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Abstract: According to Heyman’s safe theorem of the limit
analysis of masonry structures, the safety of masonry
arches can be verified by finding at least one line of thrust
entirely laying within the masonry and in equilibrium with
external loads. If such a solution does exist, two extreme
configurations of the thrust line can be determined, respec-
tively referred to as solutions of minimum and maximum
thrust.
In this paper it is presented a numerical procedure for de-
termining both these solutions with reference to masonry
arches of general shape, subjected to both vertical and hor-
izontal loads. The algorithm takes advantage of a simpli-
fication of the equations underlying the Thrust Network
Analysis. Actually, for the case of planar lines of thrust, the
horizontal components of the reference thrusts can be com-
puted in closed form at each iteration and for any arbitrary
loading condition. The heights of the points of the thrust
line are then computed by solving a constrained linear opti-
mization problem bymeans of the Dual-Simplex algorithm.
The MATLAB implementation of presented algorithm is de-
scribed in detail and made freely available to interested
users (https://bit.ly/3krlVxH). Two numerical examples re-
garding a pointed and a lowered circular arch are presented
in order to show the performance of the method.
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1 Introduction
The analysis of masonry arches is a classical problem of
structural mechanics. It was from the intuitions by Hooke,
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hidden in a famous anagram, and by Gregory, explicitly
stated, that started a series of researches employing the
catenary analogy to model the equilibrium of arches by
means of compressive internal actions that are funicular
of the applied loads [11]. Alternative approaches, initiated
by La Hire and developed by Coulomb, analyze the equi-
librium of arches by studying collapse mechanisms of a
series of voussoirs capable to transfer a limited set of ac-
tions [28]. A formal explanation of these approaches was
given in two renowned papers by Heyman [25] and Koohar-
ian [29], where the safe and unsafe theorems of the limit
analysis of masonry structures are presented.

Nowadays several computational methods are avail-
able for the analysis of masonry structures. Some of them
are based on the Finite Element Method (FEM) and are
capable to take into account sophisticated material mod-
els [3, 32, 33, 47]. However, an appropriate application of
FEM based analyses requires an accurate knowledge of the
value and spatial distribution of mechanical properties of
materials and support settlements [26, 27], which requires
detailed survey techniques, unmotivated for ordinary struc-
tures.

A interesting alternative is represented by the meth-
ods that employ the No-Tension (NT) material model [7, 17],
which is characterized by a non-smooth behavior and re-
quires suitable techniques to be successfully employed
for the analysis of real structures [8, 18]. Additionally,
the NT model is embodied by the hypotheses of previ-
ously mentioned limit theorems. Some of their computa-
tional implementations include the Thrust Network Anal-
ysis (TNA) [11, 12, 34, 36, 44] and the Thrust Surface Anal-
ysis (TSA) [20], both based on the safe theorem, or the
Rigid Block Analysis [13, 24, 31] and the Discrete Element
Method (DEM) [30, 49], which employ the unsafe theorem.
Worth mentioning are recent proposals in which a fracture
mechanics-based analytical method with elastic-softening
of masonry is applied to analyse the structural behaviour of
arch bridges and show how the arch thrust line is affected
by crack formation [1, 2].

Although these methods are all capable to analyze
structures characterized by complicated geometries [35, 46]
and by unusual construction techniques [19, 37], specific
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tools for the analysis of masonry arches are still of scien-
tific interest [6, 38, 45]. Methods based on the kinematic
approach are used to determine the collapse of arches un-
dergoing spreading of supports [16, 22]. Methods based on
Heyman principles are employed to compute the minimum
thickness [4, 40] and the later load bearing capacity [5, 14]
of arches.

Interestingly, the thrust line analysis can also be used
to determine the optimal shape of masonry arches sub-
jected to vertical and horizontal loads [39, 41]. In particular,
Michiels and Adriaenssens [39] compute a unique thrust
line by defining its span and height. The determination
of this thrust line is obtained by iteratively adjusting the
horizontal and vertical forces applied to the nodes of the
thrust line. This thrust line is then mirrored with respect to
the vertical axis so that the pair of mirrored thrust lines are
used to define the profile of the arch, while an iterative pro-
cedure minimizes its total volume. The approach proposed
by Nikolic [41], instead, employs an analytical modeling of
a catenary arch of constant and finite thickness, for which
the horizontal thrust is determined. Then a thrust line is
analytically determined for this arch. Nikolic shows that
this thrust line is not coincident with the catenary curve
that defines the axis of the arch because of the altered po-
sition of the center of gravity of voissors due to their finite
thickness and curvature.

Worth mentioning are the two MATLAB tools
ArchNURBS [15] and FRS_Method [23]. The approach imple-
mented in ArchNURBS is based on a nonuniform rational
B-splines (NURBS) representation of arch geometry. A
preliminary isogeometric finite-element elastic analysis of
the arch is performed in order to determine the structural
response under service loads, provided that the corre-
sponding thrust line fulfills assumed geometric constraints.
Successively a limit analysis based on the safe theorem
by Heyman is carried on by considering equilibrium and
yielding conditions of blocks interfaces. These equations
and constraints are solved as a linear optimization problem
that maximizes the load multiplier. The method employed
in FRS_Method, insted, computes the line of thrust by solv-
ing an optimization problem that looks for the funicular
polygon closest to the geometrical axis of the arch [48]. This
means that a unique line of thrust is determined, which
is neither one of the two limit configurations of minimum
or maximum thrust, neither it obeys to the principle of
least action. Additionally, the authors employed a new
definition of geometric safety factor of the arch, which is
alternative to the one given by Heyman.

The objective of this paper is the Thrust Line Analy-
sis (TLA) of masonry arches, a specialization of the TNA
to the two-dimensional case. As the TNA represents a dis-

crete implementation of the no-tension membrane model
[21] the TLA represents a discrete version of the funicular
curve. The specialization to a planar line of thrust simpli-
fies enormously the solution of the horizontal equilibrium
equations that are used to compute the horizontal com-
ponents of thrust. Actually, in the proposed version of the
method, reference values of horizontal thrust are computed
in closed form at each iteration.

The proposed version of the TLAhas been implemented
in a MATLAB code, freely downloadable from https://bit.ly/
3krlVxH. The method is implemented within the function
ArchLab that takes as input a table containing the geomet-
ric and loading data of the arch. Also some ready-to-run
example files are provided togetherwith a plotting function,
useful to graphically visualize the solutions.

After describing the general method, this paper illus-
trates in detail how each portion of the algorithm has been
implemented in the MATLAB function ArchLab. Results re-
garding the analysis of a pointed and a lowered arch are
also reported in order to show its performance.

2 Thrust Line Analysis of masonry
arches

A discretized thrust line, or funicular polygon, is repre-
sented in Figure 1. It is described by means of B segments
and N vertices. Being the thrust line an open polygon, it is
always B = N − 1.

Borrowing the nomenclature from the TNA, segments
and vertices that form the funicular polygon are called
branches and nodes. Branches and nodes are ordered form
left to right; hence, branch bj connects nodes nj and nj+1,
while branches bj−1 and bj share the same node nj.

The geometry of the thrust line is described by the coor-
dinates xj = (xj , yj) of nodes, defined in a two-dimensional
Cartesian reference frame. According to Heyman’s prin-
ciples, the thrust line is required to be contained within
the thickness of the arch, hence the vertical coordinates
of nodes are required to fulfill the inequalities yj,min and
yj,max, where yj,min and yj,max are the heights of the arch
intrados and extrados. However, different choices can be
done when setting yj,min ≤ yj ≤ yj,max, depending on the
specific needs of the user. For instance they can be set equal
to the thirds of the arch thickness if the limit condition im-
plies a fully compressed arch.

The generic j-th node is loaded by external forces fj =
(fjx , fjy), while the first and last nodes are also subjected to
the reactions rl and rr of left and right springers of the arch.
Nodes are also subjected to the thrust forces transmitted
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Figure 1: A schematic view of the thrust line

by the adjacent branches. In order to model these internal
forces, a thrust value tj is associated to the generic j-th
branch of the thrust line. Since it represents a compressive
force, tj must be positive, i.e. tj > 0, j = 1, ..., B.

Within the TLA framework, the horizontal position of
nodes and the external forces are known. Thrusts asso-
ciated to branches, vertical position of all nodes and the
reactions of springers are unknown. In the spirit of the
Heyman’s safe theorem, these unknowns are computed by
employing equilibrium equations only.

The equilibrium of the generic j-th node of the thrust
line is

tj−1j + tjj + fj = 0 (1)

where tj−1j and tjj are the thrust forces that branches bj−1 and
bj transmit to node nj. These forces have modulus equal to
the thrust values tj−1 and tj associated to branches bj−1 and
bj and they have direction parallel to the corresponding
branches. Thus, they are computed as

tj−1j = tj−1
xj − xj−1
|xj − xj−1|

= tj−1
xj − xj−1

ℓj−1
, (2)

tjj = tj
xj − xj+1
|xj − xj+1|

= tj
xj − xj+1

ℓj

where ℓj = |xj+1 − xj| =
√︁
(xj+1 − xj)2 + (yj+1 − yj)2 is the

length of branch bj.
Employing previous formulas, equilibrium of node nj

becomes

tj−1
ℓj−1

(xj − xj−1) +
tj
ℓj
(xj − xj+1) + fj = 0 (3)

Two exceptions shall be considered for the generic equi-
librium equation (3). Actually, the first and last nodes of the

Figure 2: Horizontal thrust

thrust line are loaded by the thrust forces associated to the
first and last branches, respectively, and by the springers’
reactions rl and rr. Accordingly, the equilibrium equations
of these two nodes read

rl+
t1
ℓ1
(x1−x2)+f1 = 0 , rr+

tB
ℓB
(xN −xN−1)+fN = 0 (4)

These equations are easily solved for rl and rr as

rl = − t1
ℓ1
(x1 − x2) − f1 , rr = − tB

ℓB
(xN − xN−1) − fN (5)

Thus, springers’ reactions are easily computed after the
thrust values of all branches and vertical coordinates of all
nodes are determined. To this end, the set of equilibrium
equations associated to internal nodes is solved first.

In order to simplify this set of equations, it is useful to
introduce the so-called reference thrusts t̂j = Rt̄j. They are
proportional to the horizontal projection t̄j of tj bymeans of
the positive scalar parameter R > 0. Such reference thrusts
are introduced within equation (3) by setting

tj
t̄j
=

ℓj
hj

⇔ tj =
ℓj
hj
t̄j =

ℓj
hj
t̂j
R (6)
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where hj = xj+1 − xj. Previous equation has been obtained
by invoking the similitude of triangles in Figure 2.

Employing previous formula within Eq. (3), the equi-
librium of the j-th internal node becomes

t̂j−1
hj−1

(xj − xj−1) +
t̂j
hj
(xj − xj+1) + Rfj = 0 (7)

This is the generic element of the set of equations used to
perform the thrust line analysis.

Notice that the set of equations that is obtained by
writing down (7) for all internal nodes is composed of 2(N −
1) = 2N − 2 equations. The number of unknowns, that is
represented by B reference thrusts, N vertical coordinates
of nodes, and the value of R, exceeds by 2 the number of
available equations. Actually, B + N + 1 = 2N. However,
these unknowns are also subjected to a set of inequalities
introduced before, i.e. tj > 0, yj,min ≤ yj ≤ yj,max and R > 0 .

This means that the set of equations and inequalities
can admit infinite solutions, one unique solution or even no
solutions. In the first case one is interested in determining
two extreme thrust line configurations, respectively associ-
ated to a minimum and maximum value of the horizontal
component of thrust at springers. Accordingly, these so-
lutions are called solutions of minimum and maximum
thrust. Recall that horizontal components of thrusts are
inversely proportional to the parameter R, see, e.g., Eq. (6).
Hence, these solutions are also associated to a maximum
and minimum value of R, respectively. Furthermore, these
two solutions correspond to the deepest and shallowest
geometry of the thrust line. Hence, they are also called
deepest and shallowest solutions.

In case the solution is unique, one can imagine that
the interval between the deepest and the shallowest solu-
tions is reduced in such a way that the two extreme cases
coincide. This situation represents a limit condition for the
equilibrium of the arch since only one equilibrated distri-
bution of internal forces is possible. A small modification
of the arch geometry or a modest alteration of the loading
condition can result in an unsafe structure.

Finally, in case no solution exists, then there is no dis-
tribution of internal forces that equilibrate applied loads
and fulfill the material assumptions. This means that the
arch is unsafe.

The procedure for solving the set of equations (7), for
j = 2, ..., N − 1, and the corresponding inequalities, is
particularly simplified in case all nodal forces are vertical.
Actually, in this case it is possible to set up a procedure in
which thrusts and vertical coordinates of nodes are uncou-
pled. This simpler case is described first, while the more
general case of thrust lines subjected to both vertical and
horizontal loads is presented later on.

1 % --- No horizontal forces ---
2
3 % Inizialize reference thrusts of branches
4 Tref=ones(N -1 ,1)* T0;
5
6 % Minimum thrust solution ( deepest solution )
7 [Yd ,Rd ,Td]= VertEq (X,Ymin ,Ymax ,Tref ,Fy , -1);
8
9 % Maximum thrust solution ( shallowest solution )
10 [Ys ,Rs ,Ts]= VertEq (X,Ymin ,Ymax ,Tref ,Fy ,1);

Figure 3: Solving procedure in absence of horizontal forces. The
function VertEq is coded as in Figure 4.

2.1 Solving procedure for thrust lines
subjected to vertical loads

In case all nodes of the thrust line are loaded exclusively
by vertical forces, the determination of the thrust line con-
figurations of minimum and maximum thrust is relatively
simple. It is implemented by the few lines of MATLAB code
reported in Figure 3.

In absence of horizontal forces, i.e. when fjx = 0, j =
1, ..., N, the x component of equation (7) reads

t̂j−1
hj−1

(xj − xj−1) +
t̂j
hj
(xj − xj+1) = 0 (8)

Recalling that hj−1 = xj−xj−1 and hj = xj+1−xj, the previous
equation simplifies to

t̂j−1 − t̂j = 0 (9)

that leads to uniform distribution of reference thrusts in
all branches. Accordingly, all reference thrusts can be set
equal to an arbitrary small positive value t̂0. This is done
at line 4 in Figure 3.

After the reference thrusts are assigned, the algorithm
solves twice the vertical equilibrium equations to compute
the solutions of minimum and maximum thrusts, respec-
tively. This is done by invoking the function VertEq at lines
7 and 10 of Figure 3. The MATLAB code of this function is
reported in Figure 4.

The vertical equilibrium of the generic j-th node is ob-
tained by selecting the y component of equation (7), which
reads

t̂j−1
hj−1

(yj − yj−1) +
t̂j
hj
(yj − yj+1) + Rfjy = 0 (10)

The set ofN−1 vertical equilibrium equations of all internal
nodes are written in matrix form as

Dy + Rfy = 0 (11)

where y is the vector collecting the y coordinates of all
nodes, fy collects the vertical component of the forces ap-
plied at nodes n2 ..., nN−1 and D is the N −2 ×N matrix col-
lecting the reference thrust densities t̂j/hj of all branches. It
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1 function [y,R,T]= VertEq (X,Ymin ,Ymax ,Tref ,Fy ,pm)
2 % Solve vertical equilibrium of the thrust line
3 % pm = -1 -> Minimum thrust solution ( deepest solution )
4 % pm = +1 -> Maximum thrust solution ( shallowest solution )
5
6 N= length (X);
7
8 % Matrix of reference thrust densities
9 D0=zeros(N);
10 Db0 =[1 , -1; -1 ,1];
11 for j=1:N-1
12 jj=j:j+1;
13 D0(jj ,jj)=D0(jj ,jj)+ Db0*Tref(j)/(X(j+1)-X(j));
14 end
15
16 % select internal nodes
17 D=D0 (2:N -1 ,:);
18 fy=Fy (2:N -1);
19
20 % Constrained linear optimization
21 options = optimset (’Display ’,’none ’,’Algorithm ’,’dual - simplex ’);
22 F=[ zeros(N ,1); pm];
23 Aeq =[D,fy];
24 beq=zeros(N -2 ,1);
25 lb=[ Ymin ;0];
26 ub=[ Ymax;Inf (1)];
27 [Sol ,~, ExitFlag ]= linprog (F ,[] ,[] ,Aeq ,beq ,lb ,ub ,[], options );
28
29 if ExitFlag ==1
30 % Output solution
31 y=Sol (1: end -1);
32 R=Sol(end );
33 else
34 % No solution found
35 y=-ones(N ,1);
36 R=-1;
37 end
38
39 % Evaluate actual thrusts
40 T=Tref;
41 for j=1:N-1
42 Th=Tref(j)/R;
43 Tv=Th*(y(j+1,1)-y(j ,1))/( X(j+1,1)-X(j ,1));
44 T(j)= norm ([Th ,Tv ]);
45 end

Figure 4:MATLAB function VertEq: solution of the vertical equilibrium of a thrust line

is obtained by assembling the contribution of each branch,
that is

Dj =
t̂j
hj

[︃
1 −1
−1 1

]︃
(12)

It is assembled in rows j and j + 1 and columns j and j + 1
of D (lines 8 − 18 of Figure 4).

The unknowns y and R are determined by solving Eq.
(11) together with the set of inequalities that express the
corresponding constrains. Hence, y and R are computed
by solving the following constrained linear optimization
problem:

min
y, r

±R such that

⎧⎪⎪⎨⎪⎪⎩
Dy + Rfy = 0
ymin ≤ y ≤ ymax

R > 0

(13)

by means of the Dual-Simplex Algorithm [42] already avail-
able in MATLAB. It is invoked at lines 20 − 27 of Figure
4.

Notice that the objective function in (13) is either −R or
+R, depending whether the optimization problem is used
to maximize or minimize R. Either one of the two cases is
selected by setting pm = -1 or pm = +1 to the last input variable
of VertEq (lines7 and10 in Figure 3). Actually, from equation
(6) it is clear that higher values of R are associated to lower
values of thrust and vice versa. Accordingly, when the ob-
jective function −R is used, the value of R is maximized and
the optimization procedure returns the so-called solution of
minimum thrust or deepest solution. Similarly, the solution
of maximum thrust or shallowest solution is obtained when
R is minimized, i.e. when the objective function is set as
+R.
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1 % --- Horizontal forces ---
2
3 % ++ Minimum thrust solution ( deepest solution ) ++
4 Rd=1e -8;
5 for k =2:100
6
7 % Assign reference thrusts that fulfill horizontal equilibrium
8 Tref= RefThr (Fx ,N,T0 ,Rd);
9
10 % Vertical equilibrium
11 Rold=Rd;
12 [Yd ,Rd ,Td]= VertEq (X,Ymin ,Ymax ,Tref ,Fy , -1);
13
14 % Check convergence
15 if (Rd == -1)||( abs(Rd -Rold )<1e -3* Rd)
16 break
17 end
18 end
19
20 % ++ Maximum thrust solution ( shallowest solution ) ++
21 Rs=1e -8;
22 for k =2:100
23
24 % Assign reference thrusts that fulfill horizontal equilibrium
25 Tref= RefThr (Fx ,N,T0 ,Rs);
26
27 % Vertical equilibrium
28 Rold=Rs;
29 [Ys ,Rs ,Ts]= VertEq (X,Ymin ,Ymax ,Tref ,Fy ,1);
30
31 % Check convergence
32 if (Rs == -1)||( abs(Rs -Rold )<1e -3* Rs)
33 break
34 end
35 end

Figure 5: Solving procedure in presence of horizontal forces. The code of functions VertEq and RefThr are reported in Figure 4 and 6,
respectivley.

2.2 Solution procedure for thrust lines
subjected to horizontal and vertical loads

When nodes are loaded by horizontal and vertical forces,
both the horizontal and vertical components of the equilib-
rium equations of nodes contain the unknown R. Hence,
the horizontal and vertical equations are coupled and can-
not be solved in sequence. Thus an iterative procedure that
solves repeatedly the horizontal and vertical equilibrium
of the thrust line needs to be adopted. The corresponding
MATLAB code is reported in Figure 5 : lines 3 − 18 compute
the deepest solution and lines 20 − 35 the shallowest one.
Similarly to the case of null horizontal forces the only differ-
ence between these two portions of code regards the sign of
the objective function used to solve the vertical equilibrium
equations of nodes.

The mentioned iterative procedures start by choosing
an arbitrary tentative value of R so that the horizontal equi-
librium equation can be solved for the reference thrusts t̂j
of nodes. This is done at lines 4 and 21.

For any iterative estimate of R, including this first guess,
the horizontal equilibrium equation of the generic j-th node
becomes

t̂j−1 − t̂j + Rfjx = 0 ⇔ t̂j = t̂j−1 + Rfjx (14)

Accordingly, the reference thrust t̂j associated to a generic
branch can be computed as a function of the reference
thrust t̂j−1 of the previous branch. Hence, after choosing an
arbitrary value of reference thrust for the very first branch,
all successive thrusts can be evaluated in sequence. Of
course, this solution does not necessarily fulfill the con-
straint ti > 0, i = 1, ..., B. This issue is easily solved by
modifying the tentative distribution of reference thrusts by
adding ti min to all thrust values.

This set of positive reference thrusts that fulfill the hor-
izontal equilibrium equations and the relevant constraints
are computed by invoking the function RefThr (lines 8 and
25 in Figure 5). The correspondingMATLABcode is reported
in Figure 6.

Once reference thrusts are assigned, it is possible to
evaluate the nodal heights y and a new estimate of R by
solving the constrained linear optimization (13). This is
done by invoking the function VertEq (lines 12 and 29 of
Figure 5), which has been already described in the previous
section.

This new estimate of R is then used again to evaluate
a new estimate of reference thrusts by repeating the same
set of operations.
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1 function T= RefThr (fx ,N,T0 ,R)
2 % Assign reference thrusts
3
4 T=ones(N -1 ,1)* T0;
5
6 for j=2:N-1
7 T(j)=T(j -1)+ fx(j)*R;
8 end
9
10 if min(T)<=0
11 T=T-min(T)+T0;
12 end

Figure 6: Evaluation of positive reference thrusts that fulfill the
horizontal equilibrium equations.

The procedure is iterated until the relative difference
between two successive estimates of R is lower than a given
tolerance, that is

Rnew − Rold
Rnew

< tolR (15)

Such a convergence check is coded at lines 15 and 32 of
Figure 5.

3 Numerical examples
Two numerical examples are reported hereafter, regarding
the thrust line analysis of both a pointed arch and a lowered
circular arch. Both problems are solved by the code con-
tained in the MATLAB scripts ExampleArch, also available
from the link reported earlier. The function ArchLab imple-
ments the TLA by the algorithm described in section 2, the
two table files PointedArch.csv and LoweredArch.csv
contain the input data for the examples regarding the anal-
ysis of the lowered and pointed arches and the plotting
function PlotArch is used to graphically represent the so-
lutions.

The function ArchLab takes as input the horizontal
position x of the nodes of the thrust line, their height lim-
its, ymin and ymax, and the applied forces, fx and fy. These
data are included in the two table files PointedArch.csv
and LoweredArch.csv, respectively. The geometry and the
loading condition of these arches is determined as a func-
tion of a few geometric and loading parameters that are
(Figure 7): the arch span S, rise H and thickness t; its uni-
tary weight Fsw; uniformly distributed load Fu; the height
Yf and unitary weight of filling Ff .

Geometric and loading parameters of the two mod-
els are reported in Table 1. Being planar models, unitary
weights and distributed loads are assigned as force per
unit area and force per unit length, respectively. In order
to stress out the algorithm, the thrust lines of both arches
has been generated by using a horizontal spacing between
nodes equal to one hundredth of the span. This resulted in
a thrust model composed of 122 nodes and 121 branches.

The intrados of the pointed arch is the composition of
two circles of radius D/2 = H2/S+ S/4 ≈ 2.08m. Their cen-
ters are positioned at the height of the arch springers and
distant D/2−S/2 ≈ 0.58mon both sides of the axis of sym-
metry. The arch is loaded by horizontal forceswhich are pro-

Table 1: Geometric and loading parameters of the pointed and
lowered arches taken as examples.

Pointed arch Lowered arch
S [m] 3.0 3.0
H [m] 2.0 1.0
t [m] 0.3 0.3
Fsw [kN/m2] 20.0 20.0
Fu [kN/m] 0.0 10.0
Yf [m] 1.8 1.5
Ff [kN/m2] 15.0 15.0

Figure 7: Pointed and lowered arches
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Figure 8: Deepest and shallowest solutions for a pointed arch subjected to vertical and horizontal loads

Figure 9: Deepest and shallowest solutions for a lowered arch subjected to vertical and horizontal loads

portional to the vertical ones by a factor λ = fx/fy = 0.15.
The corresponding solutions of minimum and maximum
thrust are reported in Figure 8. Within this figure, the val-
ues of the scalar parameter R associated to the deepest and
shallowest solutions are respectively indicated by Rd and
Rs. The ratio Rs/Rd = 0.38 is an estimate of the difference
between the two solutions. The more this ratio is different
from unity, the larger is the geometric safety factor of the
arch.

The intrados of the lowered circular arch is described
by a unique circle of radius D/2 = H/2 + S2/8H = 1.625
m, while its center lies H − D/2 = 0.625m below the arch
springers. Similarly to the previous case, horizontal forces
are set as proportional to the vertical ones by a factor λ =
fx/fy = 0.5. The deepest and shallowest configurations of
the thrust line are diagrammed in Figure 9. Also in this case,
the even lower value of the ratio Rs/Rd = 0.18 shows the

capability of lowered arches to withstand higher values of
horizontal forces.

4 Conclusions
The function ArchLab is used to determine thrust line con-
figurations of minimum and maximum thrust of masonry
arches subjected to both vertical and horizontal loads. It
represents a specialization of the Thrust Network Analysis
to the case of a planar line of thrust. The implemented al-
gorithm has been described in full detail in section 2 where
a precise reference to the implemented MATLAB code is
also reported. When only vertical loads are applied, the
algorithm is capable to determine the thrust line configura-
tions without the need of any recursive method. Conversely,
when also horizontal loads are applied, the procedure re-
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Figure 10: Optimal shape of an arch under its own self-weight and comparison with a catenary curve (dashed)

quires iterations. In both cases, the algorithm computes the
horizontal components of reference thrust in closed form at
each iteration, while the height of nodes is determined by
solving a constrained linear optimization problem by using
the MATLAB builtin implementation of the Dual-Simplex
algorithm.

By implementing additional few lines of code, not com-
mented in this paper for brevity, it is possible to employ the
same functions described earlier to solve a form-finding
problem. It is sufficient to set ymin = 0 and ymax = H for all
nodes of the model and compute the deepest configuration
of the thrust line. HereH represents the arch axis height. An
iterative procedure can be used to update the self-weight of
each branch of the thrust line and compute updated nodal
forces accordingly. An example of such an iterative algo-
rithm is coded within the script ExampleFF, which finds
the optimal shape of an arch of span S = 8.0 m and rise
H = 3.0m, subjected to its own self-weight. The solution is
obtained after only 4 iterations and is then plotted by using
the function PlotFF. It is reported in Figure 10, where it is
compared with the catenary curve y(x) = H+a−Cosh(x/a),
with a = 3.0668m, showing perfect agreement.
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