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Many researchers working on the phyloge-
netic analysis of nucleotide or amino acid se-
quences ®nd it necessary, at some time, to build
upon prior work. When this involves importing
an alignment (and masks) that have been des-
cribed and sometimes illustrated in a published
paper but for which the sequences have not
been deposited in a public database, there
may be no alternative but to painstakingly
retype the data, with all the possibilities that
this o�ers for error. M ore commonly, the un-
aligned sequences may be available from a se-
quence database, but the awkward task of man-
ual alignment reconstruction remains. Most
conveniently , alignments may be available as
computer ®les (1) on disk, by application to the
corresponding author, (2) from an ftp or http
site maintained by the corresponding author or
his institution, or (3) from an alignment data-
base. However, when received by these routes,
an alignment (and masks) may well be in a ®le
format that requires tedious, error-prone word-
processing adjustment to make it readable by
a sequence alignment editor or phylogenetic
analysis program. Moreover, of the three
approaches, the ®rst two are potentially eva-
nescent and the third su�ers from underuse and
lack of ®le-format standardization (Stoesser,
pers. comm.). M asks and weighting informa-
tion, when presented PHYLIP-style (Felsen-
stein, 1993) as a string of digits, o�er a parti-
cular di�culty; few alignment editors or phy-
logenetic analysis programs that we have
encountered can import them successfully.
Given these di�culties, we propose that it

should become standard practice in molecular
phylogenetics for alignments, masks, and sup-
plementary information to be made available in
NEXUS ®le format by use of the EM BL align-
ment database.

NEXUS ®le format is an ASCII text-®le for-
mat that was ``designed to make sharing of data
between programs as easy and ¯exible as pos-
sible’’ (M addison and M addison, 1992: p.145;
Maddison et al., 1997), Importantly, NEXUS
®le format provides unlimited ¯exibility, by
the use of character partition and assumption
blocks, for the identi®cation of special cate-
gories of data such as masks, weights, second-
ary structure features, etc., and comments can
be freely added. NEXUS ®les are written auto-
matically by some alignment editors, including
GDE (Smith et al., 1994), MacClade (Maddison
and M addison, 1992) and SeqApp (Gilbert,
1993), and most such programs also provide
®le-format interchange facilities. Alternative-
ly, NEXUS ®les may readily be constructed
by hand from published descriptions (Swof-
ford, 1993; Maddison et al., 1997). Many phy-
logeneticists already use or have access to pro-
grams that read and write NEXUS ®les, and
many more are likely to do so after publication
of the new multicapable PAUP* (Swo�ord,
pers. comm.).

The existence of a sequence alignment data-
base separate from the GenBank (Benson et al.,
1998), EM BL (Stoesser et al., 1998), or other
databases for individual sequences is little
known, but would certainly be advantageous
if it were widely used and if its use were stan-
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dardized. The possibility of such standardiza-
tion has been discussed by the EM BL database
sta� , but these discussions and input from ex-
ternal users and experts in the ®eld suggest a
wide spectrum of opinions concerning possible
alignment formats, and some feel that deposit-
ing alignments may not be worth the e�ort
since sequences get updated frequently and
alignments get out of date (Stoesser, pers.
comm.). Nevertheless, in our view, the phylo-
genetic community should itself make an ap-
proach to standardization by adopting the
NEXUS format. Because alignment and mask-
ing are still somewhat subjective procedures
and because existing routes for the dissemina-
tion of aligned sequences are both unstable and
tend to restrict access to all but the most deter-
mined, the e�ects of alternative alignments and
masks are rarely explored by anyone other than
the original author(s). It would be healthier
science (though perhaps less comfortable) if
alignments were more readily available, as
they would be if routinely archived as we
suggest.

The EM BL alignment database may be
accessed as follows:

Ð EBI FTP server: by anonymous FTP from
FTP.EBI.AC.UK in directory /pub/data-
bases/embl/align

Ð EBI ®le server: by sending an e-mail mes-
sage to: netserv@ ebi.ac.uk that includes

the line HELP ALIGN or GET ALIGN:
DSXXXXX.DAT where DSXXXXX is an
alignment accession number

Ð EBI WWW server: URL
ftp://ftp.ebi.ac.uk/pub/databases/embl/align/
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Baum (1992) and Ragan (1992b) indepen-
dently devised a method that uses additive
binary coding and parsimony to combine
trees derived from di�erent data sets, a proce-
dure Ragan termed matrix representation with
parsimony analysis (MRP). Because the meth-
od utilizes the topology of source trees rather
than the original data, (1) trees derived from
di�erent data types (e.g., molecular sequences,
morphological characters, pairwise distances)
and analyzed by di�erent clustering techniques
(e.g., maximum parsimony, maximum likeli-
hood, neighbor joining) can be combined, and
(2) the source patterns are evaluated on a more-
or-less equal basis, so that the phylogenetic
signal from data matrices with a smaller number
of characters is not swamped by those with
a larger number (see M iyamoto, 1985; Hillis,
1987). The method is also unusual in that (1)
trees with di�erent terminal taxa can be com-
bined, a feature that among consensus methods
characterizes only the supertree method (Gor-
don, 1986; Steel, 1992) and the modi®ed semi-
strict algorithm of Lanyon (1993), and (2) it is
less sensitive to con¯ict among source trees
than are most conventional consensus techni-
ques so that resolution is not necessarily lost as
increasing numbers of con¯icting trees are ana-
lyzed (see also Purvis, 1995b).

Although the appropriateness of MRP to
phylogenetic inference has been discussed
(Baum and Ragan, 1993; Rodrigo , 1993, 1996;
Bruneau et al., 1995) and modi®cations to the
method have been proposed (e.g., Purvis,
1995b; Ronquist, 1996), its properties, mech-
anics, and biases have not been considered in
su�cient depth. We discuss some of the prop-
erties of M RP, show how M RP di�ers from

standard consensus techniques, and explore
some modi®cations to the method. Although
other clustering methods, such as compatibility
(Ragan, 1992a; Purvis, 1995b; Rodrigo, 1996),
have also been suggested as methods for gen-
erating composite trees by using matrix repre-
sentation, we will not discuss them.

THE BASIC PRO CEDURE AND SUGGESTED

M O DIFICATIO NS

M RP uses additive binary coding (Farris et
al., 1970) to represent the hierarchical structure
of trees as a series of ``matrix elements’’ (Baum
and Ragan, 1993:637). Each node (i.e., compo-
nent; sensu Wilkinson, 1994) on each source
tree is represented by a binary matrix element,
with terminal taxa in the clade delimited by that
node scored as 1 and all other taxa scored as 0.
Taxa that are missing from an individual source
tree are coded as missing for elements that
represent that tree. Trees are rooted either by
an all-zero outgroup (Ragan, 1992b; Purvis,
1995b) or by using a taxon common to all
source trees (Baum, 1992). Parsimony analysis
of the element matrix produces a tree or trees
(hereinafter, the composite tree[s]; Purvis,
1995a) that most parsimoniously synthesize(s)
the hierarchical information in the source trees
(for details, see Baum, 1992; Ragan, 1992b).
Analyses that generate multiple most-parsimo-
nious composite trees (M PCTs) are summar-
ized by using strict consensus to generate a
consensus composite tree (CCT).

Purvis (1995b) argued that the topology of
particular source trees can unduly in¯uence that
of the composite tree (Fig. 1). He attributed this
to the lack of independence among elements
derived from a source tree, which adds redun-
dant information to the matrix. He removed
this apparent redundancy by coding taxa that
are in neither the clade delimited by the node
nor its sister taxon as ? rather than 0. As with
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unmodi®ed MRP (Ragan, 1992b), parsimony
analysis of the elements derived from one
source tree recovers the correct topology
(Purvis, 1995b).

Ronquist (1996) demonstrated that this
modi®cation to the coding procedure is ¯awed.
He showed that the information content of
matrices generated with Purvis’s (1995b) meth-
od is less than that generated by standard addi-
tive binary coding and demonstrated that
Purvis’s method does not always achieve its
goals. Also, because of the speci®c manner by
which Purvis’s coding adds missing data to the
matrix, the relative positional stability of taxa is
altered (Ronquist, 1996; his Fig. 3) so that the
position of a taxon on the composite tree is
in¯uenced more by source trees on which it is
further from the base. We would add that

although the zeros replaced under Purvis’s
method are not strictly informative because
they denote the lack of membership of taxa in
components, they provide essential, restrictive
information regarding the position of a taxon
on its source tree that might become important
when its elements are combined with those
from other source trees.

Ronquist (1996) concluded that the bias
described by Purvis (1995b) was associated
not with redundant information but with the
relative sizes of the source trees. Purvis’s meth-
od proportionately reduces the in¯uence of
larger trees because they contribute a propor-
tionately larger number of missing data points
to the element matrix. Ronquist argued that the
di�erence in the amount of information con-
tributed by each source tree could be removed
by inversely weighting each tree according to
its number of internal branches (i.e., nodes).
However, Ronquist favored weighting based
on the support for nodes as measured by
Bremer’s decay index (Bremer, 1988) or the
bootstrap (Felsenstein, 1985), both of which
he implied would also compensate for any
size bias.

Ronquist’s (1996) analyses focused largely
on the ability of various coding and weighting
options to represent the information in a single
source tree (and the original data set), rather
than the ability of M RP to appropriately com-
bine the information provided by multiple
source trees in a single topology. O ur discus-
sion focuses more on the latter.

PRO PERTIES O F M RP

M atrix Elements versus Characters

We have referred to the coded components
of source trees as ``matrix elements’’ rather than
as ``characters’’ because the two are not equiva-
lent (Baum and Ragan, 1993). Characters are
attributes of organisms. In contrast, a matrix
element refers to a component of a tree and is
a membership criterion. M atrix elements also
di�er from characters in that groups of ele-
ments representing a single source tree are
necessarily congruent, forming a clique of ele-
ments. Con¯icts between matrix elements from
di�erent source trees often involve other ele-
ments from their respective source trees, with
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FIGURE 1. Purvis’s (1995b) con īcting source trees (a,
b) (with components numbered), and the combined ele-

ment matrix (c). M RP analysis of the matrix results in tree
a. Purvis’s method results in an unresolved CCT.
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members of each clique of elements supporting
one another.

Although characters are also occasionally
derived by using additive binary coding, the
requisite use of additive binary coding in
MRP results in nonindependence among
matrix elements. This nonindependence im-
plies that, compared to standard character
matrices, goodness-of-®t indices should be in-
terpreted di�erently (e.g., the CI would have a
higher minimum value and would presumably
measure the agreement among source trees) and
some statistical methods may be inappropriate
(e.g., bootstrap analysis; see Felsenstein, 1985;
Purvis, 1995b).

Does M RP Combine Nodes or Trees?

Although M RP is described as a method for
combining trees (Baum, 1992; Ragan, 1992b;
Purvis, 1995b; Ronquist, 1996), matrix ele-
ments represent the nodes on those source
trees. As a result, source trees can contribute
di�erent amounts of information; trees with
more nodes (due to having more taxa or greater
resolution or both) contribute more elements
to the matrix and therefore generally have a
greater in¯uence on the topology of the com-
posite tree. Thus, the claim that MRP elimi-
nates the e�ect of data matrix size (Baum,
1992; Ragan, 1992b) applies to the number of
characters but not to the number of taxa.

However, the claim that MRP favors larger
source trees (Ronquist, 1996) is inaccurate.
Despite the di�erence in size of the two source
trees in Figure 2, clade (A, B, C) is unresolved in
the CCT (Fig. 2c) because each source tree pro-
vides one (con¯icting) piece of information re-
garding its resolution. The relative number of
matrix elements provided by the source trees
determines the resolution of regions of con¯ict
([A, B, C] in this example). The placement of
taxa D ± H is determined by the larger tree,
which provides the only information concern-
ing their positions. In other words, a size bias
occurs only when the ``missing nodes’’ (missing
taxa or polytomies) are located within the re-
gion of con¯ict among the source trees. In
Purvis’s (1995b) example (Fig. 1), the region
of con¯ict coincides with the entire tree.

This bias towards trees with more informa-
tion (nodes) in regions of con¯ict may or may

not be perceived as a problem. Trees with more
nodes possess more hierarchical clustering in-
formation; this provides the basis for the argu-
ment that these trees should have a greater
contribution to that region of the composite
tree. In Figure 1, MRP results in the topology
of the larger tree because both elements from
Figure 1a support (A, B)D and therefore over-

1998 PO INTS O F VIEW 499

FIGURE 2. Demonstration of the localized nature of
the size bias in M RP. Although tree a is much larger

than tree b, the CCT (c) is unresolved in the region they
share (A, B, C), re¯ecting the equal information content of
the two trees in this region. (d) The intuitively erroneous

result that results from inversely weighting the source
trees according to their number of nodes.
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rule the single con¯icting element from Figure
1b. From this node-based perspective, whereby
trees are viewed as solely the sum of their
nodes, any size bias associated with MRP is
appropriate.

From a tree-based perspective, however,
each source tree is seen as a holistic entity
that should have equal input into the topology
of the composite tree. Purvis (1995b) noted
that no placement of C on Figure 1b yields
agreement with Figure 1a; as a result, he argued
that the composite tree should be unresolved
and that the bias of M RP toward the larger tree
was inappropriate. Purvis’s (1995b) argument,
and this perspective as a whole, tacitly assumes
that the addition of C to Figure 1b will not
alter other relationships on that tree (see also
Arnold, 1981; Donoghue et al., 1989; Lecointre
et al., 1993), possibly to a pattern more similar
to that on Figure 1a.

The use of MRP under a tree-based perspec-
tive requires correction for the bias toward
trees with more nodes in regions of con¯ict.
Inversely weighting elements based on the
number of nodes on the source tree so that
the total weight of each tree is equal
(Ronquist, 1996) fails when the region of con-
¯ict forms only part of one or more of the
source trees; it ignores the local nature of the
size bias. For example, if the nodes on the trees
in Figure 2 are inversely weighted, the compo-
site tree includes A(B, C) (Fig. 2d); in contrast,
unweighted M RP leaves (A, B, C) unresolved
on the CCT, the intuitively correct result. Thus,
weighting must be applied only to the con¯ict-
ing regions between source trees, which be-
comes increasing ly complex as more source
trees are combined.

Di�erentiation between node- and tree-
based perspectives is relevant methodologi-
cally only when the source trees have di�erent
terminal taxa or distributions of resolved
nodes. Until recently, techniques that summar-
ized multiple trees on a single topology dealt
with multiple equally most-parsimonious trees
(M PTs) derived from a single data set, among
which di�erences in the number of nodes arose
only from di�erences in resolution. With the
development of MRP and other methods that
combine trees with di�erent terminal taxa, the
question of whether a tree is equal solely to the
sum of its nodes (see Adams [1986] for a dis-

cussion of this issue within a di�erent context)
has become an issue.

Novel Components

In the discussion of his composite tree syn-
thesizing previous phylogenetic hypotheses
concerning extant primates, Purvis (1995a:
414) claimed that ``because all of the informa-
tion on which it is based has been published
previously, the composite tree cannot contain
any clades that have not been implied by any
previous study.’’ Although this statement was
intended to apply only to his modi®ed coding
method (A. Purvis, pers. comm.), it is also true
of most consensus methods, which simply ac-
cept or reject components on the basis of agree-
ment among the source trees. O ne exception
is Adams consensus (Adams, 1972), which
resolves disagreement among source trees by
placing taxa of uncertain position as part of
a polytomy at the least inclusive common
node (Wilkinson, 1994). In contrast, the use
by M RP of parsimony to produce the com-
posite tree provides the potential that incon-
gruence among the matrix elements may
generate novel clades. This potential may be
increased by the ability of MRP to combine
trees with di�erent terminal taxa.

In Figure 3, the CCT (Fig. 3c) includes a clade
(marked with a solid circle) that is not present
in either source tree (Figs. 3a, 3b). The CCT
resembles Figure 3a except that Pteronura clus-
ters with Lutrogale, as on Figure 3b. Pteronura’s
membership in three components on Figure 3b
appears to outweigh the evidence for a more
basal position (Fig. 3a). The overall resem-
blance of the CCT to Figure 3a re¯ects the
polytomies (lower information content) in
Figure 3b.

The creation of novel clades appears to be
uncommon. In the results of Bininda-Emonds et
al. (in review), only 8 of the 198 nodes (4.0%)
on the 13 composite trees occurred on none of
the 274 source trees. The apparent rarity of
novel clades may be related to the congruence
among the matrix elements derived from each
source tree, which may reduce the ability of
individual elements from di�erent source trees
to interact in new combinations to form novel
components. Most novel clades found in our
analyses occur on only a fraction of a set of
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MPCTs and therefore are subsumed within a
polytomy when the MPCTs are summarized
by use of a strict CCT.

Is M RP a Consensus Technique?

Although both conventional consensus
techniques and MRP combine source trees
based on their nodes, there are fundamental
di�erences between them. Most consensus
techniques look for the common occurrence
of (agreement among) constituent nodes
among source trees; con¯ict usually results in
a polytomy (exceptions: majority rule and other
consensus trees of the M l family [McMorris and
Neumann, 1983], which retain components
found on a certain percentage of the trees).
Within source trees, nodes are treated in isola-
tion; individual components are either accepted
or rejected (based on information from other

source trees), and support for less-inclusive
nodes by more-inclusive ones consists only of
allowing those nodes with which they are con-
gruent to occur on the consensus tree. Thus,
although standard consensus techniques look
for agreement among components, they are
tree-based, in that source trees are combined
equally, regardless of their size.

In contrast, in M RP, elements representing
more-inclusive nodes directly support those of
less-inclusive ones. For example, in Figure 1a
the grouping of A and B to the exclusion of D is
supported by both nodes on the tree: (A, B, C)D
and (A, B)C, D. When that tree is combined
with the smaller tree, (A, D)B, the composite
tree includes (A, B). With standard consensus
techniques, the contradiction of (A, B) by the
second tree results in A and B forming part of a
polytomy. The latter also occurs when using
Lanyon’s (1993) modi®ed semistrict consensus
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FIGURE 3. Creation of novel components using M RP (lutrine data from van Zyll de Jong, 1987). (a, b) Two source trees.
(c) CCT with a component (d ) that is not found in either tree a or tree b. (d) CCT generated when reversals are
prohibited. The topology is similar to that of an Adams consensus tree.
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algorithm, which can handle trees with di�er-
ent terminal taxa. This feature of MRP results
from it being node-based and arises through
the use of additive binary coding to produce
the element matrix and the use of parsimony to
resolve the incongruence among elements
from di�erent source trees.

MRP has often been considered a consensus
technique for combining the information in
multiple data sets (e.g., DeSalle, 1994; Wil-
liams, 1994; Bruneau et al., 1995; de Q ueiroz
et al., 1995), particularly because it eliminates
the e�ect of di�erences in character number.
Although both MRP and consensus techniques
appear super®cially to combine trees, clustering
them on this basis conceals their di�erent
mechanics. Also, the ability of M RP to incor-
porate information about signal strength in the
source matrix (see below) sets it still further
apart from consensus techniques. Given the
fundamental di�erences in how M RP combines
source trees, we argue that MRP is not a con-
sensus technique.

O THER PO SSIBLE M O DIFICATIONS TO M RP

Prohibiting Reversals

The use of parsimony algorithms that allow
reversals entails that clades in the composite
tree can be supported in whole or in part by 0s
in the element matrix. In the results of Bininda-
Emonds et al. (in review), between 39 (19.7%)
and 81 (40.9%) of the 198 nodes (DELTRAN vs.
ACCTRAN optimization, respectively ) were
supported by one or more 0s. A few nodes
were supported by more 0s than 1s, particularly
under ACCTRAN optimization (Fig. 4).

Clustering on the basis of 0s seems inap-
propriate in MRP because support for a clade
is based in part on taxa that share a lack of
membership in the components on the source
trees. Unlike conventional character data, in
which transformation in either direction be-
tween characterstates can be considered poten-
tial evidence for clustering taxa, in M RP only
the 1s in the element matrix represent member-
ship in components and therefore seem appro-
priate for grouping taxa. This suggests that the
parsimony algorithm used in M RP should not
allow reversals.

To test the e�ect of prohibiting reversals, we
reanalyzed 19 recent ``total evidence’’ studies

(sensu Kluge, 1989; Table 1), using MRP to
combine the topologies of the process parti-
tions. Analyses were conducted with and with-
out reversals, and di�erences in topology
between the (consensus) composite trees and
the total evidence tree were quanti®ed by using
the symmetric di�erence metric (Penny and
Hendy , 1985). Despite the variation among
the 19 studies in partition size, number of
taxa, and disagreement among the partition
trees, the e�ect of prohibiting reversals was
usually minor. In eight cases, M RP with and
without reversals produced the same CCT; in
®ve cases, prohibiting reversals yielded a CCT
that was more similar to the total evidence tree;
and in six cases, allowing reversals produced a
CCT that was closer to the total evidence tree.
The topologies with and without reversals
were markedly di�erent from each other in
only three instances, and in only two of these
(Bininda-Emonds and Russell, 1996; Bremer,
1996) did the source trees con¯ict strongly.

The example in Figure 5 may suggest why
prohibiting reversals does not necessarily pro-
duce the better result. Although allowing re-
versals produces the intuitively correct result in
this example, the reversal (Fig. 5c) involves
only taxon B (i.e., it does not support a clade)
and simply represents the incongruence of
the position of B on the CCT with that on
one of the source trees (Fig. 5a). This example
suggests that MRP might perform better if it
were based on an algorithm that prohibited
reversals on internal branches but allowed
them on terminal ones.
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FIGURE 4. Frequency histogram showing the per-
centage of reversals supporting each of the 198 nodes

of Bininda-Emonds et al. (in review) under both
ACCTRAN and DELTRAN optimizations. M ost nodes
were not supported by any 0s.
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The question of whether to allow reversals
in MRP analyses requires further study. O ur
sample shows that prohibiting reversals usually
produces only minor di�erences in topology.
Prohibiting reversals also does not markedly
alter the number of novel clades (which may
be supported largely by 0s); reanalysis of the
source trees in Bininda-Emonds et al. (unpubl.)
with reversals prohibited increased the number
of novel clades from 8 to 10. These reanalyses
also suggest that M RP without reversals is
somewhat conservative, frequently producing
a CCT that, like Adams consensus trees, places
incongruent components (e.g., Fig. 3d) or par-
ticular members of those components (e.g.,
taxon B in Fig. 5) in basal positions.

Increasing the Informativeness of Source Tree
Polytomies

The number of nodes on a source tree, and
consequently the number of matrix elements
associated with the tree, is reduced by poly-
tomies. Thus, for a given number of terminal
taxa,trees with more polytomies have relatively
less in¯uence on the pattern of the composite
tree in regions of con¯ict than do completely

dichotomous trees. The use of additive binary
coding in M RP makes this method unable to
distinguish between polytomies that are consid-
ered ``hard’’ (representing putative multiple spe-
ciation events) and those that are considered
``soft’’ (representing either a lack of resolution
or con¯icting resolutions) (M addison, 1989); all
polytomies are considered unresolved. While
this is appropriate for soft polytomies that do
represent a lack of resolution, it is inappropriate
for polytomies that are purported to be hard
(and therefore fully resolved), and for soft poly-
tomies that represent con¯icting solutions, such
as those on a strict consensus tree.

We have no suggestions for counteracting
any perceived bias this causes against hard
polytomies. Nonetheless, the problems in iden-
tifying hard polytomies makes this largely a
nonissue. For soft polytomies that represent
con¯icting resolutions, the goal is to retrieve
those resolutions of the polytomy that occur
among the M PTs. Although a case can be
made for using the consensus solution on prac-
tical grounds when there are large numbers of
MPTs (Ragan, 1992b), ideally , the more-
resolved topologies of the MPTs and not that
of the less-reso lved consensus should contri-
bute to the element matrix.

This can be accomplished by coding each
unique component on any one or more trees
in a set of M PTs as an element in the combined
matrix (see Fig. 6). These elements can be
handled in at least two ways. Weighting each
component according to its frequency among
the MPTs is the equivalent of Ragan’s (1992b)
suggestion of individually coding and includ-
ing each MPT in the element matrix. In this
procedure, the in¯uence of a clade on the pat-
tern of the composite tree depends on its fre-
quency among the M PTs: clades that occur on
more of the M PTs will have a greater in¯uence,
and any clade occurring on only some M PTs
will have less weight in the analysis than
will clades supported by data sets producing
only one M PT. Alternatively, one of us
(H.N.B.) argues that the above weighting is
inappropriate. Because each of the shortest
trees obtained from a single data set is equally
parsimonious, overall evidence in the data set
for each clade on any one or more of the M PTs
is equal and so they should all receive equal
weight.

1998 PO INTS O F VIEW 503

FIGURE 5. Comparison of standard M RP and M RP

without reversals. (a) Source trees. (b) Two equally parsi-
monious composite trees generated by M RP without

reversals. (c) Additional tree produced with reversals
(location marked with a bar). The three M PCTs based
on standard M RP seem to better cover the range of pos-

sible positions of taxon B on the source trees.
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In either instance, weighting of these ele-
ments relative to those based on other source
trees is not necessary. Although the number of
elements derived from data sets that produce
more than one M PT will usually be larger than
that associated with a single MPT with the
same number of taxa, either the frequency-
dependent weighting of, or the incongruence
among, elements representing alternative reso-
lutions of polytomies on consensus trees ne-
gates the increased in¯uence their increased
number might have on the topology of the
composite tree (see Fig . 6).

W eighting Elements Based on Evidential
Support

Because MRP generates composite trees
based solely on the topologies of the source
trees, there is no inherent consideration of
either the overall support for the topology of

a source tree or for the di�erential support for
the nodes on that tree (Rodrigo , 1993; Galtier
and Gouy, 1994; Bandelt, 1995; Bruneau et al.,
1995). Although bypassing the original data is
necessary in some instances, it has been argued
that the di�erential support for the overall
topologies of, or di�erent nodes on, the source
trees could or should be used in deriving the
composite tree whenever possible (Purvis,
1995b; Ronquist, 1996).

Potential measures of support for entire
source trees include goodness-of-®t indices
(Farris, 1989; Baum, 1992), PTP values (Faith
and Cranston, 1991), or total support (KaÈllersjoÈ
et al., 1992). Potential means of weighting
based on di�erential support for individual
clades on source trees include bootstrap fre-
quencies (Felsenstein, 1985), Bremer support
(Bremer, 1988), the number of unique synapo-
morphies (Kluge, 1989), or T-PTP probabilities
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FIGURE 6. O ne method of coding source trees with polytomies. (a) Consensus tree. (b) Five M PTs (the nine unique
components are numbered). (c) M atrix consisting of one element for each of the numbered unique components. (d)

Con īcting source tree. (e) CCT resulting from unweighted M RP analysis of the matrix c and the elements derived from
the con īcting source tree d.
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(Faith, 1991). Ronquist (1996) showed that
weighting elements from single source trees
based on either Bremer support or bootstrap
values improves the correlation between tree
lengths obtained from the element matrix and
those obtained from the original character data.
Weighting by Bremer support also causes the
decay values to be reproduced exactly
(Ronquist, 1996). Thus, these methods appar-
ently solve a major criticism of M RP, namely,
that it fails to incorporate relative support for
nodes into the analysis.

The use of any of these measures of
support requires that two conditions be met.
First, the chosen metric must be available for
all source trees. Because source trees lacking the
metric should not be ignored, this requirement
may in some instances preclude the use of
weighting based on evidential support. The
use of multiple metrics might be feasible in
some of these cases; however, the necessity
that they all yield equivalent, standardized
information will probably prevent this.
Second, the values of the chosen metric must
provide a comparable measure of the relative
support for a given node across studies, regard-
less of the characteristics of the original data
and the algorithm that produced the source
tree. Bremer support, total support, and the
number of unique synapomorphies are in¯u-
enced by the number of characters in the origi-
nal data matrices and need to be standardized
across data sets. Bremer support cannot be used
when components on multiple MPTs, rather
than those on their consensus, are coded
because the Bremer support values for compo-
nents that do not occur on all MPTs are zero
and so their associated elements would have
a weight of zero. The bootstrap may be less
in¯uenced by the di�erential characteristics of
data sets (i.e., values are probably more
standardized), but this issue requires further
study.

Because all these weighting schemes based
on support for entire trees or individual nodes
operate on the elements in the matrix, they do
not o�set the inherent size bias of MRP (contra
Ronquist, 1996). The problems associated with
weighting the element matrix to make MRP
tree-based are only compounded if weighting
based on evidential support in the original data
is also desired.

CLO SING STATEM ENTS

M RP is unique in that it combines source
trees by using additive binary coding to con-
vert the hierarchical information within them
into an element matrix and using parsimony
to derive the composite tree; these mechanics
clearly di�erentiate M RP from standard con-
sensus techniques, despite being associated
with them by many authors. M RP is inherently
node-based. The in¯uence of individual source
trees on the composite tree depends on their
size and resolution, and the matrix elements
derived from a single source tree directly sup-
port one another. As a result, source trees are
not combined equally. In contrast, consensus
techniques are tree-based. Although they also
operate at the node level, components are
treated in isolation and are simply accepted
or rejected based on the agreement among
the source trees. Therefore, all trees have an
equal vote regarding the topology of the con-
sensus tree. This di�erence is fundamental, and
is the basis for our conclusion that MRP is not a
consensus technique. The di�erence in both the
mechanics and results of MRP, as compared to
those of consensus techniques, may require a
shift in current thinking as to appropriate meth-
ods for combining source trees. At the very
least, M RP is providing a synthesis di�erent
from consensus techniques of the information
in a set of source trees.

M RP has been promoted as a ``total evidence
approach’’ (Purvis, 1995b:253) for data sets that
are not amenable to standard character congru-
ence methods (e.g., Kluge, 1989). The data in
Table 1 suggest that MRP often falls short of
this goal. In only 3 of 19 cases does the topol-
ogy produced by M RP match the total evi-
dence tree, and in several instances the dif-
ferences between the results of the two meth-
ods are marked. MRP tends to collapse clades
found on the total evidence tree, producing
more polytomies, but taxa are also occasionally
placed in di�erent positions. There is no
obvious relationship between the number of
partitions and the ability of M RP to match
the total evidence tree.

The use of parsimony allows for weighting
of the matrix elements to adjust for inherent
biases in the method or to incorporate addi-
tional information. To date, attempts to adjust
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for any perceived bias toward more-informa-
tive (i.e., larger, more resolved, or both) regions
of source trees (e.g., Purvis, 1995b; Ronquist,
1996) to make the method tree-based have
been unsuccessful. The appropriateness of cor-
recting for this bias is arguable; however, with-
out this correction, M RP should not be used if a
tree-based result is desired. With certain limita-
tions, weighting provides a means of incorpor-
ating the di�erential support for entire trees or
individual clades present in the original data
into the analysis, while still allowing the com-
posite tree to be based primarily on the hier-
archical information in the source trees. These
modi®cations might allow M RP to more close-
ly approximate a ``total evidence’’ result.

Baum (1992) noted that detailed study of the
properties of MRP, empirical testing of its
results, and comparisons with standard consen-
sus techniques had not yet been conducted.
Subsequent analyses (Baum and Ragan, 1993;
Rodrigo, 1993; Purvis, 1995b; Ronquist, 1996;
this study) have considered some of these
issues. Issues requiring further study include
the appropriateness of allowing reversals
within matrix elements (on either all or only
terminal branches) and the ability of MRP to
replace total evidence analyses when the data
are not suitable for the latter. These studies are

essential to assess the potential contribution
of MRP and its variants to phylogenetic infer-
ence.

ACKNO WLEDGM ENTS

The ®rst author thanks Andy Purvis for introducing

him to M RP and for many fruitful initial discussions

regarding the technique, and acknowledges Alberta

Heritage, the United Kingdom’s O verseas Research
Scholarship plan, and a Natural Sciences and Engineer-

ing Research Council of Canada postgraduate scholarship

for funding the project. Andy Purvis also pointed out the
counterexample used in Figure 2. Fredrik Ronquist kindly

supplied us with a preprint copy of his manuscript. David

Cannatella, Paul Harvey, Andy Purvis, Alan Rodrigo, and
Fredrik Ronquist made constructive comments on an ear-

lier version of this paper.

REFERENCES

ADAMS, E. M ., III. 1972. Consensus techniques and the
comparison of taxonomic trees. Syst. Zool. 21:390 ±
397.

ADAMS, E. M ., III. 1986. N-trees as nestings: Complexity,
similarity, and consensus. J. Classif. 3 :299 ± 317.

ARNO LD, E. N. 1981. Estimating phylogenies at low
taxonomic levels. Z. Zool. Syst. Evolutionsforsch.
19:1 ± 35.

BANDELT, H.-J. 1995. Combination of data in phyloge-
netic analysis. Pages 355 ± 361 in Systematics and evo-

lution of the Ranunculi¯orae (U. Jensen and J. W.
Kadereit, eds.). Plant Syst. Evol. Suppl. 9, Vienna.

BAUM , B. R. 1992. Combining trees as a way of combin-

ing data sets for phylogenetic inference, and the desir-
ability of combining gene trees. Taxon 41:3 ± 10.

506 SYSTEM ATIC BIO LO GY VO L. 47

T ABLE 1. Comparison of M RP with and without reversals in 19 total evidence studies. The CCTs obtained from
the respective M RP analyses of the partitions were compared with the total evidence topology and each other using

Penny and Hendy’s (1985) symmetric di�erence metric.

With reversals Without reversals W ith vs.

No. No. vs. total vs. total without
Study taxa partitions evidence evidence reversals

Kluge, 1989 11 2 3 3 0

Vane-Wright et al., 1992 10 2 1 3 2
Cundall et al., 1993 18 3 13 13 0
Eernisse and Kluge, 1993 5 7 1 0 1

Wheeler et al., 1993 26 3 15 17 12
Kim and Jansen, 1994 7 4 2 0 2
Lundrigan and Tucker, 1994 12 3 0 0 0

O mland, 1994 9 2 1 1 0
Vrana et al., 1994 31 2 9 7 4
Yoder, 1994 13 2 7 5 2

Littlewood and Smith, 1995 45 3 9 10 1
Paterson et al., 1995 18 3 6 7 1
Tehler, 1995 5 2 2 1 1

Zhang, 1995 8 2 0 0 0
Bininda-Emonds and Russell, 1996 27 7 22 32 20

Bremer, 1996 33 2 12 16 8
Friesen et al., 1996 25 2 14 14 0
Sites et al., 1996 (Enyalioides outgroup) 14 3 4 4 0

Sites et al., 1996 (Oplurus outgroup) 14 3 0 0 0

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
rtic

le
/4

7
/3

/4
9
5
/1

7
0
3
7
6
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



BAUM , B. R., AND M . A. RAGAN . 1993. Reply to A. G.
Rodrigo’s `̀ A comment on Baum’s method for com-

bining phylogenetic trees.’’ Taxon 42:637 ± 640.

BININDA-EM O NDS, O . R. P., AND A. P. RUSSELL. 1996. A

morphological perspective on the phylogenetic rela-
tionships of the extant phocid seals (M ammalia: Car-
nivora: Phocidae). Bonn. zool. M onogr. 41:1 ± 256.

BREMER, K. 1988. The limits of amino acid sequence data
in angiosperm phylogenetic reconstruction. Evolution
42:795 ± 803.

BREMER, B. 1996. Combined and separate analyses of
morphological and molecular data in the plant family

Rubiaceae. Cladistics 12:21 ± 40.

BRUNEAU, A., E. E. D ICKSO N, AND S. KNAPP. 1995. Con-
gruence of chloroplast DNA restriction site characters

with morphological and isozyme data in Solanum sect.
Lasiocarpa. Can. J. Bot. 73:1151 ± 1167.

CUNDALL, D ., V. W ALLACH, AND D. A. RO SSMAN. 1993.
The systematic relationships of the snake genus
Anomochilus. Zool. J. Linn. Soc. 109:275 ± 299.

DE Q UEIRO Z, A., M . J. D O NO GHUE, AND J. KIM . 1995.
Separate versus combined analysis of phylogenetic
evidence. Annu. Rev. Ecol. Syst. 26:657 ± 681.

DESALLE, R. 1994. Flies and congruence. Am. J. Phys.
Anthropol. 94:125 ± 141.

DO NO GHUE, M . J., J. A. DO YLE, J. GAUTHIER, A. G. KLUGE,

AND T. RO WE. 1989. The importance of fossils in phy-
logeny reconstruction. Annu. Rev. Ecol. Syst. 20:431 ±

460.

EERNISSE, D . J., AND A. G. KLUGE. 1993. Taxonomic con-

gruence versus total evidence, and amniote phylo-
geny inferred from fossils, molecules, and
morphology. M ol. Biol. Evol. 10:1170 ± 1195.

FAITH, D. P. 1991. Cladistic permutation tests for mono-
phyly and nonmonophyly. Syst. Zool. 40:366 ± 375.

FAITH, D . P., AND P. S. CRANSTO N. 1991. Could a clado-
gram this short have arisen by chance alone?: O n
permutation tests for cladistic structure. Cladistics

7:1 ± 28.

FARRIS, J. S. 1989. The retention index and the rescaled

consistency index. Cladistics 5:417 ± 419.

FARRIS, J. S., A. G. KLUGE, AND M . J. ECKHARDT . 1970. A
numerical approach to phylogenetic systematics. Syst.

Zool. 19:172 ± 191.

FELSENSTEIN, J. 1985. Con®dence limits on phylogenies:

An approach using the bootstrap. Evolution 39:783 ±
791.

FRIESEN, V. L., A. J. BAKER, AND J. F. PIATT . 1996. Phylo-

genetic relationships within the Alcidae (Charadrii-
formes, Aves) inferred from total molecular

evidence. M ol. Biol. Evol. 13:359 ± 367.

GALTIER, N., AND M . GO UY. 1994. M olecular phylogeny
of Eubacteria: A new multiple tree analysis method

applied to 15 sequence data sets questions the mono-
phyly of Gram-positive bacteria. Res. M icrobiol.
145:531 ± 541.

GO RDO N, A. D. 1986. Consensus supertrees: The synth-

esis of rooted trees containing overlapping sets of

labeled leaves. J. Classif. 3 :31 ± 39.

HILLIS, D. M . 1987. M olecular versus morphological

approaches to systematics. Annu. Rev. Ecol. Syst.
18:23 ± 42.

KAÈ LLERSJOÈ , M ., J. S. FARRIS, A. G. KLUGE, AND C. BULT.
1992. Skewness and permutation. Cladistics 8:275 ±

287.

KIM , K.-J., AND R. K. JANSEN. 1994. Comparisons of phy-
logenetic hypotheses among di�erent data sets in

dwarf dandelions (Krigia, Asteraceae): Additional in-
formation from internal transcribed spacer sequences

of nuclear ribosomal DNA. Plant Syst. Evol. 190:157 ±
185.

KLUGE, A. G. 1989. A concern for evidence and a phy-

logenetic hypothesis of relationships among Epicrates
(Boidae, Serpentes). Syst. Zool. 38:7 ± 25.

LANYO N, S. M . 1993. Phylogenetic frameworks: Towards
a ®rmer foundation for the comparative approach.
Biol. J. Linn. Soc. 49:45 ± 61.

LECO INTRE, G., H. PHILIPPE, H. L. VAÃN LEÃ, AND H. LE

GUYADER. 1993. Species sampling has a major impact
on phylogenetic inference. M ol. Phylogenet. Evol.

2 :205 ± 224.

LITTLEWOO D, D. T . J., AND A. B. SM ITH. 1995. A com-

bined morphological and molecular phylogeny for sea
urchins (Echinoidea: Echinodermata). Philos. Trans. R.
Soc. Lond. B 347:213 ± 234.

LUNDRIGAN, B. L., AND P. K. TUCKER. 1994. Tracing pater-
nal ancestry in mice, using the Y-linked, sex-determin-
ing locus, Sry. M ol. Biol. Evol. 11:483 ± 492.

M ADDISO N, W . P. 1989. Reconstructing character evolu-
tion on polytomous cladograms. Cladistics 5:365 ±

377.

M CM O RRIS, F. R., AND D. NEUM ANN. 1983. Consensus
functions de®ned on trees. M ath. Social Sci. 4 :131 ±

136.

M IYAM O TO , M . M . 1985. Consensus cladograms and
general classi®cations. Cladistics 1:186 ± 189.

O M LAND, K. E. 1994. Character congruence between a
molecular and a morphological phylogeny for dab-

bling ducks (Anas). Syst. Biol. 43:369 ± 386.

PATERSO N, A. M ., G . P. W ALLIS, AND R. D. GRAY . 1995.
Penguins, petrels, and parsimony: Does cladistic ana-

lysis of behavior re¯ect seabird phylogeny? Evolution
49:974 ± 989.

PENNY, D ., AND M . D. HENDY . 1985. The use of tree
comparison metrics. Syst. Zool. 34:75 ± 82.

PURVIS, A. 1995a. A composite estimate of primate phy-

logeny. Philos. Trans. R. Soc. Lond. B 348:405 ± 421.

PURVIS, A. 1995b. A modi®cation to Baum and Ragan’s

method for combining phylogenetic trees. Syst. Biol.
44:251 ± 255.

RAGAN, M . A. 1992a. M atrix representation in recon-

structing phylogenetic relationships among the eukar-
yotes. Biosystems 28:47 ± 55.

RAGAN, M . A. 1992b. Phylogenetic inference based on
matrix representation of trees. M ol. Phylogenet. Evol.
1 :53 ± 58.

RO DRIGO , A. G . 1993. A comment on Baum’s method for
combining phylogenetic trees. Taxon 42:631 ± 636.

RO DRIGO , A. G. 1996. O n combining cladograms. Taxon
45:267 ± 274.

RO NQUIST , F. 1996. M atrix representation of trees,

redundancy, and weighting. Syst. Biol. 45:247 ± 253.

SITES, J. W ., JR., S. K. DAVIS, T . GUERRA, J. B. IVERSO N, AND

H. L. SNELL. 1996. Character congruence and phylo-
genetic signal in molecular and morphological data

1998 PO INTS O F VIEW 507
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
rtic

le
/4

7
/3

/4
9
5
/1

7
0
3
7
6
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



sets: A case study in the living iguanas (Squamata,
Iguanidae). M ol. Biol. Evol. 13:1087 ± 1105.

STEEL, M . 1992. The complexity of reconstructing trees
from qualitative characters and subtrees. J. Classif.

9 :91 ± 116.

TEHLER, A. 1995. M orphological data, molecular data,
and total evidence in phylogenetic analysis. Can. J.

Bot. 73:S667 ± S676.

VAN ZYLL DE JO NG, C. G. 1987. A phylogenetic study of

the Lutrinae (Carnivora; M ustelidae) using morpholo-
gical data. Can. J. Zool. 65:2536 ± 2544.

VANE-W RIGHT , R. I., S. SCHULZ, AND M . BO PPREÂ . 1992.
The cladistics of Amauris butter¯ies: Congruence, con-
sensus and total evidence. Cladistics 8:125 ± 138.

VRANA, P. B., M . C. M ILINKO VITCH, J. R. PO WELL, AND

W. C. W HEELER. 1994. Higher level relationships of

the arctoid Carnivora based on sequence data and
``total evidence.’’ M ol. Phylogenet. Evol. 3 :47 ± 58.

W HEELER, W . C., P. CARTWRIGHT , AND C. Y. HAYASHI.
1993. Arthropod phylogeny: A combined approach.

Cladistics 9:1 ± 39.
W ILKINSO N, M . 1994. Common cladistic information and

its consensus representation: Reduced Adams and

reduced cladistic consensus trees and pro®les. Syst.
Biol. 43:343 ± 368.

W ILLIAM S, D . M . 1994. Combining trees and combining

data. Taxon 43:449 ± 453.
YO DER, A. D . 1994. Relative position of the Cheiroga-

leidae in strepsirhine phylogeny: A comparison of
morphological and molecular methods and results.
Am. J. Phys. Anthropol. 94:25 ± 46.

ZHANG, Z.-Q . 1995. A cladistic analysis of Trombidiidae
(Acari: Parasitengona): Congruence of larval and adult
character sets. Can. J. Zool. 73:96 ± 103.

Received 22 July 1996; accepted 10 September 1997
Associate Editor: D. Cannatella

508 SYSTEM ATIC BIO LO GY VO L. 47

Syst. Biol. 47(3): 508 ± 519, 1998

W hy Morphometrics Is Not Special: Coding Q uantitative Data for

Phylogenetic Analysis

D O NALD L. SW IDERSKI,
1

M IRIAM LEAH ZELDITCH,
2

AND W ILLIAM L. FINK
3

1
M useum of Zoology,

2
M useum of Paleontology, and

3
Department of Biology and M useum of Zoology,

University of M ichigan, Ann Arbor, M ichigan 48109, USA; E-mail: dlswider@ umich.edu (D.L.S.),

zelditch@ umich.edu (M .L.Z.), w®nk@ umich.edu (W .L.F.)

Systematists often use qualitative descrip-
tions of shape in phylogenetic analyses, but
several biologists object to phylogenetic ana-
lyses using quantitative descriptions of those
same shapes (Pimentel and Riggins, 1987;
Felsenstein, 1988; Mickevich and Weller,
1990; Garland and Adolph, 1994). In a previous
paper (Zelditch et al., 1995), we argued that the
problem with phylogenetic analysis of quanti-
tative shape data lies in the particular methods
traditionally used to quantify shapes, not in
quanti®cation per se. In addition, we demon-
strated that some of the more serious ob-
jections to using morphometric data in
phylogenetic analyses are removed by using
landmark-based morphometric methods devel-
oped by Bookstein (1991). Although we de-
monstrated that phylogenetic analysis of
quanti®ed shape variables is valid in theory,
some practical problems remain. In this paper,
we address the major remaining problem, that
of coding: speci®cally, the problem of recogniz-
ing divergent character states.

Even a brief survey of the literature shows
that coding is a complicated task in which
several obstacles must be overcome (see
Mickevich and Weller, 1990; Mabee and
Humphries, 1993; Wilkinson, 1995). In this
paper, we focus on one particular obstacle: eva-
luation of the diversity of a feature to determine
which sets of taxa are similar in that feature.
These judgements of similarity (anddi�erences)
are the foundations on which inferences of
homology and monophyly are based. If these
judgements employ inappropriate criteria, then
those inferences are apt to be misled, and the
resulting phylogeny is likely to be wrong.

Several biologists have argued that there can
be no valid criteria for dividing quantitative
data into discrete states because quantitative
traits are inherently continuous (Pimentel and
Riggins, 1987; Felsenstein, 1988; Garland and
Adolph, 1994). In fact, they claim that coding
quantitative data introduces arti®cial distinc-
tions even if the observed distribution is dis-
continuous. This claim has even been parlayed
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into arguments against cladistic parsimony
(Felsenstein, 1988; Garland and Adolph, 1994),
or against phylogenetic analysis of all mor-
phometric data (Pimentel and Riggins, 1987;
Mickevich and Weller, 1990). Therefore, we
begin this paper by showing that the argu-
ments against coding quantitatively described
traits are not supported by theory. Rather, the
obstacles posed by continuity are only practical
problems and are not unique to quantitative
data.

In the remainder of this paper, we address
the practical problems of recognizing di�erent
states. Several systematists have proposed
methods of coding that are designed to recog-
nize states despite the lack of discontinuities
between taxa. We review some commonly
used methods and show that the criteria most
methods employ to delimit states are not
appropriate for phylogenetic analysis. Con-
sequently, the character states produced by
these methods do not support hypotheses of
homology. We did ®nd one method that is
suitable for phylogenetic analysis, which we
illustrate by using it to code features of adult
body shape in six species of piranha. We prefer
this method because it does not rely on arbi-
trary distance criteria or on statistical hypoth-
eses that are irrelevant to the inference of
homology.

CO NTINUITY

Thiele (1993) suggested that some objec-
tions to coding quantitative data can be
removed by making a distinction between
terms that indicate how the trait was described
and terms that indicate how the trait varies.
Four terms, (qualitative, quantitative, continu-
ous, and discontinuous) indicate how a trait is
described. As did Wiley (1981), Thiele argued
that quantitative should mean only that the
trait was described by a numerical scale, i.e.,
by counting or measurement. In contrast, qua-
litative should mean only that the trait was
described by using words. Continuous charac-
ters are a subset of quantitative characters, spe-
ci®cally those described by using an in®nitely
divisible numerical scale (e.g., real numbers).
Discontinuous refers to the subset of quantita-
tive characters that are described by using a
numerical scale that is not in®nitely divisible
(e.g., integers). Used in this way, these terms

imply nothing about how a trait varies. They
imply nothing about biology because they
refer only to our measurement scales.

O bjections to coding morphometric data are
not really concerned with the use of a contin-
uous quantitative scale, but with what Thiele
called ``overlapping;’’ i.e., the range of variation
of a trait in one taxon contains values that are
also within the range of variation of that trait in
another taxon. The contrasting pattern is dis-
junct, meaning that none of the values within
the range of one taxon lie within the range of
the other taxon. The words overlapping and
disjunct can be applied whether the trait is
described quantitatively or qualitatively; how-
ever, the comparison of ranges of qualitatively
described features is necessarily subjective.

M orphometric data are usually reported as
though the measurements were taken on a con-
tinuous scale. In reality, the scale of any instru-
ment is discontinuous (e.g., 0.01, 0.02, 0.03, . . .),
re¯ecting the limit of the resolving power of
the instrument. A report utilizing the instru-
ment’s discontinuous scale is interpreted as an
approximation to a continuous scale, not as an
indication of steplike behavior of the character.
Traits that are customarily reported on a dis-
continuous scale are counts for which fractional
values are excluded conceptually (e.g., the
number of teeth, for which incompletely form-
ed teeth are either counted or not counted).

Thiele’s discussion of the semantic issues
clari®es the point that chains of overlapping
ranges are the primary obstacle to coding
morphometric traits. However, Thiele, as did
Stevens (1991), also pointed out that this prob-
lem is not unique to quantitative data. In fact,
Thiele and Stevens argued that this is one of
many of the problems that are the same for
quantitative and qualitative data. For example,
one issue that must be resolved for every fea-
ture is the comparability of that feature across
all taxa in the study; another is the recognition
of distinct conditions of the feature. Thus,
Thiele and Stevens argued for applying the
same criteria to quantitative and qualitative
data, and for making the criteria explicit for
all data.

Pimentel and Riggins (1987) were quite
explicit. They argued that features with over-
lapping ranges should not be coded as having
distinct states. This position is evident from
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their de®nition of a cladistic character as ``a
feature of organisms that can be evaluated as
a variable with two or more mutually exclusive
and ordered states’’ (p. 201, emphasis added). It
is also clear that this de®nition was meant to
apply to all kinds of data, because Pimentel and
Riggins stated it at the beginning of the paper,
and again, in their discussion of quantitative
data (p. 207). In the latter context, they elabo-
rated on the requirement that characters have
mutually exclusive states and argued that the
only valid basis for coding any character is a
gap, a hiatus in the distribution of a character,
such that no individuals are observed to have
those values. In their view, the ideal case would
be a gap between ranges (Thiele’s ``disjunc-
tion’’). Pimentel and Riggins did allow coding
if a few taxa contain individuals that are on each
side of the gap (these taxa would be poly-
morphic), but no taxon can have individuals
within the gap. For Pimentel and Riggins, the
gap is absolutely required for coding because it
unambiguously demarcates mutually exclusive
sets of values, without any statistical or math-
ematical manipulation. They characterized
these gaps as ``natural’’ (p. 207), implying that
any distinction which is not based on disjunc-
tion in the raw data is arti®cial.

Felsenstein (1988) agreed that division of
overlapping ranges into separate states creates
arti®cial distinctions. However, he argued that
coding based on observed gaps also imposes
arti®cial distinctions. Felsenstein claimed this
argument is supported by theoretical predic-
tions that polygenic characters will exhibit gra-
dual, incremental change. Thus, even if a trait
evolves rapidly, it still passes from one value to
the next with no values skipped (i.e., saltation
does not occur). This implies that a descendant
population will overlap the immediately an-
cestral population. From this implication,
Felsenstein inferred that disjunction of terminal
taxa represents missing data (e.g., unrecovered
fossils), because if all the ancestral populations
were known they would form links in an unbro-
ken chain connecting the terminals. Felsenstein
argued that observed gaps between terminals
are not real and should not be used as the foun-
dation for any coding scheme.

Felsenstein’s argument about the reality of
gaps overextends a legitimate theory. That the-
ory describes anagenetic change, transforma-

tion in a single unbranched lineage. However,
lineages branch (speciation occurs), and the
branches are genetically and evolutionarily
independent. Because they are independent,
the chains representing the descendant lineages
will eventually become distinct from each
other, as individuals within the lineages acquire
novelties. This divergence is simply a conse-
quence of independent evolution within sepa-
rate lineages. The unbroken links of the chain
connect ancestors to descendants, not terminal
taxa to each other.

We conclude that there is no obstacle in
theory to coding taxa with overlapping ranges.
In fact, Felsenstein’s argument provides
grounds for us to argue that phylogenetic sys-
tematists need an approach to coding that does
not require gaps. The ranges of populations
representing nascent branches can be expected
to overlap each other and the range of their
common ancestor. O bviously, a gap would
be useful, but a lesser amount of di�erentiation
can also indicate evolutionary independence.
The goal of phylogenetic systematics is to
infer evolutionary independence (branching)
from evidence of divergence. When divergence
is relatively small and ranges overlap, the real
obstacle to coding is distinguishing between
di�erences due to poor sampling and di�er-
ences due to evolution. We address this pro-
blem below.

M ETHO DS O F CO DING

In this section, we review some of the most
widely used methods of coding . For each
method, we focus on the criterion used to
divide a series of taxa with overlapping ranges
into smaller groups, and on the validity of that
criterion as a basis for inferring homology.

We begin with gap coding (Mickevich and
Johnson, 1976), both because it is one of the
oldest methods of coding and because most
newer methods of coding are intended to
improve on gap coding. This method is illu-
strated with the ®ve hypothetical populations
shown in Figure 1. The smallest mean is
assigned state 0. The next largest mean is
assigned a new state only if the di�erence
between means is greater than the value of
the pooled standard deviation (sp). Then the
third mean is compared to the second, and so
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on, until all pairs of adjacent means have been
evaluated. In this context, ``gap’’ refers to the
di�erence between means, not the disjunction
between ranges.

The principal problem with gap coding is
that it provides a small amount of unreliable
information from which to judge the similarity
of taxa. The information is the similarity of
means, as indicated by sp. This information is
unreliable because variances of taxa are often
dissimilar, making sp a poor indicator of the
actual overlap between two taxa. Some will
overlap more than expected; others, less. Gap
coding also misrepresents the amount of over-
lap when distributions are skewed or otherwise
deviate from normality . For these reasons, we
do not recommend gap coding as a basis for
inferring similarity of taxa.

Most critiques of gap coding focus on other
problems (e.g., Thorpe, 1984; Archie, 1985;
Chappill, 1989). O ne common complaint is
that taxa may be quite di�erent but still be
assigned the same state because they are ends
of a long series of closely spaced taxa. This
problem is illustrated in Figure 1 by taxa B, C,
and D. The distance between B and C is small
(< sp), as is the distance between C and D.
Consequently , all three taxa are assigned the
same state, even though the distance between
B and D is large (> sp).

To solve this problem, Archie (1985) pro-
posed a method of de®ning subsets of taxa
and a method of coding overlapping subsets.
To de®ne a subset, Archie used the mean of a
taxon (xi) and sp to de®ne an interval (xi to
xi 1 sp). The subset includes all taxa with
means in that interval. For Figure 1, the subsets
would be { A} , { B, C} , { C, D} , { D} , and { E} .
The method of coding begins by deleting any
subset that is completely included in another,

such as { D} . Then, state 0 is assigned to the
subset that includes the lowest mean, { A} .
Codes increment by 1 at the beginning or
end of a subset (or by 2 if the subsets are dis-
junct). Thus, the Archie coding for Figure 1
would be A 5 0, B 5 2, C 5 3, D 5 4, E 5 6.

Archie’s methods solve the problem of long
series, but still rely on the dubious information
provided by the mean and sp. More impor-
tantly, Archie’s methods have a serious pro-
blem of their own. Farris (1990) criticized
Archie’s methods because subsets are de®ned
by some criterion in the ®rst step, but then that
criterion is ignored in the second step. In the
example above, B and C are placed in the same
subset because they are not di�erent from each
other, but are assigned di�erent states because
C is not di�erent from D. The inconsistent logic
is particularly clear when subsets are de®ned by
statistical analyses, as in homogeneous subset
analysis (Simon, 1983; Farris, 1990). Using
Archie coding on these subsets would assign
di�erent states to taxa despite statistical tests
showing that their means are not signi®cantly
di�erent.

A somewhat di�erent solution to the pro-
blem of long series is incorporated in methods
proposed by Colless (1980), Thorpe (1984),
and Chappill (1989). In these methods, the mor-
phometric distance between the most widely
separated means or individuals is divided into
two or more equal segments. The segments are
numbered in order, and the code assigned to a
mean or individual is the number of the seg-
ment in which it is located (Fig. 2). In e�ect,
segment coding rescales the original measure-
ments to a smaller number of larger increments.

Segment coding solves the problem posed
by long chains of closely spaced means. How-
ever, it replaces that problem with a more fun-
damental one. It distorts the similarities and
di�erences among the taxa. M eans or indivi-
duals near the limits of a segment may be more
similar to those in the adjacent segment than
they are to the ones in their own segment. In
Figure 2, C is no closer to B than it is to D, but B
and C are assigned the same state and D is
assigned a di�erent state. Because segment
coding does not re¯ect similarity, it cannot be
used as a basis for inferring homology.

Archie coding and segment coding create
bigger problems than the one they solve. This
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FIGURE 1. Gap coding of ®ve idealized populations
(A ± E).
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is because these methods are designed to solve
the wrong problem. That problem, failure to
distinguish between taxa at the ends of a long
series, does not arise from a defect of gap coding;
rather, gap coding reveals the reality that some-
times intermediate taxa bridge the di�erence
between the ends. This problem does not have
a solution. Any consistent method that evalu-
ates ranges of variation will encounter cases in
which intermediate taxa form a bridge between
taxa that would otherwise be considered di�er-
ent. Suchcases may bring attention to the criter-
ion used to judge whether ranges are similar or
di�erent, but they are not grounds for replacing
evaluation of similarity with computation of
arbitrary distance metrics.

Farris (1990) argued that the criterion of
similarity used in gap coding (sp) should be
replaced with explicit statistical tests of the dif-
ferences between means. Then, a series of pair-
wise tests (with appropriate adjustments for
multiple comparisons) is used to construct
homogeneous subsets: groups in which no
two sample means are statistically signi®cantly
di�erent (Simon, 1983). Because homogeneous
subset coding uses an explicit statistical test of
similarity , rather than an unreliable indicator of
overlap, it eliminates one source of error that
a�ects gap coding. In addition, this method
eliminates some ambiguity by using a statistical
test, rather than a proxy for a statistical test.
Taxa in mutually exclusive subsets can be as-
signed di�erent codes because the mean for
each taxon in one set is signi®cantly di�erent
from the mean of each taxon in the other set.
Equally obvious, homogeneous subsets that
intersect (share taxa) cannot be assigned di�er-
ent states because the means of the shared taxa
cannot be distinguished from the means of any
taxa in either set.

The improvements incorporated in homoge-
neous subset coding are important, but the ¯aw
it retains is more important. Like gap coding,
homogeneous subset coding uses a minimal
description of the variability within each
taxon: the mean and standard deviation. Con-
sequently, both methods of coding are prone to
errors when the observed distribution within a
taxon departs from the expected normal distri-
bution. This is not a trivial or purely formal
objection. Several factors may account for
deviation from normality , and many of them
are commonly encountered in systematic stu-
dies (e.g., allometry, geographic variation, sex-
ual dimorphism, biased collecting methods).
Additional sources of biased distributions may
be encountered when multiple species are com-
bined into higher taxa (e.g., in studies of evolu-
tionary trends or di�erential extinction). Given
these common sampling problems, it is crucial
that a method of coding uses as much informa-
tion as possible about the distribution of indivi-
duals within each taxon.

Almeida and Bisby (1984) also recognized
that coding should be based on more informa-
tion than a comparison of means and standard
deviations. They used box plots to show the
entire range of each species divided into quar-
tiles. Figure 3a shows box plots for ®ve hy-
pothetical taxa similar to those in Figure 1.
Almeida and Bisby used the box plots to ®nd
regions where there was no overlap (Fig. 3a,
zone a) and regions where only the outer quar-
tiles of the taxa overlap (Fig. 3a, zone b). These
regions delimit the sets of taxa that can be
assigned the same character state code for
that trait.

Almeida and Bisby’s use of quartiles is an
improvement over the other methods because
it conveys some information about deviations
from normality. However, it produces a coarse-
grained analysis, in which taxa that overlap as
much as 25% can be assigned di�erent charac-
ter states. Almeida and Bisby were uncomfor-
table with allowing this much overlap (p. 408),
as are we. This problem could be remedied by
using a di�erent cuto� (e.g., outer 5th percen-
tiles), but a more important problem would
remain: the lack of any a priori justi®cation
for applying a ®xed standard to all compari-
sons. Unfortunately, the use of a ®xed standard
is probably unavoidable when the distribution
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FIGURE 2. Segment coding of ®ve idealized popula-
tions (A ± E).
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is represented by a range bar divided into cate-
gories, as done by Almeida and Bisby. Such
graphs omit the number and distribution of
individuals in each sample, forcing systematists
to base coding decisions on the number and
size of the overlapping categories. Without a
rule for these decisions, systematists are likely
to base coding on subjective impressions of the
pattern of overlap among all taxa, which is even
less justi®ed (Gift and Stevens, 1997).

To improve Almeida and Bisby’s method,
we suggest using dot plots (Fig. 3b), which
are essentially symmetrical histograms with
large numbers of small intervals. These dia-
grams illustrate the spread of individuals rather
than the clustering shown by conventional his-
tograms. Dot plots produce ®ner-scale descrip-
tions, which allow coding decisions to be based
on analysis of the individuals in the study, not
on the numbers of individuals within coarse
classes.

Almeida and Bisby’s approach, with our
modi®cation, puts the coding of quantitative
data on the same footing as traditional analysis
of qualitative data: The diversity within each
group is evaluated and then is compared with
the membership of other groups to see if there
is overlap. Then, the overlap is evaluated to
determine whether a hypothesis of evolution-
ary transformation is justi®ed. O ur preference
is to determine whether the density of indivi-
duals decreases near the edge of the observed
range of a taxon, which would be an indication
that the edge of the observed range is close to
the edge of the actual range. If overlap involves
only individuals from these fringes, then we
would recognize di�erent states. O ther sys-
tematists may prefer di�erent criteria; one
advantage of the dot plots is that readers can
apply their own criteria to the same data.

O ne problem that is not solved by using
dot plots is the one caused by intermediate
taxa overlapping the ranges of taxa that do
not overlap each other. In Figure 3b, the ranges
of taxa A and C do not overlap, but the range of
taxon B overlaps both. This problem cannot be
solved by any method that consistently applies
a criterion for recognizing di�erentiation. If B
cannot be distinguished from either A or C, the
character should be considered phylogeneti-
cally uninformative for those taxa.

Some systematists may prefer a method of
coding that incorporates a rigid, automatic cri-
terion for recognizing di�erent states. We have
not proposed any such rules, because none can
be realistically applied to all cases. Several of
the methods discussed above represent at-
tempts to employ rules; their failures demon-
strate that the rules do not apply universally.
We see no reason to obey rules to code quan-
titatively described traits when we would not
obey those rules to code the same traits if they
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FIGURE 3. Coding based on overlap of taxon ranges.

(a) Box plots dividing ranges into quartiles. (b) Dot plots
of individual scores. The paired lines denote: a) the gap
between taxa D and E, b) the overlap between taxa A

and B.
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were qualitatively described. Instead, we sug-
gest that the coding of each trait should be
decided on its own merits, by examining the
distribution of individuals in each taxon.

ANALYSIS O F PIRANHAS

M ethods

Below, we illustrate overlap coding of data
from real populations rather than the hypothe-
tical constructions used above. Most of these
data come from analyses of the ontogeny
of piranha shape (Fink and Zelditch, 1995;
Zelditch and Fink, 1995). Descriptions of the
morphometric methods, including a selection
of landmarks, are presented in those papers
(see also, Bookstein, 1989, 1991; Zelditch et
al., 1992; Swiderski, 1993). Because our pur-
pose is to demonstrate the coding method,
not the morphometric methods, here we pre-
sent only a brief description of the morpho-
metric methods, highlighting departures from
previous studies or details that are particularly
relevant to coding.

Fink and Zelditch (1995) analyzed ontoge-
netic shape change in ®ve species: Pygopristis
denticulata, Serrasalmus gouldingi, Pygocentrus
cariba, Pygocentrus nattereri, and Pygocentrus
piraya. In this study, we use the adults from
that study, and add new data by including the
adults of a sixth species, S. elongatus. We de®ne
adults as specimens with centroid size > 100
(corresponding to a standard length > 75 mm,
which is approximately the size at which the
juvenile phase of growth ends (centroid size is
de®ned by Slice et al., 1996). We restricted this
study to adults because many studies are lim-
ited to adults, given the di�culties of obtaining
juveniles, and because the description of onto-
genies adds several problems that are beyond
the scope of this demonstration (cf., Zelditch
et al., 1992; Mabee and Humphries, 1993; Fink
and Zelditch, 1995).

Shape was described by using the thin-plate
spline analysis, which can be implemented
with either of the following programs: F. J.
Rohlfs TPSPLINE or J. M . Humphries
JSPLINE (both are available at http://life.bio.-
sunysb.edu/morph/).

Each adult in this study was compared to the
same starting form, an average juvenile of the
outgroup, Pygopristis denticulata. Even in stu-

dies of allometry, comparison of adults to the
juvenile of an outgroup is unusual, but we do it
here because the starting form de®nes the vari-
ables used in the morphometric analysis (prin-
cipal warps). By using the same starting form
that was used in the ontogenetic studies, we
insure that our descriptions of adult shape can
be compared to the descriptions of shape onto-
genies.

Principal warps di�er from conventional
measurements in many ways (see Bookstein
1991; Zelditch et al., 1992, 1995; Swiderski,
1993), but one di�erence that is particularly
relevant here is that principal warps are two-
dimensional variables. The observed values,
called partial warps, re¯ect not only the magni-
tude of shape change, but also its direction with
respect to the organism. Partial warps com-
monly are reported as x, y coordinate pairs,
representing amounts of change in two direc-
tions of an orthogonal grid system. We aligned
the starting form so that x is the anteroposterior
axis and y is the dorsoventral axis.

The results of the spline analysis, the partial
warps scores, are presented in two formats for
coding. The ®rst format is one-dimensio nal,
and describes the anteroposterior and dorso-
ventral components separately. In this format,
the distributions of individuals are displayed by
dot plots, as suggested above. The second for-
mat is two-dimensional, in which the dot plots
are replaced with scatter plots showing the dis-
tributions of the anteroposterior (x) and dorso-
ventral (y) components jointly. (O ther methods
of coding can also be adapted for use with two-
dimensional data, by computing a set of ellipses
or computing an appropriate multivariate test
statistic. The logic of our argument favoring
overlap coding was not contrived so as to
favor the only method that could be applied
to two-dimensional data.)

Results

Figure 4a shows the pattern of landmark dis-
placements for the largest-scale principal warp
of the starting form. In this pattern, landmarks
near the middle move in one direction, and
landmarks near the ends move in the opposite
direction. This pattern is illustrated with an
arbitrarily chosen 1 y multiplier to show the
proportions of relative displacements that this
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component would represent. This pattern of
landmark displacement can be described verb-
ally as a change in dorsal convexity. Figure 4b
shows the observed scores for this dorsoven-
tral component of shape change for each indi-
vidual in this study. A score of zero indicates
that, in this component, the specimen is not
di�erent from the average juvenile Pygopristis
denticulata. Figure 4b indicates that the ranges
for these six species are very similar. Based on
their broad overlaps, we infer that there has
been no di�erentiation of this feature in the
dorsoventral direction.

The scores in Figure 4b represent only one
component of the changes described by the
pattern in Figure 4a. The same pattern oriented
in the anteroposterior direction (all arrows
rotated 90 8 clockwise) represents a graded pat-
tern of change in which one end of the body is
expanded relative to the other end. Positive
scores represent anterior elongation; negative
scores, posterior elongation. Figure 4c shows
the distribution of scores for this feature. There
is a broad overlap between Pygocentrus and
Serrasalmus. Line A marks the edge of the
Pygocentrus range, and a third or more of each
Serrasalmus species is on the left of this line.
Serrasalmus also overlaps P. denticulata: Two
specimens of S. elongatus are on the right of
line B and two Pygopristis denticulata are on
the left of the line. This distribution could be
interpreted as indicating two evolutionary
transitions, one across each line, but neither
line unambiguously demarcates two sets of
taxa. In both cases, the source of ambiguity is
uncertainty about the limits of the Serrasalmus
species. For example, at line B the density
of Pygopristis denticulata specimens drop
abruptly, and the two individuals to the left
of the line can be reasonably interpreted as
lying on the fringe of the distribution. In con-
trast, the two S. elongatus on the right of the line
cannot be interpreted as lying on the fringe of
their distribution, because the sample size for S.
elongatus (13), is too small to reliably infer the
distribution of within-group variation. The two
S. elongatus on the right of the line may only
appear to be unusual because variation within
that species is not adequately described. Con-
sequently, we do not feel that these distribu-
tions justify an inference of separate character
states for this shape feature.

Figure 4d shows the two-dimensional distri-
bution of shape changes described by the pat-
tern in Figure 4a. A specimen with coordinates
(0, 0) would not be di�erent from the average
juvenile Pygopristis denticulata in this feature in
any direction. Coordinates of (1 x, 1 y) would
indicate that the specimen di�ers from the juve-
nile Pygopristis denticulata in both greater ante-
rior elongation and greater dorsal convexity.
As in the previous plots, the two-dimensional
plot shows that this component of shape varies
almost entirely in the anteroposterior direction,
and that the species ranges overlap too broadly
to recognize separate states. The ranges of the
three Pygocentrus species are nearly identical.
Most specimens of the two Serrasalmus species,
and all specimens of Pygopristis denticulata lie
outside of the Pygocentrus range, but several
specimens of both Serrasalmus species lie within
the Pygocentrus range. More importantly, some
Serrasalmus are found near dense clusters of
Pygocentrus individuals, well beyond the edge
of the Pygocentrus range. Few Serrasalmus are
found near clusters of Pygopristisdenticulata, but
the widely scattered S. elongatus surround much
of the P. denticulata range. The relatively sparse
distribution of S. elongatus suggests that addi-
tional samples should be expected to have indi-
viduals that fall within the P. denticulata range.
Consequently, we conclude that S. elongatus
bridges the gap between Pygopristis and
Pygocentrus, and that this shape feature is not
phylogenetically informative.

Figure 5a shows the pattern of landmark dis-
placement for a small-scale feature localized to
part of the head. The dorsoventral scores for
this feature (Fig. 5b) show broad overlaps for all
species. The anteroposterior scores (Fig. 5c)
indicate that there is some di�erentiation
between Pygopristis denticulata and the other
species along this axis (relative length of the
snout and jaws). The two-dimensional plot (Fig.
5d) provides better evidence of a shape change.
All Pygopristis denticulata but one are on the left
of the line, whereas all Serrasalmus and all
Pygocentrus but one are on the right of the
line. In addition, a sparsely populated space
lies to the right of this line. Based on the
space between the two groups and the small
number of specimens that have crossed that
space, we recognize two states for this shape
feature (one unique to Pygopristis denticulata).
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These two states could not be recognized in the
one-dimensio nal plot because the direction of
change is not aligned with the anatomical axes.

Figure 6a illustrates a small-scale feature that
describes changes in the region extending from
the base of the dorsal ®n through the caudal
peduncle at the base of the tail ®n. The one-
dimensional plots for this feature have been
omitted; the two-dimensional plot (Fig. 6b)
again indicates a change that is not aligned

with the anatomical axes (across line B).
However, the main reason we show this feature
is because it appears to have transformations
in two di�erent directions. The ranges of
Serrasalmus and Pygocentrus are completely dis-
junct. Both overlap the range of Pygopristis den-
ticulata, but from di�erent sides, and neither
overlap is enough to prevent recognition of
distinct states. Based on these distributions,
we infer two independent character changes.
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FIGURE 4. Variability of a large-scale principal warp. x 5 Pygopristis denticulata, e 5 S. elongatus, , 5 S. gouldingi,

s 5 Pygocentrus. nattereri, n 5 Pygocentrus piraya , h 5 Pygocentrus cariba . (a) Pattern of landmark displacement.
(b) Partial warp scores for displacement along the dorsoventral axis. (c) Partial warp scores for displacement along
the anteroposterior axis. A marks one edge of the Pygocentrus range; B separates most Pygopristis denticulata from most

Serrasa lmus. (d) Bivariate plot of anteroposterior and dorsoventral partial warp scores.
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The anteroposterior transformation of Ser-
rasalmus is primarily a relative elongation of
the region between the dorsal ®n and the caudal
peduncle. In contrast, the dorsoventral trans-
formation of Pygocentrus is primarily a relative
thickening of the caudal peduncle.

There are several other features we could
show, but these three are su�cient to demon-
strate the approach we advocate, for both one-
dimensional and two-dimensional characters.
O ur preliminary analysis of the distribution

of 14 shape features indicates there may be
more than 10 shape transformations among
these six species. Six of the changes are in fea-
tures that underwent two changes. Some of the
changes may be autapomorphies, but at least
half are potentially informative for resolving
phylogenetic relationships.

SUMMARY

Thorpe (1984) and Chappill (1989) argued
that selection of a coding method should be
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FIGURE 5. Variability of a small-scale principal warp. (a) Pattern of landmark displacement. (b) Partial warp scores for
displacement along the dorsoventral axis. (c) Partial warp scores for displacement along the anteroposterior axis. (d)

Bivariate plot of anteroposterior and dorsoventral partial warp scores. The line delimits the sets of taxa inferred to have
di�erent character states. Symbols as in ®gure 4.
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based on the purpose of coding. In our view,
the purpose of coding is dictated by the prin-
ciples of phylogenetic systematics. The foun-
dation of phylogenetic systematics is the
observation that monophyletic groups can be
recognized if homologous character states,
shared evolutionary novelties, can be identi®ed
(Hennig, 1966). Unfortunately, characters do
not have labels indicating their homology.
Instead, a systematist must propose a hypoth-
esis of homology and evaluate its congruence
with independent hypotheses based on other
traits. In this context, the purpose of coding is
to represent those hypotheses.

The major obstacle to coding is that the a
priori groups under analysis (i.e., taxa) often
have ranges of variation that overlap to some
degree. This is true whether traits are described
qualitatively or quantitatively. O ne advantage
of quantitative description is that it permits a
more detailed analysis of how much the ranges
of variation overlap. It may seem appropriate

to use statistical methods to summarize the
amount of overlap and even to decide objec-
tively (on a priori grounds) whether taxa are
similar or di�erent. Above, we demonstrated
some of the problems resulting from these uses
of statistical analysis. In our view, the most
important problem is the implication that simi-
larity of the feature across taxa is the basis for
inferring homology. The similarity that is rele-
vant to phylogenetic analysis is not proximity
in morphospace, but shared novelty . Statistical
methods can describe proximity , but they
cannot recognize novelty .

The method of coding we recommend uses
graphical displays of individual values. Coding
decisions are based on all of the individuals in
each taxon, not on summaries derived from
models of expected distributions. Then, the
evidence for inferring divergence is indepen-
dently evaluated for each pair of overlapping
taxa. Coding decisions are not based on a priori
rules that have no bearing on recognition of
evolutionary novelty. This is the same
approach that is used to code qualitatively
described traits.
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A phylogenetic method is inconsistent if it
converges to an incorrect tree as characters
(e.g., the columns or sites in a DNA sequence
data matrix) are added to a phylogenetic
problem. Inconsistency was ®rst identi®ed as
a potential problem in phylogenetics by
Felsenstein (1978) who showed that parsimony
and compatibility methods could become
inconsistent for four taxa under a restricted
set of circumstances. However, the inconsis-
tency problem was later shown to occur

under less stringent conditions by Hendy and
Penny (1989) who demonstrated the inconsis-
tency of parsimony for trees of more than four
species when the data obeyed a molecular
clock. O ther methods of phylogenetic estima-
tion were later shown to be inconsistent under
some conditions (DeBry , 1992; Huelsenbeck
and Hillis, 1993; Gaut and Lewis, 1995;
Huelsenbeck, 1995a; Waddell, 1995; Yang,
1996). For example, when the assumptions of
distance and maximum-likelihood methods are
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violated, they too can become inconsistent. In
this article, I discuss the conditions under which
parsimony and maximum likelihood may be-
come inconsistent and ask whether the phylo-
genetic tree of insects recently produced by
Whiting et al. (1997) su�ers from systematic
bias introduced by long-branch attraction.

INCO NSISTENCY O F PHYLO GENETIC M ETHO DS

For the parsimony method, the inconsis-
tency problem is best understood for the simple
case of four taxa (Fig. 1; an example drawn from
Swo�ord et al., 1996). Although inconsistency
is a potential problem for many types of char-
acter data, I will discuss inconsistency for
methods used on DNA sequences. When two
opposing peripheral branches of a model four-
taxon tree are very long and the remaining
branches short ( 1 5 3 2 5 4 5 5 ) ,
the parsimony method may converge to a
tree that connects the two long branches
(hence, the maxim that long branches attract).
Why is this the case? Consider the tree shown
in Figure 1. For the tree of Figure 1, the chance
that a change occurs along the three small
branches ( 2 , 4 , 5 ) is very small compared
to the chance that a change occurs along the
two long branches ( 1 , 3 ) . In fact, as 2 5

4 5 5 becomes very small, we can ignore
the event that a change occurs along the
small branches, in which case the same nucleo-
tide state will be observed at nodes n2 and n4 .
Under these conditions, a site only changes
along the long branches of the tree ( 1 , 3 ) .
What possible character patterns can we expect
at the tips of the long branches (n1 and n3 ) ?O ne

possibility is that no changes occur along the
long branches, in which case the character pat-
tern that would be observed at the tips of the
tree (n1 , n2 , n3 , and n4 ) would be xxxx (where x
is the nucleotide assigned to tips n1 , n2 , n3 , and
n4 , respectively , and is either A, C, G, or T).
Another possibility is that only one change
would occur along the long branches, in
which case we would observe the character
pattern xyyy or xxyx. Finally, a change could
occur along both of the long branches. If the
changes are to di�erent nucleotides, then the
resulting pattern of nucleotides at the tips of
the tree would be xyzy. If, on the other hand, the
two independent changes are to the same
nucleotide, then the pattern of nucleotides at
the tips of the tree would be xyxy. For parsi-
mony using Fitch (1971) character optimiza-
tion, only the patterns xxyy, xyxy, or xyyx are
informative and distinguish among possible
trees. The site patterns that are possible for
the case when 1 5 3 2 5 4 5 5 in-
clude xxxx, xyyy, xxyx, xyzy, and xyxy; only
the site pattern xyxy is informative for the
parsimony method, and this site pattern is
informative for the incorrect phylogeny:
((n1 , n3 ), n2 , n4 )).

Figure 2 shows the estimates of branch
lengths that would be expected if the true
tree had two long branches separated by
short branches (a four-taxon tree for which par-
simony and maximum likelihood assuming a
Jukes-Cantor [1969] model are inconsistent;
the actual process of substitution generating
the sequences is the Jukes-Cantor [1969]
model with gamma-distributed rate variation
among sites [with shape parameter 5 0 . 5]).
The estimated branch lengths leading to spe-
cies n1 and n3 are long for all three possible
trees. For the maximum parsimony and maxi-
mum likelihood criteria, the best estimate of
phylogeny is the one that (incorrectly) places
the two long branches together. It has been
suggested that when an estimated tree has
two taxa connected by long branches, that
long-branch attraction may be a problem (i.e.,
this is a pattern that would be expected if a
method were incorrectly grouping long
branches; Carmean and Crespi, 1995). Yet,
another possible explanation of such a pattern
is that the long branches do, in fact, belong
together and that there was a single increase
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FIGURE 1. A model four-taxon (n1 to n4 ) tree with
branch lengths ( 1 , 2 , . . . , 5 ) speci®ed.
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in the rate of substitution that occurred before
the speciation event leading to the long
branches. Figure 3 illustrates this point. For
the tree of Figure 3 (a four-taxon tree with
the long branches grouped together), all three
possible trees have long branches leading to
species n1 and n2 . For the tree of Figure 3,
both maximum likelihood and parsimony cor-
rectly estimate phylogeny. The pattern of
branch lengths on the estimated trees are
very similar when the true phylogeny has the
long branches together or separate.

How well can parsimony and maximum like-

lihood distinguish between the situations illu-
strated in Figures 2 and 3?The conditions under
which phylogenetic methods become inconsis-
tent have been extensively explored for the
four-taxon case with the restriction that two
of the opposing peripheral branches are equal
in length ( 1 5 3 ) and that the remaining
three branches are equal in length ( 2 5

4 5 5 ) (Felsenstein, 1978; Jin and Nei,
1990; Nei, 1991; Huelsenbeck and Hillis,
1993; Tateno et al., 1994; Gaut and Lewis,
1995; Huelsenbeck, 1995a, 1995b; Rzhetsky
and Sitnikova, 1995). However, only a few
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FIGURE 2. When long branches are separated by short internal branches on the true tree, parsimony and maximum

likelihood (assuming the wrong model) will converge to the wrong estimate of phylogeny. Here, the actual process of
substitutio n obeys a Jukes-Cantor (1969) model with gamma-distributed rate variation among sites (shape parameter,

5 0 . 5). The two long opposing peripheral branches are 10 times longer than the remaining branches (R 5 10), and

the expected number of substitutions per site over the entire tree is 2 ( S 5 2 ) . Parsimony assumed Fitch (1971)
character optimization, and maximum likelihood assumed a Jukes-Cantor model of DNA substitutio n. Both maximum

likelihood and parsimony converge to a tree that incorrectly places the long branches together: ((n1 , n3 ), n2 , n4 ). The
estimated branches for both parsimony and maximum likelihood have long branches leading to n1 and n3 . However,
parsimony more severely underestimates the branch lengths.
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authors have explored the statistical properties
of methods when the two long branches do, in
fact, belong together (Waddell, 1995; Yang,
1996; D. Swo�ord, pers. comm.).

To illustrate the results from simulations of
four species, I explore two types of model trees.
O ne set of model trees (R) has the constraint
that two opposing peripheral branches are
equal in length and the remaining branches
are equal in length ( 1 5 3 ; 2 5 4 5 5 ).
The overall substitution rate (S; in terms of
expected number of substitutions per site
over all branches) and the ratio of the long
branches to the short branches ( R 5 1 / 2 )

were varied. The other set of model trees (Q )
has the constraint that two adjacent peripheral

branches are equal in length and the remaining
branches are equal in length ( 1 5 2 ; v3 5

4 5 5 ). Here, the long branches are closest
relatives in the true phylogeny (Fig. 4). Again,
the overall substitution rate (S) and the ratio
of the long branches to the short branches
(Q 5 1 / 3 ) were varied. The parameter
space explored is shown in Figure 4. The para-
meter space can be visualized as two planes that
meet where all branches are equal in length
(R 5 Q 5 1; 1 5 2 5 3 5 4 5 5 ) . The
parameter space was explored in the region
0 . 0 < S 5 and 1 Q , R 25.

The results of the simulations for the two
parameter spaces (Q and R) are summarized
in Appendix 1. Figure 5 shows the results for

522 SYSTEM ATIC BIO LO GY VO L. 47

FIGURE 3. When the long branches are adjacent on the true tree both parsimony and maximum likelihood are
consistent. The process of DNA substitutio n followed a Jukes-Cantor (1969) model with gamma distributed rate
variation among sites ( 5 0 . 5) . Two of the branches were 10 times longer than the other branches ( Q 5 10 ) , and

the expected number of substitutio ns over the entire tree per site was 2 ( S 5 2 ) . Both maximum likelihood and
parsimony estimate the true tree with in®nite number of sites.
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the consistency of maximum parsimony and
maximum likelihood in the R parameter
space. The expected number of substitutions
per site over the entire tree (S) is plotted
along the abscissa and the ratio of long to
short branches (R) is plotted along the ordinate.
Parsimony was implemented with Fitch (1971)
optimization of characters and maximum like-
lihood assumed a Jukes-Cantor model of DNA
substitution. Fitch (1971) character optimiza-
tion and the Jukes-Cantor substitution model
are similar in spirit because they both assume
equal weights for di�erent character transfor-
mations. However, the Jukes-Cantor model
assumes that substitutions follow a Poisson
process and takes into account multiple substi-
tutions at the same site. Parsimony implemen-
ted with Fitch (1971) character optimization
does not account for multiple substitutions at
the same site (but parsimony can be made to
assume a speci®c model of DNA substitution;
Steel et al., 1993). The assumptions of maxi-
mum likelihood are violated in the analyses
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FIGURE 4. Four-taxon simulations were performed

that had the long branches together ( Q > 1 ) and separate
( R > 1 ) . The two sets of simulations can be visualized as
two planes that meet where R 5 Q 5 1 (i.e., all branches

equal in length). In this diagram, Q is plotted on the x-axis,
R is plotted on the y-axis, and the expected number of
substitutio ns per site over the entire tree (S) is plotted on

the z-axis.

FIGURE 5. The parameter conditions under which maximum parsimony (M P) and maximum likelihood (M L) are

inconsistent in the R space. A method is inconsistent above its respective line. M aximum parsimony assumed Fitch
(1971) optimization of characters, and maximum likelihood assumed a Jukes-Cantor (1969) model of DNA substitution.
The process of substitutio n generating the sequences was varied. (a) The process generating the sequences included
gamma-distributed rate variation among sites (with gamma shape parameter, ). (b) Transitions occurred at a higher rate

than transversions (with transition/transversion rate parameter, ). When 5 1 and 5 ¥ , the assumptions of
maximum likelihood are satis®ed.
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depicted in Figure 5 either by ignoring gamma-
distributed rate variation among sites (Fig. 5a,
with gamma shape parameter ; Jin and Nei,
1990; Yang, 1993) or by allowing transitions to
occur at a higher rate than transversions (Fig.
5b, with transition/transversion rate parameter

; Kimura, 1980). In Figure 5, a method is
inconsistent above the line. The set of condi-
tions under which a method becomes inconsis-
tent has been termed the Felsenstein zone
(Huelsenbeck and Hillis, 1993). Note that
both parsimony and maximum likelihood are
inconsistent when R becomes large and that the
problem is more severe when the substitution
rate is high (S is large). Also note that the para-
meter space for which maximum likelihood is
inconsistent is smaller than the set of conditions
under which parsimony is inconsistent. Similar
results for the relative performance of maxi-
mum likelihood and parsimony hold when
the e�ciency of the methods is examined in
the R space (Appendix 1) for a limited number
of sites; maximum likelihood is generally more
e�cient when the model tree has two long
branches separated by a short internal branch.

Both maximum likelihood and parsimony
are consistent over the set of conditions exam-
ined here for the Q space. However, parsimony
is much more e�cient than maximum likeli-
hood when adjacent branches are long. This
result is similar to those of Yang (1996) and
Waddell (1995). An intuitive explanation for
this result is that maximum likelihood is less
biased toward any one tree because the di�er-
ence between trees that have long branches
separate versus adjacent is very small (Fig. 6);
to move from tree A to tree B in Figure 6, one
only has to move the branches a small distance
(it is necessary to contract and expand the small

internal branch to move from tree A to tree B;
Kuhner and Felsenstein, 1994). Parsimony, in
e�ect, counts any parallel changes to the
same state that occur along the long branches
as synapomorphies (i.e., assumes that they
changed along the branch leading to the two
long branches). Also, the performance of max-
imum likelihood increases when the model of
DNA substitution ®ts poorly (Yang, 1996).

The simulations in the R and Q spaces sug-
gest that maximum likelihood is better able
to distinguish between trees with the long
branches separate versus adjacent. However,
it may take very long sequences before the
two types of trees can be statistically distin-
guished from each other. Figure 7 shows the
results of simulations showing the power of
the Kishino-Hasegawa (1989) test for trees
with long branches separate and together.
The Kishino-Hasegawa test uses the asympto-
tic variance of the likelihoods of di�erent trees
to test for signi®cance between the trees. This
test is implemented in the programs DNAML
(Felsenstein, 1995) and PAUP* 4.0 (provided
by David Swo�ord). The three possible trees
are labelled tree 1 [((n1 , n2 ) , n3 , n4 )], tree 2
[((n1 , n3 ) , n2 , n4 )], and tree 3 [((n1 , n4 ) , n2 , n3 )];
tree 1 was used to generate the sequences.
When the branch lengths are equal in length
(R 5 Q 5 1), the Kishino-Hasegawa test
easily distinguishes the true tree from the
other possible trees (tree 1 from tree 2 and
tree 1 from tree 3); only a few hundred sites
are needed before the P value drops below the
5% level for a comparison of trees 1 and 2 or
trees 1 and 3. However, when there are long
branches on the tree, thousands of sites are
needed before tree 1 becomes signi®cantly dif-
ferent from trees 2 and 3. Although maximum
likelihood can correctly discriminate between
phylogenies that have the long branches to-
gether and separate, the method may require
thousands of sites before any con®dence can be
placed in the estimate.

Although the common view is that long
branches are a problem only when, in reality,
the long branches occur in disparate parts of a
phylogenetic tree, long branches are also a pro-
blem when they are adjacent on the true tree.
Regardless of whether the long branches are
separate or together on the true tree, the max-
imum parsimony method is more likely to place
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FIGURE 6. Trees with long branches separate (tree A)
or together (tree B) are very similar. To move from tree A
to tree B, one only has to contract and expand the small

internal branch (moving through the intermediate star
phylogeny).
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the long branches together on the estimated
tree. M aximum likelihood, on the other hand,
is better able to distinguish between the two
cases. If the long branches are separated on the
true tree (as with the simulations in the R
space), maximum likelihood has a better chance
than parsimony of correctly estimating the
phylogeny even if the assumptions of the ana-
lysis are violated. The performance advantage
of maximum likelihood in the R space appar-
ently comes with a cost in the Q space where its
performance is lower than that of parsimony.
However, it appears that maximum likelihood
more faithfully depicts the relative support of
trees with long branches separated or together.
As noted above, the move from a tree with
the long branches separate to a tree with the

long branches together involves contracting
and expanding the branches a small amount.

How can the systematist avoid long-branch
attraction? O ne possible solution to the pro-
blem is to sample more species from within
the clade of interest. Hillis (1996), for example,
found that parsimony and minimum evolution
were able to accurately estimate the phylogeny
of a large number (228) of species with surpris-
ingly few sites. The hope is that by sampling
more species, the long branches are subdivided
and the problem is converted from one that has
several long branches to one that has no long
branches and for which phylogenetic analysis
using parsimony (or other phylogenetic meth-
ods) is not problematic. Another possible reso-
lution of the problem is to use phylogenetic
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FIGURE 7. Graphs showing the power of the Kishino-Hasegawa (1989) test for distinguishing between the three
possible trees for four species. O n each graph the length of the sequences is plotted along the abscissa and the average P
value for 100 simulations is plotted along the ordinate. When the P value drops below 5% (the dashed lines) the test is

considered signi®cant. Trees 1 and 2 place the long branches together or separate, respectively. Three tests were
performed:between trees 1 and 2 (d ), between trees 1 and 3 (j ), and between trees 2 and 3 (m ). Trees 1 and 2 and trees

1 and 3 are easily distinguished when R5 Q 5 1. However, many more sites are needed to statistically distinguish
between trees 1 and 2 when R 5 10 or Q 5 10. S is the expected number of substitutio ns over the entire tree. The
Jukes-Cantor (1969) model of DNA substitutio n was used to generate and analyze the sequences.
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methods that are less sensitive to the problem
of long-branch attraction. As shown in Figure
5, by using a method of phylogeny estimation
that corrects for the multiple substitutions that
occur along long branches, the problem of
long-branch attraction can be reduced. The
problem of long-branch attraction can be re-
duced even if the correction for multiple sub-
stitutions is imperfect, suggesting that some
correction is better than none at all.

IS LO NG-BRANCH ATTRACTIO N A PRO BLEM

FO R REAL DATA?

Although long-branch attraction has been
recognized as a potential problem in phyloge-
netics for almost 20 years, few empirical de-
monstrations of the phenomenon exist. O ne
possible explanation for the paucity of empiri-
cal examples is that for real phylogenetic pro-
blems, systematic bias is rarely a problem.
Another possible explanation concerns the dif-
®culty of detecting phylogenetic problems for
which method inconsistency misleads the sys-
tematist. Detecting phylogenetic problems
that are in the Felsenstein zone is a lot like de-
tecting black holes; such phenomena can only
be inferred indirectly .

Several criteria have been used to detect
cases of possible long-branch attraction. O ne
criterion involves looking for long branches
that are placed together in a phylogenetic
tree. If two long branches are adjacent on an
estimated tree, then long branch attraction may
be suspected. Another criterion involves ask-
ing whether the long branches are long enough
to attract in a parsimony analysis. Huelsenbeck
et al. (1996; also see Huelsenbeck, 1997) sug-
gested a way of addressing this question using
Monte Carlo simulation. The method involves
estimating parameters of a parameter-rich
model of DNA substitution on a tree that has
the long branches separated. Many data sets
are simulated on this tree and analyzed using
parsimony (or any other method). If the long
branches are placed together a high proportion
of the time in the parsimony analyses, then
the branches are long enough to attract under
the assumed substitution model. Finally, long-
branch attraction may be suspected if a method
that is less sensitive to long branches provides

an estimate of phylogeny that places the long
branches in separate parts of the tree.

Long-Branch Attraction in Amniotes

O ne possible case of long-branch attraction
has been identi®ed for amniotes (Hedges,
1994). For 18S rDNA sequences collected
from four species, parsimony, distance, and
maximum likelihood methods estimate a phy-
logeny that has long branches leading to birds
and to mammals (Hedges, 1994; Huelsenbeck
and Bull, 1996; Huelsenbeck et al., 1996). The
best estimate of phylogeny places the birds and
mammals together despite paleontological
(Gauthier et al., 1988), morphological (Gauth-
ier et al., 1988), and molecular data (Hedges,
1994) that suggest that the closest relatives of
birds are crocodylians. Monte Carlo simulation
of a subset of the amniote species shows that
the long branches are long enough to attract in
a parsimony analysis (Huelsenbeck et al., 1996).

Long-Branch Attraction in Rodents

Several recent analyses have challenged the
monophyly of Rodentia by arguing that the
guinea pig is not a rodent (Graur et al., 1991;
Li et al., 1992; M a et al., 1993; D’Erchia et al.,
1996). The analysis of D’Erchia et al. was parti-
cularly persuasive because it was based on very
long sequences (complete mitochondrial DNA
sequences from 16 species). D’Erchia et al.’s
original analysis of these data using parsimony,
distance, and maximum likelihood methods
produced an estimated phylogeny for which
Rodentia is not monophyletic. Sullivan and
Swo�ord (1997), however, argued that the
mitochondrial DNA results do not provide
conclusive evidence against rodent monophy-
ly because D’Erchia et al. assumed substitution
models that did not account for among-site rate
variation (their analyses assumed that all sites
evolve at the same rate). When Sullivan and
Swo�ord analyzed the mitochondrial data
using maximum likelihood implemented with
a substitution model that allows for among-site
rate variation, the ingroup topology of the esti-
mated tree was consistent with rodent mono-
phyly and they found very little di�erence in
the likelihoods for the best tree with rodents
monophyletic versus the best tree with rodents
nonmonophyletic. Furthermore, in the Sullivan
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and Swo�ord analysis the branches leading to
the opossum and hedgehog were very long
and placed in separate parts of the tree (whereas
with the D’Erchia analysis, the two long
branches were placed together on the tree).
Finally, when they simulated sequence data
sets on the best tree for which rodents were
monophyletic, parsimony estimated trees with
rodents nonmonophyletic a high proportion
(68%) of the time.

Long-Branch Attraction in Insects

Another potential instance of long-branch
attraction was identi®ed by Carmean and
Crespi (1995). They noted that in an analysis
of 18S rDNA sequence data from insects, that
the branches leading to the ¯ies (Diptera) and
to Strepsiptera (a small group of parasitic
insects; Kathirithamby, 1989) were long and
placed as sister taxa on the maximum parsi-
mony tree. This estimate of phylogeny was
incongruent with some hypotheses of insect
phylogeny based on morphology that place
the Strepsiptera with the beetles (Coleoptera)
(Kristensen, 1991). They argued that this pat-
tern is suggestive of long-branch attraction.

I applied the criteria for detecting possible
branch attraction, outlined above, to a data set
consisting of 13 rDNA sequences from insects
collected by Carmean and Crespi (1995) (Huel-
senbeck, 1997). I extended the analysis of
Carmean and Crespi by asking whether the
branches leading to Strepsiptera and Diptera
were long enough to attract in a parsimony
analysis and by analyzing the data using max-
imum likelihood and neighbor joining, meth-
ods that are less sensitive to long-branch
attraction (Huelsenbeck, 1997). The Monte
Carlo simulation study showed that the
branches leading to Strepsiptera and Diptera
were long enough to attract and reanalysis of
the data using maximum likelihood provided
an estimated tree that placed the long branches
on separate parts of the tree (the Strepsiptera
were placed with the Coleoptera with low non-
parametric bootstrap support). These results
were suggestive of long-branch attraction mis-
leading parsimony.

Whiting et al. (1997) collected 18S and 28S
rDNA sequences and scored morphological

features for 85 insects. They analyzed these
data using the parsimony criterion (and no
other methods) and the most parsimonious
trees placed Strepsiptera and Diptera as sister
taxa. They argued that long-branch attraction
was not a problem for several reasons (Whiting
et al., 1997): (1) the phylogenies among all
three data sets were congruent, (2) the branches
leading to Strepsiptera and Diptera appeared
about as long as the branches leading to
other insect groups, (3) the greatest sequence
di�erence was not between Strepsiptera and
Diptera (using raw sequence similarity and no
corrections for multiple substitutions), and (4)
their analysis had more thorough taxon sam-
pling. In the following section, I reanalyze the
sequence data collected by Whiting et al. and
will show that the problem of long-branch
attraction may exist for both the 18S and 28S
rDNA sequences despite the more thorough
taxon sampling. I maintain that the support
for Strepsiptera 1 Diptera monophyly is
over-stated.

A REANALYSIS O F THE W HITING ET AL. DNA
DATA

Whiting et al. (1997) analyzed approxi-
mately 1.0 kb of 18S rDNA sequence from 85
insect taxa and approximately 0.4 kb of 28S
rDNA sequence from 51 insect taxa. The 18S
rDNA sequences used by Whiting et al. (1997)
overlapped the 18S rDNA sequences used by
Carmean et al. (1992) by about 0.75 kb. Primer
sites were excluded from the analysis by
Whiting et al. and are also excluded here.
Whiting et al. aligned the sequences using the
program MALIGN (version 1.93; Wheeler and
Gladstein, 1994). This program implements the
strategy of Sanko� et al. (1973) by ®nding the
alignment that minimizes the overall number of
insertion, deletion, and substitution events as
reconstructed by the parsimony criterion. Sim-
ultaneous sequence alignment and tree estima-
tion can, in principle, also be performed using
maximum likelihood (Bishop and Thompson,
1986; Thorne et al., 1991, 1992). However,
maximum likelihood alignment of sequences
is not feasible for large numbers of species at
this time and the alignment of Whiting et al.
was used even though this alignment may be
sensitive to the same conditions that can cause
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the maximum parsimony criterion to fail (e.g.,
long-branch attraction). The aligned sequences
have 24 and 14 insertions for the 18S and 28S
rDNA sequences, respectively (Whiting et al.,
1997). These inserts were coded as missing
data in this analysis. Because many of the like-
lihood analyses performed in this study are
computationally intensive, only the holometa-
bolous insects (a well-supported clade) were
included. Three data sets were analyzed: (1)
18S rDNA sequences from 65 holometabolous
insects, (2) 28S rDNA sequences from 39 holo-
metabolous insects, and (3) combined 18S and
28S rDNA sequences from 65 holometabolous
insects (28S rDNA sequences were not avail-
able for all holometabolous insects examined
by Whiting et al. and were coded as missing
in the combined analysis).

In all likelihood and distance analyses, the
Hasegawa-Kishino-Yano (1985) substitution
model was assumed (HKY85). This model
allows for di�erent base frequencies and for a
transition/transversion rate ratio (0 < < ¥ ).
Among-site rate variation was modeled using a
discrete gamma distribution (Yang, 1994). The
shape parameter of the gamma distribution
( 0 < < ¥ ) is related to the variance in
the substitution rate (r) among sites by
Var[r]= 1/ . Five rate categories were used
to approximate the continuous gamma density
and the shape parameter, , was estimated
using maximum likelihood. For the parsimony
analyses, Fitch (1971) optimization of charac-
ters was assumed.

Searching the space of trees for the maxi-
mum likelihood tree proved di�cult, especially
for the complex models of DNA substitution
(e.g., for substitution models that include a tran-
sition-transversion rate bias and allow for
among site rate variation). Heuristic searches
were performed as follows: (1) a starting tree
was obtained using parsimony or neighbor
joining, (2) on this starting tree, and were
estimated using maximum likelihood, (3) and

were ®xed to the maximum likelihood values,
(4) the starting tree was perturbed using nearest
neighbor interchange (NNI) or taxon bisection
and reconnection (TBR) and for each neighbor-
ing tree visited, the likelihood was maximized,
and (5) the tree was perturbed until a neighbor-
ing tree under the perturbation with a better
likelihood could not be found. Where possible,

steps 2 ± 5 were repeated until a tree on which
and were estimated survived a full round
of perturbation under NNI and TBR. The
approach used here avoids estimating and

for each tree visited but, obviously, does
not guarantee that a global maximum likeli-
hood tree has been found. For the parsimony
analysis, a heuristic search starting from 10
random-addition sequences was used to ®nd
minimum length trees. A test version of the
program PAUP* 4.0 was used for all analyses.

The maximum likelihood trees under the
constraints that Strepsiptera 1 Diptera are/are
not monophyletic are shown in Figure 8 for the
18S, 28S, and combined analyses, respectively.
The scores of the best trees for the parsimony
and maximum likelihood criteria are summar-
ized in Table 1. Because only unrooted trees
are considered, I will use the term Strepsip-
tera 1 Diptera monophyly to indicate that
Strepsiptera 1 Diptera form a taxon bipartition
on a tree and Strepsiptera 1 Diptera nonmono-
phyly to indicate that they do not form a taxon
bipartition.

The best estimate of phylogeny under the
parsimony criterion is consistent with Strep-
siptera 1 Diptera monophyly for all three
analyses. The best trees for which Strepsip-
tera 1 Diptera are not monophyletic are 8, 5,
and 15 steps longer than the best trees for the
18S, 28S, and combined analyses, respectively.
These results are consistent with those of
Whiting et al. (1997). Interesting ly, the maxi-
mum-likelihood estimate of phylogeny for the
18S rDNA data is consistent with Strepsip-
tera 1 Diptera monophyly but the maximum-
likelihood estimate of phylogeny for the 28S
rDNA data is not. However, the di�erence
between the best tree for which Strepsip-
tera 1 Diptera are and are not monophyletic
is not signi®cant for any of the analyses per-
formed using maximum likelihood (Kishino
and Hasegawa, 1989; 18S analysis, | log LM 2

log LN M | 5 2 . 234, SD 5 13 .801, T 5 0 .162,
P 5 0 .872; 28S analysis, | log LM 2 log
LN M | 5 0 . 252, SD 5 4 .303, T 5 0 .059,
P 5 0 .953; 18S 1 28S analysis, | log LM 2

log LN M | 5 1 . 644, SD 5 7 .115, T 5 0 .231,
P 5 0 .817). The Kishino-Hasegawa test results
suggest that there is very little support for
Strepsiptera 1 Diptera monophyly or nonmo-
nophyly .
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Figure 9 summarizes the results of the
neighbor joining analyses (Saitou and Nei,
1987). These graphs show Strepsip-
tera 1 Diptera monophyly as a function of

and . Black areas denote parameter condi-
tions that lead to a nonmonophyletic
Strepsiptera 1 Diptera whereas white areas
denote parameter values that lead to

Strepsiptera 1 Diptera monophyly. The white
dots denote the maximum likelihood values
of and . O bviously, the results of the
neighbor joining analysis are sensitive to
the assumptions of the model. Neither
Strepsiptera 1 Diptera monophyly nor non-
monophyly are strongly supported by neigh-
bor joining.
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FIGURE 8. The maximum likelihood estimates of phylogeny under the constraints that Strepsiptera 1 Diptera are

monophyletic (a) and nonmonophyletic (b) for the 18S rDNA data set, monophyletic (c) and nonmonophyletic (d) for
the 28S rDNA data set, and monophyletic (e) and nonmonophyletic (f) for the 18S 1 28S rDNA data set.
Coleoptera 5 h , Neuroptera 5 j , Hymenoptera 5 , , M egaloptera 5 . , M ecoptera 5 e , Siphonaptera 5 r ,

Lepidoptera 5 n , Trichoptera 5 m , Raphidioptera 5 x , D iptera 5 s , Strepsiptera 5 d .

T ABLE 1. The scores for the best trees found in the three analyses performed in this study. M onopoly, the best
tree under the constraint of Strepsiptera 1 Diptera monophyly; Nonmonophyly, the best under the constraint of
Strepsiptera 1 Diptera nonmonophyly; transition/transversion rate ratio (estimated via maximum likelihood); ,

shape parameter of gamma distribution for among-site rate variation (estimated via maximum likelihood).

M aximum likelihood
Parsimony

(tree length) M onophyly Nonmonophyly

Analysis M NM ln L ln L

18S 1180 1188 2 7427 .052 3.311 0.297 2 7429 . 286 3.309 0.292

28S 618 623 2 3194 .192 3.147 0.227 2 3193 . 940 3.160 0.230
18 1 28S 1831 1846 2 10876 . 713 3.187 0.259 2 10878 . 232 3.204 0.258
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Are the branches leading to Strepsiptera and
Diptera the longest?Ð The ®rst criterion for
long branch attractionÐ that there are long
branches that may be problematic in the ana-
lysisÐ appears to be satis®ed. In all analyses,
the branches leading to Strepsiptera and to
Diptera were very long. This assertion can
be veri®ed by examining the unrooted phylo-
grams depicted in Figure 8. Figure 10 shows
frequency histograms of the lengths of all
branches on the trees. The branches leading
to Diptera and to Strepsiptera are denoted D
and S, respectively. Branch lengths for all
methods are in the same units (expected num-
ber of substitutions per site). As expected, the
parsimony method severely underestimates
the lengths of the branches leading to
Strepsiptera and Diptera (branch length esti-
mates were obtained by averaging the lengths
of the branches over all equally parsimonious
reconstructions of ancestral characters using
MacClade 3.0; M addison and Maddison,
1992). However, even for the parsimony
method, the branches leading to the Strep-
siptera are among the longest on the tree
(ranks for branches leading to Strepsiptera [S]
and Diptera [D], rank 1 being longest: 18S
monophyly, S 5 3, D 5 1; 18S nonmono-
phyly, S 5 3, D 5 1; 28S monophyly,
S 5 1, D 5 12; 28S nonmonophyly , S 5 1,
D 5 5). The lengths of the branches leading
to Strepsiptera and to Diptera are the
longest two branches in the maximum likeli-
hood analyses. In fact, for the 28S rDNA
sequences, the length of the Strepsiptera and
Diptera branches are among the longest ever
observed (approximately 1.0 substitution per
site).

The extreme lengths of the branches leading
to Strepsiptera and to Diptera compared to the
other branches of the phylogeny are virtually
unparalleled in phylogenetic analysis. Inter-
estingly, the more thorough sampling of spe-
cies in the Whiting et al. (1997) study did very
little to break up the branches leading to
Strepsiptera and Diptera; all of the Strepsip-
teran and Dipteran species join to the long
branches leading to the clades near the very
tips. Although thorough taxon sampling is
important, sampling by itself cannot be relied
upon to solve the long-branch problem. Also,
the fact that long branches occur for both 18S
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FIGURE 9. The results of the neighbor-joining analysis

are sensitive to the assumptions used to generate the
distances. M aximum likelihood was used to estimate

the distances between all pairs of species under the
Hasegawa-Kishino-Yano (1985) model of DNA substitu-
tion. The transition/tranversion rate parameter ( ) and

the shape parameter of the gamma distributio n for
among-site rate variation ( ) were varied. The results

were sensitive to the values that and took in the
analysis because either Strepsiptera 1 Diptera mono-
phyly (white areas) or nonmonophyly (black areas) was

obtained for di�erent combinations of and . The white
dot indicates the maximum likelihood values for and .
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and 28S rDNA is not surprising because these
genes are closely linked.

Are the branches leading to Strepsiptera and
Diptera long enough to attract?Ð I used Monte
Carlo simulation to determine whether the
long branches leading to Strepsiptera and to
Diptera are long enough to attract one an-
other in a parsimony analysis even if the
branches are separate on the true tree
(Huelsenbeck et al., 1996; Huelsenbeck,
1997). Data were simulated on the maximum
likelihood estimates of phylogeny that were
consistent with Strepsiptera 1 Diptera non-
monophyly for 18S and 28S rDNA (trees B
and D, Fig . 8). The maximum likelihood esti-
mates of the branch lengths, transition/trans-
version rate ratio, and shape parameter of the
gamma distribution for rate variation among
sites were used in the simulations. The
observed base frequencies were also used in
the simulations. Figure 11 shows the results of
the simulations. The number of sites simulated
is plotted on the abscissa and the probability
that the parsimony estimate was consistent
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FIGURE 10. Frequency histograms of the branch length estimates under the parsimony and maximum likelihood
(M L) criteria with constraints of monophyly (M ) and nonmonophyly (N). The parsimony method grossly under-

estimates the lengths of the branches, especially the branches leading to Strepsiptera and to Diptera (D).

FIGURE 11. The branches leading to Strepsiptera and
to Diptera (D) are long enough to attract one another in a
parsimony analysis. The ®gure shows the probability of

the branches leading to Strepsiptera and to Diptera being
estimated as sister taxa as a function of the sequence

length. The model trees used in the simulations placed
Strepsiptera and Diptera apart (Figs. 8b and 8d for the 18S
[j ] and 28S [d ] simulations, respectively). The maxi-

mum likelihood values for the branch lengths, , and
on the model trees and the observed base frequencies

were used in the simulations. M aximum parsimony
assumed Fitch (1971) character optimization. No branch
swapping was performed in the heuristic searches. The

observed lengths of the 18S and 28S rDNA sequences
were 902 and 358 bp, respectively.
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with Strepsiptera 1 Diptera monophyly (i.e.,
the proportion of the time that the long
branches attracted one another in a parsimony
analysis) is plotted on the ordinate. The prob-
ability that the long branches will attract in a
parsimony analysis is high for the simulations
that matched the observed number of sites for
the 18S and 28S analyses (18S analysis, 902
sites, Pr[long branch attraction] 5 0 . 90; 28S
analysis, 358 sites, Pr[long branch attraction]

5 0.61). Moreover, as the simulated sequences
become longer, the probability that long
branch attraction will occur in a parsimony
analysis increases, suggesting that parsimony
is inconsistent for the model tree that places
Strepsiptera and Diptera in disparate parts of
the tree.

D ISCUSSIO N

Traditionally, long branches are considered
to be problematic in phylogenetic analysis only
when they occur in separate parts of the true
tree. It is well known that many phylogenetic
methods will converge to the wrong phylo-
geny if the branches and sequences are long
enough. Yet, long branches are also proble-
matic when they occur together on the true
tree. They are not problematic because such
phylogenies are di�cult to estimate, but rather
because it is di�cult to distinguish between
a phylogenetic estimate that has the long
branches together versus the long branches
separate.

Which phylogenetic methods are best when
long branches occur in a phylogeny? I maintain
that methods that attempt to correct for the
multiple substitutions that occur along long
branches are better in such cases. In this article,
only the performance of maximum likelihood
was explored in any detail. However, many
of the results should also apply to additive
distance methods using corrected distances.
Methods that correct for multiple substitutions,
for one, are better able to estimate phylogeny
when the long branches are separate and their
performance is adequate when the long
branches are together on the true tree.
Moreover, they more accurately depict the
uncertainty in the phylogenetic estimate.
Trees with long branches separate versus
together are very similar when one considers

how little branch length must be contracted
and expanded to convert one type of tree
into the other. I favor methods that depict
this uncertainty more faithfully. M aximum par-
simony, although very e�cient when the long
branches are adjacent on the true phylogeny , is
very ine�cient or inconsistent when the long
branches are apart on the true phylogeny.

Although systematists are often concerned
with the ®t of the models of DNA substitution
assumed in maximum likelihood and distance
analyses, it appears that even an imperfect
attempt to correct for multiple substitutions
that occur on long branches is better than fail-
ing to correct for multiple substitutions at all.
In this study and others (Tateno et al., 1994;
Huelsenbeck, 1995a, 1995b), when maximum
likelihood assumed a false model, its perfor-
mance was better than that of parsimony
when the long branches are separate (i.e., the
method was consistent and more e�cient over
a larger range of parameter conditions).

Instances of possible long branch attraction
have been identi®ed in amniotes (Huelsenbeck
et al., 1996) and in rodents (Sullivan and
Swo�ord, 1997). I argue that the phylogeny
of Strepsiptera and Diptera is also problematic
because of the long branches leading to each of
these two clades (also see Carmean and Crespi,
1995; Huelsenbeck, 1997). The branches lead-
ing to the Strepsiptera and to Diptera are very
long regardless of whether parsimony (a
method that will severely underestimate the
lengths of the long branches) or maximum like-
lihood is used to estimate the branch lengths.
Moreover, the simulation results presented in
this note demonstrate that the branches are
long enough to attract in a parsimony analysis;
that is, even if the long branches leading to
Strepsiptera and to Diptera occur in separate
parts of the true phylogeny, parsimony will
very likely produce an estimate of phylogeny
that places these two taxa together on the tree.
Hence, the results of the Whiting et al. (1997)
analysis are not surprising.

Neither Strepsiptera 1 Diptera monophyly
nor Strepsiptera 1 Diptera nonmonophyly is
strongly supported by the 18S and 28S
rDNA. Analysis of the 18S and 28S rDNA
sequences using maximum likelihood (1) pro-
duced con¯icting trees for 18S and 28S data
(the 18S tree was consistent with Strep-
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sipter 1 Diptera monophyly whereas the 28S
tree was consistent with the nonmonophyly of
Strepsiptera 1 Diptera) and (2) the best trees
for which Strepsiptera 1 Diptera are and are
not monophyletic were not signi®cantly di�er-
ent using the Kishino-Hasegawa (1989) test for
the 18S, 28S, and combined analyses.

The Strepsiptera 1 Diptera problem can be
visualized as lying in either the R space or the
Q space for the 18S and 28S rDNA data (Fig.
12). What can be done to distinguish between
these two possible scenarios? O ne possible
solution is to add more Strepsiptera and
Diptera species with the hope of breaking up
the long branches. This solution, however, is
not guaranteed to work because the additional
species may join at the tips of the very long
branches. Another solution is to sequence addi-
tional nonlinked genes. If the phylogeny from
an additional gene is consistent with Strep-

siptera 1 Diptera monophyly and the long
branches do not appear to be a problem, then
the monophyly of these two taxa is supported.

Regardless of whether or not the Strepsip-
tera and Diptera are monophyletic, the data
suggest that something interesting is occurring
in the 18S and 28S rDNA sequences. The rates
of substitution, for one, are much higher in the
Strepsiptera and Diptera. Also, the 18S rDNA
sequences of Strepsiptera are much longer than
the 18S sequences in other insects (Chalwatzis
et al., 1995) with lower G 1 C content due
to A 1 T -rich expansion segments (e.g., the
Strepsiptera species Xenos vesparum is 3,316
bp in length with 28.1% G 1 C content
whereas Polistes dominulus and M eloe proscara-
baeus are 1,919 bp and 1,934 bp in length,
respectively, and have 49.3% and 48.2%
G 1 C content, respectively). Although inter-
esting from a molecular evolutionary point of
view, these features of the 18S and 28S rDNA
in Strepsiptera and Diptera make phylogenetic
analysis di�cult. In addition to the long branch
attraction problem discussed here, alignment of
ribosomal sequences in general, and Strepsip-
tera sequences in particular, is di�cult. It would
not be surprising if the best estimate of phylo-
geny changed depending on the alignment
used (although it would be unusual if the align-
ment changed the signi®cance of the di�erence
between the best Strepsiptera 1 Diptera mon-
ophyly and nonmonophyly trees). Also, the
stem regions of ribosomal genes present pro-
blems because the substitutions in stems are not
independent (Dixon and Hillis, 1993; Wheeler
and Honeycutt, 1988), a basic assumption of all
phylogenetic methods. O ne possible solution
to the nonindependence of the substitutions in
the stem regions is to model the stems sepa-
rately. Several authors have proposed Poisson
process models that account for the depen-
dence of Watson-Crick paired stem bases
(e.g., SchoÈniger and von Haeseler, 1994).

Phylogenetic analysis is a complex problem
in inference. It is not surprising, then, that sys-
tematists take widely divergent positions on
the di�erent methods of analysis and the prin-
ciples upon which they are based. No one
method of phylogenetic analysis can be ex-
pected to perform best for all possible data
sets. It is important, then, to keep in mind the
limitations of any method of analysis and pro-
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FIGURE 12. Strepsiptera and Diptera either are or are
not monophyletic. If they are monophyletic, then the true

tree can be thought of as lying in the Q space whereas if
they are not, the true tree lies in the R space. In either case,

maximum parsimony will estimate a phylogeny with the
long branches adjacent on the tree so that the true tree will
be inferred as being in the Q space. The shaded areas of

the planes denote conditions under which parsimony is
consistent.
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ceed cautiously when the data appear to indi-
cate that the method may be providing mis-
leading results.

ACKNO WLEDGM ENTS

I thank M . Whiting for sending me the sequence data
used in his analysis. This paper bene®ted from discussions

with J. Felsenstein, R. Nielsen, B. Rannala, D. Swo�ord,
and Z. Yang. This research was supported by a M iller

Postdoctoral Fellowship and a NSF Sloan Postdoctoral

Fellowship. I thank the NO W project at the University

of California at Berkeley, and especially E. Brewer, for
making available the many SUN Ultrasparc workstations

used to perform the simulation and maximum likelihood

analyses.

REFERENCES

BISHO P, M . J., AND E. A. THO M PSO N. 1986. M aximum

likelihood alignment of DNA sequences. J. M ol.

Biol. 190:159 ± 165.

CARMEAN, D., AND B. CRESPI. 1995. Do long branches
attract ¯ies? Nature 373:666.

CARMEAN, D ., L. S. KIM SEY , AND M . L. BERBEE. 1992. 18S

rDNA sequences and holometabolous insects. M ol.
Phylogenet. Evol. 1 :270 ± 278.

CHALWATZIS, N., A. BAUR, E. STETZER, R. KINZELBACH,

AND F. K. ZIM M ERMAN. 1995. Strongly expanded
18S rRNA genes correlated with a peculiar morphol-

ogy in the insect order Strepsiptera. Zoology 98:115 ±

126.
DEBry, R. W . 1992. The consistency of several phylo-

geny-inference methods under varying evolutionary

rates. M ol. Biol. Evol. 9 :537 ± 551.

D’ERCHIA, A. M ., C. G ISSI, G. PESO LE, C. SACCO NE, AND U.
ARNASON. 1996. The guinea pig is not a rodent. Nat-

ure 381:597 ± 600.

D IXO N, M . T ., AND D. M . HILLIS. 1993. Ribosomal RNA
secondary structure: Compensatory mutations and

implications for phylogenetic analysis. M ol. Biol.

Evol. 10:256 ± 267.
FELSENSTEIN, J. 1978. Cases in which parsimony and com-

patibility methods will be positively misleading. Syst.

Zool. 27:401 ± 410.

FELSENSTEIN, J. 1995. PHYLIP: Phylogeny inference pack-
age, version 3.57c. Department of Genetics, Univ.

Washington, Seattle.
FITCH, W . M . 1971. Toward de®ning the course of evo-

lution: M inimum change for a speci®c tree topology.

Syst. Zool. 20:406 ± 416.

GAUT , B. S., AND P. O . LEWIS. 1995. Success of maximum
likelihood phylogeny inference in the four-taxon case.

M ol. Biol. Evol. 12:152 ± 162.

GAUTHIER, J., A. G. KLUGE, AND T. ROWE. 1988. Amniote
phylogeny and the importance of fossils. Cladistics

4:105 ± 209.

GO LDM AN, N. 1993. Statistical tests of models of DNA
substitution. J. M ol. Evol. 36:182 ± 198.

GRAUR, D , W. A. HIDE, AND W.-H. LI. 1991. Is the gui-

nea-pig a rodent? Nature 315:649 ± 652.

HASEGAW A, M ., H. KISHINO , AND T. YANO . 1985. Dating

of the human-ape splitting by the molecular clock of

mitochondrial DNA. J. M ol. Evol. 22:160 ± 174.
HEDGES, S. B. 1994. M olecular evidence for the origin of

birds. Proc. Nat. Acad. Sci., USA 91:2621 ± 2624.

HENDY, M . D., AND D. PENNY. 1989. A framework for the

quantitative study of evolutionary trees. Syst. Zool.
38:297 ± 309.

HILLIS, D. M . 1996. Inferring complex phylogenies. Nat-

ure 383:130 ± 131.
HUELSENBECK, J. P. 1995a. Performance of phylogenetic

methods in simulation. Syst. Biol. 44:17 ± 48.

HUELSENBECK, J. P. 1995b. The robustness of two phylo-

genetic methods: Four-taxon simulations reveal a
slight superiority of maximum likelihood over neigh-

bor joining. M ol. Biol. Evol. 12:843 ± 849.

HUELSENBECK, J. P. 1997. Is the Felsenstein zone a ¯y trap?
Syst. Biol. 46:69 ± 74.

HUELSENBECK, J. P, AND J. J. BULL. 1996. A likelihood ratio
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APPENDIX

The accuracy of maximum parsimony (M P) and max-
imum likelihood (M L) for simulated sequences of 100 and

1000 sites. The process of substitutio n that generated the

sequences assumed equal base frequencies but allowed for

a transition/transversion rate ratio ( ) and for gamma dis-
tributed rate variation among sites (with gamma shape

parameter ). Parsimony assumed Fitch (1971) optimiza-

tion of characters and maximum likelihood assumed a
Jukes-Cantor (1969) model of DNA substitution. W hen

5 1 and 5 ¥ the assumptions of maximum likeli-

hood were satis®ed. R, Q , and S are de®ned in the text.
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