86]. IP packets are transferred over ATM using specific

protocols [48, 60].

2.2.2 Internet Protocol

The Internet Protocol (IP) is used extensively today in the global network, providing

a best-effort delivery of IP packets [87]. A typical IP packet header consists of 20

bytes, as shown in Figure 2.1. The main fields of the header are:

• ToS - type of service, used for applications requiring certain quality of service

(QoS) guarantees
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Figure 2.1: A typical IP packet consists of 20 bytes of header and up to 1480 bytes
of payload data on an Ethernet network.

• Total length - the length, in bytes, of the entire IP packet

• TTL - time to live, the maximum number of hops the IP packet can make in

the network before being discarded

• Protocol - the encapsulated protocol used in the IP packet

• Source Address - the source network and local address of the sender

• Destination Address - the destination network and local address of the receiver

IP packets are the fundamental unit of processing for the rule processing ar-

chitectures. Higher level protocols, such as the User Datagram Protocol and the

Transmission Control Protocol are encapsulated within the IP payload data.

2.2.3 User Datagram Protocol

The User Datagram Protocol (UDP) is a best-effort delivery protocol [89]. UDP is

most commonly used for multimedia applications such as streaming video and audio.

The main addition of UDP over IP is port numbers, which allows the operating system

to deliver data to the appropriate application.

2.2.4 Transmission Control Protocol

The Transmission Control Protocol (TCP) is the predominate protocol used to-

day [88]. The authors of [102] showed 85% of network traffic is TCP. TCP provides
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Figure 2.2: A TCP packet consists of 40 bytes of header information (20 from the IP
packet header and 20 from the TCP header) and up to 1460 bytes of payload data
on an Ethernet network.

a reliable, in-order transmission of data. While protocols such as IP and UDP are

stateless, TCP is a state-based protocol, requiring a connection to be established.

By maintaining state, large transfers of data are possible. The principle applica-

tion of TCP is reliable data transfer, such as for web page viewing, email, and file

transfer [29].

A TCP packet, as shown in Figure 2.2, appends 20 additional bytes of header

onto the IP packet header. Fields of note are:

• Source Port & Destination Port - numbers to aid the operating system in de-

termining where to send the payload

• Sequence Number - the number given to the first byte of data found in the

payload to properly order data for delivery to the application

• Acknowledgement Number - the number given to the next byte expected at the

receiver, which informs the sender as to what bytes have been received

• Window - the number of bytes that can be in-flight between the sender and

receiver

TCP data is transferred in flows. A flow is characterized by four fields: the

source IP address, the destination IP address, the source port and the destination
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port. These four fields uniquely identify a TCP communication channel between

the sender and receiver. Since the maximum transfer unit of most networks is 1500

bytes (Ethernet frames) and most files are larger than 1460 bytes, a flow needs to be

established in order to reliably transfer all data bytes in the file.

2.3 Current Rule Processing Systems

Several rule processing systems have emerged as intrusion detection systems have been

developed. Current implementations support certain aspects of rule processing, while

neglecting others. Firewalls and policy engines are the two forms of rule processors.

2.3.1 Components of Rule Processing

The first major aspect of rule processing is flow reconstruction, which involves or-

dering TCP flow data. The best-effort nature of Internet routing protocols provides

no guarantees that TCP packets will arrive in-order or at all. For this reason, a

mechanism to handle TCP retransmissions is necessary.

The second main aspect of rule processing is header processing. All matching

header rules need to be considering when performing rule processing. Fields in packet

headers are inspected for known values that signify questionable material. For exam-

ple, some viruses spread on certain port ranges. Rules can be written to raise alerts

when these ports are used.

The final aspect of rule processing is pattern matching. The payload of packets

is examined for known signatures, such as an unique worm or virus signature or a

watermark. In the case of TCP flows, this means examining the data stream that

can span multiple packets.

Rule processing systems have only recently begun to incorporate the three

aspects of rule processing. Snort, in its default setting, monitors the network on a

packet by packet basis. Before the architectures developed for this thesis, there were

no known hardware implementations that incorporated all three aspects.

2.3.2 Firewalls

A firewall is a device that inspects packets before they arrive at their destination. If

the packets are found to contain questionable data, they are flagged. Firewalls can

be used to drop traffic entering a network, or they can be used to prevent traffic from
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leaving a network. The term “firewall” is used to suggest the prevention of spreading

harmful materials from one area to another.

The earliest firewalls were based solely on examining the header of IP pack-

ets [58, 91]. These implementations relied on allowing known port numbers and IP

addresses to pass through. For example, TCP traffic destined to port 25 or port 80 is

generally safe since these are the ports for email and web traffic. However, an attacker

can easily hide intrusions in these well-known port numbers.

Header-based software solutions are still common, and can be effective at re-

moving a significant portion of unwanted traffic. Zone Alarm is a common example

of a firewall solution.

2.3.3 Policy Engines

A policy engine examines more areas of a packet than just the header before deciding

whether a packet is safe or not. The problem with current policy engines is their

complexity. As a result, they passively monitor the network. Policy engines perform

signature detection, correlate events, and compute complex logical operations.

Paxson et. al developed an IDS called Bro [84, 106]. Using a proprietary

security language, this software-based system used libpcap to read network packets

on a PC. Event engines used libpcap to validate packets, correlate the received packet

with similar packets from the same flow, and process payload data. If alerts were

generated, a policy script was run to determine what action to take.

Ilgun and Kemmerer used state transition analysis to perform rule process-

ing [50, 51]. The concept is similar to finite automaton approaches used for string-

matching and the Aho-Corasick algorithm [7]. When an event occurs, the current

state of the system changes from secured to compromised.

Snort is another type of policy engine that uses rules to determine whether

intrusions have occurred [3, 93]. Snort has been adopted as the tool for intrusion

detection.

2.4 Snort: A Detailed Look

Snort is a software tool that was developed to limit high system footprint, simplify

deployment, and reduce cost [93]. In the remainder of this section, the configuration

of Snort is discussed, examples of Snort rules and their characteristics are given, the
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internals of how Snort operates are shown, and the difficulties of porting Snort to

hardware are described.

2.4.1 Setup

Snort is intended to be used in conjunction with a firewall system. Sensors are placed

before and after a firewall [100]. Snort is run on several IDS computers using libpcap

to read packets from the network being monitored.

2.4.2 Snort Rule Set

Intrusion rules specify: the processing of packet headers, the matching of patterns in

packet payloads, and the action to take when a rule matches. A Snort rule is given

below, and would cause an alarm for the packet shown in Figure 2.3.

alert tcp any 110 → any any (msg:“Virus - Possible MyRomeo Worm”;

flow:established; content:“I Love You”; classtype:misc-activity; sid:726;

rev:6;)

The rule above indicates that the packet header can match a wildcard value for

the source IP address, the destination IP address, and the destination port. However,

the source port of the packet must have the value of 110. The rule also specifies that

the protocol must be TCP. If the signature was found in an UDP packet, it is not

a match. The second part of the rule specifies to search for “I Love You” over an

established TCP/IP connection. Flow reconstruction from multiple packets must be

performed since there is no guarantee that the signature will not be segmented across

multiple smaller packets. All of the tasks described above must be performed just to

process this single rule. There are currently 2,464 rules in the Snort database. Over

80% of the rules require performing steps like those in the rule above.

In general, rules take the form:

< action > H1ID ∧ H2ID ∧ HnID ∧ (S1ID ∧ S2ID ∧ · · · ∧ SnID);

Note that multiple headers and multiple strings can be associated with a rule. The

Snort database does not allow the logical OR in a rule. To perform this, separate

rules are used.
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Figure 2.3: A TCP/IP packet that matches the rule specified in the example. The
matching protocol, source port, and payload are highlighted. Four bytes are shown
per line, and the bytes are shown in mixed ASCII and hexadecimal.

Characteristics

Before setting out to build any rule processing system, knowledge of the characteristics

of rules is necessary. Analysis of systems should consider the number of unique headers

and signatures that the systems can handle, the number of different header rules that

can be processed, and the number of signatures that can be associated with a given

rule.

Rule database analysis should consider how often signatures occur and how

many rules solely consist of a header rule. Examining this helps to determine an

optimal amount of resources for a practical system.

There are 292 unique header rules, 2,107 unique static signatures, and 233

regular expressions in the Snort rules database from September of 2004 (version 2.2).

Most Snort rules specify header rules of the form external network to internal network.

The signatures are distributed across the range 1 to 122 bytes, as shown in Figure 2.4.

The bulk of the distribution is below 40 bytes. All 2,107 signatures are spread across

2,296 of the 2,464 rules. Figure 2.5 gives a histogram of the occurrences of signatures

in rules. The y-axis is how many times the signature is found in a rule, and the x-axis

gives a number to each of the 2,107 signatures. Only 18 signatures occur in more than

10 rules. The hexadecimal signatures |00 00 00 00|, |01|, and |00 01 86 A0| occur in

135, 73, and 66 different Snort rules, respectively.



22

2.4.3 Rule Features

Table 2.1 is divided into header and payload options that are available to the intrusion

rule writer. The header options are split into sections that represent where they are

found in a packet, starting with the IP header, then the TCP header, and finally the

ICMP header.
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Figure 2.4: The number of signatures associated with each length.
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Figure 2.5: The number of times a signature appears in different rules.

Header Options

The header options shown in Table 2.1 correspond to distinct fields in packet headers.

The IP addresses and ports are unique in that they allow ranges and masks. The

other fields are exact match. As an example, consider the header rule below:
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Table 2.1: The header and payload options that are available to Snort rule writers.

Header Options Payload Options

Protocol Content
IP Addresses Perl compatible Regular Expressions

Same IP Uricontent
TTL Case Sensititivity
ToS Offset

Identification Depth
IP Options Within

Fragment Bits Raw Bytes
Fragment Offset Byte Jump

Data Size Byte Tests
Ports
Flags

Sequence Number
Acknowledgement Number

Flags
ICMP Type
ICMP Code

ICMP Identification
ICMP Sequence Number

alert tcp 128.252.0.0/16 :1023 → any !80:100 ttl:32 ack:12500

This rule states that a TCP packet with a source network address of 128.252, a source

port less than or equal to 1023, any destination IP address, a destination port that is

not between 80 and 100, a time-to-live value of 32, and an acknowledgement number

of 12,500 is considered a match.

Payload Options

Payload options are concerned with the presence and location of strings to find ex-

pressed as either static signatures or regular expressions. The depth construct allows

the search of a specified string up to a certain location in the payload. The offset con-

struct specifies where to begin looking for a given string. As with the header options,

payload options can be mixed together, and multiple signatures can be specified in a

rule.
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Figure 2.6: Snort rule processors consist of two dimensional trees that are separated
by protocol. The IP address and ports are specified in RTNs. All other options are
specified in OTNs.

2.4.4 Algorithms

When Snort receives a packet, it first splits up the processing based on the protocol

of the packet [35]. For each protocol, a rule tree exists containing rule tree nodes

(RTNs) and optional tree nodes (OTNs), as shown in Figure 2.6. There are two

primary ways the string matching functionality is performed in the OTNs: Boyer-

Moore or a modified Aho-Corasick.

When a RTN matches, the list of OTNs linked from it are also checked. For

example, consider an incoming TCP packet with a source port of 80 and a destination

port of 500. In this case, the OTN containing a check for sequence number 0 and

acknowledgement number 12,500 is performed. If the sequence and acknowledgement

numbers match, no further RTNs are examined because Snort only returns the first

matching rule.

Boyer-Moore

The Boyer-Moore method for pattern matching is a shift-and-compare algorithm [22].

Consider searching for the term String in the sentence We are looking for the word

String. The example is shown in Figure 2.7a through Figure 2.7c.
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String

We are looking for the word String
String

We are looking for the word String
String

(a)

(b)

(c)

We are looking for the word String

Figure 2.7: Character comparison begins from the right end of the word.

The algorithm begins in Figure 2.7a by aligning String along the left edge of

the data to search through. Beginning at the end of the search term, it compares

g to e and finds that they are not equivalent. The algorithm preprocesses the set

of search criteria to determine how many characters String can be advanced. In the

worst case, String is advanced one character at a time.

In Figure 2.7b, the algorithm has advanced String to be above the word looking.

In this case, the algorithm successfully matches the suffix ing. However, the fourth

character from the right is a mismatch (r and k). The algorithm searches for the

next occurrence of ing to align the term String.

Finally, in Figure 2.7c, the search term String is found in the sentence. A

match is then reported.

Aho-Corasick

The Aho-Corasick method represents search criteria in finite state machine (FSM)

form [7]. Data to be searched is shifted through one character at time. For example,

consider two search terms: String and ran. The state machine generated would look

like that of Figure 2.8.

Ten states are generated. The state represented by digit 0 is considered an idle

state. As characters are shifted through, the transition conditions are examined. If

they are met, the FSM advances to a subsequent state. For example, assume the state
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Figure 2.8: State transitions are performed based on the incoming character being
compared. The failure function is shown as a dashed line.

is currently 3 because Str was seen. However, the next character is a. In this case,

the algorithm needs to use the failure function to recognize that r exists in another

path, one where the letter a can allow it to advance state.

Snort uses a modified version of Aho-Corasick that examines multiple char-

acters to transition from one state to another. This eliminates many unnecessary

comparisons [47, 121].

2.4.5 Performance

Since Snort has become the de facto standard for NIDS, a number of groups have

worked to measure the performance of the system. As the number of header rules

and signatures to match increases, the number of packets dropped by the sensor also

increases. It is unacceptable for an IDS to not examine some packets.

Schaelicke et. al found that Snort inadequately acts as a sensor on higher speed

links [94]. Their study showed that Snort alone is not to blame, but the platform

running the software is partially responsible. Architectural decisions and the memory

subsystem are critical factors in the performance of the NIDS. They found that even

on a dual Pentium-4 Xeon running at 2.4 GHz with Hyperthreading technology, the

system could only support 543 rules in the best case such that no packets were ever

dropped. Furthermore, the authors found that only two of their test systems could

support saturated 100 Mbps links. This is troublesome because Gigabit links are

common today.

Lee et. al described how coverage, cost, and resilience to system attacks must

be considered when deploying an intrusion detection system [61]. They used Snort

with a subset of the available rules to show how it could be overloaded. In their

experiments, Snort was overloaded when traffic exceeded 40 Mbps. During the periods

of packet loss, Snort was only able to find 10% of generated attacks.
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String matching is a very expensive task and was found by [10] to be at least

31% of the entire computation time and upwards of 80% of the processing time for

web traffic. Verifying checksums found in the IP and TCP header is also an expensive

operation. The IP checksum alone requires a series of computations over the entire

payload. Finally, physically transferring the packet from the wire to system memory

is time consuming. The libpcap function used by Snort is not designed for high-speed

capture [35].

2.4.6 Portability Difficulties

A brute-force translation of Snort from a software implementation to a hardware

implementation is inefficient. The software implementation is inherently sequential,

while hardware is efficient at implementing parallelism.

The features available are difficult to port to hardware. For example, per-

forming string matching within certain bounds of the payload is a complicated task

for hardware to perform due to the very specific requirements that can be placed on

different strings.

There are three challenges to performing rule processing in hardware:

• Scalability to process and store increasingly complex rules

• Correlation between header classification and payload content

• Adaptability to changing environment

One of the most challenging tasks in a rule processor is correlation of criteria.

Every packet can contain matches for multiple header classifications and payload

signatures. The system must correlate these matches to determine rule matches.

While a single rule is trivial to process, consider that there are 2,464 rules found

in Snort. In software, the correlation is performed using linked lists in memory.

Implementing the same lists in hardware is detrimental to performance due to the

numerous memory look-ups required.

In order to protect against evolving threats, the system must be adaptable.

Rules change over time as new threats emerge. The system must adapt to scan for

new forms of malware [76, 85]. Reconfigurable hardware enables the system to adapt

to new threats quickly and at low expense.
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2.5 Flow Reconstruction

2.5.1 Requirements

Flow reconstruction is one of the three main aspects of rule processing. Since 85% of

Internet traffic consists of TCP traffic [102], a mechanism to provide in-order delivery

of streams to pattern matching circuits is necessary. To be a viable solution for rule

processing, the solution must:

• Support a large number of simultaneous flows

• Maintain state for the current data window in all flows

• Handle retransmissions and redundant witnessed data

• Handle sequence gaps and unresolved data

• Support timeout of improperly terminated flows or excessively idle flows

• Validate packets are properly formatted

• Support non-stream-oriented protocols such as UDP

• Operate at high throughput

A flow reconstruction circuit must be able to handle a large number of simulta-

neous flows. Seeing as how most IDS sensors are placed at the gateway of a network,

the number of concurrent connections can be hundreds of thousands. For each con-

nection, state information is needed to maintain a consistent view of the bytes in the

stream, what information is redundant, and what sequence-gaps have been opened.

Flow reconstruction is complex due to delivery mechanisms employed by IP

networks. First, there is no guarantee that a sequence of packets will arrive at a given

node in order. Second, there is no guarantee that all packets will arrive at a given

node, either because of a dropped packet or the use of a different route through the

network.

In addition to stream-oriented features, a flow reconstructor must also be able

to perform the tasks associated with packet processing. This involves ensuring that

packet checksums are correct and that packet lengths are accurate.

All of these functions must be performed at high throughput, limiting the

amount of processing time available for each packet. Efficient implementations need

to be capable of sustaining network line rates.
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2.5.2 Techniques

TCP offload engines (TOEs) remove protocol stack processing from software [30]. A

TOE processes the layers of TCP/IP stack such that the application need not perform

protocol related computations, allowing it to focus on application-specific problems.

Nguyen, Zambreno, and Memik created hardware-based flow monitors [82].

Their flow monitor units provided components with flow-based information. They

have demonstrated the ability to process very high packet rates for a limited number

of TCP flows.

Necker, Contis, and Schimmel implemented a single TCP-stream assembler in

FPGA technology capable of operating at 3.2 Gbps [81]. By using separate reassembly

units, they estimated that up to 30 TCP flows could be tracked in a single FPGA.

Li, Torresen, and Soraasen implemented a state-based inspection technique for

eight TCP flows in FPGAs that operated at 3 Gbps [64]. With a newer FPGA, they

estimated that up to 70 simultaneous connections could be supported. The method

was intended as an add-on for current software-based implementations of Snort.

The most dramatic results in this area are by Schuehler [96]. He developed a

TCP Processor as a protocol processing wrapper implemented in FPGA logic that

annotates control information onto incoming IP packets, specifying where headers

begin and end and where payload data begins and ends [97, 98, 99]. The TCP Pro-

cessor generates an ID for each TCP flow so that context switching can be performed

by downstream modules that process TCP streams. The TCP Processor is capable of

simultaneously keeping state for eight million TCP flows while operating at rates of

2.9 Gbps on the FPX platform. The author predicates that over 10 Gbps processing

is possible through the use of faster FPGA devices. This technology is used in the

architectures to be presented.

2.6 Header Rule Matching

2.6.1 Requirements

Header processing is the second main component needed for rule processing. As the

name suggests, header processing looks at the fields inside packet headers, such as

the IP addresses, protocol, and ports. In most case, header processing only needs

to be performed once per flow. A flow is uniquely identified using the standard 5-

tuple found in the packet classification literature: source IP address, destination IP
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address, source port, destination port, and protocol. Rules that check other fields may

be examined for every packet. In order to perform NID functionality, all matching

header rules must be examined, not just the highest priority match as is the case in

the longest prefix matching literature [33, 38, 118, 120, 124, 125].

2.6.2 Techniques

Three basic approaches to perform packet classification for rule processing have been

developed: content addressable memories (CAMs), tries, and hierarchical grouping.

Content Addressable Memories

CAMs are high-capacity rule storage devices that compare all entries to the incom-

ing packet header in parallel [73]. Ternary content addressable memories (TCAMs)

extend the functionality of a CAM by allow masks to be incorporated in the compar-

ison. A user can specify which bits of a field are important [83]. Due to the fact that

a value and mask must be stored in a TCAM, the resource requirements are larger

than that of a CAM.

Yu and Katz used TCAMs to return multiple matching packet headers for rule

processing applications [128]. Gokhale et. al explicitly performed header processing

and content matching using CAMs [44]. Lockwood et. al created a reconfigurable

firewall that performed header processing using TCAMs implemented in FPGA hard-

ware [68].

Song and Lockwood used a hybrid bit-vector and TCAM algorithm to compress

the matching header representation [108]. The authors converted 222 Snort header

rules into 264 trie-node prefixes and 33 distinct TCAM entries.

Tries

The trie (pronounced try) approach to packet classification involves creating tree

structures, whereby matching values are represented by nodes in the trie. The trie is

constructed using the upper, do-care bits of the IP address [113, 114].

The generic form of the trie examines one bit per node. However, this is

inefficient, especially for IPv6 applications which use an 128-bit address instead of

the 32-bit address used in IPv4. To combat this problem, a multi-bit trie is used.

The multi-bit trie examines multiple bits per memory access. An example of both is

shown in Figure 2.9.
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Figure 2.9: A single-bit trie and the corresponding multi-bit trie with a stride of two.
Green nodes contain next hop routing information.

Hierarchical Grouping

Hierarchical grouping techniques preprocess the rule database, examining the rules to

be used. Heuristics are used to determine which dimension to use to separate rules.

Dimensions are determined by the fields that are being inspected, such as the IP

addresses, ports, and protocol.

Gupta and McKeown generated HiCuts to group rules [45, 46]. This was later

extended by Singh et. al in the creation of HyperCuts [104].

2.7 String Matching

String matching, sometimes referred to as pattern matching or signature matching,

is the most computationally intense aspect of rule processing. Strings can appear

anywhere within the payload of a packet or even span packet boundaries. This section

focuses on hardware related techniques to perform string matching.

2.7.1 Requirements

String matching has two forms. The first form is static signature detection. This

involves looking for an exact sequence of bytes in packet payloads. Static signature

detection is used to detect viruses and worms.

The second form is regular expression detection. Regular expressions allow for

patterns to be detected. Consider the regular expression (R|r)eg(ular expression?|ex).

This regular expression matches when any of the following signatures are found:
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regular expression, Regular expression, Regex, or regex. Note that while this simple

example could easily be searched for using four separate static signatures, regular

expressions can be considerably more complex, subsuming hundreds of variations of

the same basic sequence. For this reason, separate techniques are required for regular

expression processing.

There are three requirements for string matching in hardware: high through-

put, high capacity, and quick adaptation. As link speeds increase, the amount of

data that needs to be processed grows enormously. Software is not a viable solution

for Gigabit links or other high-speed backbone links. As more signatures are added

to intrusion systems, the importance of high-throughput string matching becomes

apparent [41].

The current Snort database contains 2,107 static signatures and 233 regular

expressions. This amounts to over 30,000 characters. As new threats emerge, these

numbers will increase. Therefore, the string matching techniques must be scalable to

accommodate new signatures.

Finally, since signature databases are constantly being updated and revised,

the ability to quickly incorporate new changes is imperative. With extremely harmful

malware forecasted by [85] that is capable of infecting all vulnerable hosts within

minutes, the need for quick adaptability is a must in order to stay the threat.

2.7.2 Techniques

There are many techniques to perform complex string matching through the use of

FPGAs [42]. Network processors have also been used to perform fast string match-

ing [65]. Current research focuses on efficiency, resource consumption, and module

throughput. The approaches consist of four basic categories: automata, comparators,

CAMs, and hashing.

Automata

The automata approach to string matching is to form a state machine to search for

the string. The automata approach can be further divided into nondeterministic finite

automata (NFA) and deterministic finite automata (DFA).

NFAs can be represented using a directed graph, where each node is considered

to be a state and each transition is labeled with a character or ǫ, where ǫ is the empty
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Figure 2.10: This example shows the NFA and DFA created for all strings with alpha-
bet {a,b} that begin or end with aa. (Example courtesy of David Galles, University
of San Francisco).

character. A regular expression of m characters maps to O(m) nodes. If the pattern

is searched for in a sequence of length n, the search time is O(mn).

DFAs are similar to NFAs, but they do not contain the empty character in

any of the state transitions. Additionally, no state is allowed to have more than one

transition for a given character. A regular expression of m characters maps to O(2m)

nodes in the worst case. The search time for a DFA is O(n).

Consider the example of Figure 2.10. The example searches for all strings,

using the alphabet {a,b}, that begin or end with the signature aa. Note that the

NFA has considerably less transitions than the DFA implementation of the same

search.

Sidhu and Prasanna started the recent work in the area of FPGA-based string

matching by using NFAs that directly map into FPGA logic [103].

Clark and Schimmel reduced the redundancy inherent in NFAs [26]. Many

signatures contain overlapping prefixes or suffixes. Used in a conjunction with their

hardware platform [27], they used FPGAs to off-load the pattern matching from

software. They have also shown in [28] how to expand to higher bandwidth nodes

with multiple character decoders.

Moscola et. al created an automated way of generating DFA structures opti-

mized with JLex, a lexical analyzer that maps regular expressions into Java code [66,

78, 79]. Circuits were generated from the optimized state machines, then mapped

into the FPGA. It was found that the number of states necessary to implement the

DFA was comparable or less than the number needed for NFAs in most cases.
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Sugawara, Inaba, and Hiraki implemented a string-matching method using

trie-based table-lookups in order to achieve high throughput [115]. Their system

was also capable of operating on a limited number of TCP streams. The algorithm

utilized a modified Aho-Corasick algorithm called suffix based traversing (SBT). State

transitions were performed using table look-ups.

Comparators & Pipelines

The comparator and pipeline technique is a brute-force approach with optimizations.

The signatures to scan are embedded in logic and compared to incoming input. Since

comparisons are performed as data streams into the system, the comparisons are

pipelined. That is, if the search term was cat, when pipeline stage three holds c,

pipeline stage two holds a, and pipeline stage one holds t, a match is declared.

Baker and Prasanna implemented an efficient way of minimizing FPGA re-

sources to perform pattern matching via comparators [18, 19, 20]. They partition

signature databases into independent pipelines, allowing for FPGA resources to be

efficiently utilized by reducing redundancy. Previous work by the authors created an

improved version of the Knuth-Morris-Pratt (KMP) algorithm [53].

Cho, Navab, and Mangione-Smith created a content-based firewall using dis-

crete logic filters [25]. They created automated techniques to generate highly parallel

comparator structures for quick reconfiguration. The focus of the work was high-

throughput, which was achieved by pipelining. They expanded their approach in [24]

to include logic re-use and read only memory.

Sourdis and Pnevmatikatos created unique VHDL instances for each rule to

process [110]. Rules are added or removed by modifying the instance loaded. They

achieved high-throughput via deeply pipelined comparators and encoders and by re-

ducing fan-out. The authors made further use of pre-decoding to raise the throughput

in [111], reduce the redundant logic used, and fit more patterns in the FPGA.

Content Addressable Memories

CAMs and TCAMs have been used for string matching as well as header processing.

The signature to match is placed in a CAM entry and is compared in parallel with

all signatures currently in the database.

Yu and Katz formulated a way to overcome problems that arise due to the use

of strict width requirements for TCAM entries [129]. Large signatures can be broken
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Figure 2.11: A Bloom filter consists of a vector of length m, k separate hashes, and
an AND gate with k inputs.

across multiple entries. Correlation of many entries can be accomplished with outside

logic. In their work, they show how to achieve Gigabit throughput.

Gokhale et. al investigated a hardware/software approach to intrusion detec-

tion, where a header and content vector of matches was sent to software for process-

ing [44]. The system separated pattern matching and rule processing onto separate

environments, the first in hardware and the latter in software. The system supported

a few hundred rules. However, they were limited by the speed at which software can

perform processing on returned match vectors. They hinted at an alternate version

of the rule processor implemented in hardware that returned a bit-vector of rules. A

rule matched if its corresponding bit is set in the vector.

Hashing

A more elegant approach to the problem of string matching is to employ hashing

techniques. Bloom filters can be used to perform matching of large numbers of static

strings [14, 21, 37]. The logic footprint is constant, regardless of the search criteria.

However, a Bloom filter cannot search for regular expressions without expanding the

regular expression into all possible static signatures. In most cases, all possibilities

cannot efficiently fit into the Bloom filter.
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A Bloom filter, as shown in Figure 2.11, consists of k hash functions, a m-bit

vector, and an AND gate with k inputs. To determine whether a given signature

exists in a search database, k hashes are computed over the signature, each indexing

a particular bucket in the m-bit vector. If an ‘1’ is found at each of the k locations in

the vector, the input signature exists in the database of n signatures with a certain

probability, as defined in Equation 2.1 [38].

f = (1 − (1 −
1

m
)nk)k (2.1)

A false positive occurs when the k referenced locations in the bit-vector return

‘1’, but the signature does not exist in the database. The value of k can also be

interpreted as the number of bits required to store a signature. To add a signature to

the bit vector, the same hashes that are used to query are used to set the appropriate

bits in the vector. To remove a signature, the same hash functions are used to reset

the bits if no other signatures reference the same location.

The false positive rate depends on the number of signatures that are loaded.

Figure 2.12 shows how the false positive rate changes as n is varied for different

values of k and m. As k increases for fixed m, the false positive rate shifts downward,

meaning that there is a lower rate of false positives. This is due to the fact that more

bits are being used to represent each signature. As m increases with k fixed, the false

positive rate decreases because the space to distribute the signature has increased.

Bloom filters have the advantage of allowing for a large number of strings to

simultaneously be scanned at high throughput. However, as will be explained in

Chapter 3, the Bloom filter implementation can be tricky in order to remove false

positives as well as efficiently scan for different length strings.
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Figure 2.12: The expected false positive rate versus the number of signatures in the
database.
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Chapter 3

Snort Lite

Snort Lite is a light-weight rule-based processing system that scans Internet Protocol

packets as they traverse through a network. This hardware-accelerated device imple-

ments network intrusion detection and prevention functions in a circuit that is in-line

with a broadband network link. Packet header processing and content scanning cir-

cuits are compiled into hardware that can process intrusion rules in real-time. While

similar software-based tools like Snort act as a passive monitor, Snort Lite can also

filter and block malicious Internet traffic. Rules are added and deleted dynamically

in order to adapt quickly to attack. Up to 18,400 signatures can simultaneously be

searched.

In this chapter, the design objectives and design decisions of this work are

discussed. An overview of the features supported by the system are given, and the

architecture of the system is presented in detail. Finally, key items learned from the

architecture are discussed.

3.1 Design Objectives

There were several goals for this project. The first goal was to show that signature

detection and header processing can be implemented in a single FPGA. Using a

single FPGA requires less space than a computing cluster [54] to perform similar IDS

functionality. By using a reconfigurable hardware device, reduced power consumption

and physical space can also be achieved.

Second, as link speeds increase, the need for a hardware solution to process

and act upon packets in real-time is essential. An efficient software solution does not

exist that can meet the requirements of NIDS, as shown in [61, 94]. By processing
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traffic with a high throughput, the device operates in active mode, protecting against

malware. This hardware solution processed data at 502 Mbps while inspecting all

packets.

Finally, this design was intended as a baseline for future hardware-accelerated

content processing systems. Questions about the size of input and output buffers,

the locations of the critical paths, and how many resources to use were answered.

Additionally, many of the components used in this circuit were designed in a generic,

modular way to be re-used in other applications.

3.2 Design Decisions

3.2.1 Rule Types

To enable transition from software-based rule processing to hardware-based rule pro-

cessing, the Snort rule syntax was adopted. Rules that consist of one header rule and

one signature in the payload are considered a baseline rule, while rules that have more

than one signature are split into multiple rules. Over 82% of the static signatures in

Snort version 2.2 are used in a single rule.

Signatures scanned in the hardware circuit longer than 32 bytes are truncated.

This reduced the logic required to perform the string matching. The current Snort

database consists of signatures from 1 byte to 122 bytes. Of the 2,107 total unique

signatures, 2,038 of them are less than or equal to 32 bytes.

3.2.2 Architectural Components

Bloom filters were used to perform string matching. Bloom filters allow large databases

to be stored, and they have a quick update time, constant access latency, and a high

degree of parallelism.

Bloom filters, when used alone, can report false positives. The hardware circuit

implemented used an external memory to ensure no false positives were reported.

Bloom filters scan a window of bytes for pre-defined lengths. The flow of bytes in

the pipelined window dictate the throughput of the system. In this baseline design,

the pipeline advanced one byte per clock cycle. Additional bytes could be shifted

through per clock cycle by instantiating multiple Bloom engines in parallel at the

cost of increased resource consumption.
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A decision that needed to be made early on was how to communicate with the

hardware device. Since the system processes IP packets, it was natural to communi-

cate using UDP packets, allowing a PC to be used as a controller. Security concerns

are addressed in Section 3.7.

3.3 Features

The following features were implemented:

• Header classification based on source IP address, source port, destination IP

address, destination port, and protocol

• Support for network masks within fields so that bits can be selectively matched

• Support for port ranges so that numeric values in a range can be specified

• Support for up to 32,768 header rules

• Payload scanning for static signatures that can vary in length between 2 and

32 bytes

• Support for up to 18,400 static signatures

• Passive and active operation modes so that traffic can be inspected and/or

dropped

• Support to forward the content of an offending packet to another machine for

further inspection

Not all features found in Snort were implemented. Checks of parameters in the

IP and TCP header fields for the type-of-service (ToS), time-to-live (TTL), sequence

numbers, and flags were not implemented. While including these options makes the

header processing complete, analysis of Snort rules showed that 95% were of the form

EXTERNAL NET to HOME NET and did not include these aspects at all.
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Figure 3.1: Snort Lite consists of a content scanner, a header processor, an alert gen-
erator, a control packet processor, a statistics module, and a set of Internet protocol
wrappers. The entire design fits in a single Xilinx Virtex XCV2000E-8 FPGA and
utilizes one external Zero-Bus Turnaround (ZBT) SRAM and one external SDRAM.

3.4 Architecture

3.4.1 Overview

The architecture developed for this project performs all rule processing in a single

FPGA, and actions are taken based on the results of the rule processing. This sys-

tem achieved greater volume of rules than software can process. However, the rules

implemented are not as complex as what can be done in software.

The design of the Snort Lite was modularized to ease design and debugging.

There are five main components in the design, as shown in the block diagram of

Figure 3.1. Data flows through the Internet protocol wrappers to the content scanner.

The packet data is funnelled through a byte pipeline that is monitored by Bloom filters

to search for content. If a Bloom filter signals a match, an analyzer is queried to ensure

the signature was a true match. If the signature is a true match, the analyzer returns

the corresponding ID number of the signature to a header processor. The header

information associated with the given signature is retrieved from SRAM, and the

packet header is compared with the stored header entry. If the header matches, an

alert message is sent to a software controller and the appropriate action is taken. The

following sections describe each of the major components.
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Figure 3.2: The content scanner consists of an input buffer, several Bloom filters
(BF), a hash table analyzer, an output buffer, and a decoder. The data pipeline
advances by one byte per clock cycle.

3.4.2 Content Scanner

The content scanner consists of five main components, as shown in Figure 3.2. Data

enters the input buffer 32 bits per clock cycle. The input buffer converts the word-

stream into a byte stream. This byte stream passes by 23 separate Bloom filters.

Each Bloom filter scans for a specific signature length. Upon a signature match, the

analyzer is queried to determine if a true match has occurred. If a true match is

found, the ID number of the corresponding rule is sent out of the scanner.

Bloom Filter Configuration

A Bloom filter allows for quickly determining membership in a large database [21].

The byte window is queried by hashing all the bits in the window and checking if

hashed locations are set to ‘1’. The equation for the false positive of each Bloom filter

engine is governed by Equation 3.1 [37]. The value is plotted as n, the number of

strings, varies in Figure 3.3.

f = (1 − (1 −
1

16384
)8n)8 (3.1)
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Figure 3.3: False positive probability versus the number of stored strings.

Each Bloom filter engine has a negligible false positive probability when less

than 800 strings are stored. The number of signatures the system can hold at this low

false positive probability is 23 ∗ 800 = 18, 400. The most Snort signatures associated

with any particular signature length is 163, which gives a false positive probability of

3E-8.

A Bloom filter, as shown in Figure 3.4, is composed of four partial Bloom filters

(PBFs), logic to perform the eight separate hash calculations, and a control unit. To

efficiently map the Bloom filter into FPGA logic, as described in [36], several PBFs

are instantiated. A PBF is a wrapper around a block RAM. On the Xilinx Virtex

XCV2000E, there are 160 4096-bit block RAMs. Each block RAM provides one clock

cycle read and write latency.

The hash function used is a function well-tuned for implementation in hard-

ware [92]. It consists of using a matrix of AND and XOR gates. Eight hash func-

tions are computed, and the ith hash function is computed over the l input bits of

B = {b1, b2, b3, · · · bl} from a constant random value seed Xi = {xi,1, xi,2, xi,3, · · ·xi,l}

by using Equation 3.2. The elements of Xi are the length of the hash to be computed.

hi(Xi) = b1 · xi,1 ⊕ b2 · xi,2 ⊕ b3 · xi,3 ⊕ · · · ⊕ bl · xi,l (3.2)
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Figure 3.4: A Bloom filter instantiates a BRAM decoder, a hash matrix, and four
partial Bloom filters. By using four PBFs, a 16,384-bit vector is created. When
each PBF signals a match, the input string exists in the database with a certain
probability.

Consider an input signature having five bits (l = 5) and a hash length of

three bits. If B = 01011 and X = {011, 100, 001, 011, 110}, the resulting hash is

100 ⊕ 011 ⊕ 110 = 001.

To control a Bloom filter, three signals are used: bram num, bit addr, and

bit data. The bram num determines which PBF block RAM to select. The other two

signals are used to set/reset the appropriate bit in the bit-vector.

The hash matrix converts the incoming string into eight 12-bit addresses to

be queried in PBFs. The Bloom filter is pipelined to take two cycles to compute the

hashes and three to determine if the signature exists in the database.

A PBF, as shown in Figure 3.5, uses two hash functions to index 4,096 bits

of the bit-vector. The PBF allows back-to-back queries to be performed using the 3-

stage pipeline shown. In the first stage, the inputs are registered. In the second stage,

hash addresses are queried. In the final stage, the results are latched and combined

to signal whether the signature matched or not.
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is implemented in dual-port block RAM.

Hash Table Analyzer

The hash table analyzer, as shown in Figure 3.6, stores in SDRAM the signatures

that have been programmed in Bloom filters. The same type of hash function is used

as was used for the Bloom filters, except the hash length is 20 bits instead of 12.

When a Bloom filter signals a match, the matching signature is passed to

the hash table analyzer. A hash is calculated over the incoming signature, and this

address is looked up in SDRAM. If the string held at the memory location matches

the input signature, true match is asserted.

If the string in memory does not match, there are two potential reasons. First,

this was a false positive, and the string does not exist in the database. Second, two

signatures happened to map to the same memory location resulting in a collision. To

handle collisions, probing is performed by adding constants to the hash address. If

there is a mismatch, the constant is changed from 0 to 1 to search the next address

in SDRAM. The constant address is modified in a quadratic fashion (0, 1, 2, 4, 8,

16. . . ). The use of an occupied and deleted bit was added to the SDRAM entry to

ease dealing with hash-collision issues.
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Figure 3.6: The hash table consists of a hash calculator, a finite state machine, and
a comparator. The hash table resolves collisions by performing quadratic probing.

This hash technique was found to result in few collisions. There are 220 memory

slots available to hold signature records. With 20,000 signatures loaded into the

analyzer, 220 first level collisions and four second level collisions were witnessed.

With the 2,107 signatures from the Snort database, two collisions were simulated.

The layout of a hash record is shown in Figure 3.7. To ensure that the hash

chain will be followed in the case of a collision, the FSM checks the deleted bit to

determine whether to increase the probe address. The occupied bit specifies whether

the given location is valid. If there is no record, the FSM stops the search. The hash

record holds up to 32 byte strings. To simplify the design, signatures that are not

32 bytes are extended to 32 bytes by adding zeroes in the upper bytes. Finally, the

string ID (SID) is the identification number returned from the analyzer. This ID is

sent to the header processor.

Two implementations of this circuit exist, one that uses SRAM and one that

uses SDRAM. The SRAM implementation has approximately the same latency as

the SDRAM implementation, but it stores fewer signatures. The SRAM implemen-

tation transfers the data from memory in twice as many clock cycles as the SDRAM

implementation because only 32 bits can be read from SRAM per clock cycle, while

64 bits can be read from SDRAM per clock cycle.

Assuming only one hash record has to be retrieved, the latency from a Bloom

filter detecting a match to resolving whether the match is true is 20 clock cycles.

During this time, the pipeline is paused so as not to be overrun with additional

queries.
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Figure 3.8: The header record allocates 32 bytes to hold the source IP address, source
IP mask, destination IP address, destination IP mask, source port range, destination
port range, protocol, and action to take.

3.4.3 Header Processor

The header processor implements the comparison circuitry that would be found in

a TCAM. When a content match occurs, the analyzer returns the corresponding

signature ID that is used to index SRAM to retrieve the header entry of Figure 3.8.

SRAM stores the protocol, the source and destination IP addresses, masks, source

and destination ports, and the action to take. The latency of retrieving a record and

determining if the header matches is 15 clock cycles. The available actions are to alert

the software controller a match occurred, to drop the offending packet, to return the

offending packet to software for further analysis, or to return the offending packet to

software while dropping it from the network.

To determine if an IP address matches the header rule, the address is XOR’d

with the stored IP address. The result of this is NAND’d with the mask. If the result

is a vector of 32 ones, the IP address matches. To determine if a port matches, it is

checked to see if it is greater than or equal to a lower bound and less than or equal to
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an upper bound. If both of these conditions are satisfied, the port matches. A direct

comparison is done on the protocol field.

String matching is performed before header processing, which is the opposite

of the approach used in Snort. There were several reasons for this decision. First,

since a signature appears in so few rules in general, the presence of the signature

can efficiently trigger the header classification. Since over 95% of rules in Snort

specify headers of the form EXTERNAL NET to HOME NET, a header rule will

almost always match, and no processing reduction occurs. Second, many headers can

match simultaneously. This complicates the correlation between matching headers

and signatures. Use of the signature detection as a pre-filter reduces the number of

headers to check from hundreds to only a handful.

3.4.4 Control Packet Processor

The control packet processor is the main finite state machine (FSM) of the system.

This FSM keeps track of what part of the IP packet is currently entering the system.

In addition, this component programs the various components when control packets

are sent to the system. Control packets are distinguished from other packets by

listening on a specific programming port. The following operation codes are supported

and are shown in detail in Appendix A:

• Add/remove string to/from the hash table analyzer

• Program bit(s) in a Bloom filter

• Add/remove a header table entry to/from SRAM

• Change the destination of alert messages

• Read a header table entry

• Read a statistic

• Test whether circuit is operational

• Clear all rules from the system
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3.4.5 Statistics Module

The statistics module allows for 256 different events to be stored in block RAMs [15].

Snort Lite was configured to count the number of incoming IP, UDP, and TCP pack-

ets, the number of analyzer queries, the number of true matches, the number of

matching headers, the number of control packets received (sorted by opcode), and

the number of times each of the four actions was taken.

3.4.6 Alert Generator

The alert generator generates UDP packets to send information to a software process.

Rule matches trigger the generation of alert packets destined for software, which track

how many times the rule matched. These alert packets can also be sent to a program

that graphically displays matches per second, as shown in Figure A.17. Additionally,

the alert generator can bundle up packets that matched rules and send them to

software for further inspection.

3.4.7 Hardware Infrastructure

Layered Protocol Wrappers

The layered protocol wrappers provide an interface that identifies the fields within

an IP packet [23, 77]. This eases the design of an IP-based networking application by

allowing it to operate at OSI layer three.

Memory Controllers

The SRAM controller provides two arbitrated interfaces for access to a 2 MB ZBT

SRAM [119]. A request and grant protocol is used to access SRAM.

The SDRAM controller provides three arbitrated interfaces to SDRAM [39].

One is for reading only, one is for writing only, and one is for reading and writing.

The read/write interface is used to access a bank of 64 MB SDRAM. The SDRAM

controller also provides a simple request/grant interface with burst transfers.

Buffers

Buffers are used throughout the system to store IP packets before processing. There

are two primary buffers: the input buffer and the output buffer. The input buffer
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Table 3.1: A summary of Snort Lite resources used by component in a Xilinx Virtex
XCV2000E-8 FPGA.

Component Function Flip Block
Generators Flops RAMs

Bloom Filters 14082 8802 92
CPP 148 317 0

Hash Table 1436 1475 0
Header Processor 386 594 3

Input Buffer 165 114 10
Output Buffer and 962 727 24
Alert Generator

Protocol Wrappers 2502 3103 27
SDRAM Controller 516 414 0
SRAM Controller 66 137 0
Statistics Module 91 146 2

Miscellaneous 174 462 0
Design Totals 20528 16291 158

converts a 4-byte word stream into a byte stream that passes by the Bloom engines.

The output buffer reassembles the byte stream into 4-byte words and outputs the

packet.

3.5 Implementation Results

Snort Lite used 55% of the 4-input look-up tables (LUTs), 77% of the logic slices, and

99% of the block RAMs on a Virtex XCV2000E-8 FPGA. The number of function

generators, flip-flops, and block RAMs used by the major components is itemized in

Table 3.1. The design synthesized at 62.802 MHz.

FPGA features were heavily exploited in this design. The limiting resource

on the FPGA turned out to be the distributed block RAM. Note that Bloom filters

required the most resources and the protocol wrappers required the second most.

3.6 Memory Bandwidth Requirements

In order to determine if a Bloom filter match was a true positive or a false positive,

SDRAM was read. Theoretically, each of the 23 Bloom engines could trigger a match

during each clock cycle. This would result in the need to retrieve 920 bytes from
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SDRAM per clock cycle, which requires 460 Gbps memory bandwidth. For this

reason, the pipeline was paused when matches occurred.

3.7 Observations

3.7.1 Security & Adaptability

A randomized algorithm was used to hash strings. One might think that an attacker

could send packets that contain strings that hash to known offending signatures,

which in turn would generate many false positives. It is possible to guard against

such a scenario by changing the random values used to generate each of the functions

used by the hashing circuits. New hash functions can then be dynamically configured

into the FPGA logic.

The use of UDP packets to control the system was a security concern. The

system listened for packets from a specific host. A secure control and configuration

scheme was explored to solve the spoofing problem in [109]. Control messages from the

real controller were encrypted using AES and decrypted in reconfigurable hardware.

In an evolving network, a circuit designer does not know what threats will

appear in the future. For this reason, the design of the system was made to be

modular, and it can be changed by reconfiguration [49]. For instance, suppose the

need arises to be able to process rules that contain signatures that are longer than 24

bytes and truncation is not acceptable. The design is configurable to allow expansion

to scan for 32 byte signatures while removing scans of smaller length signatures. Only

minor changes to the design flow are needed to expand to greater lengths.

The network characteristics may change also. The bandwidth of this design

can be scaled beyond 2 Gbps by instantiating parallel copies of the Bloom filters

to scan multiple bytes per clock cycle. There are, however, trade-offs in increasing

parallelism. Because this circuit already fully utilizes the resources of the FPGA,

using parallel copies of the scanning technology limits the number of signature lengths

that can be scanned. While 23 separate lengths are supported at 500 Mbps, only six

are supported at 2 Gbps.

3.7.2 Additions & Expansions

The requirement for one string per header rule could be relaxed by generalizing the

hash table to store more rule IDs in a hash record. Currently, up to 14 additional
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SIDs could be returned without major modification. The SDRAM controller operates

on bursts that are powers of two, and the hash table already retrieves eight 64-bit

words, three of which are unused. The Snort database does not associate a string

with more than 15 headers in all but 13 cases.

To support the 20% of rules that require more than one signature match for the

rule to match, additional logic would be required in the header processor. Counters

about how many of the signatures have been found would be necessary. Software

currently performs this task.

Additional processing of other header fields, such as the time-to-live, flags, and

packet sequence number could be performed. This task is not technically difficult to

perform. Storage of additional fields in the header record would be required to support

additional features.

3.7.3 Lessons Learned

As this design was intended to be a baseline circuit for future applications, many

important points were gleaned. The use of a Bloom engine for each length required

approximately 60% of the total block RAMs, which limits the amount of on-chip

buffering available.

Second, the buffering requirements of the system are critical to operation.

Ideally, the system should never back pressure upstream modules. The conversion

from a 4-byte stream to a 1-byte stream forces these buffers to be large. Snort Lite

can store three full-size packets using block RAMs. To buffer more, external memory

is necessary.

Third, the byte advance of the processing pipeline is unacceptable for future

applications. It severely cripples the potential throughput of the system. Through the

use of parallel processing pipelines, the full line rate can be achieved at the sacrifice

of the quantity of Bloom engines that can be used.

Finally, the timing of the system is hindered almost exclusively by the fan-out

of the pipeline. The lower order bytes in the windows being monitored go to each

Bloom engine where the hash is calculated. Future designs can explore shifting the

windows for each Bloom engine about the pipeline to reduce the fan-out.
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Chapter 4

Snort Intrusion Filter for TCP

The Snort Intrusion Filter for TCP (SIFT) operates as a preprocessor to filter out

traffic destined for a passive intrusion monitor PC running Snort. The system drops

IP packets destined to a sensor that do not contain keywords or questionable headers.

Packets containing questionable criteria are forwarded, unaltered, to a PC running

Snort. Most network traffic does not need to be inspected by an intrusion system.

SIFT was devised to limit the workload of passive software intrusion monitors.

By maintaining statistics about suspect packets, data about how many packets

match rules was obtained. This metric aids designers in optimizing rule processing

architectures. SIFT was implemented and tested with live Internet traffic from a

campus Internet tap.

4.1 Design Objectives

The main goal of SIFT was to perform intrusion detection analysis on real network

traffic. The testing results revealed how often signatures and headers matched. This

information provided crucial insight about how to optimize rule processing systems

to process real traffic. Results from testing also confirmed that software-based PCs

running intrusion detection software could not keep up with the traffic found in actual

networks [61, 94].

To process traffic at a high throughput, SIFT utilized multiple parallel Bloom

engines. The mechanism to send commands to program rules into SIFT was built on

top of a generic communication wrapper.
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SIFT utilized TCP stream reconstruction to scan for signatures that can cross

packet boundaries. In order to track data in packets that can be interleaved in time,

SIFT used memory to store and retrieve context information for each traffic flow.

SIFT acted as a passive monitor to filter out harmless traffic. In order to imple-

ment intrusion detection functions, SIFT operated in real-time, was highly adaptable,

and succinctly reported status.

4.2 Design Decisions

4.2.1 Characteristics

Intrusion rule databases continue to expand as new threats emerge. However, as the

number of header rules and signatures to match increases, the CPU on a PC running

Snort becomes fully utilized, and the number of packets dropped by the PC increases.

To be an effective monitor, the intrusion system must process all packets.

The motivation for this architecture was to off-load Snort rule processing from

a PC to hardware. After analyzing the current Snort rule database, a method was

found to separate harmful traffic from safe traffic. There are 292 unique header rules,

and 168 of these do not have a signature associated with them. Thus, for all but

168 of the 2,464 rules, signature detection can be used as filter criteria. If one of the

2,107 signatures is found, then that is sufficient to forward the packet to software for

further examination. There are 233 rules that contain regular expressions. However,

every rule that contains regular expressions also contains separate static signatures.

Thus, an implementation of regular expression scanning to flag harmful packets was

not necessary. In this implementation of the system, the static signatures found in

rules were used as search criteria.

4.2.2 Architectural Needs

Bloom filters were used to support the large number of strings found in Snort rules.

To increase the throughput, four parallel Bloom engines per length were used.

To support operating on TCP flows, an efficient context storage engine was

necessary. A context storage engine was implemented for this circuit that accessed

SDRAM to store the current state of the byte pipeline when a different flow arrived

and retrieved the old flow context.
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An efficient control mechanism was necessary to relay information to/from a

control PC and the hardware device. The communication wrapper was developed for

this purpose.

To support the header-only rules, a hardware module was developed to process

packet headers in parallel.

Finally, to display system statistics, a SNMP agent was developed to period-

ically report system statistics to a software process, where they are plotted using

MRTG.

4.3 Features

The SIFT architecture introduced a number of features:

• Support for case-insensitive string matching across TCP packet boundaries

• Support for up to 5,000 signatures

• Ability to scan payloads for five different signature lengths between 2 and 32

bytes

• Ability to reconfigure hardware to change the amount of resources used to scan

for different signature lengths

• Support for fully custom header rules to be processed in parallel

• Support to forward the content of an offending packet to another machine for

further inspection

• Maximum throughput of 2.5 Gbps on the FPX platform

4.4 Context Switching

A very important aspect of the design of SIFT was how context switching was per-

formed. To scan TCP flows, information about the state of the flow must be main-

tained to reassemble the stream of data. In this circuit, the last 32 bytes of data for

each flow was saved. When a TCP packet from a different flow entered the system,

the last 32 bytes of that flow were retrieved from SDRAM so that a byte pipeline can

be primed for the new TCP data. At the end of the TCP packet the last 32 bytes of

data were sent to SDRAM for storage.
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Figure 4.1: SIFT used Bloom filters for string matching and custom logic for header
classification. External memory was used to store flow context. System statistics
were periodically reported out of the system to a control PC.

4.5 Architecture

4.5.1 Overview

A block diagram of SIFT is shown in Figure 4.1. IP data packets enter the system via

the TCP deserialize wrapper [95, 99], where they are annotated with control signals

to mark specific locations in the packet, such as the beginning and ending of IP packet

headers. This data is buffered and sent to the header check component to determine

if one of the 168 header-only rules match the current packet. The packet is sent to

the content pipeline where each byte-offset is searched for signatures by Bloom filters.

If a match is found, the matching engine reports to the match decoder to determine

the signature ID. This ID is sent to the action retrieval unit to determine the action

to take on the packet. The default case forwards the packet. If no signature is found,

the packet is filtered. If a signature is found or a header-only rule matches, then the

packet is sent out of the system to a Snort PC via the outbound side of the TCP

deserialize wrapper.

The system is incrementally programmable. Signatures can be added or deleted

quickly via User Datagram Protocol (UDP) control packets that are sent directly
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Figure 4.2: A quad Bloom filter instantiates four Bloom filters engines. Each Bloom
filter is passed a byte-offset window in order to perform a query.

to the communication wrapper interface from a software system that uses counting

Bloom filters to determine when to set/reset bits within the indices. These control

packets are sent to the control FSM, where they are forwarded to the appropriate

engine for integration. Real-time statistics are sent out of the system via the SNMP

alerter.

To accommodate string matching across TCP packets, a context storage device

holds the last 32 bytes of the current flow going through the system. When a different

flow enters the system, the new flow’s data is loaded and the current flow’s data is

stored.

4.5.2 Quad Bloom Filters

In order to scan for strings that appear in the input stream at each of the four possible

byte offsets, it is necessary to process four different strings in each clock cycle. A quad

Bloom filter (QBF), as shown in Figure 4.2, instantiates four Bloom filters for this

purpose. An input signature three bytes longer than the signature width is passed

to the QBF in order to scan each byte-offset version of the byte pipeline. By using a

QBF, SIFT can process four bytes of data per clock cycle.

To understand the progression of bytes through the pipeline, consider Fig-

ure 4.3. Suppose the current value of the pipeline is ABCDEFGH, as in Figure 4.3a.



58

M

1 2 3 4 5 6 7Byte # 0 1 2 3 4 5 6 7Byte #

BF 3 BF 4BF 2BF 1 BF 3 BF 4BF 2BF 1

QBF 2

(a) (b)

L K J H G F E
DCBAQPONMLKJ

LM JK HJ

QBF 2

DEEFFGGH KL

H G F E D C AB

0

Figure 4.3: An example of bytes moving through the pipeline.

A QBF that scans for two byte strings receives the input DEFGH. GH is sent to BF

1, FG is sent to BF 2, EF is sent to BF 3, and DE is sent to BF 4. The byte pipeline

advances by four bytes, as shown in Figure 4.3b, to EFGHIJKLM.

4.5.3 Header Check

The header check component first separates the header-only rules into logic blocks

based on protocol: TCP, UDP, ICMP, and other IP. Most of the 168 Snort header-

only rules look for specific TCP/UDP port numbers or protocol-specific features like

a sequence number. Each of the 168 header-only rules are checked in parallel, and a

rule match is declared if any of the headers match.

4.5.4 Action Retriever

An action retriever interacts with SRAM to determine the programmable action to

perform when a signature matches. Each signature has a 16-bit ID number. This

component uses the signature ID to look up the action to take. Available actions are

to generate an alert, to filter (drop) the packet, or to return the data in the packet

to the monitoring host.

4.5.5 SNMP Alerter

Hardware and software tools were assembled to display live traffic statistics. The

SNMP (Simple Network Management Protocol) alerter periodically reports system-

wide statistics to a software-based SNMP agent. The SNMP agent is queried by
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MRTG (multi router traffic grapher) to graphically display statistics. SIFT tracked

the following 18 events: incoming TCP packets, incoming UDP packets, incoming

ICMP packets, incoming IP packets (non TCP, UDP, ICMP), outgoing TCP packets,

outgoing UDP packets, outgoing ICMP packets, outgoing IP packets (non TCP, UDP,

ICMP), number of matching headers, string matches for QBF engine 1, string matches

for QBF engine 2, string matches for QBF engine 3, string matches for QBF engine

4, string matches for QBF engine 5, number of alert actions, number of filter actions,

number of return actions, and number of filter and return actions.

4.5.6 Alert Generator

The alert generator bundles and transmits alert messages or entire packets to a soft-

ware controller where the data can be logged and further inspection can be performed.

The alert generator formats output for use with the communication wrapper.

4.5.7 Communication Wrapper

The communication wrapper was devised as a way to simplify the communication

between hardware processing modules and software by abstracting the underlying

transport mechanism and providing reliable communication channel. The interface

between the communication wrapper and a network data processing module is shown

in Figure 4.4.

The interface signals include: start of data (sod) to indicate when a new data

stream enters the system; a data enable signal (en) to indicate when data is present;

an end of data (eod) signal to indicate when there is no more data; the data of the

en

sod
Network Data Processing

Plug−in Module

Communication Wrapper

eod
en

data
vb

stop

sod
eod

stop
vb

data

Figure 4.4: The communication wrapper transports control information between mod-
ules and software. The wrapper abstracts the underlying transmission requirements
needed for communication, be it across devices or across the FPGA.
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Figure 4.5: An example timing diagram of the communication wrapper interface.

flow itself; the number of valid bytes (vb) on the data signal; a busy signal (stop)

used to temporarily halt the flow of data in the case of a backlog.

An example timing diagram is given in Figure 4.5. Data transmission begins

by the assertion of sod. In this clock cycle, the data bus holds the VCI word, which

is used by applications to determine how to process data. In the next cycle, en is

asserted, meaning valid data is on the data bus. At the same time, the vb signal

specifies how many of the bytes on the bus are valid. If the value is “01”, one byte is

valid; if “10”, two bytes are valid; if “11”, three bytes are valid; if “00”, all four bytes

are valid. In clock cycle five, en is de-asserted, indicating that the value on the data

bus is not valid. The en signal is reasserted in clock cycle six, and the data on the

data bus is valid. The data stream ends in clock cycle nine, which is indicated by the

assertion of eod. In this example, the last word contains three valid bytes.

4.5.8 TCP Lite Wrapper

The TCP Lite wrapper was developed for use with the TCP Processing circuit de-

veloped in [96]. The TCP processor provides in-order delivery of TCP streams to

processing applications. The wrapper decodes the TCP stream traffic, providing in-

terface signals to identify the beginning and end of IP packet headers and where TCP

data begins and ends in the data stream.

In addition to extracting an in-order stream of data from each TCP/IP flow

that passes through the system, a flow identification value for each TCP stream

is given. This identifier is used to store and retrieve context information from an

SDRAM buffer for each flow.
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4.5.9 SDRAM Buffer

A context storage component interfaces with one bank of SDRAM to retrieve and

store the byte pipeline state. When a new packet arrives, the flow ID associated with

the packet is used to retrieve flow context. The last 32 bytes of TCP data is held

in SDRAM. Flow context is fetched while the previous packet is being processed,

preventing the pipeline from stalling. Using a 64 MB SDRAM, context for over two

million simultaneous TCP flows can be tracked.

Retrieving 32 bytes of data from SDRAM requires 20 clock cycles. The new

ID’s data is retrieved before storing the old ID’s data.

4.5.10 Input/Output Buffering

An entire packet is buffered before streaming it through the pipeline. This simplifies

the content scanning since the pipeline never has to be paused. The input buffer can

hold five 1500-byte packets.

Packets are buffered on the output side as well as on the input side in order

to wait for the action to take to be resolved. The output buffer is capable of holding

three 1500-byte packets.

4.6 Implementation Results

The implementation of SIFT in a Xilinx Virtex XCV2000E-8 FPGA utilized 84% of

the logic slices, 58% of the look-up tables, and 96% of the block RAMs. Details of the

number of function generators, flip-flops, and block RAMs used by each component

are given in Table 4.1. The design synthesized to 80 MHz, providing a throughput of

2.5 Gbps.

4.7 Memory Bandwidth Requirements

The architecture was optimized to reduce pipeline stalls. Pipeline stalls could happen

for a number of reasons. First, the retrieval of state information could pause the

pipeline when a flood of small payload packets belonging to different flows arrive

back-to-back. The latency to memory is greater than the time it takes to receive

a small packet. A minimum size TCP packet requires 14 clock cycles to enter the

system, and the memory access time is 20 clock cycles. Second, a barrage of string
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Table 4.1: A summary of resources used by SIFT components in a Xilinx Virtex
XCV2000E-8 FPGA.

Component Function Flip Block
Generators Flops RAMs

Quad Bloom Filters 10201 7681 80
Control FSM 15 5 0
Header Check 276 268 0

Buffers 327 409 31
Alert Generator 218 226 3

Communication Wrapper 912 1103 19
TCP Lite Wrapper 2060 1542 16

SDRAM Buffer 792 936 0
Match Decoder 15 5 0
Action Retriever 1435 1621 1
SNMP Alerter 848 906 0
Miscellaneous 3188 4180 4
Design Totals 20287 18882 154

matches could back-log the action retrieval unit. This only occurs if a buffer holding

matching signatures has more than eight outstanding matches.

The architecture was designed such that the SDRAM latency was masked by

the progression of previous packets through the pipeline. The instant a packet arrived,

the SDRAM request was sent. The SDRAM access was performed while the packet

was buffered.

Stalls caused by a full match buffer are more difficult to combat. The match

buffer implemented in this design holds 16 signatures. The pipeline stalls when the

number of signatures buffered exceeds this limit. There are two ways to reduce this

stall. The first is to make the buffer larger, allowing more outstanding signatures to

wait for identification. The second solution is to use both available banks of SRAM

to perform action retrieval. In this way, two signatures could be processed in the time

it takes to resolve one.
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4.8 Observations

4.8.1 String Matching

String matching performed with Bloom filters can generate false positives. In an

earlier version of the design, a false positive resolving circuit verified that a string was

present. However, the false positive resolver was removed since occasional outputs of

safe packets was acceptable because they were post-processed in software.

By using four parallel Bloom engines to scan for a specific length signature,

the amount of resources left in the FPGA to scan for different length strings was

limited. To reduce the number of different length strings search, SIFT truncated some

signatures. Truncation created another type of false positive. That is, a truncated

signature may generate an alert, whereas the original signature was not present. This

is discussed in more depth in Chapter 6.
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Chapter 5

Rule Processing Framework

The Rule Processing Framework (RPF) was designed to allow complete generality of

intrusion rules by interpreting rule components as logical equations. Header process-

ing and string matching are performed in separate components, each of which inform

the rule processor what criteria matched, and the rule processor determines whether

rules match. The RPF operates on TCP flows.

In this chapter, the generic framework for implementing a rule processing sys-

tem in reconfigurable hardware is discussed. The framework integrates the function-

ality to scan data flows for regular expressions, fixed strings, and header values. It

also allows modules to be added to the system in order to extend the functionality

to support the remaining set of Snort rules in modular components. Reconfigura-

bility and flexibility are key components of the system that enable it to adapt to

protect Internet systems from threats including malicious worms, computer viruses,

and network intruders.

The framework can process 32,768 complex rules at data rates of 2.5 Gbps on

the FPX platform. Systems to handle data at 10 Gbps rates can be built today using

the same framework in the most recent reconfigurable hardware devices.

5.1 Design Objectives

To accommodate features necessary for complex rule processing systems, including

support for regular expression scanning, fixed string scanning, header processing, and

multiple criteria per rule, a generic rule processing architecture was developed. The

RPF combines components to support these features into a single rule processing

structure.
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In order to adapt to new threats, the ability to add a processing module was

valuable. A generic way to communicate between processing modules and the rule

processor was developed. The communication wrapper allows modules to be added.

TCP stream processing is a key aspect of content processing. Stream processing

allows data spanning packet boundaries to be processed as if there were no separation

in time between the arrival of data. However, since the fundamental unit of any NIDS

is packets, a way to store context for millions of flows was needed.

The RPF had several desirable features: it operated in real-time, it was adapt-

able, and it operated efficiently. Rule updates were written to the system via control

messages that updated internal data structures. Intrusion information was sent di-

rectly from hardware to a control host for logging and display.

The key aspect of the RPF is flexibility. The nature of future attacks to the

Internet’s infrastructure is difficult to predict. The ability to protect the Internet

from unknown types of future attacks requires that the rule processing system adapt.

The use of reconfigurable hardware in the system supports future enhancements.

5.2 Design Decisions

5.2.1 System Layout

A large amount of hardware resources are required to implement a complete rule

processing system. The RPF allows the main components of rule processing to be

separate. The rule processor could be in a different area of the FPGA or it could be

implemented on a separate device. The RPF that was developed implemented the

components of rule processing on different FPGAs.

Components communicated matching criteria found in a given flow (or packet)

using the format of Figure 5.1. The header consists of flags and a flow ID. The flags

specify whether the following ID values are header or string IDs. The flow ID speci-

fies to what TCP flow these matches belong. Subsequent words contain identification

values of matching criteria.
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flags flow ID

ID 1 ID 2

ID 4ID 3

ID N−2 ID N−1

ID N

Figure 5.1: The data format for communicating matching rules and signatures consists
of flags, a flow ID field, and a list of matching ID numbers.

5.3 Features

The RPF has the following features:

• Expandable support for all features found in Snort (dependent on processing

modules capabilities)

• Support for a total of 32,768 rules

• Support for up to 32,768 unique header rules

• Support for up to 32,768 unique signatures

• Support for rules to have up to 15 embedded signatures or regular expressions

• Support for 1 header rule per rule (but expandable to be up to 15)

• Ability to add/remove modular processing components

• Support for incremental rule updates via control messages

• Support to operate on TCP flows as well as IP packets

• Maximum throughput of 2.5 Gbps on the FPX

• Succinct or verbose reporting options

The novel aspect of this framework is that multiple techniques can be used

simultaneously to perform rule processing in hardware. To the rule processor, header

rules and signatures are ID numbers reported by custom processing modules. For

example, a processing module that efficiently scans for regular expressions can be used
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Figure 5.2: The rule-processing framework allows for header processing and content
scanning components to be added or removed without affecting rule processing. A
standard communication mechanism was adopted to allow for integration of multiple
components.

in tandem with a processing module that has been optimized for static signatures. In

this way, the rule processor supports all features currently found in Snort by allowing

modular components to be integrated into the system that have been optimized for

each particular need.

5.4 System Overview

The RPF utilizes processing modules to determine which header rules and signatures

have been found. The processing modules send information to the rule processor,

where correlation between header and signature matches determines whether rules

match.

Data flows through the system from a TCP flow assembler to h header pro-

cessors and c content scanners, as shown in Figure 5.2. The flow assembler provides

ordered TCP data to content scanners. Header processors perform packet classifica-

tion, determining which header rules match the incoming packet. Content processors
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scan payload bytes of data streams for regular expressions and static strings. Strings

can appear anywhere within the payload or even across packet boundaries. After find-

ing matching headers or signatures, the header and content modules forward match

IDs to the rule processor.

To the rule processor, rules have the form:

< action > HID ∧ (S1ID ∧ S2ID ∧ · · · ∧ SnID);

Thus, a rule consists of an action, a header rule, and 0 to n signatures. A rule

matches when the header rule matches and each of the signatures specified, if any, are

detected. When a match is found, the action specified is taken. Rules are programmed

into the system dynamically through control packets from a management console.

5.5 Architecture

The rule processor is the key component of the RPF, and it is shown in Figure 5.3.

To achieve high performance, the rule processor was pipelined with seven pipeline

stages. All communication was performed using the communication wrappers. The

rule processor handles two forms of inputs and a single form of output. Control

information enters on a control interface. Matching header and signature IDs enter

on an ID interface. Rule match information and actions to take are output the alert

interface.

5.5.1 Pipeline Stages

Stage 1: Input

The input stage has two main components, one for each of the two types of inputs. The

control FSM receives programming information from software for adding, deleting, or

modifying rules. Software can read/write SRAM, read/write on-chip block RAM, or

query system event counters. On the other interface, matching header and content

IDs enter, where they are buffered in a FIFO. From this FIFO, the IDs enter the

processing pipeline. This FIFO acts as the flow control. Information is held here in

the case of performing context switching. Header IDs (HIDs) and content IDs (CIDs)

are split in this stage. CIDs advance to the second stage of the pipeline, while HIDs

are forwarded to stage 5.
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Figure 5.3: The rule processor consists of seven stages: (1) input, (2) content ID
check, (3) rule ID retrieval, (4) header ID mapping, (5) header ID check, (6) count
check, and (7) alert output.

Stage 2: Content ID Check

Matching CIDs enter into this stage to determine if this content has already been seen

for this particular flow. A large bit-vector, stored in on-chip block RAM, is directly

indexed by the CID. If the indexed bucket is set, no further processing is performed

because the signature was already detected, but a rule has not matched yet. If the

indexed bucket is not set, the CID is passed to stage 3 and the bit is set. Note that

upon a rule match, stage 6 clears the signatures found in the matching rule from this

index so the rule can be allowed to match again. Only the first occurrence of a CID

in a flow results in the CID being forwarded to stage 3.

Stage 3: Rule ID Retrieval

Stage 3 receives uniquely occurring matching signatures, and a reverse index look-

up [127] is performed to determine what rule IDs (RIDs) are associated with the

signature. Linked lists are maintained in SRAM, where the first node of a list is

directly indexed by the CID. Iterating through the list, each RID associated with the

CID is returned. For example, the signature “I Love You” is found in a single rule,

so only one RID is returned. If “.mp3” is found, four RIDs are returned since “.mp3”
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Figure 5.4: SRAM is used to maintain linked lists. Each SRAM record contains a
rule ID and next pointer.

is found in four rules. Assuming an uniform distribution of signatures that match,

1.58 RIDs will be retrieved per signature match on average.

Memory management is controlled by software in order to simplify the hard-

ware implementation. An entry in SRAM consists of a rule ID and next pointer, as

shown in Figure 5.4. The RID is passed to stage 4 while the next pointer, if valid, is

examined. The first RID will always be associated with the direct-index of the CID.

After that, software maintains a free-list of SRAM words that can be used for next

pointers.

Stage 4: Header ID Mapping

Potentially matching RIDs enter stage 4, where the HID associated with the RID is

determined. Using another bank of SRAM, a mapping from RID to HID is main-

tained. The RID directly indexes into SRAM, and the HID associated with that RID

is returned. At this point a similar technique, as used in stage 3, could be adopted if

rules were ever to consist of more than a single header. However, the current Snort

rules do not associated more than one header with a rule, so the architecture was

simplified. The RID and HID are sent to stage 5.

Stage 5: Header ID Check

This stage is similar to stage 2, only a HID queries the bit-vector instead of a CID.

The HID from stage 4 directly indexes the block RAM, checking to see if the HID

was found to match this flow. The value in the index is set by forwarding incoming

matching HIDs from stage 1. If the header matches, the RID is passed along to
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stage 6. If the header does not match, the RID is dropped from the pipeline. To

account for header-only rules, a special ID range was allocated in the bit-vector to

inform this stage that when these headers arrive, a header-only rule matched. In

these cases, a rule match is declared without any content being processed.

Stage 6: Count Check

When a potential matching RID is passed into this stage, an on-chip block RAM

is queried to determine if the number of signatures associated with the rule have

been witnessed. The RID directly indexes two block RAMs. From the first block

RAM comes the count required for a rule to match. This value is programmable by

software control packets. From the second block comes the current count. This count

is incremented and compared to the requirement for a rule match. If the two are

equivalent, the rule with the given RID is declared a match, and the RID is passed to

the next stage. When a rule matches, this stage clears the CIDs embedded in this rule

from the bit-vector of stage 2 so that subsequent rule matches can be reported. The

count value in the block RAM is also reset. Enough space is allocated to support rules

that contain 15 signatures. Current Snort rules have no more than seven signatures

specified.

Note that a RID will only enter this stage if (1) the first occurrence of one of

the signatures found in the rule is detected, and (2) the header specified in the rule

matched. This ensures the count will only be incremented once per signature in a

rule.

Stage 7: Alert Output

In the final stage matching rules are reported to a control host, where the match

can be logged and acted upon. The RIDs that match in a packet are bundled into

a single control message that is passed through the communication wrapper to the

control host.

5.5.2 Efficient Context Switching

To facilitate efficient context-switching for different flows, a mechanism to save only

pertinent information was required. Stages 2, 5, and 6 perform context switching

upon the arrival of different flows. With support for up to 32,768 rules, a full loading
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of each bit vector would require swapping in and out 192 Kbits of information per

flow.

Instead, the storage required was reduced by only storing the addresses of

set bits. Unique HIDs or CIDs are stored in a buffer. When a context switch is

needed, these buffers are sent to off-chip memory, and those locations are cleared in

the vectors. When retrieving context information, the returned addresses are used to

set the appropriate bits. To simplify the design, 512 bytes of storage are pre-allocated

per flow, which can be retrieved in 32 clock cycles.

5.5.3 Buffering

Buffering was needed in this system for only two reasons. First, it is possible for

a CID to be associated with more than one RID in stage 3. Hence, multiple RIDs

will need to be inserted into the pipeline starting at the end of stage 3. While these

are being inserted, the flow of CIDs from earlier stages is halted. Second, buffering

was required to pause the pipeline when context switching was performed. During

SDRAM access, new matching IDs cannot be processed.

One might assume that the system could become backlogged during the trans-

fer of match vectors. However, consider that most matching signatures are greater

than two bytes, which is all that is required to communicate that a signature matched.

In the case of one byte signatures, a special byte ID is used.

The input buffer is 256 words deep, allowing for 512 different match events to

be stored before back pressure to upstream modules must be asserted.

5.5.4 Control

All control of the rule processor was performed by software via the communication

wrapper. There are five supported operation codes:

(1) Write SRAM bank 0 content ID to rule ID linked list mapping

(2) Write SRAM bank 1 rule ID to header ID mapping

(3) Read SRAM bank 0

(4) Read SRAM bank 1

(5) Write block RAM count value
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Table 5.1: Xilinx Virtex XCV2000E FPGA resources used by the rule processor
components.

Component Function Flip Block
Generators Flops RAMs

Stage 1 148 68 2
Stage 2 116 54 10
Stage 3 78 60 0
Stage 4 82 57 0
Stage 5 59 28 9
Stage 6 269 140 65
Stage 7 86 108 1

SDRAM Buffer 1 850 985 12
SDRAM Buffer 2 856 986 12

Communication Wrappers 1833 2050 38
Miscellaneous 687 2652 0
Design Totals 5064 7118 149

Codes (1) and (3) interact with stage 3 of the pipeline. Codes (2) and (4)

interact with stage 4, and code (5) interacts with stage 6. The operation codes are

described in detail in Section A.3.

5.6 Implementation Results

The rule processor has been implemented, targeted for a Virtex XCV2000E-8 FPGA,

and it used 12% of the LUTs, 25% of the slices, and 93% of the block RAMs. The

design synthesized at 80.6 MHz, providing a throughput of 2.5 Gbps.

FPGA features were extensively used to improve the efficiency of the rule

processor. A total of 149 of the fast, on-chip block RAMs were used and proved to be

the critical resource of the circuit. By utilizing these fast memories to hold the large

bit-vectors, the throughput of the system dramatically increased while the latency

decreased. Due to limitations on the number of block RAMs, more rules cannot be

easily supported without targeting the design to a newer FPGA with more on-chip

memory.

The logic used by the system was minimal. The approximate resource require-

ments of each stage is shown in Table 5.1. As can be seen, stage 6 was the critical

stage in terms of block RAM usage. This was due to the fact that the multiple string

counts were held in block RAMs.
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5.7 Discussion

5.7.1 Maintaining Throughput

The key requirement of the rule processor was to maintain system throughput over a

wide distribution of packet sizes and match criteria. Clearly, if every new byte intro-

duced by the system forces a string match, the system cannot maintain throughput

since the system communicates two bytes. The number of total matches supported

per packet depends on the packet size and is equal to half the number of transmitted

bytes. For example, a 40 byte TCP packet can have up to 20 matching headers and

strings before performance slows.

5.7.2 Effects of Context Switching

Context switching can be a bane for the throughput of the system. Consider that it

takes 14 clock cycles to receive a minimum size TCP packet, while the context switch

time is 32 clock cycles. Thus, a barrage of minimum length TCP packets containing

matching header rules will throttle the throughput to one half the link rate.

5.7.3 Experimental Performance

The system can provide high throughput over a broad range of packet sizes. The

lowest throughput of the system occurs when two minimum size TCP packets arrive

belonging to different flows that contain the search term that is present in the most

number of rules. For the current rule set, TCP packets with four bytes of payload

containing |00 00 00 00| are the worst case. This results in 135 RIDs being checked.

The average-case and worst-case throughput of the rule processor for this case is

plotted versus the number of payload bytes in Figure 5.5. Note that as packet size

increases, the throughput of the system increases to the maximum value.

Since only 18 signatures appear in more than 10 rules, this worst-case per-

formance can be alleviated by using specialized rule modules to process them. The

frequently occurring CIDs are forwarded to these rule modules instead of into the

pipeline. The rule modules check each HID with which the CID can be associated

and inserts only those rule IDs into the pipeline that contain matching HIDs. Since

at most 10 HIDs can match for a given packet, only 10 RIDs will be inserted into the

pipeline.
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Figure 5.5: Average-case and worst-case throughput of the rule processor versus the
input packet size.

5.7.4 Memory Bandwidth Requirements

Access to SRAM has been deeply pipelined, allowing a memory look-up from each

bank on every cycle. Thus, the SRAM banks can provide a maximum bandwidth of

5.76 Gbps.

It is more difficult to efficiently utilize SDRAM due to the unknown nature of

traffic patterns. Not every packet that arrives in the system may force a SDRAM

event. It is most undesirable to stall the rule processing pipeline. In order to prevent

stalling, SDRAM fetches context information the instant information from a differ-

ent flow arrives, allowing SDRAM latency to be masked with the processing of the

previous packet.

A worst-case traffic pattern requires that every packet retrieve context for the

given flow and store the updated context back upon the end of the packet. This

requires the transfer of 1024 bytes of information per packet. Assuming that all

packets are minimum sized TCP packets, nearly eight million packets per second can

be received. Such a traffic pattern requires 65 Gbps memory bandwidth, more than

six times the available memory bandwidth of the FPX platform.

Memory bandwidth to handle the context storage is a bottleneck. The solution

is to change how context is stored for each flow. To simplify the buffering and context

switch logic, 512 bytes of memory were pre-allocated for each flow, allowing storage of

224 matching headers or signatures and 24 potentially matching rules at one instance,

as shown in the SDRAM record of Figure 5.6.
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Figure 5.6: 512 bytes of storage were pre-allocated per flow, which allows for storing
up to 224 headers or signatures and 24 potentially matching rules.

However, this may waste space in some cases. Improvements could be made to

the memory controller to only send the data that needs to be stored. The unknown

nature of how many header and signature matches occur per flow made it difficult to

allocate buffer space.

5.8 Observations

5.8.1 Memory

To perform all rule processing in a hardware device, the memory subsystem requires

a large bandwidth. The RPF performed burst operations to achieve high throughput.

However, even this implementation could not handle the absolute worst-case traffic

patterns. Assuming a burst of minimum length TCP packets, the most amount of

data that can be held for context is 82 bytes in the FPX platform.

In order to accommodate the worst-case traffic, the system would benefit from

a memory device with faster throughput. This system uses 100 MHz SDRAM, but

there are memory elements available now that have higher clock frequencies as well

as transfer data on both the rising and falling edge of the system clock (double data

rate SDRAM).
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Chapter 6

Results

This chapter presents the results of the three architectures. The test environment is

briefly described, and the chapter is concluded by analyzing the results and performing

comparisons. The comparisons are not only between architectures but also examine

components implemented by other researchers.

6.1 Testing Environment

All experiments were performed in the Applied Research Laboratory (ARL) [5] at

Washington University.

6.1.1 FPX

All architectures were tailored for use with the Field programmable Port eXtender

(FPX) platform [67, 69] of Figure 6.1. The FPX consists of two FPGAs. The first is

the Network Interface Device (NID), and the second is the Reprogrammable Appli-

cation Device (RAD). The NID is a Xilinx Virtex XCV600E FPGA, and the RAD

is a Xilinx Virtex XCV2000E FPGA. The architectures described in this thesis were

synthesized into the RAD.

The NID routes information between the RAD and the downward and upward

interfaces of the FPX over an Utopia bus. The FPX can interface with additional FPX

cards, with a switch, or with various line cards. Control of the NID is performed by a

software tool called NCHARGE [112] that programs VPI/VCI routes. Additionally,

programming of the RAD FPGA is performed via the NID, which receives the FPGA

bitfile from NCHARGE.
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Figure 6.1: The FPX has two FPGAs, three banks of SRAM, and two banks of
SDRAM (on the reverse side of the card).

The RAD is the main data processing FPGA, and it has access to two 2 MB

ZBT SRAMs and two 512 MB SDRAMs. The RAD also has two Utopia interfaces:

the switch interface and the line card interface. The NID forwards ATM cells, to one

or both interfaces of the RAD. Once processed, the RAD forwards the cells back to

the NID to be re-injected into the network.

The main communication unit of the FPX is a 53-byte ATM cell, padded to be

transmitted in 14 32-bit words (56 bytes). IP packets can be transferred over ATM

by using the ATM Adaptation Layer 5 (AAL5) protocol [48]. The current generation

FPX can operate at 100 MHz, providing a maximum data throughput of 3.2 Gbps.

6.1.2 GVS-1500

The GVS-1500 [6], as shown in Figure 6.2, is an environment that leverages the FPX

platform. There are two stacks of networking devices in this configuration. One stack

consists of a line card and one or more FPX cards. The other stack consists of a line

card and a NID pass-through card (NID-PT). The NID-PT de-encapsulates control

operations from a higher level transfer protocol to configure the FPX cards.

This system can be placed in a wiring closet to act as a gateway between the

internal network and the external network. This system is well suited for an intrusion

sensor operating in active mode because traffic can flow in through one stack and out

the other.
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Figure 6.2: The GVS-1500 uses FPX cards in a stacked configuration with Gigabit
Ethernet line cards at the top of the stack. An embedded PC can be used for control.

FPX

Line Card

Figure 6.3: The WUGS-20 provides eight processing ports.

6.1.3 WUGS-20

The Washington University Gigabit Switch (WUGS) [122] is the second environment

that leverages FPX technology. The WUGS-20 is an eight-port switch that allows

the FPX to be plugged directly into one of the switch ports. Routes in the WUGS-

20 are fully programmable, allowing data to be processed by each port element if

desired. In addition, the WUGS-20 supports multicast. Figure 6.3 shows the WUGS-

20 configured with four FPX cards and four line cards.
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Figure 6.4: The programmable signature distribution for Snort Lite.

6.2 Snort Lite Results

6.2.1 Compatible Snort Rules

Of the 2,464 Snort rules in the database, Snort Lite can be configured to support 1,580

(65%) of the rules by programming 1,762 separate rules (one for each signature) and

relying on software to determine that an actual Snort rule matched when multiple

signatures were present. This percentage was determined by counting rules that

contain the first occurrence of signatures in the range 1 to 32 bytes. However, since

Snort Lite searched for signatures that were between 2 and 24 bytes, only 1,451 of

the 1,580 rules and 1,599 of 1,762 signatures were supported at one time. This range

covers the largest group of signatures. Snort Lite could not support header-only rules.

The distribution of signatures is shown in Figure 6.4. The engine with the most

number of signatures was the engine that scanned for 12 byte signatures. While there

were more unique 4-byte signatures, these 4-byte signatures were also used in rules

multiple times, so the rules with additional instances were discarded. The maximum

false positive probability was 2.74E-10, or one in four billion.

6.2.2 Throughput

The maximum attainable throughput of the system is calculated by multiplying the

number of bits that can be processed per clock cycle and the frequency of operation,

which results in 502 Mbps (8 bits * 62.8 MHz).



81
Effective Throughput vs. 

Hash Table Queries per Second

0

100

200

300

400

500

0 200,000 400,000 600,000 800,000 1,000,000

Hash Table Queries per Second

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Pause Pipeline
No Pause

Figure 6.5: The throughput of the system degraded as the number of hash table
queries per second increased. This was due to the fact that the byte pipeline paused
until the match resolved. The system remained at 80% capacity when 600,000 attack
packets were processed.

The expected throughput of the system, however, depends on the traffic pattern

and characteristics. Because data arrives four bytes per clock cycle, a sudden long

burst of back-to-back traffic can cause the system to assert back pressure.

Additionally, the matching rules found in packets forces pipeline stalls that

degrade throughput. The choice to pause the pipeline to allow memory transactions

to complete adversely affects the throughput of the system, as shown in Figure 6.5.

This NIDS has sufficient performance to be robust against denial of service

attacks. On a fully utilized 500 Mbps link, up to 1.5 million packets can arrive per

second. Even if 600,000 of these packets contain search strings, the throughput of the

system is only reduced to 80% capacity.

6.2.3 System Tests

Testing was performed by placing the system between a bank of computers and an

external network, as shown in Figure B.1. The device was tested in active mode with

data known to cause rule matches. Rules were loaded into the device using a web-

based graphical user interface (GUI) while traffic was sent through the system. With

one test, a web page that contained 100 occurrences of the search string George was

fetched, causing the hardware matching circuit to trigger 100 times and to generate

an alert packets. Alerts arrived at the software controller and were displayed with a
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Table 6.1: A summary of the resources available on various Xilinx FPGAs.

Device Slices Available Block RAM Distributed Memory
(Kbits) (Kbits)

XCV2000E 38,400 640 600
XC2V6000 33,792 2,592 1,056

XC4VFX100 49,152 4,320 768

Java-based graphing application, as shown in Figure A.17. By staging a set of data

online, each signature length and header field type was tested.

In order to push a heavy traffic load through the system, wget was used to re-

cursively fetch web pages from http://www.cnn.com and http://www.whitehouse.-

gov. Rules were programmed that contained the search criteria George, Politics, and

other news of the day. Multiple simultaneous connections were created in this way,

and multiple rules were seen to match. Bulk file transfers were performed in the

background to expose the system to traffic rates near 500 Mbps.

6.2.4 Next Generation FPGAs

The circuits designed would benefit by implementation in newer FPGA technology

such as the Virtex II and Virtex 4. These devices have more resources than the Xilinx

Virtex XCV2000E. The resources in these FPGAs are compared in Table 6.1.

In Figure 6.6 the relative improvements available by targeting the design to

newer FPGAs are shown. With an increased amount of block RAM, more Bloom

engines are supported, allowing for the number of rules supported to increase. The

frequency improvement is approximately 1.5x, but the throughput is considerably

better in newer FPGAs. By duplicating the match logic, more bytes per clock cycle

can be processed. The Virtex II can instantiate two parallel copies of 55 Bloom

engines (one for each signature length being scanned for), while the Virtex 4 can

instantiate four parallel copies since it has more block RAMs.

6.3 SIFT Results

6.3.1 Compatible Snort Rules

Of the 2,464 Snort rules in the database, the SIFT architecture supported 2,311 of

the rules by programming 1,995 signatures into the system. SIFT also supported the
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Figure 6.6: The projected relative improvements of Snort Lite using newer FPGAs.
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Figure 6.7: The number of signatures associated with each length for SIFT.

168 header-only rules. The distribution of signature lengths supported are shown in

Figure 6.7.

6.3.2 Throughput

The maximum throughput of the system was 2.5 Gbps. High throughput can be

maintained even with a large frequency of matches. Even though SRAM look-ups can

be obtained in back-to-back cycles, throughput degradation can occur when multiple

Bloom engines match over an extended period of time. Figure 6.8 shows the allowable

number of matches for various packet lengths before performance degradation occurs.

Figure 6.9 shows how the throughput of the system decreases if too many matches

occur per second. Just under 100 million matches have to occur per second for the

throughput to degrade at all.
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Figure 6.8: The allowable matches that can occur within a packet of a given length
without causing throughput degradation.
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Figure 6.9: The throughput of the system versus the number of matches per second.
The system could sustain 100 million matches per second at maximum throughput.

6.3.3 SIFT Test Configuration

SIFT was configured to use Bloom engines to scan for 4, 6, 8, 10, and 12 byte

signatures. All 4 and 5 byte signatures were loaded in the 4 byte engine, 6 and 7 byte

signatures in the 6 byte engine, and so on. All signatures greater than or equal to 12

byes were placed in the 12 byte engine. Table 6.2 summarizes how signatures found in

Snort version 2.2 were loaded into the hardware. Non-unique signatures refers to the

signatures that were truncated to the appropriate length, but the truncated version

had already been programmed into the engine.

The Bloom engine that scanned for 12 byte signatures had the highest false

positive probability, which was 2.1E-4 or 1 in 5000. The next highest false positive
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Table 6.2: A summary of how the Bloom engines were loaded.

Scan Signatures Non-unique False Postive
Range Loaded Signatures Probability

4-5 262 18 4.3E-8
6-7 163 2 1.2E-9
8-9 227 4 1.5E-8

10-11 244 2 2.5E-8
12+ 872 137 2.1E-4

probability occurred in the engine that scanned for 4 byte signatures. The false

positive probability was 7.1E-8, or 1 in 150 million.

The system was configured, as shown in Figure B.3, to monitor to monitor all

traffic entering or leaving Washington University’s 19,000-node campus network and

process the current Snort rule database. The throughput witnessed varied with time,

but it peaked at 350 Mbps.

6.3.4 Testing Results

System events were monitored, and the results were displayed using MRTG. The

graphs plot the five minute average of events per second. Figure 6.10 shows the total

incoming TCP packets, and Figure 6.11 shows the amount of TCP packets that were

sent to the intrusion PC during the week of February 13-20, 2005. Figure 6.12 shows

the reduction in data sent to the host PC for TCP traffic. Similar figures for UDP,

ICMP, and other IP packets are shown in Figure D.1, Figure D.2, and Figure D.3,

respectively. As can be seen, SIFT reduced the amount of TCP traffic that needed

to be examined by the Snort PC by 85% on average. The traffic reduction achieved

based on protocol is summarized in Table 6.3.

Table 6.3: A summary of the reduction in packets transmitted to the Snort PC for
the week of February 13-20, 2005.

Protocol Incoming Packet Outgoing Packet Reduction
Average Average

TCP 28.2 K 2.71 K 90%
UDP 0.50 K 0.07 K 86%
ICMP 1.03 K 0.87 K 15%

IP 0.34 K 0.01 K 96%
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The number of matching headers over the given time period is shown in Fig-

ure 6.13. Matching headers significantly dropped off late in the morning, even though

the number of packets traversing through the system increased at this time. The num-

ber of matching headers ramped back up early in the afternoon, only to decline again

until evening. This was a periodic event that occurred on multiple days of observation.

The average number of matching 4-byte signatures per second is plotted in Fig-

ure D.13. Although it was expected that the number of matching signatures would

scale with the traffic load, the time of day had nearly no impact on the number of

matching signatures. This was true for all Bloom engines, as shown in Figures D.14-

D.17 in Appendix D. Also, the number of matches for each QBF engine was approxi-

mately the same, even the 12-byte QBF. This indicates that longer signatures do not

occur frequently.

The Snort PC was a 2.13 GHz AMD Athlon MP 2600+ with 3 GB or RAM

running Red Hat Linux. Snort had no trouble keeping up with the average 40 Mbps

of traffic that was passed to it for processing. When the same PC was booted into

Windows XP, only 50% of the traffic was inspected. The implementation of Snort for

the different operating systems apparently has a profound impact on performance.

Using the Linux version of Snort to process the traffic exiting SIFT, an average

of 5% of the traffic resulted in matching rules, indicating that it would be possible to

further improve the hardware to reduce the forwarded traffic. Of the traffic that was

forwarded, 78%, 16%, and 6% of the resulting matching Snort rules were for ICMP,

TCP, and UDP packets, respectively, as shown in Figure 6.14. It appears worthwhile

to add a better hardware filter for ICMP traffic.

Figure 6.10: The number of incoming TCP packets versus time on Feb 13-20, 2005.
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Figure 6.11: The number of outgoing TCP packets versus time on Feb 13-20, 2005.
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Figure 6.12: The number of incoming and outgoing TCP packets versus time on Feb
16, 2005.

Figure 6.13: The number of matching header-only rules versus time on Feb 16-17,
2005.
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Figure 6.14: Using an analysis console, the breakdown of alerts by protocol can be
known.

6.4 Rule Processor Results

6.4.1 Compatible Rules

The rule processor can be used to process a wide range of network intrusions. Sig-

natures in the payload can be fixed strings or regular expressions. Additionally, the

header type can be a complicated expression involving multiple fields in the packet’s

header. The rule processor can support all potential Snort rules by representing these

elements as 16-bit integers.

6.4.2 Throughput

As in all the architectures, the number of matches that can occur per packet is limited

to a certain value before the system experiences throughput degradation. This is a
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function of the packet size, and it is shown in Figure 6.15. For full-length Ethernet

frames, the sum of header matches and content matches can be 750. Past this point,

more data is communicated than arrived.
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Figure 6.15: The allowable matches versus packet length before throughput degrada-
tion.

The rule processor could impose additional throughput degradation for two

reasons. Context switching was an expensive operation, requiring the retrieval of

512 bytes from SDRAM as well as flushing the processing pipeline. The number of

context switches that can be performed before performance is hindered is shown in

Figure 6.16.

The second reason was due to rule look-ups being inserted. The pipelined na-

ture of the rule processor allowed potential rules to be processed back-to-back with

no pauses. A large number of rule look-ups can be performed before the system

must stall the flow of packets through the system, as shown in Figure 6.17. Perfor-

mance degradation begins when the number of lookups required exceeds 80 million

per second. This number assumes no context switching is performed.

Latency

Latency was not a critical issue for this system due to the feed forward nature of the

processing flow. One module processed a packet before that packet was passed to the

next module for additional processing. The rule processor was the last to receive the

packet, and by this time all relevant matching information was communicated. The

rule processor could then make a decision on what action to take on the packet.
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Figure 6.16: The throughput of the system versus the number of context switches
performed per second.
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Figure 6.17: The throughput of the system versus the number of matches per second.

6.4.3 Next Generation FPGA Projections

Using newer technology, more rules can be stored and higher throughput can be

achieved, as shown in Figure 6.18. With access to more block RAM, the number of

rules supported can be increased by a factor of five while also increasing the through-

put. The throughput is increased by duplicating the processing pipeline, allowing

more match IDs to be processed per clock cycle. With a Virtex 4, the rule processor

could operate at 15.9 Gbps.
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Figure 6.18: The projected relative improvements of the rule processor design using
newer FPGAs.

6.5 Comparisons

6.5.1 Hardware vs. Software

The bandwidth reduction provided by SIFT begs the question whether a full-featured

implementation of Snort in hardware is necessary. SIFT reduced the traffic that

needed to be examined by Snort to less than 15% the total traffic. Snort running on

a PC was capable of processing all this traffic.

However, as link speeds increase, the reduction, while still substantial, sur-

passes the capabilities of the general purpose computer. Current processors have a

Gigabit NIC attached. Any traffic load above this is not supported.

6.5.2 Effects of Context Switching

The effect of flow-based context swapping was detrimental to throughput. Under

worst-case traffic patterns (back-to-back interleaved 40-byte packets), the FPX plat-

form had enough external memory bandwidth to store 82 bytes of state information.

In the RPF, this means storage for up to 20 different matching criteria. Whether this

is enough for TCP flows is yet to be determined. The number depends largely on the

rule set being processed and the characteristics of the traffic.
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Table 6.4: The device utilization and throughput for TCP processing, header process-
ing, and string matching components involved in rule processing. Logic cell percentage
is based on the number of slices used in a particular device.

Group and Component Device Logic Cells Throughput
GaTech Stream Assembler[81] Virtex 1000 876 (10%) 3.2 Gbps

NU Flow Monitor [82] VirtexII-8000 - 48.31 Gbps
WashU TCP Processor [96] Virtex4 FX140 22,100 (35%) 10.3 Gbps
WashU BV-TCAM [108] Virtex4 FX100 4,200 (10%) 10 Gbps

Crete Pre-decoded CAMs[111] VirtexII-6000 64,268 (95%) 9.7 Gbps
GaTech Decoder Trees [28] VirtexII-8000 54,890 (81%) 7 Gbps

Tokyo Trie-based Hash [115] VirtexII-6000 2,365 (7%) 10 Gbps
UCLA Packet Filters [24] Spartan 3 2000 15,202 (37%) 3.2 Gbps

USC Partitioning [19] VirtexII Pro 100 15,010 (15%) 4.5 Gbps
WashU Bloom Filters Virtex4 FX100 35,850 (85%) 20.4 Gbps
WashU Rule Processor Virtex4 FX100 40,200 (95%) 15.9 Gbps

6.5.3 Comparison with Related Work

Components of network flow processing circuits can be implemented efficiently in

reconfigurable hardware. Table 6.4 shows projected resource requirements for com-

ponents synthesized by various groups. The first group shows TCP flow processing

components. The next group shows a header processing technique. The largest group

shows string matching techniques. The final group shows the rule processor.

1This assumes 40 Byte packets.
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Chapter 7

Conclusion

Network intrusion detection and prevention systems have become an essential part

of the Internet infrastructure. Attacks from worms, viruses, and other malware pose

very serious risks to networked systems. An IDPS has two primary purposes. First,

it must detect all potentially damaging events that can occur in a system. Second,

it must prevent the harmful activity from being performed by blocking the flow of

harmful traffic into the system.

Snort, the most popular intrusion detection system, allows an administrator to

write rules that describe what constitutes an intrusion. These rules can be customized

for specific networks with particular characteristics.

A rule processing system should be adaptive, allowing new rules to be added

quickly and efficiently. The system must operate in real-time, allowing actions to be

taken to stop attacks and prevent damage from occurring. Finally, a rule processor

must provide useful information to system administrators that can be used to combat

security breaches.

7.1 Summary of Approaches

In this thesis, three architectures to perform rule processing in reconfigurable hard-

ware were presented. Such hardware-accelerated systems are becoming necessary as

link speeds increase to gigabits per second and beyond.

The first architecture, Snort Lite, used a single FPGA to perform the major

components of rule processing, header processing and string matching. Correlation

between criteria was performed by retrieving header rules associated with signatures

when signatures matched.
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The second architecture, SIFT, filtered harmless network traffic destined for a

general purpose processor running intrusion detection software on a PC. Over 85%

of traffic did not contain criteria that would cause a rule match. Additionally, the

full-feature set of Snort could remain on the processor, where it is easier to implement.

The third architecture developed was the rule processing framework, which

allowed the addition of modules to perform the components of rule processing. The

correlation of search criteria in the rule processor was described. Processing blocks,

including a header rule processor, a payload scanner for regular expressions, and a

payload scanner for static signatures, were developed to communicate information

about what criteria matched in the packet or flow.

The results of the three architectures are summarized in Table 7.1. Snort

Lite supported the least Snort rules and had the lowest throughput, while the rule

processor supported all Snort rules and achieved the highest throughput on the FPX.

Table 7.1: A summary of the results for the three architectures using the FPX plat-
form. The target FPGA device was the Xilinx Virtex XCV2000E.

Architecture Compatible Throughput LUT Slice Block RAM
Snort Rules (Gbps) Usage Usage Usage

Snort Lite 65% 0.52 55% 77% 99%
SIFT 93% 2.56 58% 84% 96%

Rule Processor 100% 2.56 12% 25% 93%

7.2 Contributions

In this thesis, architectures were developed to perform rule processing in hardware.

After characterizing the current Snort rule database, it was found that the bulk of

Snort rules contain a single header rule and a single signature. The architectures were

optimized to perform well in this case. However, since not all of the rules were of

this form, additional circuits were developed to support the more general processing

of more complex rules.

The following elements were created during the course of this thesis work.

First, Bloom filters have been successfully mapped for use in a FPGA. Previous

work in [37] showed how to map Bloom filters into a FPGA. This information was

used to create a Bloom filter component that is reliable, robust, and adaptable.
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Second, a robust communication component called the communication wrapper

was created. The wrapper provided an intuitive and simplified interface for commu-

nicating between hardware and software.

Third, other reusable infrastructure was developed. Hash tables, context en-

gines, and alert generators were developed to store/retrieve data and communicate

system information to software. Details of these components are discussed in Ap-

pendix C.

Fourth, the first high-scale content scanners that operated on TCP flows was

developed. Previous work by [96] had performed string matching on TCP flows for

just four signatures.

Fifth, a scalable, high-throughput framework to provide rule correlation in

hardware was developed. The rule processing framework took flow and match infor-

mation from processing modules and determined matching rules.

Finally, traffic analysis on a 19,000 node network was performed. The band-

width of this large network did not overload the system. As the SIFT architecture

showed, over 85% of the traffic being monitored was benign, containing no matching

search criteria from version 2.2 of the Snort database. This suggests that general

purpose processors with traffic off-loaders implemented in hardware could be used

today to significantly improve the performance of network monitoring systems.

7.2.1 Conclusions Drawn

Much was learned through development of the network processing circuits. Snort

Lite was capable of supporting many rules and was relatively compact. However, it

was also too slow for modern networks and lacked support for 35% of current Snort

rules. SIFT improved on Snort Lite by parallelizing the string-matching computation,

allowing multiple bytes to be processed per clock cycle. Additionally, SIFT performed

matching for large numbers of signatures within TCP flows. However, SIFT required

custom logic for header-only rules and supported a limited range of signature lengths.

The rule processing framework solved these problems, providing the flexibility to

support all rule types and added multiple features. It allowed component designers

to focus on improving techniques to perform header processing and payload scanning

without needing to correlate the two.

Much of the difficulty in performing rule processing in hardware was not the

constituent component processing, but rather in efficiently identifying that a rule
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matched. For example, it was harder to report which signature matched than to just

report that a matching signature was found. The architectures developed for this

work returned an ID value associated with the matching criteria.

One of the most surprising results was the ease of implementation of header-

only processing. A brute-force compare on the appropriate fields in packet headers was

not as resource-excessive or computation-heavy as originally assumed. The method

scales to support header processing for the set of Snort rules using only a minimal

amount of FPGA resources. While counter-intuitive, the results indicated that CAMs

may not be needed for systems that use FPGA logic to perform Snort rule processing.

7.3 Future Work

All of the architectures presented were well suited for use with anomaly detection and

automatic rule generation systems. Systems, like [71], can be used in tandem with

these architectures to detect malicious traffic, create a rule, and load the rule into the

system.

Porting these architectures to newer generation FPGAs to take advantage of

additional resources and benefit from faster clock frequencies is a logical next step for

expanding these designs. Systems with such architectures can significantly outperform

existing commercially available systems.

Finally, alternate techniques to correlate matching headers and signatures

could be explored. Scalable techniques are desired for future rule processing systems

to handle thousands of header, payload, and cross-flow rule permutations.
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Appendix A

Control Software

All of the architectures do not come pre-programmed with any rules (except for the

SIFT architecture which has logic for 168 header-only rules). As a result, a software

controller must program the circuits with rules to process. The software controllers

for the three architectures are similar, but all have unique functionality.

A.1 Snort Lite

The software developed for Snort Lite consisted of three main files:

• GenHashValues.java

• RuleSetter.java

• Sender.java

GenHashValues creates the coefficients for the hash functions used by the

Bloom filter engines (refer to Section 3.4.2). To run the program, the following

command is executed:

$ java GenHashValues <# hash functions> <max hash value>

<# hash bits> <max string length> <output filename>

The number of hash functions parameter specifies how many different sets of coef-

ficients are to be created. The maximum hash value is the depth of the vector to

be indexed. The number of hash bits specifies how many bits the address will be.

Note that the current implementation requires that this be a multiple of four. The

maximum string length specifies the maximum number of bytes supported. Finally,
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the output filename is the name of the VHDL file to create. All fields are required.

For Snort Lite, the following command was run:

$ java GenHashValues 8 4096 12 32 hash values.vhd

The RuleSetter file converts Snort rules to UDP control packets. To run the

program, use the following command:

$ java RuleSetter <Coefficients File> <Rule File> <Output File>

This program reads a coefficients file (.vhd) and a rules file (.rules) to create

a .pay file that is read to send the configuration information to the hardware. Rules

in the .rules file are exactly as they appear in the Snort database. For example, the

following rule would result in the payload file shown below.

alert tcp $EXTERNAL NET any → $HOME NET 79 (msg:"FINGER cmd -

rootsh backdoor attempt"; flow:to server,established; content:

"cmd rootsh"; classtype:attempted-admin; reference:nessus,10070;

reference:cve,CAN-1999-0660; reference:url,www.sans.org/y2k/-

TFN toolkit.htm; reference:url,www.sans.org/y2k/fingerd.htm;

sid:320; rev:6;)

AnalyzerPayload

70090000

6f747368

645f726f

0000636d

01400000

HeaderPayload

76000000

01400610

c0a80000

FFFF0000

c0a8c802

FFFFFF00

0000FFFF

004f004f
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BloomPayload

74070000

28001f59

28000db5

28020c61

28020e47

2804095d

28041af1

280608e9

2806054d

Each rule generates sections for each of three operation codes. The analyzer

payload programs the string into the hash table analyzer. The header payload adds

the header rule to the header processing block, associating it with the signature ID.

The Bloom payload block consists of eight words, one for each of the bits to set in

the bit vector for the Bloom engine that scans for ten byte signatures.

The Sender program communicates with the hardware. All operation codes

can be specified as options. To use this program, the following command is executed:

$ java Sender [-h IP Address] [-p Control Port] [-f Payload

Filename] [-t Test Outgoing] [-c Statistic Number] [-d Header

Entry] [-a Alert Destination] [-r Reset System] [-m Test Message]

The -h options specifies where to send the control packets. The -p option

specifies the control port that the hardware is listening on. The -h and -p options are

required for all cases. The remaining options specify particular operation codes.

The -f options loads rules specified in .pay files, into the hardware. The -t

checks if the hardware is operational. The -c option requests that a system event

counter be queried. The -d options specifies reading a header rule from SRAM. A

header rule is specified via a signature ID. The -a option changes the destination IP

address and port of the alert messages sent from the system. This option has two

parameters. The first is the IP address to use and the second is the port. The -r

option clears all rules from the system. This is available so that a hard reboot of the

hardware is not required. The -m option allows for a simple test packet to be sent

through the hardware to test that a new rule has been adopted. An UDP packet will

be created with the string that follows -m.
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The packet formats used by the various control messages are shown in Fig-

ures A.1 through A.5. Figure A.1 shows the format for adding or deleting signatures

from the analyzer. Figure A.2 shows the packet format used to set/reset bits in a

Bloom filter. Figure A.3 shows the packet format for adding a header entry to SRAM.

Figure A.4 shows the format used to change the alert message destination IP address

and port. Finally, Figure A.5 shows the format used to remove a header entry, read

a header entry, or read a statistic from the hardware. Opcode x78 deletes a header

rule, opcode x82 reads a header rule, and opcode x84 reads a system counter.

As an example of how the system is loaded once booted, the following list of

commands are executed:

$ java Sender -h 192.168.50.2 -p 48879 -a 192.168.50.15 3000

$ java Sender -h 192.168.50.2 -p 48879 -f test.pay

$ java Sender -h 192.168.50.2 -p 48879 -c 00

Alert messages that return from the hardware can have five types. All com-

munication from the hardware uses UDP packets. Type 1 is used to confirm that the

opcode sent was successfully adopted by the hardware and has the format shown in

Figure A.6. Type 2 is used to return a header entry, and it is shown in Figure A.7.

Type 3 is used to report a statistic and follows the format of Figure A.8. Type 4 is

used in the event of a rule match and has the format of Figure A.9. For this type of

alert, only the matching rule ID number and the header of the packet are returned.

Finally, type 8, as shown in Figure A.10, is used to return the entire packet to software

for further inspection.

234567890123456789012345678901
3 2 1

IP/UDP Header

Signature ID

Byte 0Byte 1Byte 2Byte 3

Byte 4Byte 5Byte 6Byte 7

Byte N Byte N−1

String Length

0

Opcode

1

Figure A.1: Analyzer control packet format for adding and deleting strings from the
analyzer (opcodes x70 and x72).
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234567890123456789012345678901
3 2 1

IP/UDP Header

Opcode No. Entries

Block RAM Number Address Value

Block RAM Number

Block RAM Number

Address

Address

Value

0

Value

1

Figure A.2: Bloom filter control packet format (opcode x74).

234567890123456789012345678901
3 2 1

IP/UDP Header

Opcode

Signature ID Protocol Action

Source IP Address

Source IP Mask

Destination IP Mask

Destination IP Address

Upper Destination PortLower Destination Port

Upper Source Port

0

Lower Source Port

1

Figure A.3: Header entry control packet format (opcode x76).

234567890123456789012345678901
3 2 1

IP/UDP Header

Opcode

New Destination IP Address

0

New Destination Port

1

Figure A.4: Change of destination address for alert reporting (opcode x80).

1234567890123456789012345678901
3 2 1

IP/UDP Header

Opcode

0

ID/Event Number

Figure A.5: Read status/event control packet format (opcodes x78, x82 and x84).
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234567890123456789012345678901
3 2 1

IP/UDP Header

Alert NumberType

Opcode Length Tracking Number

Opcode Length

0

Tracking Number

1

Figure A.6: Type 1 alerts acknowledge the receipt of a control opcode.

234567890123456789012345678901
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Figure A.7: Type 2 alerts contain the header entry that was read.
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Figure A.8: Type 3 alerts are used to return a statistic.
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Figure A.9: Type 4 alerts are used to inform a software process that a rule has
matched. Only the packet header is returned.
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Figure A.10: Type 8 alerts are used to inform a software process that a rule has
matched. The entire packet is returned.
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A.2 SIFT

The software used for the SIFT system differs from that used in Snort Lite in several

fundamental ways.

1) The signature deletion feature was included.

2) The ability to add/delete header rules was removed.

3) All communication is performed via the communication wrapper.

4) Internal file formats are abstracted away from the user.

The application can be executed with the following command:

$ java ContentFpga [-s Coefficients File] [-n Minimum String

Length] [-m Maximum String Length] [-v Verbose Level] [-o

Simulation Output File] [-r Rule File]

The -s option specifies where to find the random coefficients VHDL file used by the

Bloom engines. The -n option specifies the minimum string length programmable

in the hardware. The -m option specifies the maximum string length that can be

searched by the hardware. The -v option specifies the amount of output printed to

the screen while operating the system. A value of 0 means very little may be output,

while a value of 2 means that much will be output. The -o option specifies where to

write a simulation file of all operations sent to the hardware. Finally, the -r options

specifies an initial rule file to load into the system. The -s, -n, and -m options are

required. All others are optional.

While the system is operating, the following commands can be used: file, rf,

add, remove, dump, and exit. The file command takes as a parameter the name of

a rule file to load into the system. The rf command takes as a parameter a rule

file to remove from the hardware. The add command is used to manually enter a

single rule. The remove command is used to manually remove a rule. The dump

command is used to view the contents of a specific Bloom filter engine. Finally, the

exit command closes the program.

The format of rules is as shown below. Rules must include a signature, an

action, a value to change the ToS field to upon a signature match, and finally the

signature. ID numbers can range from 1 to 65535. There are four possible actions:

alert, filter, return, and filterreturn. The alert action informs the software process
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what signature was found. The filter action informs software of what signature was

found and drops the packet from the network. The return action informs software

what signature matched and also returns the entire packet that caused the match.

Finally, the filterreturn action returns the signature ID of the matching signature and

the offending packet while dropping the packet from the network.

ID action ToS Signature
10 alert 0 Washington
20 filter 0 University
30 return 15 |00 00 01 1c ab ff|hex
40 filterreturn 31 ViRu$

When the application loads, several events occur. First, the coefficient file for

the Bloom filter hash functions is read into memory. Second, space is allocated for the

various Bloom filters that are in use by the hardware. Third, the system attempts to

open a communication channel to the hardware. This is performed by sending out a

“hello” packet to the hardware. The system waits a timeout period for a response. If

no response arrives, the application closes. If a response returns, the system is ready

to begin. Once the communication channel is established, the system waits for user

input.

At this point, the user can specify a file of rules to add or manually enter them

one by one. When a rule is sent to the hardware, there are three possible outcomes.

First, the user will be greeted with the response Success... which means that the

rule was successfully added. Second, the user may be informed that no response was

received within a timeout period. In this case, communication to the hardware has

been lost or there has been an error. Finally, the user may be told that the signature

already exists in the hardware. In this case, no control messages will be sent to the

hardware.

The SIFT software implements two opcodes. The first (x1), correlates a sig-

nature and an action in SRAM. When a match occurs, the signature that caused the

match is hashed and looked up in SRAM to determine what action to take as well

as what ToS value to use. The format for opcode x1 is shown in Figure A.11. The

second opcode (x2) sets/resets bits in a Bloom filter and is shown in Figure A.12.
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Figure A.11: SIFT opcode 1 is used to correlate signatures with actions.
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Figure A.12: SIFT opcode 2 is used to set/reset bits in a Bloom filter.

A.2.1 Software Bloom Filter

In order to remove signatures once they have been added to a Bloom filter, a count-

ing Bloom filter must be used, as described in [36]. The software maintains an exact

representation of what the Bloom filters in hardware hold with one exception. While

the hardware allocates one bit for each bucket in the bit vector used by the Bloom

filter, the software allocates an int. When a signature is added, the software incre-

ments the location. If the value changes from 0 to 1, a control message has to be

sent to hardware. When a deletion is requested, the software decrements the hashed

locations. If any locations transition to 0, the software sends a control message to

hardware to reset those particular bit positions.

A.2.2 Communication Wrapper

In order to properly format data that is destined to pass through the communication

wrapper, a simulation application was developed that converts a data stream into a
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Figure A.13: The transport ATM cell consists of two words for ATM routing, one
word of communication header, and eleven words of data.

properly formatted sequence of ATM cells that can be interpreted by the communi-

cation wrapper’s inbound interface. The ATM cell format is shown in Figure A.13.

The internal format used by the communication wrapper consists of a 14 word

ATM cell. The first five bytes are the standard ATM cell header with VPI, VCI,

and HEC. The second word is padded out to word-align the rest of the data. The

third word consists of the communication header, which has fields for flags, data

length, and sequence number. There are three flags: acknowledgement, last cell, and

version/hello. The acknowledgment bit (bit 31) is set by the wrapper when all data

from a particular data stream has been received. The last cell bit (bit 30) is set when

the current ATM cell represents the last cell of a data stream. The version/hello bit

(bit 29) is set by software to send a query to the wrapper to see if it is operational.

The wrapper provides the current version number of the application.

The 8-bit length field specifies how many bytes are valid in the subsequent

payload of the cell. Bytes are aligned from left to right, with the left byte being the

most significant. Valid values for the length are 1 byte to 44 bytes.

The 16-bit sequence number field orders data as it arrives. For example, se-

quence number 0 specifies that this is the beginning of the data flow and the bytes

in the payload are the first bytes of this new flow. The wrapper currently supports

sequence numbers in the range 0 to 63, allowing the maximum size of a data flow to

be 2816 bytes.
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The CwTest application takes a .frm file and converts it to a .DAT file that is

readable by the FPX testbench, as shown below. To execute the application, use the

following command:

$ java CwTest <Input Frame File> <Output DAT File>

new frame new cell

20000000 00000250

200001fb C8000000

200008b7 40240000

20021e9f 20000000

20020d09 200001fb

200413d7 200008b7

20040d05 20021e9f

20061b93 20020d09

20061115 200413d7

20040d05

20061b93

20061115

00000000

00000000

A.3 Rule Processor

The software for the rule processor is more complicated than the other two applica-

tions due to the memory management. The command line arguments are the same

as that used by the SIFT controller and are included here again for clarity.

$ java RuleFpga [-s Coefficients File] [-n Minimum String Length]

[-m Maximum String Length] [-v Verbose Level] [-o Simulation

Output File] [-r Rule File]

However, rules take on a slightly different form for this system. A header is specified

and multiple signatures are allowed. The application dynamically assigns a header

ID to any headers and signature IDs to any signatures found in the rule and loads

the rule processor.
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A header rule is constructed from the protocol, source IP address, source port,

destination IP address, destination port, and various options that can appear. This

value is hashed to determine whether it has already been identified. If it has, the old

ID value is used. Otherwise, a new ID is given to it. Once the ID has been determined,

the rule ID to header ID mapping in SRAM is updated in the rule processor.

A similar tactic is utilized for keeping track of signatures. Once all the signa-

tures in the rule have been numbered, the position in SRAM is determined to place

the mappings for signature ID to rule ID. If this is the first occurrence of the sig-

nature, the signature ID is used as a direct index to write SRAM. This is updated

in the hardware and software. If this is not the first occurrence of the signature,

the linked list starting at the direct index of the signature ID in SRAM is followed.

Here, two SRAM updates will be written. The next pointer for the last entry will be

modified, and the new rule ID will be appended to the end of the list. The number of

signatures in the rule is counted, and the value is loaded into the block RAM vector

in hardware. Rule IDs are parsed from the SID field in Snort rules.

The control formats for writing SRAM are shown in Figure A.14. The same

format is used to write both banks of SRAM. However, bank 0 is specified by using

opcode x1, and bank 1 is specified by using opcode x2. Multiple writes to a bank

of SRAM can be given in a control message. In order to read SRAM, the format

of Figure A.15 is used. Again, the same format is used to read from both banks of

SRAM. Bank 0 is read by using opcode x3, and bank 1 is read by using opcode x4.

Only one read can be specified per message. In order to write BRAM coefficients,

the format of Figure A.16 is used. Multiple coefficients can be specified in a given

message. The default VCI for control traffic is x25 (3710). Match traffic defaults to

VCI x2d (4510).
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Communication Wrapper Header

Opcode
Upper
Nibble

Data − Lower 32 bits

Address

Address Upper
Nibble

0

Data − Lower 32 bits

1

Figure A.14: SRAM writes take this form. The address is 19 bits. The upper nibble
of the data is placed in the same word as the address. The remaining 32 bits of data
are placed in the subsequent line. Opcode x1 writes SRAM bank 0, which contains
the linked lists for string ID to rule ID mappings. Opcode x2 writes to SRAM bank
1, which holds the rule ID to header ID mapping.

234567890123456789012345678901
3 2 1

Communication Wrapper Header

Opcode

0

Address

1

Figure A.15: A SRAM read consists of supplying a single address. Only one read can
be performed at a time. Opcode x3 reads from SRAM bank 0, and opcode x4 reads
from bank 1.
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Communication Wrapper Header

ValueAddress
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Address

Value

Value

0
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1

Figure A.16: This is the format of opcode x5. To load a BRAM coefficient, a 16-bit
address is supplied along with the 4-bit value to write.
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Figure A.17: The statistics graphing application in line graph mode.

A.4 Statistics Graphing

The statistics graphing application was developed in order to view the number of

string matches that occur per second. The application receives UDP alert messages

from hardware applications and displays how many occurrences of a specified event

have occurred. The graph has two modes of display. The first is line graph mode,

as shown in Figure A.17. The y-axis auto-scales to reflect changes in the number of

events that have occurred per second. An unlimited number of events could be mon-

itored simultaneously, but beyond ten the graph becomes too cluttered to interpret.

A second mode of display is also available.In this mode, up to ten bar graphs

can be shown that reflect the current event count in relative scale.

To run the application, use the command:

$ java StatApp <Port#>

The port number specified tells the application what port to listen on for alert mes-

sages from a hardware circuit.
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There are four areas of note in the display window. First, the main component

is the line/bar graph component. This is where the graph is displayed. Second,

directly below the display is the event log. When alert messages arrive, a time stamp

along and type of event are printed to the event log. The format for a alert message

event is Current Time – Event ID – Source IP – Destination IP – Ports. Third, the

control area of the application is on the right side. In here can be found the ability to

change the display from line graph to bar graph, the ability to change view mode (line

graph only) from two-minute, two-hour, or two-day mode, and the ability to enter

information for a new event to monitor. Fourth, directly below control settings is the

list of current alerts being tracked. This list shows the color, the label entered (if

any), the alert number, and the number of total alerts so far (found in parenthesis).

An alert can be removed by selecting it and clicking on the remove button. The

graphs that are displayed can be toggled on and off by hitting the toggle button.
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Appendix B

Laboratory Configuration

B.1 Configuration of Snort Lite

Snort Lite operated in active mode between a cluster of computers and the external

Internet, as shown in Figure B.1. A control host from the internal network pro-

grammed the device with rules. The control host also acted as the receiver of alerts,

which were displayed in real-time. The system was placed in the GVS-1500.

Interfaces

Snort Lite was designed to use the line card interface of the RAD. Data traffic was

scanned by the device as it travels in both directions. That is, traffic from the cluster

of computers to the Internet was scanned, and traffic from the Internet to the cluster

of computers was scanned. In order to route the appropriate traffic to the device, the

following NCHARGE commands were issued:

c snortlite.bit # load the Snort Lite bitfile into the RAD

t 0 33 3 0 0 1 # process traffic from the Internet

t 80 33 3 0 0 0 # process traffic from the Intranet

t 0 32 1 0 0 1 # send control traffic to the software controller

The first command loads the Snort Lite bitfile into the RAD to begin process-

ing. The second command routes Internet traffic coming from the system backplane

into the RAD line card interface. The second command routes Intranet traffic coming

from the Gigabit line card interface into the RAD line card interface. Intranet traffic

is distinguished from Internet traffic by the VPI routing number [107]. The flow of

data through the processing stack is shown in Figure B.2.
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Software Controller
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Gigabit Ethernet
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Internet

Figure B.1: To test the system with live traffic, the rule processor was placed between
a host network and the Internet. Traffic was scanned in both directions. Summaries
of the activity are sent to a software controller, which in turn plotted rule matches
per second.

VCI x33

Line Card
Gigabit EthernetGigabit Ethernet

Line Card

Intranet Internet

System Backplane

Control Traffic Data Traffic

Snort Lite FPX NID−PT FPX

VPI x0
VCI x33

VPI x80

Figure B.2: Snort Lite used two FPX cards and two Gigabit Ethernet line cards.
Data traffic from the Internet is shown in green, and data traffic from the Intranet is
shown in blue. Control traffic from Snort Lite is shown in red.
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Figure B.3: The 8-port WUGS-20 was populated with five devices: three FPX cards
and two Gigabit Ethernet line cards. One Gigabit Ethernet line card transmitted
unfiltered data to a Snort PC, and the other line card transmitted control information.

B.2 Configuration of SIFT

The SIFT architecture used the WUGS-20 environment to process data, as shown in

Figure B.3. For this application, a mirror of all network traffic used at Washington

University was available. The mirrored traffic was sent to the TCP processor, where

it was analyzed and flows were reconstructed. From here, it was encoded and sent

through the switch fabric to the port tracker application [96]. Finally, the encoded

traffic is sent to the SIFT circuit where signature matching and header rule processing

are performed.

There were two scripts to configure this system. The first programmed the NID

routes on each of the FPX cards. The commands were sent to a separate NCHARGE

process for each FPX card.

./basic send 6.0 c sift.bit # load the SIFT bitfile

./basic send 2.0 c streamextract.bit # load the TCP Processor

./basic send 4.0 c porttracker.bit # load the Port Tracker bitfile

# Program TCP Processor NID routes

./basic send 2.0 t 0 32 2 0 0 0

./basic send 2.0 t 0 33 0 2 0 0

./basic send 2.0 t 0 23 2 0 0 0

./basic send 2.0 t 0 34 3 0 0 0

./basic send 2.0 t 0 37 0 0 0 0
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# Program Port Tracker NID routes

./basic send 4.0 t 0 32 2 0 0 0

./basic send 4.0 t 0 34 3 0 0 0

# Program SIFT NID routes

./basic send 6.0 t 0 25 3 0 0 0

./basic send 6.0 t 0 34 2 0 1 0

./basic send 6.0 t 0 33 1 0 0 0

./basic send 6.0 t 0 32 1 0 0 0

The second script programmed the unidirectional switch routes from one switch

port to another. Routes specify the source port and VCI and the destination port

and VCI.

unidir(6,50,0,50) # Control Traffic

unidir(4,50,0,50)

unidir(2,55,0,50)

unidir(2,50,0,50)

unidir(6,51,1,51) # Data Traffic

unidir(4,52,6,52) # Encoded Data Traffic

unidir(2,52,4,52)

unidir(1,51,2,50) # SIFT Control Traffic

unidir(1,37,6,37)

unidir(6,37,1,37)

B.3 Configuration of Rule Processor

The rule processing framework leveraged the WUGS-20 for configuration, as shown in

Figure B.4. The four FPX cards used by the system instantiated a TCP Processor,

header processor, payload scanner, and rule processor. The header processor and

payload scanner communicated with the rule processor. The device was configured to

be passive. The Gigabit Ethernet line card was between the devices and a software

controller that added header rules to the header processor, signatures to the payload

scanner, and rule specifications to the rule processor. Alert messages were sent from

the rule processor out via the Gigabit Ethernet line card to a monitor PC.

Again, there were two scripts that needed to be run to configure the system.

The first configured the FPX cards and is shown below.
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Figure B.4: The 8-port WUGS-20 was populated with five devices: four FPX cards
and one Gigabit Ethernet line card.

./basic send 2.0 c streamextract.bit # load the TCP Processor

./basic send 4.0 c headerprocessor.bit # load the Header Processor

./basic send 6.0 c payloadscanner.bit # load the Payload Scanner

./basic send 7.0 c ruleprocessor.bit # load the Rule Processor

# Program TCP Processor NID routes

./basic send 2.0 t 0 32 2 0 0 0

./basic send 2.0 t 0 33 0 2 0 0

./basic send 2.0 t 0 23 2 0 0 0

./basic send 2.0 t 0 34 3 0 0 0

./basic send 2.0 t 0 37 0 0 0 0

# Program Header Processor routes

./basic send 4.0 t 0 21 2 0 0 0 # Control

./basic send 4.0 t 0 34 3 0 0 0 # Packet Data

./basic send 4.0 t 0 2a 1 0 0 0 # Match IDs

# Program Payload Scanner routes

./basic send 6.0 t 0 23 3 0 0 0 # Control

./basic send 6.0 t 0 34 2 0 0 0 # Packet Data

./basic send 6.0 t 0 2a 1 0 0 0 # Match IDs

# Program Rule Processor routes

./basic send 7.0 t 0 25 3 0 0 0 # Control

./basic send 7.0 t 0 2a 2 0 0 0 # Match IDs
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Finally, the switch routes were configured, as shown below.

unidir(6,50,0,50) # Control Traffic

unidir(4,50,0,50)

unidir(2,55,0,50)

unidir(2,50,0,50)

unidir(4,52,6,52) # Encoded Data Traffic

unidir(2,52,4,52)

unidir(0,33,4,33) # Rule Control Traffic

unidir(0,35,6,35)

unidir(0,37,7,37)

unidir(7,37,0,37)
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Appendix C

Source Files

C.1 Common Directory Structure

A common directory structure for all projects was used, as shown in Figure C.1. The

backend directory holds the Xilinx build files, such as edf, edn, bit, and constraint files.

The doc directory holds all the documentation created for the project like figures and

presentations. The sim directory contains all files related to simulating the design,

such as DAT files. The compiled VHDL source is held in a subdirectory called work.

The software directory contains all the control software or data formatting scripts

for the project. The syn directory holds all Synplicity project information. The

synthesis directory is where the edf file is created. Finally, the vhdl directory holds

all the VHDL source files for the project.

work

project root

software syn simbackend

vhdldoc

Figure C.1: Each project has its own group of six folders: backend, doc, sim, software,
syn, and vhdl.
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C.2 Scripts

Makefiles are found in the backend and sim directories to ease the development pro-

cess. From the project root, use the following commands to simulate a design:

$ cd sim

$ make compile > log.txt

$ make sim

The compile command compiles all VHDL source files that are listed in the

makefile, placing the compiled source files into the work directory. The compilation

output is placed in a log file to be examined if needed. (There will generally be a lot

of output.) The sim command opens Modelsim to begin simulating the design.

From the project root, use the following commands to build a design:

$ cd backend

$ make build > log.txt

The build command performs several operations. First, it runs Synplicity to

create the edf file for the project and moves it to the backend directory. Next the

script runs the Xilinx ngdbuild, map, par, trce, and bitgen commands.

C.3 Snort Lite

The root directory for Snort Lite can be found in the FPX CVS tree at:

/project/arl/fpx/mike/cvsroot/snortlite

In order to checkout the project files, use the command

cvs -d /project/arl/fpx/mike/cvsroot/ co snortlite

Provided with the Snort Lite project files are a couple of additional directories.

The first is the graphing directory where the statistics graphing application source

is found. The second is a top directory. The top directory contains source code

for the IP wrappers [23], the SDRAM memory controller [39], the SRAM memory

controller [119], and the design’s top level description. The synthesis of the Snort

Lite application was separated from the top level for use with CSE535 [13] in the Fall

2003.
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C.4 SIFT

The root directory for SIFT can be found in the FPX CVS tree at:

/project/arl/fpx/mike/cvsroot/sift

In order to checkout the project files, use the command

cvs -d /project/arl/fpx/mike/cvsroot/ co sift

One extra folder is provided with the SIFT distribution. The snmp folder

contains source and configuration files for using SNMP and MRTG for statistics

gathering.

C.5 Rule Processor

The root directory for the rule processor can be found in the FPX CVS tree at:

/project/arl/fpx/mike/cvsroot/rule

In order to checkout the project files, use the command

cvs -d /project/arl/fpx/mike/cvsroot/ co rule

C.6 Communication Wrapper

The root directory for the rule processor can be found in the FPX CVS tree at:

/project/arl/fpx/cvsroot/SAIC/commwrapper

In order to checkout the project files, use the command

cvs -d /project/arl/fpx/cvsroot/ co SAIC/commwrapper

The communication wrapper’s backend directory does not contain information

for building the design, as the communication wrapper is not intended to be the top

level. However, the necessary edn files have been included.
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Appendix D

Additional Figures
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Figure D.1: The number of incoming and outgoing UDP packets versus time on Feb
16, 2005.



123

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

T
o

ta
l 
IC

M
P

 P
a

c
k
e

ts
 p

e
r 

S
e

c
o

n
d

Time of day

Traffic Stats for 02/16/2005

Incoming ICMP Packets
Outgoing ICMP Packets

Figure D.2: The number of incoming and outgoing ICMP packets versus time on Feb
16, 2005.
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Figure D.3: The number of incoming and outgoing IP packets (not TCP, UDP, nor
ICMP) versus time on Feb 16, 2005.
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Figure D.4: The number of incoming TCP packets per second versus time on Feb 16,
2005.
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Figure D.5: The number of incoming UDP packets per second versus time on Feb 16,
2005.
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Figure D.6: The number of incoming ICMP packets per second versus time on Feb
16, 2005.
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Figure D.7: The number of incoming IP packets per second versus time on Feb 16,
2005.
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Figure D.8: The number of outgoing TCP packets per second versus time on Feb 16,
2005.
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Figure D.9: The number of outgoing UDP packets per second versus time on Feb 16,
2005.



127

 600

 700

 800

 900

 1000

 1100

 1200

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

T
o
ta

l 
O

u
tg

o
in

g
 I
C

M
P

 P
a

c
k
e

ts
 p

e
r 

S
e

c
o

n
d

Time of day

Traffic Stats for 02/16/2005

Outgoin ICMP Packets

Figure D.10: The number of outgoing ICMP packets per second versus time on Feb
16, 2005.
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Figure D.11: The number of outgoing IP packets per second versus time on Feb 16,
2005.
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Figure D.12: The number of matching headers per second versus time on Feb 16,
2005.
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Figure D.13: The number of matching 4-byte signatures per second versus time on
Feb 16, 2005.
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Figure D.14: The number of matching 6-byte signatures per second versus time on
Feb 16, 2005.
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Figure D.15: The number of matching 8-byte signatures per second versus time on
Feb 16, 2005.
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Figure D.16: The number of matching 10-byte signatures per second versus time on
Feb 16, 2005.
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Figure D.17: The number of matching 12-byte signatures per second versus time on
Feb 16, 2005.
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Figure D.18: The number of alert actions taken per second versus time on Feb 16,
2005.

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

T
o
ta

l 
F

ilt
e
re

d
 P

a
c
k
e

ts
 p

e
r 

S
e
c
o
n
d

Time of day

Traffic Stats for 02/16/2005

Total Filter Actions Taken

Figure D.19: The number of filter actions taken per second versus time on Feb 16,
2005.
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Appendix E

List of Acronyms

AAL5 ATM Adaptation Layer 5

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

ATM Asynchronous Transfer Mode

BF Bloom Filter

CAM Content Addressable Memory

CLB Configurable Logic Block

DDoS Distributed Denial of Service

DFA Deterministic Finite Automata

DoS Denial of Service

FIFO First In First Out

FPGA Field Programmable Gate Array

FPX Field programmable Port eXtender

FSM Finite State Machine

GPP General Purpose Processor

GUI Graphical User Interface

HEC Header Error Correct

ICMP Internet Control Message Protocol

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

IP Internet Protocol

IT Information Technology

LAN Local Area Network
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LUT Look-Up Table

malware Malicious Software

MRTG Multi Router Traffic Grapher

NFA Non-deterministic Finite Automata

NIC Network Interface Card

NID Network Interface Device

NIDS Network Intrusion Detection System

NRE Non-Recurring Expense

OC Optical Carrier

OSI Open Systems Interconnect

OTN Optional Tree Nodes

PBF Partial Bloom Filter

PC Personal Computer

QBF Quad Bloom Filter

QoS Quality of Service

RAD Reprogrammable Application Device

RPF Rule Processing Framework

RTN Rule Tree Nodes

SBT Suffix Based Traversing

SDRAM Synchronous Dynamic Random Access Memory

SID Signature ID

SIFT Snort Intrusion Filter for TCP

SNMP Simple Network Management Protocol

SRAM Synchronous Random Access Memory

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

TOE TCP Offload Engine

UDP User Datagram Protocol

VCI Virtual Circuit Identifier

VHDL VHSIC Hardware Design Language

VHSIC Very High Speed Integrated Circuit

VPI Virtual Path Identifier

WAN Wide Area Network

WUGS Washington University Gigabit Switch

ZBT Zero Bus Turnaround
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