
41

Architectures of Flexible Symmetric Key Crypto Engines—A Survey:
From Hardware Coprocessor to Multi-Crypto-Processor System
on Chip

LILIAN BOSSUET, University of Lyon

MICHAEL GRAND, University of Bordeaux

LUBOS GASPAR and VIKTOR FISCHER, University of Lyon

GUY GOGNIAT, University of South Brittany

Throughput, flexibility, and security form the design trilogy of reconfigurable crypto engines; they must
be carefully considered without reducing the major role of classical design constraints, such as surface,
power consumption, dependability, and cost. Applications such as network security, Virtual Private Networks
(VPN), Digital Rights Management (DRM), and pay per view have drawn attention to these three constraints.
For more than ten years, many studies in the field of cryptographic engineering have focused on the design
of optimized high-throughput hardware cryptographic cores (e.g., symmetric and asymmetric key block
ciphers, stream ciphers, and hash functions). The flexibility of cryptographic systems plays a very important
role in their practical application. Reconfigurable hardware systems can evolve with algorithms, face up
to new types of attacks, and guarantee interoperability between countries and institutions. The flexibility
of reconfigurable crypto processors and crypto coprocessors has reached new levels with the emergence of
dynamically reconfigurable hardware architectures and tools. Last but not least, the security of systems
that handle confidential information needs to be thoroughly evaluated at the design stage in order to meet
security objectives that depend on the importance of the information to be protected and on the cost of
protection. Usually, designers tackle security problems at the same time as other design constraints and
in many cases target only one security objective, for example, a side-channel attack countermeasures, fault
tolerance capability, or the monitoring of the device environment. Only a few authors have addressed all three
design constraints at the same time. In particular, key management security (e.g., secure key generation
and transmission, the use of a hierarchical key structure composed of session keys and master keys) has
frequently been neglected to the benefit of performance and/or flexibility. Nevertheless, a few authors propose
original processor architectures based on multi-crypto-processor structures and reconfigurable cryptographic
arrays. In this article, we review published works on symmetric key crypto engines and present current trends
and design challenges.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Micropro-
cessor Applications; C.1 [Processor Architectures]

General Terms: Security

Additional Key Words and Phrases: Cryptosystems, reconfigurable architecture, crypto processor, crypto
coprocessor, crypto array, crypto MPSoC

This work is supported both by the French National Recherche Agency (ANR), project SecReSoC ANR-09-
SEGI 013 and by the French General Armaments Directorate (DGA). The views expressed in this article are
those of the authors and cannot be regarded as stating and official position of the DGA or the French DoD.
Authors’ addresses: L. Bossuet (corresponding author), Hubert Curien Laboratory, UMR 5516 CNRS, Univer-
sity of Lyon at Saint-Etienne, France; email: lilian.bossuet@univ-st-etienne.fr; M. Grand, IMS Laboratory,
UMR 5218 CNRS, University of Bordeaux; France, L. Gaspard and V. Fischer, Hubert Curien Laboratory,
UMR 5516 CNRS, University of Lyon at Saint-Etienne, France; G. Gogniat, Lab-STICC Laboratory, UMR
3192 CNRS, University of South Britanny at Lorient, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0360-0300/2013/08-ART41 $15.00

DOI: http://dx.doi.org/10.1145/2501654.2501655

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:2 L. Bossuet et al.

ACM Reference Format:

Bossuet, L., Grand, M., Gaspar, L., Fischer, V., and Gogniat, G. 2013. Architectures of flexible symmetric
key crypto engines—A survey: From hardware coprocessor to multi-crypto-processor system on chip. ACM
Comput. Surv. 45, 4, Article 41 (August 2013), 32 pages.
DOI: http://dx.doi.org/10.1145/2501654.2501655

1. INTRODUCTION

In recent decades, the issue of data security has shifted from the military to the com-
mercial arena (e.g., banking, communications, networking, and multimedia systems)
[Anderson et al. 2006]. The need for cryptographic computation has increased expo-
nentially and the need to build powerful cryptographic computing resources has never
been greater. As a consequence, many research teams have designed efficient hardware
crypto engines that implement cryptographic primitives, algorithms, and/or protocols.

In this article, we present some aspects of published works on flexible symmetric
key crypto engines. By flexible crypto engines we mean different kinds of systems such
as customized general-purpose processors, hardware crypto coprocessors (or hardware
crypto accelerators), crypto processors, and crypto arrays (dedicated coarse-grained
reconfigurable architectures composed of an array of small cryptographic processing
elements). Some of the works presented here are not flexible in the strictest sense of the
term, but they could be, if they were implemented on a reconfigurable platform such
as a Field Programmable Gate Array (FPGA). Designers of crypto engines try to meet
the three basic requirements of a security application: throughput-flexibility-security,
while other design constraints such as area, power consumption, dependability, and
cost must also be taken into account, but in some cases to a lesser extent. Historically
speaking, applications such as VPN or network security focused on the first three basic
constraints. Here we analyze existing hardware architectures and their design space
in the context of these three constraints.

The article, is organized as follows: in Section 1, we present the design space of cryp-
tographic computing resources and their exploration. In Section 2, we briefly explore
the crypto processor and the coprocessor jungle. In Section 3, we provide an overview
of all possible solutions. In Section 4, we give an alternative solution in the form of a
multi-crypto core processor and in Section 5, we highlight current crypto engine design
challenges. In Section 6, we present a number of conclusions.

2. THROUGHPUT/FLEXIBILITY/SECURITY TRADEOFF

Nowadays, many options are available for designing crypto resources. All of them
describe the design space of the cryptographic resources. This design space is finite but
not static. Indeed, advanced technologies can extend it over time.

Not very long ago, designers had two obvious but opposite choices: using a Gen-
eral Purpose Processor (GPP) or designing an Application Specific Integrated Circuit
(ASIC). Using a GPP is a very flexible solution, but is generally not appropriate for
high-performance applications, because of the sequential execution of the algorithm
and the limited fixed data path width.

The speed of the system can be increased if the GPP is replaced by a crypto
processor. Its instruction set and Arithmetic Logic Unit (ALU) can be optimized for
the execution of cryptographic algorithms. If necessary, throughput can be further
enhanced at the expense of flexibility using one or more hardware accelerators (or
coprocessors). Many coprocessors have been designed to perform crypto-dedicated
computations/algorithms. Like in digital signal processing, dedicated accelerators
significantly increase the speed of data processing in cryptographic applications, but
their use is limited to the algorithm/architecture used.

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:3

To further enhance performance, designers can fully implement their application in
hardware using ASIC technology. This can achieve the best performance, but may be
expensive for small runs and also requires careful management of hardware resources
(choice of the width of the data path, registers, and memory size, etc.), because its
hardwired structure means it cannot be updated.

Designers of cryptographic applications are under constant pressure due to security
requirements, such as data confidentiality, integrity, and authenticity. Since this article,
deals with hardware architectures for symmetric key cryptography, data security is
considered as the ability of a system to protect information and system resources,
especially data confidentiality. Since security is never cost free, designers have to adjust
the targeted security level to security objectives, which depends on the profile of the
attacker, the physical accessibility of the device to the attacker (remote or physical
attacks), and the value of the information to be protected [Badrignan et al. 2011].
During the design, security threats must be considered at all levels of abstraction:
application and protocol, software, macro-architecture, logic, and physical levels.

Anderson [2001] reported that a protocol weakness enabled an attack on an IBM 4758
crypto processor previously thought to be secure. Along with software attacks and cache
memory attacks, protocol attacks are very dangerous, because the attacker does not
need physical access to the device. Bangerter et al. [2011] showed that small malicious
software can monitor the cache memory during enciphering and the key can be re-
covered remotely in a few minutes. Protocol and software attacks can be countered at
architecture level by preventing processors having direct access to security-critical pa-
rameters such as keys [Gaspar et al. 2010, 2011]. Logic-level countermeasures such as
data hiding and data masking are aimed at protecting the devices against side-channel
attack techniques [Standaert et al. 2003]. Side-channel attacks are very powerful and
consequently very attractive, but to undertake them, the attacker needs physical ac-
cess to the device. In addition to logic-level countermeasures like dual rail logic, some
technological countermeasures like those proposed in Tiri and Verbauwhede [2005] can
also reduce information leakage.

The designer can construct a circuit that includes countermeasures against known
physical attacks (e.g., side-channel and fault injection attacks). But the countermea-
sures implemented may subsequently be jeopardized by new attacks and the system
will consequently need updating. Unfortunately, updates are impossible using ASICs.
In some cases, countermeasures, which should increase the security of the device, can
even be used as a source of leakage and facilitate the attack [Regazzoni et al. 2008].
When dealing with ASICs, security is clearly a major challenge and should be very
carefully addressed in order to anticipate all possible attacks.

Since the early 2000s, data security algorithms have been more and more frequently
implemented in FPGAs, because the granularity of configurable logic devices such as
FPGAs and their architecture featuring small logic elements (able to implement 4- to 8-
input combinatorial logic functions) suits the calculations used in many cryptographic
algorithms [Wollinger et al. 2004; Wollinger and Paar 2003]. FPGA technology has
considerably evolved in the last 12 years. In 2000, high-end FPGAs such as 0.22µm
Xilinx Virtex embedded a 27k-logiccell (with 4-input LUTs) and 16KB of SRAM, which
ran at 200MHz [Xilinx Corp. 2001]. Today, a typical high-performance 28nm FPGA
(e.g., Xilinx Virtex-7) embeds more than 2M logic cell (with 6-input LUT), 50MB of
SRAM, and 2k-DSP which runs at 700MHz, with many high-speed (12.5Gb/s) serial
transceivers [Xilinx Corp. 2012]. Such capabilities make FPGAs significant targets for
data security applications.

Furthermore, when using SRAM- or FLASH-based FPGA technology (around 90%
of the market), designers can take advantage of their reconfiguration capabilities and
let the system evolve over time by means of hardware updates made in situ and even

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:4 L. Bossuet et al.

Fig. 1. 2D (performance/flexibility) cryptographic computing design space.

remotely [Davies 2003]: an obsolete algorithm can be replaced by the latest version, a
new architecture embedding countermeasures against attacks can replace an old one
if it is vulnerable to some types of attacks, and so on.

While the use of GPP, dedicated crypto processors, crypto coprocessors, and hard-
wired cryptographic blocks in FPGAs is still possible, reconfigurable technologies pro-
vided many new features for the design of cryptographic hardware. Softcore GPPs
usually have a flexible instruction set and modifiable ALU architecture. The design of
crypto processors can thus be considerably simplified and ensure increased flexibility,
meaning that both hardware and software can be modified. A hardware accelerator
implemented in FPGA is no longer considered as a rigid component, since it can be
reconfigured whenever necessary (its hardware architecture can be modified). The
designer can take advantage of the flexibility of this solution by using an appropri-
ate hardware-software codesign tool when defining the boundary between hardwired
and soft functions. Very recent work on high-performance (high-throughput) systems
demonstrated the interest of continuing development in this area, while at the same
time extending it towards multi-crypto-processor architectures [Grand et al. 2011]. The
way is open to new concepts such as crypto array and MCryptoPSoC (Multi-Crypto-
Processor System-on-a-Chip).

Figure 1 is a theoretical view of a 2D cryptographic computing design space. The first
dimension is “performance”. This general term describes the computation performance
and the throughput (given, for example, in gigabits per second of encrypted data). The
second dimension is “flexibility”. This is the ability of a cryptographic module to move
from one algorithm/computation to another and takes the application dependency of
the architecture into account.

GPPs and GPPs with a crypto coprocessor are the most flexible solutions because
they are application independent. With such systems, it is easy to switch between
applications merely by modifying the program memory content. On the other hand,
full hardware implementations are more time efficient because they allow parallel,
pipelined, unrolled, and optimized algorithm implementation. The relative position
of each design solution in the figure shows that high flexibility and high throughput
are contradictory requirements. Heterogeneous architectures such as crypto processors
and reconfigurable crypto processors are located in the center of Figure 1. Nevertheless,

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:5

new reconfigurable architectures based on multi-crypto processors can reach a new
trade-off area to ensure a higher level of flexibility along with higher throughput.

One point is missing in Figure 1: the third dimension, security. Indeed, studies
that compare the security levels of available architectures are rare in the literature
Badrignan et al. [2011]. Yet security is increasingly being taken into account. For exam-
ple, in Section 2.3 we provide some details about a secure crypto-processor architecture,
HCrypt, to better protect session keys against illegal access.

In the following section, we illustrate the design space of cryptographic resources
using some concrete examples.

3. FINDING THE WAY THROUGH THE CRYPTO-PROCESSOR AND COPROCESSOR JUNGLE

As the use of the word “jungle” in the heading suggests, it is difficult to get a clear
overview because of the profusion of publications on cryptographic computing. This is
even truer since the terminology is constantly changing and the terms “custom pro-
cessor”, “crypto processor”, “crypto coprocessor”, and “crypto array” were never clearly
defined. Figure 2 shows four possible ways of overcoming this problem: customized GPP,
crypto coprocessors, crypto processors, and crypto arrays. The following sections give
the characteristics of each option and refer to works that illustrate the architectures
concerned. The reports cited were published between 1999 and 2011.

At the end of each of the following sections describing different types of crypto
engines, we discuss their future outlook in terms of their use, advantages, and disad-
vantages as objectively as possible.

3.1. Customized GPP

Figure 2(a) is a schematic diagram of a general-purpose processor that is customized
for efficient implementation of cryptographic algorithms. It embeds a functional unit
able to perform a number of cryptography-specific operations, such as Data Encryp-
tion Standard (DES) logical computations or Advanced Encryption Standard (AES)
substitution functions (S-Box). In this case, the cryptographic calculations are seen as
application-specific instructions that can be called on during program execution. This
solution increases throughput, but not security. Confidential keys are stored in the data
memory and are handled just like ordinary application data. Software attacks cannot
be avoided.

One of the main difficulties when designing a domain-specific processor is selecting
an appropriate specific instruction set. Asymmetric key algorithms and symmetric
key algorithms do not have the same requirements. Asymmetric key ciphers use
multi-precision operations whereas symmetric key ciphers use bit-level operations.
Moreover, the specific instruction area overhead is sometimes too large for realistic
implementation. To design a customized processor for efficient crypto-specific process-
ing, Ravi et al. [2002] proposed a usual codesign flow applied to a security processor.
The authors used two models: a performance macromodel based on functions that
express the number of cycles incurred by a software library, and a hardware model.
They proved that a customized processor designed using the method they proposed
is significantly more efficient than full software implementation on a GPP. This was
demonstrated on a customized 32-bit Xtensa processor from Tensilica. Since the
first proposal to use HW-SW codesign methodology on a customized processor aimed
at cryptographic applications, other authors have proposed similar approaches but
they target superscalar architectures [Sakiyama et al. 2007] or embedded systems
[Schaumont and Verbauwhede 2003].

Several authors extended the processor’s instruction set to enable efficient AES
computation on a GPP [Hämäläinen et al. 2007]. The first works focused on S-Box
implementation using dedicated instructions [Burke et al. 2000; Tillich et al. 2005] and

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:6 L. Bossuet et al.

I/O

{K}i

Main

memory

ALU
Crypto

ALU

crypto ins.

(a) customized GPP

HWcrypto core 1

HWcrypto core 2

I/O

Main

CPU

{K}i

Main

memory

HWconf.

(b) (reconfigurable) hardware crypto coprocessor

HWcrypto core 3

(Reconfigurable area)

I/O

Main

CPU

Main

memory

Crypto proc.

{K}i

in
st rCrypto

ALU

(c) crypto processor

I/O

Main

CPU

{K}i

Main

memory

Coarse grained reconfigurable

architecture

HWconf.

Crypto array

(d) crypto array

Main

CPU

Fig. 2. Cryptographic computing architecture design space.

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:7

enhancing the performance of S-Box computation. Next, Tillich et al. designed a GPP-
based system using several custom instructions, thereby enhancing the performance
of the whole AES implementation [Tillich and Grobschad 2006]. These instructions
were developed in such a way that they were compatible with common processors
based on 32-bit RISC architecture (e.g., SPARC, MIPS, and ARM processors). Instruc-
tion complexity ranged from simple AES S-Box [Tillich and Grobschad 2005] and
AES MixColumns implementation to composite AES S-Box/MixColumns/ShiftRows
execution [Tillich and Grobschad 2006; Tillich and Herbst 2008]. Even though this
approach improved the performance of a GPP-based system, it was mostly dedicated
to only one algorithm (e.g., AES).

Another design, the CryptoBlaze processor from Xilinx [Xilinx Corp. 2003] is an
interesting example of what is available commercially. It is based on the use of a
PicoBlaze softcore processor, which is a compact, cost-effective 8-bit RISC microcon-
troller core optimized for Xilinx FPGA families [Xilinx Corp. 2010]. The CryptoBlaze
processor system represents a case study of expanding the PicoBlaze processor with
additional functions/opcodes aimed at cryptographic applications. In the first version,
the Galois field arithmetic and S-Boxes were implemented as specific instructions. The
CryptoBlaze architecture is an interesting combination of a reconfigurable fabric and a
customized microcontroller for cryptographic applications. Another commercial exam-
ple was presented recently by Intel [Gueron 2010]. The instruction set of some recent
company processors based on the 32nm Intel micro-architecture is extended by six
instructions dedicated to AES implementation. These instructions drive a dedicated
AES ALU aimed at data enciphering, deciphering, and key expansion. To perform
AES modes, such as ECB, CBC, or CTR, some libraries that use this specific set of
instructions are available. This shows that cryptography has become a key element of
computer architecture, as was the case of image processing in video processors several
years ago.

Discussion: ALUs dedicated to cryptographic calculations are especially suitable
for applications with stringent area constraints (limited area budget requirements),
and in particular in embedded applications. Dedicated ALUs allow the designer to
benefit from processor flexibility and at the same time to accelerate cryptographic
computations. The hardware overhead is low and the design can be relatively simple
when the host processor design is based on an open-source soft-core processor. However,
in all previously presented configurations, the ALU architecture is application specific
and its reusability is very limited, because its structure is closely linked to the target
cryptographic tasks and also because its data interface depends on the host processor. In
addition, new instructions sometimes have to be added to the processor instruction set.
Extending the instruction set remains a major problem for optimized use of hardware
resources since the compiler has to be rebuilt to take the new instructions into account.
Calculations are faster since data are transferred via the processor’s internal data path
(they do not need to be sent to the external memory or peripheral bus), but the processor
architecture remains sequential, and calculations cannot be further accelerated by
parallelizing tasks. This reduces the use of customized processors for high-throughput
applications. It should also be noted that these solutions are not compatible with a fine
runtime reconfiguration of the cryptographic ALU because the corresponding logic is
in the processor’s internal data path.

3.2. Crypto Coprocessors

Figure 2(b) shows a multi-algorithm custom hardware implementation. Such a hard-
ware implementation always provides the highest level of efficiency. However, in prac-
tice, the need for efficiency in data security applications often needs to be considered
together with and as an integral part of a trade-off against the need for flexibility.

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:8 L. Bossuet et al.

With this strategy in mind, it is possible to implement flexible hardware accelerators
when using (dynamic) reconfiguration capabilities of selected FPGAs. In this way, both
efficiency and flexibility can be obtained. However, none of the coprocessors presented
here is reconfigurable. Like in customized GPP systems, secret keys and hardware
configuration are stored in the data memory.

The terms crypto processor and crypto coprocessor are occasionally reported in the
literature to be used in different contexts, which sometimes causes confusion. To avoid
any such misunderstandings, here we distinguish the two processor systems according
to their programmability. In this sense, the crypto processor is a programmable device
or programmable hardware module, with an instruction set dedicated to the efficient
implementation of cryptographic function(s). It thus mostly consists of one or more
ALUs specially designed for cryptographic computations. On the other hand, the crypto
coprocessor (coprocessor for short) is a logic device or hardware module dedicated to
the execution of cryptographic function(s). It contains one or more processing elements.
The crypto coprocessor cannot be programmed, but can be controlled, configured, or
parameterized using the host processor. It is used to accelerate cryptographic compu-
tations. To illustrate this point, two early publications targeting the DES algorithm
provide typical examples of crypto processors and coprocessors: a DES crypto processor,
which is programmed using an instruction set, was proposed by Verbauwhede et al.
[1991] whereas a DES coprocessor, which is a scalable hardware implementation on an
FPGA, was proposed by Kaps and Paar [1998].

An example of a single-core AES coprocessor is described in Hodjat and Verbauwhede
[2004a, 2004b, 2005]. These authors examined the addition of the AES coprocessor to
a SPARC V8 embedded processor (LEON), and showed that the benefits of a hardware
accelerator can be significantly reduced by a communication overhead (i.e., the transfer
of data to and from the coprocessor).

Two examples of multicore AES coprocessors driven by a Molen processor [Kuzmanov
et al. 2004] are described in Chaves et al. [2006] and Pericàs et al. [2008]. The first
structure, proposed by Chaves et al., is composed of a GPP and several reconfigurable
CrCU (Cryptographic Computation Units) interconnected by a dedicated network
[Chaves et al. 2006]. Each CrCU embeds a full AES core, a key register, and a control
unit. Figure 3 shows the overall architecture of the multicore system. The AES CrCU
and the Molen processor communicate with each other using a standard address and
data bus. The AES CrCU is also connected with the main memory to exchange data
(to/from the cipher) and cipher key (to the internal key register). According to the
authors, the CrCU could be reconfigurable. The second structure proposed by Chaves
et al. is a dual AES core hardware implementation for AES MultiStream (AES-MS)
ciphers [Pericàs et al. 2008]. It consists of two independent AES cores controlled by a
control unit, which activates the AES cores when required and drives the multiplexors
that control access to the data bus.

An older work proposes a modular coprocessor called CryptoBooster dedicated to
cryptography and optimized for reconfigurable logic devices such as FPGAs [Mosanya
et al. 1999]. It is a reconfigurable coprocessor with a host system and is connected to
a dedicated session memory designed to store session information (e.g., the selected
block cipher algorithm, the key(s), the initial vector(s) for block chaining, and other
configuration information).

Although most studies in this field focus on performance, some original works were
dedicated to optimizing the entire system and its security. For example, the SAFES
(Security Architecture For Embedded Systems) architecture by Gogniat et al. [2008]
depicted in Figure 4 resembles the multicore coprocessor architecture in Figure 2(b).
In addition to its similar structure, this system uses monitors that detect abnormal
behavior. Hardware defence mechanisms can be implemented to counter attacks. The

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:9

Fig. 3. Architecture of a crypto system with the Molen processor and dedicated hardware accelerator AES
CrCU [Chaves et al. 2006].

I/O

SAFES (secure area)

FPGA

se
cu
ri
ty

p
ri
m
it
iv
e

Processor Memory

Primitive

monitor

Bus

monitor

Power

monitor

Clock

monitor

Channel

monitor

Clock

Battery

Security

executive

processor

Fig. 4. SAFES reconfigurable secure architecture [Gogniat et al. 2008].

security mechanisms can be updated (dynamically) if necessary, which ensures the
durability of the protection system.

As can be seen, several monitors can be used to monitor processes that indicate
or trigger an attack on the system. Parameters such as the number of monitors and
the complexity of individual monitors are important, because they directly affect the
additional cost of security features as well as the level of security provided. For se-
curity reasons, the normal activity of the modules under supervision is characterized
and continuously compared with the current activity of the system. The monitors are

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:10 L. Bossuet et al.

autonomous so they can contribute to the fault tolerance of the system; if one monitor
is attacked, the others must be able to continue to function in order to guarantee the
security of the system. The monitors are distributed at different locations in the sys-
tem to detect security-critical events (e.g., those concerning the battery, bus, security
primitives, and communication channels).

The SAFES system can react at different levels depending on the type of attack
underway. Instant reactions are triggered directly by a corresponding monitor with-
out consulting the other security units. Global reactions are executed when an attack
involves a significant modification to the system. In this case, the monitors exchange in-
formation in order to define a new configuration. Such a scenario allows more complex
attacks to be detected, but makes the reaction time longer. The reconfigurable part
(FPGA) within the system allows hardware implementation of security primitives.
This leads to an adaptive hardware accelerator operating a security-related algorithm
(cipher, hashes, key management). In contrast with the aforementioned crypto copro-
cessors, the list of supported algorithms is not fixed. The user configures the system
with the security primitives required. These can be updated by reconfiguring them
during the lifetime of the system. Thus, the SAFES architecture provides the perfor-
mance (hardware implementation) and flexibility (reconfigurable system) needed to
secure embedded systems.

Another example of a multicore AES coprocessor close to the architecture in
Figure 2(b), is the AESTHETIC system [Wang et al. 2010]. Based on the single AES-
THETIC coprocessor [Su et al. 2005] the authors propose a high-performance multicore
architecture, in which independent data paths for each AESTHETIC coprocessor allow
multigigabit security processing with no loss of I/O bandwidth.

Remark # 1. Some interesting works have considered the use of a GPU as a crypto
processor combined with a CPU [Cook et al. 2005; Manavski 2007; Deguang et al.
2010]. Such approaches are motivated by the widespread adoption of GPUs in many
embedded systems. Using a GPU for symmetric cryptography enables high throughput
of up to 8.28 Gbit/s [Manavski 2007]. The performance is directly related to the data
size (i.e., the number of blocks) to be encrypted and exploits the parallelism available
in GPUs. In all published works, the key expansion step is performed in the CPU and
the keys are then loaded into the GPU before encryption. Such a solution has certain
limitations concerning the ciphering modes as only ECB and CTR can benefit from
computing blocks in parallel. The exchange of keys between CPU and GPU may be a
concern for some applications and should be analyzed very carefully. Power issues were
not addressed in Cook et al. [2005], Manavski [2007], and Deguang et al. [2010], but
this point should also be analyzed to evaluate its impact on the global power budget.

Remark # 2. Several secure processors with embedded hardware cryptographic prim-
itives are described in the literature. The need to protect data for reasons of confiden-
tiality, integrity, and authenticity is obvious. However, the program code also needs to
be protected for the same reasons to limit possible software attacks (e.g., spoofing at-
tack, splicing attack, replay attack). At present, proposed solutions rely on an inviolable
hardware security zone called a trust zone, trust area, or secure area, which usually
contains the processor, cache memory, data and program memories, and the mem-
ory access controller. This zone includes the hardware protection systems to protect
the trust zone against known hardware attacks at physical, logical, and architectural
levels. Data leaving and entering the trust zone are encrypted and authenticated to
ensure protection at system level. The trust zone contains hardware primitives to en-
able ciphering and authentication of the data (e.g., instructions, addresses, and data)
exchanged between the processor and its memories. Unlike the architecture depicted
in Figure 2(b), in the case of a trust zone, the secret keys are stored inside the processor
and not in the external memory. In most cases, a Physical Unclonable Function (PUF)

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:11

or a True Random Number Generator (TRNG) is used to generate a master key that is
often used with a hierarchical key tree. XOM [Lie et al. 2000], AEGIS [Suh et al. 2003],
TSM [Lee et al. 2005], PE-ICE [Elbaz et al. 2006], CryptoPage [Duc and Keyrell 2006,
2008], and OTP-CRC [Vaslin et al. 2007] are representative examples of such an ap-
proach. It is important to note that, even if the codes and the data are protected in the
external memory, in some cases these solutions can still be bypassed. Indeed attacks
exploiting micro-architectural features like distribution of cache hits and misses can
be very powerful and must be carefully analyzed [Bernstein 2005; Osvik et al. 2006;
Rebeiro et al. 2009; Rebeiro and Mukhopadhyay 2011]. Another threat is related to
signature addresses when a specific application is executed. In Zhuang et al. [2004],
bus protection is used to remove all data leakage between the processor and the ex-
ternal memory when spying on the address bus. The approach suggested by Zhuang
et al. [2004] is based on analysis of the control-flow graph, which provides a unique
signature for the application. Thus in order to hide such information, code address
transformation is performed using permutation techniques. One last point that needs
to be stressed when dealing with external memory is data persistence, which must also
be considered with great care [Halderman et al. 2009].

Discussion. The hardware crypto coprocessor can speed up cryptographic computa-
tion by using the inherent parallelism of the algorithm. Many iterative cryptographic
algorithms can be unrolled. For example, most symmetric ciphers use the same el-
ementary logic/arithmetic computations in their subsequent rounds. The AES block
cipher uses 10 to 14 rounds, each composed of four functions: SubBytes, ShiftRows,
MixColumns, and AddRoundKey. Hardware implementation can thus take advantage
of the inherent parallelism of the unrolled cipher. As a consequence, hardware crypto
coprocessors are more suitable for expensive high-throughput applications (network
security, VPN) than for small low-cost systems. Nevertheless, the interconnection be-
tween the processor and coprocessor can seriously limit the performance of the entire
system. If the processor has a direct link to the coprocessor, it can access data very
fast. Unfortunately, these links are often limited in size, because the width of the data
interfaces between the processor and coprocessor have to match. The use of a commu-
nication bus is of course possible, but the time overhead can be prohibitive. Everything
depends on the frequency of exchanges between the processor and the coprocessor.
For example, the symmetric key cryptography cipher modes (e.g., CBC, EBC, CTR,
CBC-MAC, etc.) can be implemented in the hardware coprocessor whenever possible.
We may add that the implementation of a hardware coprocessor is consistent with the
notion of reconfiguration. Indeed, the runtime reconfiguration of the coprocessor can
take place as soon as the processor releases the coprocessor from computation. This can
increase the flexibility of the whole system and limit the size of hardware resources by
sharing many algorithms. In this case, special attention should be paid to configuration
management.

3.3. Crypto Processor

Figure 2(c) shows a GPP coupled with a dedicated cryptographic processor or crypto
processor. According to the definition at the beginning of the previous section, the
crypto processor embeds one or many ALUs dedicated to cryptographic computations.
As a consequence, the crypto processor cannot serve as a stand-alone general-purpose
processor. It is always necessary to extend the system by adding a GPP to perform
standard computations or to embed an operating system. Such architecture can be
smaller than the GPP and crypto coprocessor and it may be more flexible if the ALUs
are properly reconfigured. Crypto processors can be used for many applications, for
example, for red/black radio systems [Martin et al. 2008] or as a crypto subsystem
[Grand et al. 2009].

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:12 L. Bossuet et al.

R
eq
u
e st

sc h
ed
u
ler

requests results

In Q Out Q

Keystore CM

Proc

CM

Proc

CM

Proc

FU

Data

mem

FU

FU

FU

Reg.

file

InQ/OutQ

interface

Keystore

interface

M

E

M

B

T

B

CryptoManiac

processing

element

Fig. 5. The CryptoManiac system and its processing element architecture [Wu et al. 2001; Weaver et al.
2001].

Several papers describe designs for Very Long Instruction World (VLIW) crypto
processors aimed at symmetric cipher implementation. Such algorithms can use several
key sizes (e.g., 128, 192, 256 bits), but usually use smaller data blocks for computation
(e.g., 8, 16, 32 bits). Based on this characteristic, it is efficient to design superscalar
architecture with multi-operand instructions.

The CryptoManiac project is an example of a VLIW crypto processor able to execute
up to four 32-bit instructions per clock cycle [Wu et al. 2001; Weaver et al. 2001].
This multicore crypto processor uses many CryptoManiac processing elements (CM).
Each is designed with four dedicated Functional Units (FU), one Branch Target Buffer
(BTB) used to predict branch targets and register the file and memory. Figure 5
shows the CryptoManiac system architecture and its processing element architecture.
Additionally, short-latency instructions can be combined to be executed in a single
cycle. To support this feature, instructions have up to three source operands. The
CryptoManiac system consists of four functional units that access a shared memory.
Another four 32-bit instruction VLIW crypto processors are available in the CCProc
Project [Theodoropoulos et al. 2008, 2009]. This recent work targets larger algorithmic
space than CryptoManiac.

The Cryptonite project is another example of VLIW architecture with two 64-bit data
paths [Buchty et al. 2004]. It supports AES round functions across a set of special
instructions for performing byte permutation, rotation, and xor operations. The main
part of the AES algorithm is executed with the help of parallel LUTs (Look-Up Tables)
stored in dedicated memories. The Cryptonite architecture has two ALUs and separate
memory units for each ALU. As a consequence, the address generation unit and the
data unit are duplicated.

Many common security devices are based on a general-purpose process communi-
cation protocol and on a dedicated hardware coprocessor to speed up cryptographic
algorithms. However, security is immediately compromised if secret keys are stored in
data registers or handled by a processor [Bangerter et al. 2011]. According to Gaspar
et al. [2010], a secure cryptographic processor should fulfill the following requirements.

(1) Keys have to be generated inside the crypto processor and postprocessed crypto-
graphically.

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:13

Fig. 6. Architecture of HCrypt crypto processor [Gaspar et al. 2010].

(2) Keys have to be stored in a dedicated memory which is physically separated from
the data memory.

(3) Keys must be transported within the processor using dedicated (key) buses, which
have to be physically separated from the data buses.

(4) The processor can read from/write to the key memory via the cipher/decipher, so
that the keys can never leave system in clear.

The structure of the HCrypt crypto processor that fulfills these requirements is
illustrated in Figure 6. The proposed solution is secure against software attacks thanks
to its unique architecture. The data-path architecture of the processor can be divided
into two zones: a protected zone (key transport and storage) and an unprotected zone
(data storage and processing). These zones are physically separate from each other.
This complete separation of two security zones ensures that keys stored in key registers
(protected zone) can never pass unencrypted to data registers (unprotected zone) and
hence leave the system in clear. The processor supports symmetric cryptography key
exchange mechanisms based on two-level key hierarchy: session keys and master keys.
Session keys are generated by the TRNG (located within the protected zone inside the
processor); they are postprocessed by the decipher unit (using a master key) and safely
stored in session key registers. During key exchange, a session key is encrypted with
a master key and subsequently stored in a data register. In its encrypted form, the
session key can be safely exchanged with other communication counterparts. The only
condition that has to be met is that all the counterparts have to own the same master

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:14 L. Bossuet et al.

key. It is important to underline the fact that no such physical path exists through
which session keys could be passed to data registers in unencrypted form; session keys
have to pass through the cipher. Master keys are introduced into the processor by
an isolated external bus. The processor is capable of carrying out basic cipher modes
(EBC, CFB, OFB, and CTR) and communication is packet oriented. All the operations
required for implementation of cryptographic modes are performed by an ALU, except
for enciphering and deciphering, which are performed by the cipher and decipher units.
All the components and processor itself have a 128-bit data path.

The level of key management security introduced by this concept exceeds the require-
ments of common consumer electronic applications and can also be used in aviation
or military applications. This novel concept of key management is very promising and
could be the beginning of a new era in the design of cryptographic processors.

Remark. The aim of many commercial crypto processors including NEC MP211
[Arora et al. 2006] is the construction of mobile embedded systems or TPMs (Trusted
Platform Modules) for trusted computing [TCPA 2003]. These systems are based on
architectures that are usually simpler than those described before [Anderson et al.
2006]. However, a true reconfigurable crypto processor designed for these applications
is not yet available. Some studies show that it could be advantageous to merge the
concept of the TPM with that of FPGAs [Glas et al. 2008; Eisenbarth et al. 2007a,
2007b]. However, to our knowledge, no commercial version exists at present.

Discussion. Crypto processors are well-suited to be included in a Multi-Processor-
System-on-a-Chip (MP-SoC). In SoC, they are considered as dedicated processors, just
as DSPs are. They are autonomous even if they cannot execute anything other than
cryptographic computations. They represent efficient solutions in terms of a trade-off
between flexibility and performance even though their performance is limited by their
size and architecture, which is optimized for the sequential execution of operations.
Multicore systems are pushing the limits of performance and provide solutions for
applications that need heterogeneous cryptographic computations. It is possible to
reconfigure them if they are implemented on reconfigurable hardware (i.e., FPGA)
[Gaspar et al. 2011].

3.4. Crypto Array

Figure 2(d) shows a GPP coupled with a cryptographic fabric. This is a coarse-grained
reconfigurable architecture designed for cryptographic computing. Like crypto proces-
sors, a crypto array is a crypto accelerator that has to be coupled to a GPP.

Since the early 2000s, reconfigurable architectures have facilitated the appearance
of new paradigms in computer architectures. Many authors have shown that such
architectures are efficient for intensive computation applications [Tredennick and
Shimamoto 2003], for embedded systems [Garcia et al. 2006], and for data security
[Mucci et al. 2007]. In the mid-2000s, it was shown that an application-specific recon-
figurable architecture is more efficient than a universal reconfigurable architecture
for classical digital signal processing and for symmetric cipher use [Bossuet et al.
2005]. The following three examples illustrate this type of approach to implementing
dedicated reconfigurable architecture for the AES cipher.

The first example, the Celator architecture (see Figure 7(b)), is based on a systolic
array composed of 4×4 8-bit PEs (Processing Elements). The architecture processes
operate on the AES state matrix (128-bit data) [Fronte et al. 2008]. Its structure is
optimized for fast parallel computation of the AES algorithm. Nevertheless, it can
perform other symmetric cipher algorithms such as DES and hash algorithms such
as SHA-256. The routing of the Celator PE array is configurable and it can easily
perform functions such as AES ShiftRows. Dedicated control logic can configure ei-
ther the entire architecture or each PE individually. Performance comparisons with

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:15

Fig. 7. Examples of crypto array architectures.

GPP and customized GPP are in favor of Celator, however, its designers omitted the
implementation of the key expansion system, which is very area and time consuming.

Similar to Celator but with larger processing (reconfigurable) elements, COBRA is
a specialized reconfigurable architecture optimized for the implementation of block ci-
phers such as DES and AES [Elbirt and Paar 2003]. Its design is based on the analysis
of the common functional requirements of a wide range of block ciphers (more than
40 algorithms were analyzed). It is designed with 4×4 32-bit RCEs (Reconfigurable
Cryptographic Elements) (see Figure 7(a)). RCEs can execute the general operations
required by the block ciphers (i.e., boolean, modular addition/subtraction, shift, rota-
tion, modular multiplication, GF multiplication, modular inversion, and look-up table

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:16 L. Bossuet et al.

substitution). Moreover, a dedicated data path that can be configured as a substitu-
tion/permutation network is designed similar to the algorithm execution.

Another crypto fabric, called CryptArray, was proposed for a systolic architecture that
uses shared memories to exchange data between PEs (Processing Elements) [Lomonaco
2004]. Four by four, the PEs are connected to one SMB (Shared Memory Block). If we
consider each PE as a white tile and each SMB as a dark-gray tile, the CryptArray
looks like a chessboard (see Figure 7(c)). Like Celator, CryptArray is a study of concept.
Both crypto arrays are designed only for the enciphering process and do not account
for other cipher parts such as the key scheduler.

Remark 1. Wollinger et al. showed the advantage of using FPGAs for cryptographic
applications [Wollinger et al. 2004; Wollinger and Paar 2003]. For a decade, a huge num-
ber of papers described FPGA implementations of cryptographic algorithms. Countless
conference sessions focused on such implementations. Nevertheless, all the previously
presented crypto arrays are based on coarse-grained reconfigurable architectures; up to
now, none considered fine-grained architectures. Field-Programmable-Crypto-Array or
Crypto-FPGAs have not yet been developed. Elbirt and Paar [2003] gave an explanation
for such a design trend: “because block ciphers are dataflow oriented, a reconfigurable
element with coarse granularity offers the best solution for achieving maximum system
performance when implementing operations that do not map well to more traditional
fine-grained reconfigurable architectures”. As was the case in the evolution of FPGAs
towards signal processing applications because of the revolutionary growth of image
processing (HDTV) and telecommunication markets, the evolution of FPGAs towards
cryptographic applications is guided by the strong demand. Some trends are already
apparent. Recently, Altera proposed a special version of its Cyclone III FPGA family
(Cyclone III LS family [Altera 2011]) that is dedicated to military applications. The fam-
ily includes several security features, such as antitampering, 256-bit AES bitstream
enciphering, CRC, etc. The family and related design tools include features required
for red/black security zone separation.

Remark 2. In the same way as it is necessary to secure the processor program code
(see Remark 2 in Section 3.2), the configuration data (bitstream) of a reconfigurable
device also needs to be protected for reasons of confidentiality, integrity, and authen-
ticity in order to limit possible software attacks (e.g., spoofing attacks, splicing attacks,
replay attacks). Some academic works have proposed adding (dynamically or statically)
security features to protect the bitstream in a configurable device. Regarding SRAM
and FLASH FPGA targets, the following references are of interest [Bossuet et al. 2007;
Castillo et al. 2006; Güneysu et al. 2007; Hori et al. 2008; Nakanishi 2008; Manipatlolla
and Huss 2011]. Most modern FPGAs embed bitstream security features. Neverthe-
less, the security of purchased FPGAs could be tampered with through existing attacks
[Morabi et al. 2011, 2012].

Discussion. Figure 7 shows that the architectures of the three works mentioned be-
fore are very similar. Indeed, the three proposals are based on characteristics such
as data-path width and the data dependence of symmetric block ciphers. For exam-
ple, 128-bit AES performs computations on a byte level (for SubBytes, ShiftRows, and
AddRoundKey functions) and on a 32-bit word level (for MixColumns function). As a
consequence, a 4×4 byte matrix is currently used to directly implement AES computa-
tions. Reconfigurable hardware can be designed to compute data by using a 4×4 byte
matrix array. In other words, a crypto array can be very close to the algorithmic and
functional needs of the cipher. Nevertheless, a symmetric cipher is composed of two
parts, the cipher itself and the key expansion. This last point is not taken into account
in the three architectures depicted in Figure 7. Moreover, the use of such architecture
requires a dedicated tool for the design of a coarse-grained architecture and a specific
method to manage the reconfiguration. The main difference between the three works

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:17

Fig. 8. Architectures of a four- and eight-core crypto processor.

presented is the routing topology used to exchange data between the processing el-
ement and the memory element (the memory bank). It is hard to estimate the best
topology and architecture. Although some tools enable space exploration and evalu-
ation, they usually do not give a sufficiently precise estimation of resource use and
it is consequently very hard to compare different architectures fairly and accurately
[Bossuet et al. 2007].

4. MULTICORE CRYPTO PROCESSOR

We have seen that crypto array architectures are efficient because they exploit the par-
allelism of the AES algorithm. In return, they are closely linked to this algorithm. The
use of a crypto processor is more flexible because it is algorithm independent. Never-
theless, because of the sequential architecture of such crypto engines, their calculation
performance is limited.

It is thus worthwhile considering the parallel implementation of several crypto-
graphic computations (for one or more algorithms) by using multiple crypto processors
in parallel. Such a solution resembles a crypto array structure with large processing
elements. Each element is an elementary crypto processor (crypto core). This solution
is illustrated by two architectures in Figure 8. It shows multicore crypto processors
featuring four and eight crypto cores. Depending on the number of cores, the cores can
communicate via a cross bar or via a NoC (Network on a Chip) in the case of a large
number of crypto cores.

One example of a multicore crypto processor, the MCCP [Grand et al. 2011], focuses
on designing a crypto processor, which has to provide the cryptographic services (e.g.,
secure SCA [Martin et al. 2008]) required by a secure SDR (Software-Defined Radio)
base station. For this purpose, the crypto processor is embedded in a much larger
component [Grand et al. 2009], which is placed at the boundary between the red part of

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:18 L. Bossuet et al.

Fig. 9. Four-core MCCP architecture [Grand et al. 2011].

the radio (that processes plaintext data) and the black part of the radio (that processes
encrypted data and sends/receives data to/from the RF component).

The MCCP [Grand et al. 2011] was designed considering that an SDR base station
has to process several channels at the same time. The architecture proposed embeds
several cryptographic cores to enable flexible and efficient enciphering/deciphering of
the channel. MCCP architecture is scalable; up to eight cryptographic cores can be
implemented. A four-core implementation of the MCCP is illustrated in Figure 9. In
addition, the proposed design aims to make the FPGA platform as flexible as software
components embedded in an SDR. Finally, for security reasons, the MCCP does not
generate session keys itself; the keys are generated by its main controller and stored
in a dedicated key memory.

The MCCP embeds a task scheduler that distributes cryptographic tasks to crypto
cores. Task scheduler implementation uses a simple 8-bit controller that executes the
task scheduling software. It manages the key scheduler, the cross bar, and the crypto
cores. The task scheduler receives its orders from a 32-bit instruction register and
returns values to the communication controller through the 8-bit return register (refer
to Figure 8.).

Each crypto core communicates with the communication controller through the cross
bar, which enables the task scheduler to select a specific core for I/O access. The key
scheduler generates round keys from the session key stored in the key memory. Before
launching key scheduling, the task scheduler loads the session key ID into the key
scheduler which fetches the right session key from the key memory. To improve system
security, the key memory cannot be accessed in write mode by the MCCP. In addition,
there is no way to access the secret session key directly from the MCCP data port.

5. COMPARATIVE STUDY

The last part of Section 2 summarizes the main architectures of published crypto
engines. It is very difficult and in fact usually impossible to objectively compare their
performance. Recently, Kris Gaj et al. pointed out that no clear and commonly accepted
method exists for comparing hardware performance of cryptographic algorithms
implementation [Gaj et al. 2010]. The majority of reported results/evaluations were

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:19

Fig. 10. Area vs. throughput/MHz for ASIC implementation.

performed on an ad hoc basis, and focused on one particular technology and one partic-
ular hardware family. Tools like ATHENa, an automated tool for hardware evaluation
presented in Gaj et al. [2010], help compare several algorithms implemented in the
same hardware. However, the tool is not able to compare different implementations
of the same algorithm. For this reason, the main objective of our comparative study is
not to give an accurate performance evaluation but to provide as much information as
possible in order to compare performance in the most objective way possible. Table I
lists some implementation results for the crypto engines described here. Interested
readers should refer to the original papers that presented the architecture to familiar-
ize themselves with all implementation results and with the setups (hardware target,
metrics, and technology). Most results were obtained for the AES cipher in several ci-
pher modes (ECB, CBC, CCM, and GCM). Only CryptoBooster implementation results
were obtained for the IDEA cipher, probably due to the early year of publication (1999).

Some of the previously described works were implemented in ASIC technologies
(from 0.25 µm CMOS technology to 32 nm). We depict these works in a 2D graph
(Figure 10) with the occupied area (in kilo-gates) on the x-axis, and the throughput
normalized per clock frequency (in mega-bits-per-second-per-mega-hertz) on the y-axis.

The other designs were implemented in FPGA devices. All these works used Xilinx
devices: Virtex, Virtex-II, Virtex-II Pro, Virtex 4, and Virtex 6. The results are presented
in Table II. The logic occupation is given in slices. For Virtex, Virtex-II, Virtex-II Pro and
Virtex 4 a slice (called V-Slice) is mainly composed of two 4-input, 1-output Look-Up,
Tables (LUTs) and two flip-flops. A Virtex 6 slice is composed of four 5-input, 2-output
LUTs and eight flip-flops. As a consequence, one Virtex-6 slice (called V6-Slice) is equal
to four V-Slices. Indeed, the number of RAM bits in V-Slice LUTs is 32 bits (2∗24∗1 bits)
and the number of RAM bits in a V6-Slice is 256 bits (4∗25∗2 bits). The number of flip-
flops in a V6-Slice is four times the number of those in a V-Slice. For this reason, Table I
gives the number of equivalent V-Slices. The only difference concerns HCrypt [Gaspar
et al. 2010], which uses Virtex-6 FPGA (denoted (∗) in Table I). Figure 11 presents the
published works in a 2D graph. The number of FPGA V-Slices is given on the x-axis (at
a logarithmic scale), and the throughput in mega-bits-per-second-per-mega-hertz on
the y-axis. Because the CryptoBooster uses different enciphering algorithms (IDEA),
this work is not included in Figure 11.

As already mentioned, implementation results are hard to compare. Figure 10 and
Figure 11 show the relative location of different works on a 2D graph. Some of them,
Hodjat et al. [2004a, 2004b] for Figure 10, and Pericàs et al. [2008] and Su et al. [2005]
for Figure 11, are a very good trade-off between area/resources use and performance

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:20 L. Bossuet et al.

T
a
b
le

I.
S

u
m

m
a
ry

o
f
R

e
s
u
lt
s

o
f

C
ry

p
to

E
n
g
in

e
Im

p
le

m
e
n
ta

ti
o
n

P
ro

je
ct

a
rc

h
it

ec
tu

re
N

a
m

e
[r

ef
]

S
il

ic
on

ta
rg

et
A

lg
o.

(m
od

e)
M

b
p

s/
M

H
z

M
a
x

F
re

q
.M

H
z

F
P

G
A

V
-S

li
ce

F
P

G
A

R
A

M
A

S
IC

g
a

te
s

a
re

a
C

u
st

om
X

te
n

sa
[R

a
v
i

0
2
]

X
te

n
sa

0
.1

8
µ

m
A

E
S

-E
C

B
0
.1

1
1
8
8

-
-

-
C

u
st

om
G

P
P

S
b
ox

in
st

ru
ct

io
n

[B
u

rk
e

0
0
]

A
lp

h
a

2
1
2
6
4

A
E

S
-E

C
B

0
.0

5
6
0
0

-
-

-
In

st
.

se
t

ex
t.

[T
il

li
ch

0
5
]

A
S

IC
0
.1

3
µ

m
A

E
S

-E
C

B
0
.5

7
2
5
0

-
-

1
6

K
G

0
.0

8
m

m
2

C
ry

p
to

B
la

ze
[X

il
in

x
0
3
]

C
P

L
D

C
o
o
lR

u
n

n
er

A
E

S
-E

C
B

?
?

-
-

-

In
te

l
A

E
S

in
st

.
[G

u
er

on
1
0
]

In
te

l
co

re
3
2

n
m

A
E

S
-E

C
B

0
.7

8
2
6
7
0

-
-

-

A
E

S
P

ro
ce

ss
or

[H
od

ja
t

0
4
a
,b

]
A

S
IC

0
.1

8
µ

m
A

E
S

-E
C

B
1
1
.6

0
2
9
5

-
-

7
3

K
G

0
.7

3
m

m
2

C
ry

p
to

B
oo

st
er

[M
os

a
n

y
a

9
9
]

F
P

G
A

X
C

V
1
0
0
0

ID
E

A
-E

C
B

1
6

3
3

?
?

-

A
E

S
T

H
E

T
IC

1
co

re
[S

u
0
5
]

A
S

IC
0
.2

5
µ

m
A

E
S

-E
C

B
A

E
S

-C
B

C
1
2
.8

0
6
6

-
-

2
0
0
K

G
6
.2

9
m

m
2

C
ry

p
to

co
p

ro
ce

ss
or

A
E

S
T

H
E

T
IC

3
co

re
s

[S
u

0
5
]

F
P

G
A

X
C

V
2
V

6
0
0
0

A
E

S
-E

C
B

A
E

S
-C

B
C

3
6
.8

0
5
0

2
7
,5

6
1

0
-

C
rC

U
[C

h
a
v
es

0
6
]

F
P

G
A

X
C

V
2
V

P
3
0

A
E

S
-E

C
B

0
.5

9
1
0
0

8
4
7

2
1
6

K
B

-

A
E

S
-M

S
2

co
re

s
[P

er
ic

à
s

0
8
]

F
P

G
A

X
C

V
2
V

P
3
0

A
E

S
-E

C
B

A
E

S
-C

B
C

2
5
.6

0
1
0
0

2
,1

6
1

4
3
2
K

B
-

S
A

N
E

S
[G

og
n

ia
t

0
8
]

F
P

G
A

X
C

V
2
V

P
3
0

A
E

S
-E

C
B

1
0
.6

0
3
7
.8

2
,1

9
2

0
-

C
ry

p
to

M
a
n

ia
c

[W
u

0
1
]

A
S

IC
0
.2

5
µ

m
A

E
S

-E
C

B
1
.4

2
3
6
0

-
-

1
.9

3
m

m
2

C
ry

p
to

p
ro

ce
ss

or
C

ry
p

to
n

it
e

[B
u

tc
h

y
0
4
]

F
P

G
A

X
C

V
2
P

3
0

A
E

S
-E

C
B

5
.6

2
1
0
0

1
,7

4
8

3
2
K

B
.

-

o
n

e-
co

re
a

n
d

m
u

lt
i-

co
re

C
C

P
ro

c
4

co
re

s
[T

h
eo

d
or

.
0

8
]

F
P

G
A

X
C

V
4
L

X
2
0
0

A
E

S
-E

C
B

6
.4

0
9
5

1
8
,0

4
5

?
-

C
C

P
ro

c
1

co
re

[T
h

eo
d

or
.
0
8
]

A
S

IC
0
.1

3
µ

m
A

E
S

-E
C

B
1
.6

2
2
5
0

-
-

9
3
K

G
5
.3

m
m

2

H
C

ry
p

t
[G

a
sp

a
r

1
0
]

F
P

G
A

X
C

V
6

L
X

A
E

S
-E

C
B

1
.6

0
1
5
0

7
,9

6
0
(∗

)
9
.7

5
M

B
-

M
C

C
P

[G
ra

n
d

1
1
]

F
P

G
A

X
C

V
4
S

X
3
5

A
E

S
-C

C
M

A
E

S
-G

C
M

4
.4

3
9
.9

1
1
9
2

8
1
1
0

7
M

B
-

C
el

a
to

r
[F

ro
n

te
0
8
]

A
S

IC
0
.1

3
µ

m
A

E
S

-C
B

C
S

H
A

-2
5
6

0
.2

4
0
.1

9
1
9
0

-
-

2
0

K
G

0
.1

m
m

2

C
ry

p
to

a
rr

a
y

C
ry

p
tA

rr
a
y

[L
om

on
a
co

0
4
]

F
P

G
A

X
C

V
2
V

P
1
2
5

A
E

S
-E

C
B

1
.2

7
8
1

>
5
0
,0

0
0

0
-

C
O

B
R

A
[E

lb
ir

t
0
3
]

F
P

G
A

X
C

V
1
0
0
0

A
E

S
-E

C
B

1
.4

0
1
0
2

>
1
0
,0

0
0

0
-

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:21
T
a
b
le

II
.

S
u
m

m
a
ry

o
f

C
ry

p
to

E
n
g
in

e
C

h
a
ra

c
te

ri
s
ti
c
s

P
ro

je
ct

a
rc

h
it

ec
tu

re
N

a
m

e
[r

ef
]

Y
oP

∗

S
u

p
p

or
te

d
a
lg

or
it

h
m

P
ro

ce
ss

in
g

a
rc

h
it

ec
tu

re
K

ey
st

or
a
g
e

N
u

m
b

er
of

cr
y
p

to
co

re
D

H
R

∗
∗

M
a
in

a
p

p
li

ca
ti

on

C
u

st
om

X
te

n
sa

[R
a
v
i

0
2
]

2
0
0
2

D
E

S
,
3
D

E
S

,
A

E
S

,
R

S
A

3
2
-B

it
X

te
n

sa
R

IS
C

p
ro

ce
ss

o
r

cu
st

o
m

iz
ed

A
L

U

In
m

a
in

m
em

o
ry

1
cr

y
p

to
A

L
U

n
o

W
ir

el
es

s
d

a
ta

se
cu

ri
ty

S
b

ox
in

st
ru

ct
io

n
[B

u
rk

e
0
0
]

2
0
0
0

3
D

E
S

,
ID

E
A

,
A

E
S

ca
n

d
id

a
te

s
S

b
o
x

d
ed

ic
a

te
d

A
L

U
In

m
a

in
m

em
o
ry

1
S

b
o
x

lo
o
k

u
p

ta
b
le

n
o

IP
S

E
C

,
V

P
N

C
u

st
om

G
P

P
In

st
ru

ct
io

n
se

t
ex

te
n

si
on

[T
il

li
ch

0
5

]

2
0
0
5

A
E

S
C

u
st

o
m

S
P

A
R

C
V

8
co

m
p

a
ti

b
le

3
2
-

b
it

L
E

O
N

-2

In
m

a
in

m
em

o
ry

1
S

b
o
x

M
ix

C
o
lu

m
n

s
S

h
if

tR
o
w

s
u

n
it

n
o

E
m

b
ed

d
ed

sy
st

em
d

a
ta

se
cu

ri
ty

C
ry

p
to

B
la

ze
[X

il
in

x
0
3
]

2
0
0
3

A
E

S
,R

S
A

C
u

st
o
m

8
-B

it
X

il
in

x
P

ic
o
B

la
ze

In
m

a
in

m
em

o
ry

S
b

o
x
,

G
F

m
u

lt
ip

li
er

n
it

y
es

F
P

G
A

s
y
st

em
d

a
ta

se
cu

ri
ty

In
te

l
A

E
S

in
st

.
[G

u
er

on
1
0
]

2
0
1
0

A
E

S
In

te
l

IA
-3

2
In

m
a

in
m

em
o
ry

1
A

E
S

A
L

U
n

o
P

C
cl

ie
n

t
a

n
d

se
rv

er
se

cu
ri

ty

A
E

S
p

ro
ce

ss
or

[H
od

ja
t

0
4
]

2
0
0
4

A
E

S
-E

C
B

,
C

B
C

-M
A

C
,

C
C

M

C
u

st
o
m

S
P

A
R

C
V

8
co

m
p

a
ti

b
le

3
2
-

b
it

L
E

O
N

-2

E
m

b
ed

d
ed

k
ey

re
g
is

te
r

1
fu

ll
h

a
rd

w
a

re
A

E
S

en
g
in

e
n

o
IP

S
E

C
,
V

P
N

C
ry

p
to

B
oo

st
er

[M
os

a
n

y
a

9
9

]
1
9
9
9

ID
E

A
,

D
E

S
H

a
rd

w
a

re
re

co
n

fi
g
u

ra
b
le

co
re

S
es

si
o
n

m
em

o
ry

1
fu

ll
h

a
rd

w
a

re
b
lo

ck
ci

p
h

er
en

g
in

e

y
es

N
et

w
o
rk

se
cu

ri
ty

C
ry

p
to

co
p

ro
ce

ss
or

A
E

S
T

H
E

T
IC

[S
u

0
5
]

2
0
0
9

A
E

S
-E

C
B

,
C

B
C

H
o
st

p
ro

ce
ss

o
r

+
h

a
rd

w
a

re
A

E
S

a
cc

el
er

a
to

r

E
m

b
ed

d
ed

k
ey

g
en

er
a

to
r

re
g
is

te
r

S
in

g
le

a
n

d
m

u
lt

if
u

ll
A

E
S

en
g
in

es
(1

to
3
)

y
es

N
et

w
o
rk

se
cu

ri
ty

C
rC

U
[C

h
a
v
es

0
6
]

2
0
0
6

A
E

S
-E

C
B

,
A

E
S

-C
B

C
,

S
H

A
-1

2
8
,

S
H

A
-2

5
6

M
o
le

n
p

ro
ce

ss
o
r

+
se

v
er

a
l

A
E

S
co

re
s

E
m

b
ed

d
ed

k
ey

re
g
is

te
r

C
rC

U
n

u
m

b
er

n
o
t

li
m

it
ed

n
o

T
ru

st
ed

co
m

p
u

ti
n

g

A
E

S
-M

S
[P

er
ic

à
s

0
8
]

2
0
1
0

A
E

S
-E

C
B

,
A

E
S

-C
B

C
M

o
le

n
p

ro
ce

ss
o
r

+
tw

o
A

E
S

co
re

s

E
m

b
ed

d
ed

k
ey

re
g
is

te
r

2
A

E
S

co
re

s
n

o
V

P
N

(C
on

ti
n

u
ed

)

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:22 L. Bossuet et al.

T
a
b
le

II
.
(C

o
n
ti
n
u
e
d
)

P
ro

je
ct

a
rc

h
it

ec
tu

re
N

a
m

e
[r

ef
]

Y
oP

∗

S
u

p
p

or
te

d
a

lg
or

it
h

m
P

ro
ce

ss
in

g
a
rc

h
it

ec
tu

re
K

ey
st

or
a
g
e

N
u

m
b

er
of

cr
y
p

to
co

re
D

H
R

∗
∗

M
a
in

a
p

p
li

ca
ti

on

S
A

N
E

S
[G

og
n

ia
t

0
8
]

2
0
0
5

A
E

S
,

S
H

A
.
.
.

o
th

er
s

R
ec

o
n

fi
g
u

ra
b
le

h
a

rd
w

a
re

a
cc

el
er

a
to

r

E
m

b
ed

d
ed

k
ey

re
g
is

te
r

U
p

to
4

p
a

ra
ll

el
cr

y
p

to
p

ri
m

it
iv

es

y
es

E
m

b
ed

d
ed

sy
st

em
se

cu
ri

ty

C
ry

p
to

M
a
n

ia
c

[W
u

0
1
]

2
0
0
1

A
E

S
,
D

E
S

,
3
D

E
S

4
-w

id
e

4
S

ta
g
e

V
L

IW
p

ro
ce

ss
o
r

In
te

rn
a

l
sh

a
re

d
d

a
ta

m
em

o
ry

4
cr

y
p

to
A

L
U

s
b
y

p
ro

ce
ss

o
r

n
o

IP
S

E
C

,
V

P
N

C
ry

p
to

p
ro

ce
ss

or
C

ry
p

to
n

it
e

[B
u

tc
h

y
0
4
]

2
0
0
4

A
E

S
,
D

E
S

,
M

D
5

2
∗
6
4
-b

it
d

ed
ic

a
te

d
A

L
U

In
m

a
in

m
em

o
ry

T
w

o
d

ed
ic

a
te

d
A

L
U

s
n

o
IP

S
E

C
,

V
P

N

o
n

e-
co

re
a

n
d

m
u

lt
i-

co
re

C
C

P
ro

c
[T

h
eo

d
o
r

0
8
]

2
0
0
8

A
E

S
ca

n
d

id
a

te
s

V
L

IW
b
a

se
d

p
ro

ce
ss

o
r

In
m

a
in

m
em

o
ry

4
S

b
o
x

cl
u

st
er

s
n

o
S

y
m

m
et

ri
c

en
cr

y
p

ti
o
n

a
cc

el
er

a
to

r

H
C

ry
p

t
[G

a
sp

a
r

1
0
]

2
0
1
0

A
E

S
E

C
B

,
C

F
B

,
O

F
B

,
C

T
R

2
∗
3
2
-b

it
d

ed
ic

a
te

d
A

L
U

In
d

ed
ic

a
te

d
se

cu
re

d
re

g
is

te
r

2
A

E
S

ci
p

h
er

s
o
r

d
ec

ip
h

er
s

y
es

N
et

w
o
rk

se
cu

ri
ty

,
V

P
N

M
C

C
P

[G
ra

n
d

1
1
]

2
0
1
1

A
E

S
,

S
H

A
.
.
.

o
th

er
s

M
u

lt
i-

co
re

p
ro

ce
ss

o
r

In
d

ed
ic

a
te

d
re

g
is

te
r

F
ro

m
2

to
8

re
co

n
fi

g
u

ra
b
le

cr
y
p

to
co

re
s

y
es

S
o
ft

w
a

re
ra

d
io

se
cu

ri
ty

C
el

a
to

r
[F

ro
n

te
0
8
]

2
0
0
8

A
E

S
,
D

E
S

,
3
D

E
S

,
S

H
A

-
2
5
6

4
∗
4

8
-b

it
p

ro
ce

ss
in

g
el

em
en

ts

In
m

a
in

m
em

o
ry

1
6

p
ro

ce
ss

in
g

el
em

en
ts

y
es

N
et

w
o
rk

se
cu

ri
ty

C
ry

p
to

a
rr

a
y

C
ry

p
tA

rr
a
y

[L
om

on
a
co

0
4
]

2
0
0
4

A
E

S
,
D

E
S

,
3
D

E
S

M
a

tr
ix

o
f

4
-b

it
p

ro
ce

ss
in

g
el

em
en

ts

In
m

a
in

m
em

o
ry

D
ep

en
d

o
f

a
a

rr
a

y
si

ze
y
es

N
et

w
o
rk

se
cu

ri
ty

C
O

B
R

A
[E

lb
ir

t
0
3
]

2
0
0
3

b
lo

ck
ci

p
h

er
s

4
∗
4

3
2
-b

it
re

co
n

fi
g
u

ra
b
le

cr
y
p

to
g
ra

p
h

ic
el

em
en

t

In
m

a
in

m
em

o
ry

1
6

re
co

n
fi

g
u

ra
b
le

el
em

en
ts

y
es

V
P

N

∗
Y

ea
r

of
P

u
b
li

ca
ti

on
∗
∗

D
es

ig
n

fo
r

h
a

rd
w

a
re

re
co

n
fi

g
u

ra
ti

on
.

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:23

Fig. 11. Area vs. throughput/MHz for FPGA implementation.

(in terms of throughput). Nevertheless, the results presented in Table I, Figure 10, and
Figure 11 are directly extracted from publications featuring specific hardware setups.
Some results are given for a complete system (i.e., including the communication process,
management of the system, etc.) and other results are only given for the cipher (often
without taking key management into account). This means that a direct comparison of
these results could lead to misinterpretation. We recommend that interested readers
read the paper concerned to get more details about the context of experimental setup
and interpretation of results.

To help the reader, Table II gives summarizes previously presented crypto engine
features and capabilities. Most of the solutions in the table focus on data security
applications such as Internet security (IPSec), Virtual Private Network (VPN), and
secure embedded systems. The main application field of each proposal depends to a
great extent on the year of publication. Each application field has specific constraints,
for example, embedded system security has limited silicon resources and a limited
power budget whereas communication network security requires a high processing rate
to fully exploit the available network bandwidth. Other applications can be found in
the literature such as e-voting [Neff 2011], Digital Rights Management (DRM) [Coburn
et al. 2005], hardware-constrained sensor network node security [Roman et al. 2007],
and software radio security [Grand et al. 2009].

It is interesting to note that in most of the previously presented architectures, se-
cret key and/or session key secure storage were not considered as a security feature.
That is to say, the most important part of the algorithm security was not taken into
consideration in the design of the crypto engine. This lack of security could represent
a significant failure in many works.

Concerning the technical development of crypto engines, the previously presented
works and the works presented next cover a 12-year period (from 1999 to 2011), they are
from distinct fields of application including microprocessor design, multicore proces-
sors, hardware design, FPGA implementation, and reconfigurable architecture (coarse
grain). Table III lists, the works and the scientific field of each work (of course, the field
of applied cryptography could appear in all works) in chronological order. In Table III,
we can observe a trend in an increasing number of designers paying more attention to
all design aspects, in order to meet the triple constraints of crypto engine design, as
described in the Introduction of this article.

We can also observe that works which only aim at customization of a GPP with
an ALU dedicated to cryptographic computations are less common today. This

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:24 L. Bossuet et al.

Table III. Technical Scope of Each Work (in chronological order)

Processor Multi-core Hardware FPGA Reconfigurable

Name [ref] design processor design implementation architecture

CryptoBooster [Mosanya 99] � � �

Sbox instruction [Burke 00] �

CryptoManiac [Wu 01] � �

Custom Xtensa [Ravi 02] �

CryptoBlaze [Xilinx 03] � �

COBRA [Elbirt 03] � �

AES processor [Hodjat 04 a,b] � �

Cryptonite [Butchy 04] � �

CryptArray [Lomonaco 04] � �

AESTHETIC [Su 05] � � �

Instruction set extension
[Tillich 05]

�

CrCU [Chaves 06] � �

CCProc [Theodor. 08] � �

AES-MS [Pericàs 08] � �

Celator [Fronte 08] � �

SANES [Gogniat 08] � � � �

Intel AES instruction set
[Gueron 10]

�

HCrypt [Gaspar 10] � � �

MCCP [Grand 11] � � � � �

configuration has usually been replaced by a hardware accelerator, that is a crypto
coprocessor (reconfigurable or not) or a crypto processor. Indeed, with the increased
integration density available today, the silicon area is a less restrictive constraint than
was the case at the beginning of the 2000s. Today, it is only advantageous to customize
existing general-purpose processors for applications that are very restrictive in terms
of area, such as RFID and sensor networks.

6. MAIN CRYPTO ENGINE DESIGN CHALLENGES

Crypto engine design faces a number of challenges that have led to the emergence of
new trends. The purpose of the last section before the conclusion is to underline some
of the most significant challenges. This section is not intended to be exhaustive but
highlights some remaining problems and provides the reader with emerging research
challenges.

Secure by design. As shown in the previous section, from the very beginning, crypto
engine design was performance oriented. Paradoxically, in many cases, security fea-
tures were not sufficiently taken into consideration. Most security features are only
linked to side-channel attack countermeasures (dual precharge logic, masked imple-
mentation, etc.) and not to a secure by design process. However, architectural robust-
ness can be significantly improved if security aspects are taken into account at all steps
in the design process. The most effective improvement to secure design can be made
if the security of the key path and the key storage (secret key, session, and/or master
key) are considered in great detail. Table II clearly shows that most of architectures
cited in the literature store confidential keys in an unsecure main data memory. This
makes the system very vulnerable to software attacks. Securing the link between the
general-purpose processor and the main memory is the first point to consider [Vaslin
et al. 2006]. Another idea concerns the creation of a secure key bus embedded in the
crypto engine, as proposed by Gaspar et al. [2010]. One important aspect the designer

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:25

needs to understand is that security is not just a novel field of application. Security is
a new design constraint.

MCryptoPSoC. Our review of crypto engine architectures showed that parallelism
is an efficient approach in crypto engine implementations. Mixed with hardware re-
configuration properties, parallelism can ensure flexibility and high performance in
cryptographic processing. Some recent applications, such as software radio, which
manages many communication channels using a variety of cryptographic services,
highlight such flexible and powerful architecture [Grand et al. 2011]. There is also
a need for heterogeneous MPSoC (multi-processor system-on-a-chip) that can embed
many crypto engines. In turn, these ideas may lead designers to consider the concept
of MCryptoPSoC (multi-crypto-processor system-on-a-chip) to perform several data se-
curity applications inside one SoC. It is also important to consider resource sharing
(such as memory resources and communication buses) in security applications linked
with security requirements. Designers need to provide agile and high-performance
cryptographic resources designed to execute many applications securely.

Virtualization. Despite such improvements, to be used efficiently, crypto processors
and MCryptoPSoCs require high-level management and secure hardware virtualiza-
tion. Hardware virtualization of security modules (such as TPM) is gaining importance
in both academia and industry because it is an alternative way to increase the overall
use of hardware resources. Some very recent and interesting works highlight this issue
[Biedermann et al. 2011; Cotret et al. 2011; Gaber and Pailles 2010].

Malicious hardware. Emerging works in the crypto engine design field concern pro-
tection against malicious hardware. Hidden backdoors and hardware Trojans are not
a “creation of the mind”. They are embedded in real circuits and can lead to serious
security failures [Karri et al. 2010; Tehranipoor and Koushanfar 2010]. Due to this
recent problem, trusted hardware, IC authentication and trusted design schemes need
to be developed. For example, a number of authors are currently studying the design
of Physical Unclonable Functions (PUF) to be used as a circuit fingerprint [Gassend
et al. 2002].

Security metrics. As we mentioned at the beginning of this article, it is difficult to
measure or even estimate the security of a hardware cryptographic module. Some
international standards, such as FIPS 140-2, help the designer choose the desired
level of security before designing the hardware module. Nevertheless, no accurate
metrics are available to measure the real postdesign security of the hardware module.
Such metrics may be available for certain parts of the security system. For example,
methods of evaluation for physical random number generators, such as the German
AIS31, enable estimation of generator entropy per random number and thus ensure
at least a theoretical level of security. New security evaluation methods will be needed
in the future for validation of the hardware security module to conform to security
requirements, for example, how to measure the resistance to side-channel attack(s)
[Standaert 2011; Batina et al. 2011]. This is an open question: is the use of a formal
proof possible? How can security metrics be upgraded? How accurate will the results be?

Standardization. Some problems the security metrics can be solved by standardiza-
tion. As mentioned earlier in connection with current standards for hardware cryptog-
raphy (e.g., FIPS/AIS), the standards are not intended for problem solving. Instead,
standardization can assist designers. The evolution and democratization of crypto pro-
cessors not only led to strong needs in this area but also widened the application space.

Test and security. Integrated circuit testing at the different manufacturing and life-
cycle stages is used to find fault-free devices, to improve production yield by analyzing

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:26 L. Bossuet et al.

the cause of defects, and to prevent runtime failures. However, test features are intu-
itively not well-suited for integrity and confidentiality assurance since they facilitate
controllability and observability of internal data. Several scan-based attacks on hard-
ware implementations of DES and AES have been demonstrated [Mukhopadhyay et al.
2005; Bo et al. 2006], showing that test facilities are an ideal starting point for identi-
fication of relevant internal nodes and for retrieving confidential information. Several
test scan attack countermeasures have been published, but a universal minimum-cost
solution for protection against test security threats [Hely et al. 2011] does not exist.

Embedded system security. An embedded system is a complex and often highly het-
erogeneous system. It is mainly composed of programmable parts (microprocessors),
internal communication systems (bus, network on chip), memory (instructions, data,
configurations), control units, inputs and outputs, hardware (reconfigurable or not),
and various peripherals (e.g., external communication). As a result, since the early
2000s, many academic works have shown the extent of the threat model of these sys-
tems. Indeed, the embedded systems threat model includes software security, hardware
security, data security, intellectual properties security and network/communication se-
curity for communicating embedded systems [Ravi et al. 2004; Koopman 2004; Bossuet
and Gogniat 2010]. The development of secure embedded systems is highly constrained
and prevents direct reuse of the security XE “security” solutions (software and hard-
ware) developed for other purposes (chip cards, desktop and laptop computers, and
servers). It is thus vital to develop solutions tailored to embedded systems to fit their
specific characteristics and in conjunction with development constraints. A combined
software and hardware attack on the system and its communication channel can have
serious repercussions for the security XE “security” of the system and its data, and is
therefore a serious issue for which new solutions are needed in a large software and
hardware design space. Crypto engines are included is this large design space and may
represent a possible solution. Since exploring the large design space of embedded sys-
tems is a challenging task, many application fields consider embedded systems security
as a hot topic (e.g., automotive embedded system [Checkoway et al. 2011; Koscher et al.
2010]).

Availability. It is of paramount importance not only to provide cryptographic func-
tionality but also to design systems that can still provide cryptographic services while
under attack. This availability dimension needs to be addressed during the design pro-
cess in order to include different levels of countermeasures depending on availability
requirements. Embedding sensors and monitors in the design allows the behavior of
the system to be tracked. A security policy manager can provide the right level of avail-
ability in line with the user’s priorities. This feature will become a major expectation
as users require a high Quality-of-Service (QoS). Availability and QoS will be very
important for crypto engines.

Post-quantum crypto engine. Cryptography is not a static research field. Although
robust cryptographic algorithms such as public key cryptography (e.g., RSA, ECC) are
available and secure today, progress in computer science could call current crypto-
graphic system security into question. For example, quantum computers will be able
to break most popular public key cryptographic systems. In order to prevent attacks
by quantum computers, many authors focused on the so-called post-quantum cryp-
tography [Bernstein et al. 2008]. Lattice-based cryptography, multivariable public key
cryptography, and code-based cryptography are possible solutions to post-quantum
cryptography. Nevertheless, post-quantum cryptographic systems are hard to imple-
ment. For example, the public key length used for code-based cryptography is too large,
even though it has already been reduced from several hundred thousand bits to only

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:27

several tens of thousands of bits [Cayrel et al. 2011]. Such key lengths could lead to in-
efficient hardware implementation. Many studies will be needed to design an efficient
post-quantum crypto engine to be prepared for the emergence of quantum computers.

In this section, we presented some of the main challenges in the crypto engine de-
sign field. The cryptographic hardware engineering field includes a wide range of works:
side-channel countermeasure design [Popp et al. 2007], efficient hardware implemen-
tation of new cryptographic algorithms such as homomorphic encryption [Gentry and
Halevi 2011; Naehrig et al. 2011], lightweight device security (such as RIFD, smart
cards) [Rolfes et al. 2008; Lin et al. 2010; Feller et al. 2011], TRNG (True Random
Number Generator) design and characterization [Valtchanov et al. 2010], chip identifi-
cation circuits in new CMOS technologies, passive and active IC metering [Maes et al.
2009; Baumgarten et al. 2010], etc.

7. CONCLUSION

The crypto engine design field currently resembles an architectural jungle. In this ar-
ticle, a quick walk through the jungle enabled us to propose crypto engine taxonomy
and a state-of-the-art. We have presented some of the most recent research projects to
illustrate some of new trends in this field: securing the link between the processor and
memory, securing the internal key path of the crypto engine using a trust-by-design ap-
proach, and improving performance and flexibility by designing reconfigurable parallel
architectures.

A review of ten years of research in the crypto engine design field showed that the
architectures proposed were often determined by the target application field. We can
assume that the next step will be the design of a highly parallel crypto engine for both
secret key and public key applications. The number of crypto cores could be huge in
order to reply to the growing demand for cryptography services required by new applica-
tions such as cognitive radio and cloud computing. However, to reduce hardware costs,
the security modules inside the system need to be able to share hardware resources,
while guaranteeing the security of the system. This requirement is very often in oppo-
sition with the need for clear physical separation of security modules. Meanwhile, new
challenges are emerging in the design of very low-power, low-cost, and low-area crypto
engines for smart dust and sensor networks. To conclude research in the general field
of cryptographic engineering requires a lot of research and new original concepts.

REFERENCES

ALTERA 2011. Cyclone III fpga: Security. http://www.altera.com/products/devices/cyclone3/overview/security/
cy3-security.html.

ARORA, D., RAGHUNATHAN, A., RAVI, S., SANKARADASS, M., JHA, N. K., AND CHAKRADHAR, S. T. 2006. Software
architecture exploration for high-performance security processing on a multiprocessor mobile SoC. In
Proceedings of the 43rd Annual Design Automation Conference (DAC’06). ACM Press, New York, 496–501.

ANDERSON, R., BOND, M., CLULOW, J., AND SKOROBOGATOV, S. 2006. Cryptographic processors-a survey. Proc.
IEEE 94, 2, 357–369.

ANDERSON, R. 2001. Security Engineering. A Guide to Building Dependable Distributed Systems. Wiley.

BADRIGNANS, B., DANGER, J.-L., FISCHER, V., AND GOGNIAT, G. 2011. Security Trends for FPGAS: From Secured
to Secure Reconfigurable Systems. Springer.

BANGERTER, E., GULLASH, D., AND KRENN, S. 2011. Cache games-bringing access-based cache attacks on AES to
practice. In Proceedings of the 2nd International Workshop on Constructive Side-Channel Analysis and
Secure Design (COSADE’11). 215–221.

BATINA, L., GIERLICHS, B., PROUFF, A., RIVAIN, M., STANDAERT, F.-X., AND VEYRAT-CHARVILLON, N. 2011. Mutual
information analysis: A comprehensive study. Springer J. Cryptol. 24, 2, 269–291.

BAUMGARTEN, A., TYAGI, A., AND ZAMBRENO, J. 2010. Preventing IC piracy using reconfigurable logic barriers.
IEEE Des. Test 27, 1, 66–75.

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:28 L. Bossuet et al.

BERNSTEIN D. 2005. Cache-timing attacks on aes. Res. rep. http://cr.yp.to/antiforgery/cachetiming-
20050414.pdf.

BERNSTEIN, D. J., BUCHMANN, J., AND DAHMEN, E. 2008. Post-Quantum Cryptography. Springer.

BIEDERMANN, A., STÖTTINGER, M., CHEN, L., AND HUSS, S. A. 2011. Secure virtualization within a multi-processor
soft-core system-on-chip architecture. In Proceedings of the 7th International Symposium on Applied
reconfigurable Computing (ARC’11). Lecture Notes in Computer Science, vol. 6578, Springer, 385–396.

BO, Y., KAIJIE, W., AND KARRI, R. 2006. Secure scan: A design-for-test architecture for crypto chips. IEEE
Trans. Integr. Circ. Syst. 25, 10, 2287–2293.

BOSSUET, L. AND GOGNIAT, G. Hardware security in embedded systems. In Communicating Embedded Systems
for Networks, F. Krief, Ed., Wiley-ISTE.

BOSSUET, L., GOGNIAT, G., AND PHILIPPE, J. L. 2007. Communication-oriented design space exploration for
reconfigurable architectures. EURASIP J. Embed. Syst. 2007, 1, 1–20.

BOSSUET, L., GOGNIAT, G., AND BURLESON, W. 2006. Dynamically configurable security for SRAM FPGA
bistreams. Indersci. Intern. J. Embed. Syst. 2006, 2, 73–85.

BOSSUET, L., GOGNIAT, G., AND PHILIPPE, J. L. 2005. Generic design space exploration for reconfigurable archi-
tectures. In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05), Vol. 04 .IEEE Computer Society, Los Alamitos, CA, 163–171.

BUCHTY, R., HEINTZE, N., AND OLIVA, D. 2004. Cryptonite – A programmable crypto processor architecture
for high-bandwidth applications. In Proceedings of the Organic and Pervasive Computing Conference
(ARCS’04). Lecture Notes in Computer Science, vol. 2981, Springer, 184–198.

BURKE, J., MCDONALD, J., AND AUSTIN, T. 2000. Architectural support for fast symmetric-key cryptography. In
Proceedings of the 9th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’00). ACM Press, New York, 178–189.

CASTILLO, J., HUERTA, P., MART, J. I. 2007. Secure IP downloading for sram fpgas. Microprocess. Microsyst. 31,
2, 77–86.

CAYREL, P. L., EL YOUSI ALAOUI, S. M., HOFFMAN, G., MEZIANI, M., AND NIEBUHR, R. 2011. Recent progress in
code-based cryptography. In Proceedings of the International Conference on Information Security and
Assurance (ISA’11). Springer, 21–32.

CHAVES, R., KUZMANOV, G., VASSILIADIS, S., AND SOUSA, L. A. 2006. Reconfigurable cryptographic processor. In
Proceedings of the Workshop on Circuits, Systems and Signal Processing (ProRisc’06).

CHECKOWAY, S., MCCOY, D., KANTOR, B., ANDERSON, D., SHACHAM, H., SAVAGE, S., KOSCHER, K., CZESKIS, A.,
ROESNER, F., AND KOHNO, T. 2011. Comprehensive experimental analyses of automotive attack surfaces.
In Proceedings of the 20th USENIX Conference on Security. 6.

COBURN, J., RAVI, S., RAGHUNATHAN, A., AND CHAKRADHAR, S. 2005. SECA: Security-enhanced communication
architecture. In Proceeding of International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES’05). ACM Press, New York, 78–89.

COOK, D. L., IOANNIDIS, J., KEROMYTIS, A. D., AND LUCK, J. 2005. Cryptographics: Secret key cryptography
using graphics cards. In Proceedings of the Cryptographer’s Track at the RSA Conference (CT-RSA’05).
334–350.

COTRET, P., CRENNE, J., GOGNIAT, G., DIGUET, J. P., GASPAR, L., AND DUC, G. 2011. Distributed security for
communications and memories in a multiprocessor architecture. In Proceeding of 25th International
Parallel and Distributed Processing Symposium (IPDPS’11). IEEE Computer Society, 321–324.

DAVIES, P. 2003. Flexible Security. White Paper, Cryptography and Interoperability. Thales.

DEGUANG, L., JINYI, C., XINGD, G., ANKANG, Z., AND CONGLAN, L. 2010. Parallel aes algorithm for fast data encryp-
tion on gpu. In Proceedings of 2nd International Conference on Computer Engineering and Technology
(ICCET’10). Vol. 6. ASME, New York, 1–6.

DUC, G. AND KERYELL, R. 2006. CryptoPage: An efficient secure architecture with memory encryption, integrity
and information leakage protection. In Proceedings of the 22nd Annual Computer Security Applications
Conference (ACSAC’06). IEEE Computer Society, 483–492.

DUC, G. AND KERYELL, R. 2008. Improving virus protection with an efficient secure architecture with memory
encryption, integrity and information leakage protection. Comput. Virol. 4, 2, 101–113.

EISENBARTH, T., GUNEYSU, T., PAAR, C., SADEGHI, A. R., WOLF, M., AND TESSIER, R. 2007a. Establishing chain
of trust in reconfigurable hardware. In Proceedings of the 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’07). IEEE Computer Society, Los Alamitos, CA,
289–290.

EISENBARTH, T., GUNEYSU, T., PAAR, C., SADEGHI, SCHELLEKENS, D., AND WOLF, M. 2007b. Reconfigurable trusted
computing in hardware. In Proceedings of the Workshop on Scalable Trusted Computing (STC’07). ACM
Press, New York, 15–20.

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:29

ELBAZ, R., TORRES, L., SASSATELLI, G., GUILLEMIN, P., AND BARDOUILLET, M. 2006. PE-ICE: Parallelized encryption
and integrity checking engine. In Proceedings of the 9th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems (DDECS’06). IEEE Computer Society, Los Alamitos, CA, 141–142.

ELBIRT, A. J. AND PAAR, C. 2003. Instruction-level distributed processing for symmetric-key cryptography. In
Proceedings of the 17th International Parallel and Distributed Processing Symposium (IPDPS’03). IEEE
Computer Society, Los Alamitos, CA, 78–88.

FELLER, T., MALIPATLOLLA, S., MEISTER, D., AND HUSS, S. A. 2011. TyniTPM: A lightweight module aimed to ip
protection and trusted embedded platforms. In Proceedings of the International Symposium on Hardware
Oriented Security and Trust (HOST’11). 60–74.

FRONTE, D., PEREZ, A., AND PAYRAT, E. 2008. Celator: A multi-algorithm cryptographic co-processor. In Pro-
ceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig’08). IEEE
Computer Society, Los Alamitos, CA, 438–443.

GABER, C. AND PAILLES, J. C. 2010. Security and trust for mobile phones based on virtualization. In Proceedings
of the 3rd Norsk Information Security Conference (NISK’10). 93–103.

GAJ, K., KAPS, J.-P., AMIRINENI, V., ROGAWSKI, M., HOMSIRIKAMOL, E., AND BREWSTER, B. Y. 2010. ATHENA –
Automated tool for hardware evaluation: Toward fair and comprehensive benchmarking of cryptographic
hardware using FPGAs. In Proceedings of the 20th International Conference on Field Programmable Logic
and Applications (FPL’10). IEEE Computer Society, Los Alamitos, CA, 414–421.

GARCIA, P., COMPTON, K., SCHULTE, M., BLEM, E., AND FU, W. 2006. An overview of reconfigurable hardware in
embedded systems. EURASIP J. Embed. Syst. 2006, 1, 1–19.

GASPAR, L., FISCHER, V., BOSSUET, L., AND FOUQUET, R. 2011. Secure extensions of soft core general-purpose
processors for symmetric key cryptography. In Proceedings of the 6th International Workshop on Recon-
figurable Communication-Centric Systems-on-Chip (ReCoSoC’11). IEEE CAS Society.

GASPAR, L., FISCHER, V., BERNARD, F., BOSSUET, L., AND COTRET, P. 2010. HCrypt: A novel reconfigurable crypto-
processor with secured key management. In Proceedings of the International Conference on Reconfig-
urable Computing and FPGAs (ReconFig’10). IEEE Computer Society, Los Alamitos, CA, 280–285.

GASSEND, B., CLARKE, D., VAN DIJK, M., AND DEVADAS, S. 2002. Silicon physical random functions. In Proceedings
of the 9th ACM Conference on Computer and Communications Security (CCS’02). ACM Press, New York,
148–160.

GENTRY, G. AND HALEVI, S. 2011. Implementing grentry’s fully-homomorphic encryption scheme. In Proceedings
of the 30th Annual International Conference on Theory and Applications of Cryptographic Techniques:
Advanced in Cryptology (EUROCRYPT’11). K. G. Paterson, Ed., Springer, 129–148.

GUERON, S. 2010. Intel Advanced Encryption Standard (AES) Instructions Set. White paper, Intel Mobility
group, Israel Development Center, Israel.

GLAS, B., KLIMM, A., SANDER, O., MÜLLER-GLASER, K., AND BECKER, J. 2008. A system architecture for reconfig-
urable trusted platforms. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’08). ACM Press, New York, 541–544.

GOGNIAT, G., WOLF, T., BURLESON, W., DIGUET, J. P., BOSSUET, L., AND VASLIN, R. 2008. Reconfigurable hardware
for high-security/high-performance embedded systems: The safes perspective. IEEE Trans. VLSI Syst.
16, 2, 144–155.

GRAND, M., BOSSUET, L., LE GAL, B., DALLET, D., AND GOGNIAT, G. 2009. A reconfigurable crypto sub system for the
software communication architecture. In Proceedings of the IEEE Military Communication Conference
(MILCOM’09). IEEE Press, 2708–2714.

GRAND, M., BOSSUET, L., LE GAL, B., GOGNIAT, G., AND DALLET, D. 2011. Design and implementation of a multi-
core crypto-processor for software defined radios. In Proceedings of the 7th International Symposium on
Applied Reconfigurable Computing (ARC’11). Lecture Notes in Computer Science, vol. 6578, Springer,
29–40.

GUNEYSU, T., MOLLER, B., AND PAAR, C. 2007. Dynamic intellectual property protection for reconfigurable
devices. In Proceedings of the International Conference on Field-Programmable Technology (FPT’07).
IEEE Electron Devices Society, 169–176.

HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARKSON, W., PAUL, W., ALANDRINO, J. A., FELDMAN, A. J.,
APPELBAUM, J., AND FELTEN, E. W. 2009. Lest we remember: Cold boot attacks on encryption keys. Comm.
ACM 52, 91–98.

HÄMÄLÄINEN, P., HÄNNIKÄINEN, M., AND HÄMÄLÄINEN, T. 2007. Review of hardware architectures for advanced
encryption standard implementations considering wireless sensor networks. In Proceedings of the 7th

International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS’07). Lecture Notes in Computer Science, vol. 4599, Springer, 443–453.

HELY, D., ROSENFELD, K., AND KARRI, R. 2011. Security challenges during vlsi test. In Proceedings of the 9th

IEEE NEWCAS Conference. 1–4.

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:30 L. Bossuet et al.

HODJAT, A. AND VERBAUWHEDE, I. 2004a. High-throughput programmable cryptocoprocessor. IEEE Micro. 34,
3, 34–45.

HODJAT, A. AND VERBAUWHEDE, I. 2004b. Interfacing a high speed crypto accelerator to an embedded CPU. In
Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers. 488–492.

HODJAT, A. AND VERBAUWHEDE, I. 2006. Area-throughput trade-offs for fully pipelined 30 to 70 gbits/s aes
processors. IEEE Trans. Comput. 55, 4, 366–372.

HORI, Y., SATOH, A., SAKANE, H., AND TODA, K. 2008. Bitstream encryption and authentication using aes-gcm
in dynamically reconfigurable systems. In Proceedings of the 3rd International Workshop on Security:
Advances in Information and Computer Security (IWSEC’08). Springer, 261–278.

KAPS, J. P. AND PAAR, C. 1998. Fast des implementation for fpgas and its application to a universal key-search
machine. In Proceedings of the 5th Annual International Workshop on Selected Areas in Cryptography
(SAC’98). S. E. Tavares and H. Meijer, Eds., Springer, 234–247.

KARRI, R., RAJENDRAN, J., ROSENFELD, K., AND TEHRANIPOOR, M. 2010. Trustworthy hardware: Identifying and
classifying hardware trojans. Comput. 43, 10, 39–46.

KOOPMAN, P. 2004. Embedded system security. Comput. 37, 7, 95–97.

KOSCHER, K., CZESKIS, A., ROESNER, F., PATEL, S., KOHNO, T., CHEKOWAY, S., MCCOY, D., KANTOR, B., ADERSON, D.,
SHACHAM, H., AND SAVAGE, S. 2010. Experimental security analysis of a modern automobile. In Proceedings
of the IEEE Symposium on Security and Privacy. 447–462.

KUZMANOV, G., GAYDAJIEV, G. N., AND VASSILIADIS, S. 2004. The molen processor prototype. In Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’04). 296–299.

LEE, R. B., KWAN, P. C. S., MCGREGOC, J. P., DWOSKIN, J., AND WANG, Z. 2005. Architecture for protecting
critical secrets in microprocessors. In Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA’05). IEEE Computer Society, Los Alamitos, CA, 2–13.

LIE, D., THEKKATH C., MITCHELL. M., LINCOLN, P., BONEH, D., MITCHELL, J., AND HOROWITZ, M. 2000. Architectural
support for copy and tamper resistant software. In Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’09). 168–177.

LIN, L., HOLCOMB, D., KUMAR KRISHNAPPA, D., SHABADI, P., AND BURLESON, W. 2010. Low-power subthreshold
design of secure physical unclonable functions. In Proceedings of the 16th ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED’10). ACM Press, New York, 43–48.

LOMONACO, M. 2004. Cryptarray a scalable and reconfigurable architecture for cryptographic applications.
Masters thesis, University of Central Florida.

MANAVSKI, S. A. 2007. CUDA compatible gpu as an efficient hardware accelerator for aes cryptography. In
Proceedings of International Conference on Signal Processing and Communications (ICSPC’07). IEEE,
65–68.

MARTIN, A., NEWMAN, T., AND MOROTAKE, D. 2008. Development approaches for an international tactical radio
cryptographic api. In Proceedings of the Software Design Radio Technical Conference (SDRForum’08).
1–6.

MAES, R., SCHELLEKENS, D., TUYLS, P., AND VERBAUWHEDE, I. 2009. Analysis and design of active IC metering
schemes. In Proceedings of the IEEE International Workshop on Hardware-Oriented Security and Trust
(HOST’09). IEEE Computer Society, Los Alamitos, CA, 74–81.

MALIPATLOLLA, S. AND HUSS, S. A. 2011. A novel method for secure intellectual property deployment in embed-
ded systems. In Proceeding of 7th Southern International Conference on Programmable Logic (SPL’11).
IEEE Circuits and Systems Society, 1–6.

MOSANYA, E., TEUSCHER, C., RESTREPO, H. F., GALLEY, P., AND SANCHEZ, E. 1999. CryptoBooster: A reconfigurable
and modular cryptographic coprocessor. In Proceedings of the 1st International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES’99). Lecture Notes in Computer Science, vol. 1717,
Springer, 246–257.

MORABI, A., BARENGHI, A., KASPER, T., AND PAAR, C. 2011. On the vulnerability of FPGA bitstream encryption
against power analysis attacks: extracting keys from xilinx virtex-II FPGAs. In Proceedings of the 18th

ACM Conference on Computer and Communication Security (CCS’11). ACM Press, New York, NY, 111–
124.

MORABI, A., KASPER, M., AND PAAR, C. 2012. Black-box side channel attacks highlight the importance of
countermeasures – An analysis of the xilinx virtex-4 and virtex-5 bitstream encryption mechanism. In
Topics in Cryptology: The Cryptographer’s Track at the RSA Conference (CT-RSA’12) (To appear).

MUCCI, C., VANZOLINI, L., CAMPI, F., AND TOMA, M. 2007. Interactive presentation: Implementation of
aes/rijndael on a dynamically reconfigurable architecture. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE’07). ACM Press, New York, 355–360.

MUKHOPADHYAY, D., BANERJEE, S., ROYCHOWDHURY, D., AND BHATTACHARYA, B. B. 2005. CryptoScan: A secured
scan chain architecture. In Proceedings of the 14th Asian Test Symposium (ATS’05). 348–343.

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

Architectures of Flexible Symmetric Key Crypto Engines—A Survey 41:31

NAEHRIG, M., LAUTER, K., AND VAILKUNTANATHAN, V. 2011. Can homomorphic encryption be practical? In Pro-
ceedings of the 3rd ACM Workshop on Cloud Computing Security (CCSW’11). ACM Press, New York,
113–124.

NAKANISHI, M. 2008. An FPGA configuration scheme for bitstream protection. In Proceedings of the 4th

International Workshop on Reconfigurable Computing: Architectures, Tools and Applications (ARC’08).
Springer, 330–335.

NEFF, C. 2011. A verifiable secret shuffle and its application to e-voting. In Proceedings of the 8th ACM Con-
ference on Computer and Communications Security (CCS’10). P. Samarati, Ed., ACM Press, New York,
116–125.

OSVIK, D. A., SHAMIR, A., AND TROMER, E. 2006. Cache attacks and countermeasures: The case of aes. In
Proceedings of the Cryptographers’ Track at the RSA Conference (Ct-RSA’06). Lecture Notes in Computer
Science, vol. 3860, Springer, 1–20.

PERICÀS, M., CHAVES, R., GAYDADJIEV, G. N., VASSILIADIS, S., AND VALERO, M. 2008. vectorized aes core for
high-throughput secure environments. In Proceedings of 8th International Meeting High Performance
Computing for Computational Science (VECPAR’08). 83–94.

POPP, T., MANGARD, S., AND OSWALD, E. 2007. Power analysis attacks and countermeasures. IEEE Des. Test 24,
6, 535–543.

RAVI, S., RAGHUNATHAN, A., KOCHER, P., AND HATTANGADY, S. 2004. Security in embedded systems: Design
challenges. ACM Trans. Embed. Comput. Syst. 3, 3, 461–491.

RAVI, S., RAGHUNATHAN, A., POTLAPALLY, N., AND SANKARDASS, M. 2002. System design methodologies for a
wireless security processing platform. In Proceedings of the 39th Annual Design Automation Conference
(DAC’02). ACM Press, New York, 777–782.

REBEIRO, C., MUKHOPADHYAY, D., TAKAHASHI, J., AND FUKUNAGA, T. 2009. Cache timing attacks on clefia. In Pro-
ceedings of 10th International Conference on Cryptology in India: Progress in Cryptology (Indocrypt’09).
B. Roy and N. Sendrier, Eds., Springer, 104–118.

REBEIRO, C. AND MUKHOPADHYAY, D. 2011. Cryptanalysis of clefia using differential methods with cache trace
patterns. In Proceedings the Cryptographers’ Track at the RSA Conference (CT-RSA’11). Lecture Notes
in Computer Science, vol. 6558, Springer, 89–105.

REGAZZONI, F., EISENBARTH, T., BREVEGLIERI, L., IENNE, P., AND KOREN, I. 2008. Can knowledge regarding the
presence of countermeasures against fault attacks simplify power attacks on cryptographic devices?
In Proceedings of the IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems
(DFT’08). IEEE Computer Society, Los Alamitos, CA, 202–210.

ROLFES, C., POSCHMANN, A, LEANDER, G., AND PAAR, C. 2008. Ultra-lightweight implementations for smart de-
vices - Security for 1000 gate equivalents. In Proceedings of the 8th IFIP WG 8.8/11.2 International
Conference on Smart Card Research and Advanced Applications (CARDIS’08). Lecture Notes in Com-
puter Science, vol. 5189, Springer, 89–103.

ROMAN, R., ALCARAZ, C., AND LOPEZ, J. 2007. A survey of cryptographic primitives and implementations for
hardware-constrained sensor network nodes. Mob. Netw. Appl. 12, 4, 231–244.

SAKIYAMA, K., BATINA, L., PRENEEL, B., AND VERBAUWHEDE, I. 2007a. HW/SW co-design for public-key cryptosys-
tems on the 8051 micro-controller. Comput. Electron. Engin. 33, 5–6, 324–332.

SCHAUMONT, P. AND VERBAUWHEDE, I. 2003. Domain-specific codesign for embedded security. Comput. 36, 4,
68–74.

STANDAERT, F.-X. 2011. Some hints on the evaluation metrics and tools for side-channel attacks. In Pro-
ceedings of the Non-Invasive Attacks Testing Workshop (NIAT’11). http://perso.uclouvain.be/fstandae/
PUBLIS/107 slides.pdf.

STANDAERT, F., VAN OLDENEEL TOT OLDENZEEL, L., SAMYDE, D., AND QUISQUATER, J. 2003. Power analysis of FPGAs:
How practical is the attack? In Proceedings of the 13th International Conference on Field Programmable
Logic and Application (FPL’03). Lecture Notes in Computer Science, vol. 2778, Springer, 701–711.

SU, C. P., HORNG, C. L., HUANG, C. T., AND WU, C. W. 2005. A configurable aes processor for enhanced security.
In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC’05). ACM Press,
New York, 361–366.

SUH, G. E., CLARKE, D., GASSEND, B., VAN DIJK, M., AND DEVADAS, S. 2003. AEGIS: Architecture for tamper-
evident and tamper-resistant processing. MIT, Memo-461.

TCPA – TRUSTED COMPUTING PLATFORM ALLIANCE. 2003. TPM main specification version 1.1b. Trusted Computing
Group.

TEHRANIPOOR, M. AND KOUSHANFAR, F. 2010. A survey of hardware trojan taxonomy and detection. IEEE Des.
Test 27, 1, 10–25.

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

41:32 L. Bossuet et al.

THEODOROPOULOS, D., PAPAEFSTATHIOU, I., AND PNEVMATIKATOS, D. N. 2008. CCproc: An efficient cryptographic
coprocessor. In Proceedings of 16th IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI’08). 160–163.

THEODOROPOULOS, D., SISKOS, A., AND PNEVMATIKATOS, D. N. 2009. CCproc: A custom vliw cryptography copro-
cessor for symmetric-key ciphers. In Proceedings of the 5th International Workshop on Applied Reconfig-
urable Computing (ARC’09). Lecture Notes in Computer Science, vol. 5453, Springer, 318–323.

TILLICH, S., GROSSSCHÄDL, J., AND SZEKELY, A. 2005. An instruction set extension for fast and memory-efficient
aes implementation. In Proceedings of 9th International Conference on Communications and Multimedia
Security (CMS’05). Lecture Notes in Computer Science, vol. 3677, Springer, 11–21.

TILLICH, S. AND GROSSSCHÄDL, J. 2006. Instruction set extensions for efficient aes implementation on 32-bit
processors. In Proceedings of the 8th International Conference on Cryptographic Hardware and Embedded
Systems (CHES’06). Lecture Notes in Computer Science, vol. 4249, Springer, 270–284.

TILLICH, S. AND HERBST, C. 2008. Boosting aes performance on a tiny processor core. In Proceedings of the
Cryptopgraphers’ Track at the RSA Conference on Topics in Cryptology (CT-RSA’08). Lecture Notes in
Computer Science, vol. 4964, Springer, 170–186.

TIRI, K. AND VERBAUWHEDE, I. 2005. A vlsi design flow for secure side-channel attack resistant ics. In Proceed-
ings of the Conference on Design, Automation and Test in Europe (DATE’05). Vol. 3, IEEE Computer
Society, Los Alamitos, CA, 58–63.

TREDENNICK, N. AND SHIMAMOTO, B. 2003. The rise of reconfigurable systems. In Proceeding of the Engineering
of Reconfigurable Systems and Application (ERSA’03).

VASLIN, R., GOGNIAT, G., AND DIGUET, J. P. 2006. Secure architecture in embedded systems: An overview. In
Proceedings of the Workshop on Reconfigurable Communication-Centric SoCs (ReCoSoc’06). 1–9.

VASLIN, R., GOGNIAT G., DIGUET, J. P., WANDELEY, E., TESSIER, R., AND BURLESON, W. 2007. Low latency solution
for confidentiality and integrity checking in embedded systems with off-chip memory. In Proceedings of
the Workshop on Reconfigurable Communication-centric SoCs (ReCoSoc’07).146–153.

VALTCHANOV, B., FISCHER, V., AUBERT, A., AND BERNARD, F. 2010. Characterization of randomness sources in ring
oscillator-based true random number generators in fpgas. In Proceedings of the 13th IEEE International
Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS’10). IEEE Computer
Society, Los Alamitos, CA, 48–53.

VERBAUWHEDE, I., HOORNAERT, F., VANDEWALLE, J., AND DE MAN, H. 1991. ASIC cryptographical processor based
on des. In Proceedings of the IEEE European Event in ASIC Design (EUROASIC’91). 292–295.

WANG, M. Y., SU, C. P., HORNG, C. L., WU, C. W., AND HUANG, C. T. 2010. Single- and multi-core configurable
aes architectures for flexible security. IEEE Trans. VLSI Syst. 18, 4, 541–552.

WEAVER C., KRISHNA, R., WU, L., AND AUSTIN, T. 2001. Application specific architectures: a recipe for fast, flexible
and power efficient designs. In Proceedings of the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES’01). ACM Press, New York, 181–185.

WOLLINGER, T., GUAJARDO, J., AND PAAR, C. 2004. Security on FPGAs: State-of-the-art implementations and
attacks. ACM Trans. Embed. Comput. Syst. 3, 3, 534–574.

WOLLINGER, T. AND PAAR, C. 2003. How secure are fpgas in cryptographic applications. In Proceeding of 13th

International Conference on Field-Programmable Logic and Applications (FPL’03). Lecture Notes of
Computer Science, vol. 2778, Springer, 91–100.

WU, L., WEAVER, C., AND AUSTIN, T. 2001. CryptoManiac: A fast flexible architecture for secure communication.
In Proceedings of the 28th Aannual International Symposium on Computer Architecture (ISCA’01). IEEE
Computer Society, Los Alamitos, CA, 110–119.

XILINX CORP. 2001. Virtex 2.5V field programmable gate arrays. Product specification DS003-1. http://www.
xilinx.com/products/silicon-devices/fpga/.

XILINX CORP. 2003. CryptoBlaze: 8-bit security microcontroller. Application note, XAPP374. http://www.
xilinx.com/support/documentation/application notes/xapp374.pdf.

XILINX CORP. 2010. PicoBlaze 8-bit embedded microcontroller user guide for spartan-3, saprtan-6, virtex-5 and
virtex-6 fpgas. User guide, UG 129. http://www.xilinx.com/products/intellectual-property/picoblaze.htm.

XILINX CORP. 2012. Virtex 7 series FPGAs overview. Advance product specification ds180. http://www.xilinx.
com/support/documentation/data sheets/ds180 7Series Overview.pdf.

ZHUANG, X., ZHANG, T., LEE, H. H. S., AND PANDE, S. 2004. Hardware assisted control flow obfuscation for
embedded processors. In Proceedings of the International Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES’04). ACM Press, New York, 292–302.

Received October 2011; revised February 2012; accepted June 2012

ACM Computing Surveys, Vol. 45, No. 4, Article 41, Publication date: August 2013.

