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Abstract. We propose a novel restoration method for defects and miss-
ing regions in video sequences, particularly in application to archive film
restoration. Our statistical framework is based on random walks to ex-
amine the spatiotemporal path of a degraded pixel, and uses texture
features in addition to intensity and motion information traditionally
used in previous restoration works. The degraded pixels within a frame
are restored in a multiscale framework by updating their features (inten-
sity, motion and texture) at each level with reference to the attributes
of normal pixels and other defective pixels in the previous scale as long
as they fall within the defective pixel’s random walk-based spatiotem-
poral neighbourhood. The proposed algorithm is compared against two
state-of-the-art methods to demonstrate improved accuracy in restoring
synthetic and real degraded image sequences.
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1 Introduction

Archived films suffer damage and quality degradation often through inappropri-
ate storage and wear and tear, but sometimes even at the time of production.
The most common types of defects are blotches and scratches which usually ap-
pear in one or more (consecutive) frames as black, or white, or semi-transparent
regions. However, degrees of degradation and their shape and size can vary due
to their random appearance. Quality control and restoration is therefore neces-
sary before such films are broadcastable again and indeed the preferred route
to preservation and rebroadcasting is digitisation and automated restoration - a
more economical and reversible process compared to the manual and tiresome
course of restoration by chemical and physical means, considering the enormous
amount of archives there exists. Figure 1 shows an example of a restored frame
from a clip we call Cliff.

An automated restoration system is usually composed of two modules, defect
detection and defect removal. Defect detectors such as [19,15,22,24] provide not
only quantitative measures as evidence for quality control but also defect maps
which can be used by others to perform defect removal. Thus in this paper, our
focus is on restoration and defect removal using defect maps generated from any
defect detection work, such as [24].
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Fig. 1. A degraded frame before and after restoration by the proposed method

One approach to the recovery of a degraded pixel is to replace it with an orig-
inal corresponding pixel along its projected motion trajectory from (temporal)
neighbouring frames. This clearly involves an accurate estimation of the degraded
pixel’s motion through space and time and helps enforce a local consistency by
imposing features besides just image intensities, i.e. motion vectors (leading to
consistent optical flows). The chances of more accurate recovery can be increased
by recruiting more significant features, e.g. texture features such as the Local
Binary Pattern (LBP) [20] (leading to consistent region representation). Unlike
previous methods such as [19,23,16,10], we consider multiple features in an in-
tegrated fashion and show that this provides better restoration than treating
the features separately. The computational expense incurred due to the use of
more features is an affordable tariff in our archive restoration application where
accuracy is of paramount importance.

In order to locate the optimal replacement for a degraded pixel, we estab-
lish a region of candidate pixels formed by a number of 3D random walks on
the spatiotemporal domain, starting from the defective pixel. In [9], spatial-only
random walks were applied for noise reduction by taking a weighted average
over all spatial pixels visited by the random walks, whereas we select the opti-
mal pixel-exemplar as the pixel which has the maximum likelihood of being the
original pixel - as defined by its intensity, motion and texture characteristics -
from this dynamically generated spatiotemporal region. We perform this search-
and-replace procedure for each degraded pixel in the defect map in a multiscale
framework to refine the restored pixels from coarse to fine. This multiscale refine-
ment particularly helps with large degraded regions which are forced to implode
gradually through the propagation of reliable outer pixels into the region.

The contributions of our approach are therefore as follows. We present a novel
pixel-exemplar based restoration algorithm using spatiotemporal random walks.
In comparison to current state-of-the-art archive film restoration techniques,
our method is more accurate by using more reliable statistics produced during
the random walks. Also, in addition to intensity and motion features, we employ
a higher order texture feature, i.e. one that is more complex than raw intensities.
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Finally, degraded pixels within a frame are collectively restored in a multiscale
framework by updating all their features (intensity, motion and texture), which
leads to more effective searching for optimal replacements (and significantly helps
in the restoration of degraded regions that are considerably larger than typical
defects). This means that at each scale the attributes of a defective pixel are
updated with reference to the attributes of normal pixels and other defective
pixels updated in the previous higher scale as long as they fall within the defective
pixel’s random walk-based spatiotemporal neighbourhood. Thus, there are more
constraints to contribute to the restoration of intensities.

In Sect. 3, our proposed method is presented. First, the fundamentals of 3D
random walks are introduced in Sect. 3.1. Then, our restoration algorithm is
described in Sect. 3.2, and is followed by the multiscale restoration scheme which
is briefly reviewed in Sect. 3.3. Finally in Sect. 4, we compare and evaluate our
proposed method against two state-of-the-art methods, i.e. [15] and [10], on a
variety of artificially degraded and real films.

2 Background

The task of filling in missing regions in single or consecutive frames is often
referred to as Inpainting, which originates from restoration in the world of Art.
It was first introduced into digital image restoration by Bertalmı́o et al. [1] who
adapted the original idea of artistic inpainting by propagating the surrounding
colour and structure into the missing area. Since then, inpainting has become
a popular topic in computer vision and most of the research is concentrated on
mainly two directions, i.e. image structure (non-texture) propagation methods
and exemplar (texture) based methods.

Examples of methods developed to recover image structure information in
degraded regions are [3,8] for edges and [18,4] for level lines. These usually require
complex image models with high order partial differential equations or calculus
of variations. Although such methods have proven to be effective solutions to
restoring small gaps in degraded images, they suffer from blurring side-effects
when dealing with large missing areas, e.g. they can fail to restore textural details
within the missing regions they recover.

Exemplar based inpainting methods [2,5] attempt to overcome these side-
effects. In a similar fashion to texture synthesis methods, e.g. [14,6], Criminisi
et al. [5] performed the propagation of textures using a block-based sampling
process, pointing out that the order of the filling process is critical for achieving
simultaneous recovery of image structure and texture. Wexler et al. [25] and
Patwardhan et al. [21] extended the algorithm in [5] by enlarging the sampling
region to a number of temporal neighbouring frames (forwards and backwards)
and both methods are designed to fill in space-time holes in video sequences with
stationery background and moving foreground in periodic motions. Patwardhan
et al.[21] further considered scenes with restricted camera motions by includ-
ing a motion segmentation procedure. In [10], instead of using a global search
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as performed in [25,21], Gangal et al. limited their search region to temporal
motion compensated neighbourhoods. These three methods ([25], [21], and [10])
inherited the shortcomings of [5]: (a) it is difficult to choose the optimal size of
an exemplar patch, considering that a larger patch will possibly bring artifacts
while a smaller one may cause mismatching, and (b) a mismatching of patches in
early stages will cause an incremental effect to the detriment of the final results.

We now focus on algorithms developed to restore missing scene information in
archive films specifically. There is a class of methods that have used filter-based
techniques applied to the entire image regardless of a defect map, e.g. the LUM
filter [13], the ML3Dex filter [17] and the SMF filter [12]. These methods are able
to go a long way in eliminating the defects but result in artifacts elsewhere in
the image by removing texture detail. Recently, a series of methods [19,23,16,15]
have applied statistical modelling to preform the defect detection and removal
stages under a single framework. As the state-of-the-art, Kokaram’s Bayesian
framework [15] attempted to model noise and scratches, and perform motion
adjustment together. Three binary variables were used for each pixel to mark
if a pixel is degraded, forward occluded or backward occluded. These variables,
together with restored image intensities and motion vectors, were defined as
unknowns. Given the pixel values of degraded frames and initial motion estima-
tions, a two-stage procedure was designed to estimate the variables and image
intensities first and then adjust the motion vectors according to neighbouring
motion vectors, before repeating this process for a fixed number of iterations. It
is worth noting that in [15], to perform motion adjustment for a degraded pixel,
the method relies on the accuracy of the pixel’s surrounding motion vectors.
During the iterative processing, motion information is improved separately and
with no reference to the improved intensities. However as stated earlier, in our
work, we update the motion vectors of a defective pixel in a multiscale process
with reference to all attributes (i.e. intensity, motion and texture) of normal
pixels and other defective pixels (updated in the higher scale) as long as they
fall within its spatiotemporal random walk-based neighbourhood.

We assume defect maps D = {dx, dx ∈ {0, 1}} for an archive film sequence
are available using any reasonably accurate defect detection algorithm, e.g. the
HAFID-STC defect detector proposed by Wang and Mirmehdi [24]. The label
dx = 1 states that pixel x is degraded. The method proposed in [24] first trains
a Hidden Markov Model (HMM) for defect-free temporal pixel sequences across
a large number of frames which is then applied to unseen temporal pixel se-
quences to detect defects. However, this results in a considerable number of false
alarms, which are then eliminated in [24] through a two-stage removal process
based on (a) MRF modelling for false alarms that have strong correlation with
their neighbours and (b) localised feature tracking for those that can be traced
temporally. They achieved improved results in comparison to other techniques
such as [15] and [22] and hence their approach is used to generate the input to
our restoration process described here, although binary defect maps from any
other technique will also be applicable.
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3 Proposed Method

Traditional pixel-exemplar or patch-exemplar based restoration methods such
as [7,25,10], search for the optimal exemplar amongst a square or rectangular
region of pixels using sliding windows. A novel feature of our proposed method
is that for each defective pixel examined, we explore a dynamically generated,
random-walk based region of candidate pixel-exemplars to select the optimal
replacement from. Every pixel in this region shares a significant similarity with
the previous pixels in the region as defined by their features, i.e. intensity, motion
and texture. A random walk starts from a degraded pixel and stops when it
reaches a strong boundary in terms of a significant change in all the pixel features.
The size of the region is thus determined on-the-fly and is based on the length of
all the random walks (for the current defective pixel). We perform an empirically-
determined fixed number of random walks for a degraded pixel to form a region
(see Sect. 4 for details).

After building the region of candidate pixel-exemplars for a degraded pixel,
we assign to each of them a likelihood of being the optimal replacement for the
degraded pixel. This is obtained for each pixel-exemplar by first computing the
average (geometric mean) of transition probabilities during each random walk
which starts from the degraded pixel and visits the pixel-exemplar. Then the av-
eraged probabilities from these random walks are summed up to get a measure
of the similarity between the pixel-exemplar and the rest of the pixel-exemplars
in the region (recalling that the transition probabilities are an indication of pixel
similarities in a path). The higher this value, the higher is the similarity. This is
then weighted by a reliability value, which measures the degree of degradation
for each pixel-exemplar, to obtain its likelihood value. The pixel-exemplar with
the maximal likelihood will be selected to replace the target degraded pixel. This
means that the selected pixel is the optimal representation of the spatiotemporal
random walk-based region of candidates - with relatively low (to possibly no)
degree of degradation - to restore the current degraded pixel. The above pro-
cessing is performed in multiscale for all degraded pixels within a frame along
with their reliability values, refining the updated pixels’ features from coarse to
fine.

3.1 Preliminaries and Definitions

Next, we state the fundamentals of a 3D random walk on an image sequence
and then express the probability of a random walk sequence in the context
of our application. We define the input image sequence as an undirected and
weighted graph G = (V, E) with vertices (nodes) vx ∈ V and edges ex′ ,x′′ ∈
E ⊆ V × V . Each edge ex′ ,x′′ is assigned a weight wx′ ,x′′ where wx′ ,x′′ > 0 and
wx′ ,x′′ = wx′′ ,x′ . An image pixel x at location (i, j, t) (1 ≤ i ≤ Width, 1 ≤ j ≤
Height, 1 ≤ t ≤ Length) is represented as a node vx(vx ∈ V ) in graph G where
Width × Height× Length defines the image sequence volume.

A random walk sequence Path0,K = {x0,x1, . . . ,xK} with length K + 1 on
graph G is specified as a sequence of nodes (pixels) which is a Markov process.
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The probability of the transition p(xk|xk−1) between consecutive pixels xk−1

and xk is given as the weight wxk−1,xk on the edge exk−1,xk . According to the
Markov property of Path0,K , the probability of a Path0,K starting at pixel x0

is defined as

p(Path0,K) =
K∏

k=1

p(xk|xk−1) =
K∏

k=1

wxk,xk−1 , (1)

where P = {Pathm
0,Km

}M
m=1 is a set of M random walks on graph G, with each

walk starting from x0. Furthermore, we define the region of candidates or pixel-
exemplars Rx0 =

⋃M
m=1 Pathm

0,Km
as the set of all pixels visited by the random

walks in P . The neighbourhood for a pixel, the associated edge weights, and the
walk length are expressed as follows:

Neighborhood Nx: For each pixel x on a walk, we define a 3×3×3 spatiotempo-
ral motion compensated neighbourhood Nx centred at x. In Nx, we denote the
connection between pixel x and x′(x′ ∈ Nx,x′ �= x) as edge ex,x′ with a weight
wx,x′ . For each step in a random walk, a transition from the current pixel x to
one of its 26 direct neighbours x′(x′ ∈ Nx) is permitted.

Edge Weights: In the same fashion as previous graph-based methods, e.g. [11],
the edge weights are defined by a function that evaluates the similarity of two
consecutive pixels during a random walk so as to bias it to stop the walk when
a significant decrease in similarity is observed. Here, we define edge weights as
the probability of pixels x and x′ being identical, measured by using a number
of different pixel features,

wx,x′ =
1
T

Q∏

q=1

exp{−ϕ2
q(x,x′)
2σ2

q

}, (2)

where T is a normalization constant, σq is the standard deviation for pixel fea-
ture q, and ϕq(·) measures the Euclidean distance between pixel x and x′ in
feature space Fq. A variety of pixel features can be used to measure the similar-
ity between two pixels and here we apply four (i.e. Q = 4); these are intensity,
forward and backward motion, and the local LBP texture pattern:

ϕ2
q(x,x′) = 1

Jq

∑Jq

j=1 (Zj
q (x) − Zj

q(x′))2, (3)

where Zq = {I,Vf ,Vb,L} for q = {1..4}, I represents RGB intensity maps with
J1 = 3, Vf

x and Vb
x represent forward and backward motion vector maps with

J2 = J3 = 2 respectively, and L represents maps of 2D image LBP patterns in
a spatial 3 × 3 neighbourhood with J4 = 8. The addition of a texture feature,
along with a more integrated contribution of all the features used through (3),
and subsequently (5), is an essential improvement on other works in archive
film restoration, such as [15] and [10]. The extra texture feature is specifically
appropriate to enforce a constraint in textured regions to help select the pixels
that can be included in the region of candidates during the random walks.
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Walk Length. We control the length of a random walk by monitoring p(Path0,K)
in the same manner as proposed in [9]. Since we are preforming a biased random
walk by encouraging transitions between similar neighbours, the random walk
will be terminated if p(Path0,K) is smaller than a threshold. This will prevent
random walks from stepping across strong boundaries in terms of significant
changes of all pixel features. A walk will also be terminated if it hits a hard
boundary, i.e. the image boundaries on the spatial domain and the first and last
frames on the temporal axis.

3.2 Restoration of Degraded Pixels

We restore all pixel features of a degraded pixel by replacing the degraded pixel
with the optimal pixel-exemplar selected from its region of candidates, which
has the maximal likelihood of being the original pixel. The selection procedure
is as follows.

For each pixel-exemplar x in a degraded pixel’s region of candidates, i.e. Rx0 ,
the similarity between x and the rest of the pixel-exemplars in the region is
measured based on the probabilities of random walk paths which start from the
degraded pixel and visit the pixel-exemplar, represented as

Ax =
M∑

m=1

Km∑

k=1

(
p(Pathm

0,k)1/k · δ(xk = x)
)

, (4)

where δ(·) is the Dirac delta function. In order to measure the similarity among
all pixel-exemplars in a random walk path regardless of the length of the path,
we compute the geometric mean of their transition probabilities. Provided we
preform a sufficient number of spatiotemporal random walks, the sum of their
averaged probabilities suggests the similarity between the pixel-exemplar and
the rest of the pixel-exemplars in the region. This is influenced by the way
spatial random walks are used in [9] to examine the transition probabilities
(i.e. similarity) of pixels along a path in their image denoising application. The
reason why we use this value instead of using other measurements, e.g. a count
of random walks that visit the pixel-exemplar, is because this value indicates if
the pixel-exemplar provides random walks with a smooth transition from their
previous locations to this pixel-exemplar, e.g. if the probabilities of random walk
paths decrease significantly after they visit this pixel-exemplar, this value will
be probably small even though this pixel-exemplar has been visited by a large
number of random walks. The optimal pixel-exemplar is then selected as

x̂0 = arg max
x∈Rx0

(Ax · r(x)) , (5)

where r(·) indicates the reliability of a pixel-exemplar based on its degree of
degradation. For normal pixels, r(·) is 1 while a degraded pixel is initialised to
the likelihood of being identical to all its defect-free neighbours in Nx:

r(x) =

{
1∑

x′∈Nx
δ(dx′)

∑
x′∈Nx

wxx′δ(dx′) dx = 1
1 dx = 0

(6)
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Fig. 2. (from left) A sample image pyramid, the defect map pyramid, and the restored
results using the proposed method. The degraded regions are gradually recovered from
coarse to fine and from the boundaries to their inner part.

Note also that by this definition, a false alarm pixel is more likely to be initialised
with a high r(·) value, given it is likely to be more similar to its defect-free
spatiotemporal neighbours than to real degraded pixels. After a degraded pixel
is replaced with a specific pixel-exemplar, its reliability value is updated with:

r̂(x) =
1

|Nx|
∑

x′∈Nx

r(x′). (7)

During the multiscale updating algorithm (reviewed next), the r(·) value for
a degraded pixel will approach 1 after a number of updates. For a degraded
pixel near the boundary of a degraded region, the r(·) value will reach 1 faster
than an inner pixel considering it is surrounded by more reliable spatiotemporal
neighbours (normal pixels). Thus, during the multiscale refinement, a degraded
region will gradually implode through the propagation of more reliable outer
pixels in the region. For an example see Fig. 2.

Additionally, since a pixel in a false alarm region may be initialized with a
larger r(·) value (as noted above) than a real degraded pixel, then the false alarm
pixel is more likely to obtain an optimal replacement considering more reliable
candidates are present in its random walk-based neighbourhood.

3.3 Multiscale Refinement

Given an image sequence and its defect map, we build pyramids for each frame
and its corresponding defect map by downsampling the original by a factor of
2 after smoothing with a 5 × 5 Gaussian kernel. A sample image pyramid and
its associated defect pyramid are shown in Fig. 2. After restoring the degraded
pixels’ features on a current level of the pyramid, we upsample these pixels to
the next level and then update their corresponding pixels’ features in that level.
This level-by-level refinement and restoration process continues until it reaches
the lowest level of the pyramid (see Algorithm 1).
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Algorithm 1. The multiscale restoration algorithm
Build pyramids {Is}S

s=1 and {Ds}S
s=1;

Initialize scale s = 1: Compute motion vector maps Vf
1 , Vb

1, L1, and r1;
while s ≤ S do

if s > 1 then
Update Is, Vf

s , Vb
s, Ls by Is−1, Vf

s−1, Vb
s−1; /*Only on degraded sites*/

end if
(Is+1,V

f
s+1,V

b
s+1, Ls+1) = Restoration(Is, Vf

s , Vb
s, Ls, Ds);

Update rs+1 using equation (7);
if s < S then

Upsample Is+1,V
f
s+1,V

b
s+1,rs+1by factor 2; /*For every scale but the last*/

end if
s = s + 1;

end while

4 Experimental Results and Discussion

We present the restoration performance of the proposed algorithm on both arti-
ficially degraded and real sequences, and compare our results against two state-
of-the-art techniques: Kokaram’s Bayesian framework [15] and Gangal and Diz-
daroglu’s exemplar-based method [10], hereafter referred to as Kokaram04 and
GD06 respectively. The defect maps for both GD06 and the proposed method
were produced in advance using the HAFID-STC defect detector [24] while
Kokaram04 has an integrated defect detector. All methods were tuned for opti-
mal performance using constant parameter values across all experiments.

Synthetic defects - The proposed method was compared against Kokaram04
and GD06 on restoring five artificially degraded real sequences totalling 1500
frames, namely Mobile Calendar, Container, Foreman, News and Paris. The de-
graded sequences were produced by adding synthetic black and white defects of
sizes of between 1 and 6000 pixels on a random basis. For each method, the Mean
Square Error (MSE) to measure the difference between the original defect-free
frame F and the restored frame F̂ was computed:

MSE(F, F̂ ) =
1

Width × Height× 3

∑

x∈F

3∑

i=1

(F i
x − F̂ i

x)2 (8)

Columns 2 through to 5 in Table 1 show the MSEs for four randomly selected
sample frames from the Mobile Calendar, Container, Foreman, News and Paris
sequences respectively. The percentage of degraded pixels in each frame is listed
along with the frame number along the top row. The raw, unrestored frame
error rate is shown along the ‘Degraded’ row in each case. The last column
in Table 1 shows the average MSEs across all frames in each of the synthetic-
error sequences for each method; for example for the Foreman sequence, given
the average true MSE rate of 153.4, the proposed method resulted in the lowest
error at 44.7 compared to Kokaram04 and GD06 at 130.3 and 103.1 respectively.
The proposed method performed much better in all the experiments, avoiding
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the creation of too many artifacts (see e.g. Fig. 3) compared to Kokaram04 and
GD06, and was also more capable of restoring large defects (e.g. Frame 233 of
the News sequence). Note the introduction of artifacts during restoration by all
three methods, may lead to MSE errors that are larger than the raw original
whose MSE is only based on synthetic defects.

Real defects - We compared the three methods on restoring a variety of real
degraded image sequences, including greyscale and colour, indoor and outdoor
scenes, and slow and fast motions, and in all cases the proposed method produced
the best results. In the following, three sets of sample results are illustrated to
inspect three aspects of the proposed method, i.e. recovering a large degraded
region and substantially avoiding artifacts in Fig. 3, handling defect-free (false
alarm) pixels in Fig. 4, and correcting motions in Fig. 5.

Table 1. Comparison of MSEs on real sequences with synthetic errors

Mobile Calendar

Frame # 32 (0.07%) 58 (0.11%) 181 (3.47%) 233 (0.03%) Avg (0.62%)

Degraded 16.3 31.8 651.5 56.6 183.5

Kokaram04 210.6 89.9 293.6 92.5 157.3

GD06 128.7 80.7 196.8 123.5 135.9

Proposed 23.4 19.5 105.9 46.7 49.2

Container

Frame # 9 (0.06%) 23 (0.21%) 138 (2.44%) 210 (0.06%) Avg (0.60%)

Degraded 15.7 80.7 451.1 15.7 119.1

Kokaram04 7.6 3.5 93.4 2.8 33.9

GD06 0.9 0.8 96.3 3.2 23.8

Proposed 0.6 0.6 45.1 3.3 10.5

Foreman

Frame # 33 (0.12%) 65 (0.24%) 98 (0.23%) 199 (0.02%) Avg (0.55%)

Degraded 29.7 45.8 40.8 5.3 153.4

Kokaram04 70.5 155.32 89.84 74.0 130.3

GD06 95.3 149.12 95.87 68.5 103.1

Proposed 21.4 51.38 40.37 10.7 44.7

News

Frame # 113 (0.08%) 165 (0.05%) 233 (2.47%) 291 (0.21%) Avg (0.61%)

Degraded 31.5 15.2 751.5 66.9 154.5

Kokaram04 159.9 218.3 289.1 89.5 140.7

GD06 140.7 125.7 205.3 113.5 125.3

Proposed 49.5 27.7 119.8 54.4 54.2

Paris

Frame # 81 (0.16%) 123 (0.01%) 158 (1.34%) 280 (0.10%) Avg (0.60%)

Degraded 80.7 15.7 537.1 85.3 122.1

Kokaram04 30.5 25.6 107.1 11.3 63.9

GD06 21.8 27.9 122.3 15.4 83.8

Proposed 13.4 14.3 69.3 6.3 33.5
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Fig. 3. Cliff - Comparing large missing area recovery. Top: original frame and the defect
map in red; Middle: restoration results from Kokaram04, GD06, and the proposed
method; Bottom: enlargement of selected areas.

Fig. 3 shows the results on a sample degraded frame with a large missing area.
The original frame and the defect map (in red) are shown in the top row. The
results by Kokaram04, GD06, and the proposed method are in the middle row
and a close-up of the degraded area is shown in the bottom row. Kokaram04
results in a considerable number of artifacts in the restored frame because its
performance strongly depends on the accuracy of motion information. Its motion
correction procedure is not designed for such large missing areas, but rather for
small degraded areas with accurate motion information provided in their spatial
neighbouring regions. While GD06 is able to restore the outline of the man’s
head, it introduces some artifacts in the inner region due to the mismatching of
patches in an early stage. Although the proposed method still causes some small
artifacts, both the image structure and texture are recovered well.

In Fig. 4 we investigate the restoration performance of the three methods
on handling false alarm pixels. A sample degraded frame and its corresponding
defect map are in the top row, and restoration results from Kokaram04, GD06
and the proposed method follow in the bottom row. In this example all methods
do well in restoring the real degraded pixels. However, both Kokaram04 and
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Fig. 4. Policeman - Comparing restoration of false alarms. Top: original and its defect
map; Bottom: restoration results from Kokaram04, GD06, and the proposed method.

Fig. 5. Coffee - Comparing motion correction. (from left) Original frame with overlaid
defects, Original motion vectors, Corrected motion vectors from Kokaram04 and the
proposed method.

GD06 lose considerable detail, e.g. the policeman’s hand is missing in the frame
restored by Kokaram04, and artifacts are introduced across the telephone and
the policeman’s hand in the frame restored by GD06.

The final example presents a comparison between Kokaram04 and the pro-
posed method on correcting motions for degraded pixels. The motion vectors
overlaid on an original frame are shown in the second image from left in Fig. 5.
The correction results from Kokaram04’s integrated motion correction algorithm
and the proposed method follow this respectively. During Kokaram04’s iterative
process, motion information is improved separately and with no reference to
the improved intensities; this means its correction is limited by the accuracy
of initial motion estimations which are often inaccurate by the presence of de-
fects. The proposed method outperforms Kokaram04 by achieving more accurate
motion correction for each defective pixel by reference to their spatiotemporal
random-walk neighbours through the multiscale process.
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Performance and Implementation Issues - All methods were imple-
mented in MATLAB on a laptop with Intel Core Duo 2.4 GHz and 2GB RAM.
The average speed for a degraded frame of average size of 480 × 360 was 406
seconds for our proposed method, while Kokaram04 and GD06 needed 174 and
265 seconds respectively. Our proposed algorithm is slower but more accurate
than Kokaram04 and GD06, since it considers an extra feature and requires con-
siderable sampling by the random walks. We experimented with different values
of M by using different random seeds for each random walk. M = 800 was found
to provide stable results and reasonable computing costs. The number of steps
in each random walk often varied from 2 to 48. Since accuracy is critical for the
restoration of archive films, the extra computational burden is a tolerable cost.

5 Conclusion

We presented a novel pixel-exemplar based restoration algorithm using spa-
tiotemporal random walks. The random walks are formed by considering pixel
similarities using multiple features. The method is applicable given a defect map
generated by any archive film defect detection algorithm. While the use of mul-
tiple features adds to our computational costs, we obtain much more accurate
and artifact-free results than current state-of-the-art techniques.
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