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S
ingle-cell approaches have revolutionized the understand-
ing of biology, from interrogation of cellular heterogeneity 
to identification of disease-specific processes. The advent of 

single-cell approaches for the assay for transposase-accessible chro-
matin using sequencing (scATAC-seq) has made it possible to study 
chromatin accessibility and gene regulation in single cells1,2, illu-
minating cell-type-specific biology3–7. Recent advances increased 
the throughput of scATAC-seq, enabling a laboratory to gener-
ate data from hundreds of thousands of cells on the timescale of 
weeks5,6,8. These advances were driven by an increased interest in 
chromatin-based gene regulation across a diversity of cellular con-
texts and biological systems1,2,5,6,8,9. This capacity for data generation 
outpaced the development of intuitive, benchmarked and compre-
hensive software for scATAC-seq analysis10, a crucial requirement 
that would facilitate the broad use of these methods for investigat-
ing gene regulation at cellular resolution.

To this end, we sought to develop a software suite for both 
routine and advanced analysis of massive-scale single-cell chro-
matin accessibility data without the need for high-performance 
computing environments. This package for single-cell Analysis 
of Regulatory Chromatin in R (ArchR; https://www.archrproject.
com/) provides a facile platform to interrogate scATAC-seq data 
from multiple scATAC-seq implementations, including the 10x 
Genomics Chromium system6,7, the Bio-Rad droplet scATAC-seq 
system8, single-cell combinatorial indexing2,5 and the Fluidigm C1 
system1,4 (Fig. 1a). ArchR provides a user-focused interface for com-
plex scATAC-seq analysis, such as marker feature identification, 

transcription factor (TF) footprinting, interactive sequencing track 
visualization, scRNA-seq integration and cellular trajectory iden-
tification (Fig. 1a). When compared to other existing tools, such 
as SnapATAC11 and Signac12, ArchR provides a more extensive set 
of features (Extended Data Fig. 1a) and is designed to provide the 
speed and flexibility to support interactive analysis, enabling itera-
tive extraction of meaningful biological interpretations11–19.

Results
The ArchR framework. ArchR takes as input aligned BAM or frag-
ment files, which are first parsed in small chunks per chromosome, 
read in parallel to conserve memory and then efficiently stored on 
disk using the compressed random-access hierarchical data format 
version 5 (HDF5) file format (Supplementary Fig. 1a). These HDF5 
files form the constituent pieces of an ArchR analysis that we call 
‘Arrow’ files. Arrow files are grouped into an ‘ArchR Project’, a com-
pressed R data file that is stored in memory, which provides an orga-
nized, rapid and low memory-use framework for manipulation of 
the larger Arrow files stored on disk (Supplementary Fig. 1b). Arrow 
files are always accessed in minimal chunks using efficient parallel 
read and write operations that reduce runtime and memory usage 
(Supplementary Fig. 1c,d). Moreover, the base file size of Arrow files 
remains smaller than the input fragment files across various cellular 
inputs (Supplementary Fig. 2a,b). Throughout this report, we com-
pare ArchR to SnapATAC and Signac, as these are two commonly 
used scATAC-seq analysis packages with the most comparable set of 
features, and many of the other existing software are not suited for 
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analyzing datasets larger than 80,000 cells10. However, we note that 
these comparisons use specific versions of software (Extended Data 
Fig. 1a) that are still in active development and are likely to change 
over time.

ArchR enables efficient and comprehensive single-cell chromatin 
accessibility analysis. To benchmark the performance of ArchR, we 
collected three diverse publicly available datasets (Supplementary 
Table 1): (1) peripheral blood mononuclear cells (PBMCs), which 
represent discrete primary cell types6,7 (Supplementary Fig. 2c–f), 
(2) bone marrow stem and progenitor cells and differentiated cells, 
which represent a continuous cellular hierarchy7 (Supplementary 
Fig. 2g–j), and (3) a large atlas of murine cell types from diverse 
organ systems5 (Supplementary Fig. 2k–m). Before downstream 
analysis, we removed cells generating low-quality data. To assess 
per-cell data quality, ArchR computes transcription start site (TSS) 
enrichment scores, which have become the standard for bulk 
ATAC-seq analysis20 and provide clearer separation of cells generat-
ing low- and high-quality data compared to that from the fraction 
of reads in promoters11 (Supplementary Fig. 2d,h).

To quantify the ability of ArchR to analyze large-scale data, we 
benchmarked ArchR for three of the major scATAC-seq analyti-
cal steps across these three datasets using two different computa-
tional infrastructures (Extended Data Fig. 2a and Supplementary  
Table 2). We observed that ArchR outperforms SnapATAC and Signac 
in speed and memory usage across all comparisons, enabling analysis 
of 70,000-cell datasets in under an hour with 32 GB of random-access 
memory (RAM) and eight cores (Fig. 1b,c and Extended Data Fig. 
2b–i). Additionally, when analyzing a 70,000-cell dataset, SnapATAC 
exceeded the available memory in the high-memory setting (128 GB 
RAM, 20 cores) (Fig. 1c), and both SnapATAC and Signac exceeded 
the available memory in the low-memory setting (32 GB RAM, eight 
cores) (Extended Data Fig. 2c), while ArchR completed these analy-
ses faster and without exceeding the available memory. In addition 
to using fragment files as input, ArchR can directly convert BAM 
files to Arrow files, enabling the analysis of scATAC-seq data from 
diverse single-cell platforms, including single-cell combinatorial 
indexing (sci)-ATAC-seq5 (Extended Data Fig. 2j,k).

ArchR identifies putative doublets in scATAC-seq data. The pres-
ence of ‘doublets’ (two cells that are captured in the same droplet 
or nanoreaction) often complicates single-cell analysis. Doublets 
appear as a superposition of signals from both cells, leading to the 
false appearance of distinct clusters or false connections between 
distinct cell types. To mitigate this issue, we designed a doublet 
detection-and-removal algorithm as part of ArchR. Similarly to 
methods employed for doublet detection in scRNA-seq21,22, ArchR 
identifies heterotypic doublets by bioinformatically generating a 
collection of synthetic doublets, projecting these synthetic dou-
blets into the low-dimensional data embedding and then identify-
ing the nearest neighbors to these synthetic doublets as doublets 
themselves21,22 (Fig. 1d–f). To validate this approach, we carried 
out scATAC-seq on a mixture of ten human cell lines (n = 38,072 
cells), allowing for genotype-based identification of doublets via 
demuxlet23 as a ground-truth comparison for computational identi-
fication of doublets by ArchR (Fig. 1g and Extended Data Fig. 3a). 
Optimization of doublet prediction parameters (Extended Data 
Fig. 3b) led to accurate doublet predictions (receiver operating 
characteristic (ROC) area under the curve (AUC) = 0.918), signifi-
cantly outperforming doublet prediction based on the total num-
ber of fragments (ROC AUC = 0.641) (Fig. 1h and Extended Data 
Fig. 3c–h). With these predicted doublets excluded, the remaining 
cells formed ten large groups according to their cell line of origin 
(Fig. 1i). We note there were some predicted doublets identified by 
demuxlet that were not identified by ArchR, residing within cluster 
boundaries and not in intermediate zones (Fig. 1i). We predict that 

these are imbalanced doublets with the majority of fragments in the 
droplet, and thus the majority of the scATAC-seq signal coming 
from a single cell. This hypothesis is further supported by a lower 
predicted doublet probability in demuxlet for these undetected 
putative doublets (Extended Data Fig. 4a,b).

To benchmark the performance of doublet identification in 
ArchR, we compared it to doublet identification with Scrublet22, a 
tool designed for detecting doublets in scRNA-seq data. Using our 
cell line-mixing scATAC-seq data, ArchR shows a modest perfor-
mance improvement over Scrublet (Extended Data Fig. 4c,d), likely 
attributable to the fact that Scrublet was not designed specifically for 
scATAC-seq data. Consistent with this result, ArchR and Scrublet 
performed comparably in identification of doublets from scRNA-seq 
cell-mixing data (Extended Data Fig. 4e–g)23. To further benchmark 
doublet identification in ArchR, we used data from PBMCs gener-
ated using the 10x Genomics Multiome platform, which collects 
both scATAC-seq and scRNA-seq data from the same single cells. 
By comparing doublets identified in scATAC-seq space by ArchR to 
doublets identified in scRNA-seq space with Scrublet, we found that 
the high-confidence doublet calls in ArchR were highly concordant 
(AUC = 0.921) with doublet calls from Scrublet (Extended Data Fig. 
4h–m). Last, doublet identification in ArchR for continuous cellular 
trajectories, such as hematopoietic differentiation, does not exclu-
sively identify doublets along the biologically relevant continuous 
branches of differentiation (Extended Data Fig. 4n). The majority of 
predicted doublets reside in spurious clusters, which, if not removed, 
can be misinterpreted as bonafide cell types. This result indicates 
that true biological intermediate cell types are not confounded with 
synthetic cellular mixtures in our doublet identification, consistent 
with the performance of similar projection-based doublet identi-
fication in scRNA-seq data22. In summary, the identification and 
removal of heterotypic doublets in ArchR reduces false cluster iden-
tification and improves the fidelity of downstream results.

ArchR provides high-resolution and efficient dimensional-
ity reduction of scATAC-seq data. ArchR additionally provides 
methodological improvements over other available software. One 
of the fundamental aspects of ATAC-seq analysis is the identi-
fication of a peak set for downstream analysis. In the context of 
scATAC-seq, identification of peak regions before cluster identifi-
cation requires peak calling from all cells as a single group. This 
obscures cell-type-specific chromatin accessibility, which distorts 
downstream analyses. For Signac, a counts matrix is created using a 
predetermined peak set, preventing the contribution of peaks that 
are specific to lowly represented cell types. Instead of using a pre-
determined peak set, SnapATAC creates a genome-wide tile matrix 
of 5-kb bins by default, allowing for unbiased genome-wide identi-
fication of cell-type-specific chromatin accessibility. However, 5-kb 
bins are substantially larger than the average regulatory element 
(~300–500 bp, containing TF-binding sites less than 50 bp)24–26, thus 
causing multiple regulatory elements to be grouped together, again 
obscuring cell-type-specific biology. To avoid both of these pitfalls, 
ArchR operates efficiently on a genome-wide tile matrix of 500-bp 
bins, allowing for the sensitivity to capture cell-type-specific biol-
ogy at regulatory elements across the genome. Despite this 500-bp 
tile matrix, with tenfold higher resolution than SnapATAC, ArchR 
stores both per-tile accessibility information and all ATAC-seq 
fragments in an Arrow file that is smaller than either the origi-
nal input fragments file or the SnapATAC file containing the 
genome-wide tile matrix at a resolution of only 5-kb (Supplementary  
Fig. 2a,b). We note that, while SnapATAC has the ability to use a 
genome-wide 500-bp tile matrix, downstream computation using 
this high-resolution matrix exceeds the memory limits of common 
computational infrastructure (Supplementary Fig. 3a,b).

One major application of single-cell analysis is the identification 
of cellular subsets through dimensionality reduction and clustering. 
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To benchmark the performance of dimensionality reduction and 
clustering in ArchR, we compared ArchR to the two best-performing 
methods identified in previous assessments of scATAC-seq analy-
sis tools10, latent semantic indexing (LSI), implemented by Signac, 
and landmark diffusion maps (LDM), implemented by SnapATAC. 
For dimensionality reduction, ArchR uses an optimized iterative 
LSI method6,7 (Extended Data Fig. 5a) that exhibits less suscep-
tibility to batch effects by focusing on the most variable features 
through multiple iterations of LSI. We directly compared the results 
from these different dimensionality reduction methods using bulk  

hematopoietic ATAC-seq data downsampled to match single-cell 
depth (Extended Data Fig. 5b). We performed this downsampling 
across multiple biological samples for each cell type (14 cell types with, 
on average, five biological replicates), allowing biological and techni-
cal variability to contribute to clustering (Extended Data Fig. 5c). We 
additionally downsampled these data across multiple quality scales, 
simulating low-quality scATAC-seq data (1,000 ± 500 fragments per 
cell), medium-quality scATAC-seq data (5,000 ± 1,000 fragments per 
cell) and high-quality scATAC-seq data (10,000 ± 2,500 fragments per 
cell) (Extended Data Fig. 5d). In all cases, ArchR outperformed both 
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SnapATAC and Signac, as assessed by a higher adjusted Rand index 
(Extended Data Fig. 5e). This was due to overclustering by SnapATAC 
and Signac, which group downsampled cells first based on biological 

sample rather than on cell type (Extended Data Fig. 5d). To illustrate 
these performance differences using real-world data, we compared 
these dimensionality reduction methods using scATAC-seq data 
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derived from PBMCs (Supplementary Fig. 4) and scATAC-seq data 
derived from bone marrow cells (Supplementary Fig. 5). In both cases, 
ArchR identified clusters similar to those in other methods while 
being less biased by low-quality cells and doublets (Supplementary 
Figs. 4 and 5). However, when comparing clustering of the bone mar-
row cell dataset, we found that ArchR alone maintained the structure 
of the continuous differentiation trajectories from immature CD34+ 
hematopoietic stem and progenitor cells through differentiated 
myeloid, erythroid and B cells (Supplementary Fig. 5)4,6–8,12,27. Notably, 
the T cell differentiation trajectory, which involves maturation in the 
thymus, is not captured in the bone marrow.

To enable the efficient examination of massive datasets, ArchR 
implements a new estimated LSI dimensionality reduction by first 
creating an iterative LSI reduction from a subset of the total cells and 
then linearly projecting the remaining cells into this subspace using 
LSI projection7 (Supplementary Fig. 6a). We compared this approach 
to the LDM estimation method used by SnapATAC, which uses a 
non-linear reduction based on a subset of cells and then projects the 
remaining cells into this subspace using LDM projection. When com-
paring ‘landmark’ subsets of different cell numbers, the estimated LSI 
approach implemented by ArchR was more consistent and could reca-
pitulate the clusters called and the overall structure of the data with 
as few as 50 cells across both the PBMC (n = 27,845 cells) and bone 
marrow cell (n = 26,748 cells) datasets (Supplementary Figs. 6b and 
7a,b). We hypothesize that the observed differences stem from (1) the 
stability of using a feature matrix versus a Jaccard distance matrix and 
(2) the linearity of the LSI projection (based on singular value decom-
position dimensionality reduction)28,29, as compared to the non-linear 
LDM projection (based on diffusion maps)30,31. The estimated LSI 
approach implemented by ArchR was also faster than the estimated 
LDM approach implemented by SnapATAC (Supplementary Fig. 7c). 
Furthermore, the efficiency of the iterative LSI implementation in 
ArchR limits the requirement for this estimated LSI approach to only 
extremely large datasets (>200,000 cells for 32 GB of RAM and eight 
cores), whereas estimated LDM approaches are required for compar-
atively smaller datasets (>25,000 cells for 32 GB of RAM and eight 
cores) in SnapATAC. ArchR therefore has the ability to efficiently 
analyze both large- and small-scale datasets.

Improved inference of gene scores enables accurate cluster iden-
tification with ArchR. After clustering, investigators aim to anno-
tate the biological state related to each cluster. Methods for inferring 
gene expression from scATAC-seq data can generate ‘gene scores’ of 
key marker genes that can enable accurate cluster annotation5–8,18. 
However, the methods for converting chromatin accessibility sig-
nal to these gene score predictions were not extensively optimized. 
To this end, we used ArchR to benchmark 56 different models for 
inferring gene expression from scATAC-seq data using matched 
scATAC-seq and scRNA-seq data from PBMCs12 and bone marrow 
cells7 (Fig. 2a and Supplementary Table 3). To assess the perfor-
mance of each model, we used canonical correlation analysis to inte-
grate scATAC-seq and scRNA-seq data from the same sample types 
and then compared the linked gene expression from scRNA-seq 
to the inferred gene scores from scATAC-seq7,12. To establish this 
linkage, we used the canonical correlation analysis-based integra-
tion implemented in Seurat12 in both the PBMC and bone marrow 
datasets and labeled cells based on previously identified clusters7,12 
(Fig. 2a). We then tested the 56 gene score models, which varied 
by the regions included, the sizes of those regions and the weights 
(based on genomic distance) applied to each region, using four 
different tests (Fig. 2b and Extended Data Fig. 6a–h). These tests 
assessed how the models performed in predicting differential gene 
expression across sets of genes or groups of cells (Fig. 2b). Although 
unweighted in our comparisons, the most informative of these tests 
assesses model performance in predicting gene expression changes 
among differentially expressed or highly variable genes, as these are 

likely to be cell-type-specific marker genes used in cluster annota-
tion. Models that incorporated ATAC-seq signal from the gene body 
were more accurate than models that incorporated signal only from 
the promoter, likely due to the moderate increase in accessibility 
that occurs during active transcription. Moreover, incorporation of 
distal regulatory elements, weighted by distance, while accounting 
for the presence of neighboring genes (‘Gene Score Matrix’ in the 
Supplementary Information) improved the gene score inference in 
all cases (Extended Data Fig. 6a–h). The most accurate model across 
both datasets was model 42, a model within the ‘Gene Body Extended 
+ Exponential Decay + Gene Boundary’ class of models (Fig. 2b), 
which integrates signal from the entire gene body and scales signal 
with bi-directional exponential decays from the gene TSS (extended 
upstream by 5 kb) and the gene transcription termination site while 
accounting for neighboring gene boundaries (Fig. 2c). This model 
yielded more accurate genome-wide gene score predictions in both 
PBMC and bone marrow cell datasets than did other models (Fig. 
2d–f and Extended Data Fig. 6i,j). We additionally confirmed the 
efficacy of this class of gene score models using previously published 
matched bulk ATAC-seq and RNA-seq data from hematopoietic 
cells (Extended Data Fig. 6k–m)32, as well as paired single-cell data 
from PBMCs acquired with the 10x Genomics Multiome platform 
(Extended Data Fig. 7). Given this analysis, we implemented this 
class of gene score models (via model 42) for all downstream analy-
ses involving inferred gene expression in ArchR.

ArchR enables comprehensive analysis of massive-scale 
scATAC-seq data. ArchR is designed to handle datasets that are 
substantially larger (>1,000,000 cells) than those generated to date 
with modest computational resources. To illustrate this, we collected 
a compendium of published scATAC-seq data from hematopoietic 
cells generated with the 10x Chromium system and the Fluidigm C1 
system (49 samples, ~220,000 cells; Supplementary Fig. 8a–d). Using 
both a small-scale server infrastructure (eight cores, 32 GB RAM, 
with a Hewlett-Packard (HP) Lustre file system) and a personal lap-
top (MacBook Pro laptop; eight cores, 32 GB RAM, with an external 
universal serial bus (USB) hard drive), ArchR performed data import, 
dimensionality reduction and clustering on ~220,000 cells in less 
than 3 h (Fig. 3a and Supplementary Fig. 8e). We next used ArchR to 
analyze a simulated set of over 1.2 million PBMCs, split into 200 indi-
vidual samples. Under the same computational constraints, ArchR 
performed data import, dimensionality reduction and clustering of 
more than 1.2 million cells in under 8 h (Fig. 3a and Supplementary 
Fig. 8e). Using this dataset, we benchmarked the runtime and mem-
ory usage performance of ArchR across various cell numbers and 
total fragments to facilitate interpretation of end-user system require-
ments for datasets of different sizes (Supplementary Fig. 8f).

Beyond these straightforward analyses, ArchR also provides 
an extensive suite of tools for more comprehensive analysis of 
scATAC-seq data. Estimated LSI of this ~220,000-cell hematopoi-
esis dataset recapitulated the overall structure of the data with as 
few as 500 landmark cells (Supplementary Fig. 8g). Inspection of the 
resultant clusters using uniform manifold approximation and pro-
jection (UMAP)33 led us to use the 25,000-cell landmark set (~10% 
of total cells). This dimensionality reduction illustrated the utility of 
estimated LSI in minimizing some batch effects, with minimal bias 
observed, considering that the ~220,000-cell dataset was collected 
from multiple laboratories and technological platforms (Fig. 3b and 
Supplementary Fig. 8h–j). We identified 21 clusters spanning the 
hematopoietic hierarchy, calling clusters for even rare cell types, such 
as plasma cells, which comprise ~0.1% (265 cells) of the total popu-
lation. To generate a universal peak set from cluster-specific peaks, 
ArchR creates sample-aware pseudo-bulk replicates that recapitu-
late the biological variability within each cluster (Supplementary 
Fig. 9a). A non-overlapping peak set was then identified from 
these pseudo-bulk replicates using an iterative overlap-merging 
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Fig. 3 | ArchR enables comprehensive analysis of massive-scale scATAC-seq data. a, Runtimes for ArchR-based analysis of over 220,000 and 1,200,000 

single cells, respectively, using a small-cluster-based computational environment (32 GB of RAM and eight cores with HP Lustre storage) and a personal 

MacBook Pro laptop (32 GB of RAM and eight cores with an external (ext.) USB hard drive). Color indicates the relevant analytical step. b, UMAP of the 

hematopoiesis dataset colored by the 21 hematopoietic clusters. UMAP was constructed using LSI estimation with 25,000 landmark cells. c, Heatmap of 

215,916 ATAC-seq marker peaks across all hematopoietic clusters identified with bias-matched differential testing. Color indicates the column Z score of 

normalized accessibility. d, Heatmap of motif hypergeometric enrichment-adjusted P values within the marker peaks of each hematopoietic cluster. Color 

indicates the motif enrichment (−log10 (P value)) based on the hypergeometric test. e, Side-by-side UMAPs of gene scores (left) and motif deviation scores 

for ArchR-identified TFs (right), for which the inferred gene expression is positively correlated with the chromVAR TF deviation across hematopoiesis.  

f–h, Tn5 bias-adjusted TF footprints for GATA, proto-oncogene SPI1 and EOMES motifs, representing positive TF regulators of hematopoiesis. Lines are 

colored by the 21 clusters shown in c. i, Genome accessibility track visualization of marker genes with peak co-accessibility. Left, CD34 genome track 

(chromosome (chr)1, 208,034,682–208,134,683) showing greater accessibility in earlier hematopoietic clusters (1–5, 7–8 and 12–13). Right, CD14 genome 

track (chr5, 139,963,285–140,023,286) showing greater accessibility in earlier monocytic clusters (13–15).
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procedure34 (Supplementary Fig. 9b). We identified 396,642 total 
reproducible peaks (Supplementary Fig. 9c), of which 215,916 were 
classified as differentially accessible peaks across the 21 clusters 
after differential testing (Fig. 3c and ‘Marker Peak Identification’ in 
the Supplementary Information). Motif enrichment within these 
peaks revealed known TF regulators of hematopoiesis, such as the 
transcription factor GATA1 in erythroid populations, CCAAT 
enhancer-binding protein β (CEBPB) in monocytes and paired box 
(PAX)5 in B cell differentiation (Fig. 3d). ArchR can additionally 
calculate peak overlap enrichment with a compendium of previ-
ously published ATAC-seq datasets32,34–39, identifying enrichment of 
peaks consistent with the cell type of each cluster (Supplementary 
Fig. 9d). To further characterize clusters, ArchR enables the pro-
jection of bulk ATAC-seq data into the single-cell-derived UMAP 
embedding7 (Extended Data Fig. 8a). This allows for the identifi-
cation of the hematopoietic clusters based on well-validated bulk 
ATAC-seq profiles4,32 and aligns with inferred gene scores for 
canonical hematopoietic marker genes (Extended Data Fig. 8b–d).

ArchR also implements a scalable improvement of the chrom-
VAR16 method for determining TF deviations (Extended Data Fig. 
8e). TFs for which the expression is highly correlated with motif 
accessibility can therefore be identified based on the correlation of 
the inferred gene score to the chromVAR motif deviation. This analy-
sis identifies known drivers of hematopoietic differentiation, such as 
GATA1 in erythroid populations, lymphoid enhancer-binding fac-
tor (LEF)1 in naive T cell populations and eomesodermin (EOMES) 
in natural killer and/or memory T cell populations. (Fig. 3e,  
Extended Data Fig. 8f and Supplementary Table 4). ArchR also 
enables rapid footprinting of TF regulators within clustered subsets 
while accounting for Tn5 biases34 using an improved C++ imple-
mentation (Fig. 3f–h and Extended Data Fig. 8g–i). Finally, ArchR 
identifies links between regulatory elements and target genes based 
on the co-accessibility of pairs of loci across single cells1,18 (Fig. 3i).

The interactive ArchR genome browser. In addition to these 
ATAC-seq analysis paradigms, ArchR provides a fully integrated and 
interactive genome browser (Supplementary Fig. 10a). The interac-
tive nature of the browser is enabled by the optimized storage format 
within each Arrow file, providing support for dynamic cell group-
ing, track resolution, coloration, layout and more. Launched by a 
single command, the ArchR browser enables cell cluster investiga-
tions of marker genes, such as CD34 for early hematopoietic stem and 
progenitor cells and CD14 for monocytic populations (Fig. 3i and 
Supplementary Fig. 10b–e), mitigating the need for external software.

ArchR enables integration of matched scRNA-seq and 
scATAC-seq datasets. ArchR also provides functionality to inte-
grate scATAC-seq and scRNA-seq data using Seurat’s infrastruc-
ture, matching the heterogeneous chromatin accessibility profiles 
and RNA expression12. Single-cell epigenome-to-transcriptome 
integration is essential for understanding dynamic gene regula-
tory processes, and we anticipate this sort of analysis will become 
even more prevalent with the advent of platforms for simultane-
ous scATAC-seq and scRNA-seq. ArchR performs this cross-data 
alignment in parallel using slices of the scATAC-seq data (Fig. 4a).  
When performed on the hematopoiesis dataset, this integration 
enabled scRNA-seq alignment for >220,000 cells in less than 1 h 
(Fig. 4b). We note that this dataset represents a diverse collec-
tion of experiments from different laboratories and technological 
platforms that is not ideal for high-resolution integration because 
the large intersample heterogeneity obscures the accuracy of the 
cross-platform alignment. The alignment showed high concor-
dance between linked gene expression and inferred gene scores for 
common hematopoietic marker genes (Fig. 4c and Extended Data 
Fig. 9a). Using this cross-platform alignment, ArchR also provides 
methods to identify putative cis-regulatory elements based on  

correlated peak accessibility and gene expression, identifying 70,239 
significant peak-to-gene linkages across the hematopoietic hierar-
chy7,34 (Extended Data Fig. 10a,b and Supplementary Table 5).

Finally, ArchR facilitates cellular trajectory analysis to identify 
the predicted path of gene regulatory changes from one set of cells to 
another, a unique type of insight enabled by single-cell data. In addi-
tion to implementing both Slingshot40 and Monocle 3 (refs. 41–43), 
two scRNA-seq trajectory algorithms, ArchR also provides its own 
supervised trajectory analysis. To do this analysis, ArchR initially 
creates a cellular trajectory based on the average positions (within a 
lower n-dimensional subspace) of a sequence of user-supplied clus-
ters or groups. ArchR then aligns individual cells to this trajectory 
by computing the nearest cell-to-trajectory distance6. We bench-
marked the performance of trajectory analysis in ArchR compared 
to those in Slingshot and Monocle 3 using a miniaturized version 
of the hematopoiesis dataset (n = 10,251) (Extended Data Fig. 10c). 
We compared the learned trajectories from stem and progenitor 
cells through differentiated B cells or monocytes and found that the 
inferred trajectories were highly similar (r2 > 0.96) (Extended Data 
Fig. 10d,e). The implementation of all three trajectory algorithms 
allows end users to select the implementation that best suits their 
analysis, as each trajectory method has distinct advantages. To dem-
onstrate trajectory analysis in ArchR on the full hematopoiesis data-
set, we again focused on the B cell lineage as an example (Fig. 4d).  
ArchR traces cells along the B cell differentiation trajectory and 
identifies 11,999 peak-to-gene links that have correlated regulatory 
dynamics (r > 0.5) across the B cell differentiation trajectory (Fig. 4e).  
Sequencing tracks of the HMGA1 gene locus, active in stem and 
progenitor cells, and the BLK locus, active in differentiated B cells, 
demonstrate how accessibility at linked peaks correlates with lon-
gitudinal changes in gene expression across pseudotime (Fig. 4f,g). 
ArchR can then identify TF motifs for which accessibility is posi-
tively correlated with the gene expression of the corresponding TF 
gene (r > 0.5) across the same B cell trajectory (‘Large Hematopoiesis 
220K Cells’ in the Supplementary Information) (Fig. 4h). TF foot-
printing of a subset of these TFs further illustrates the dynamics in 
local accessibility at the binding sites of these lineage-defining TFs 
across B cell differentiation pseudotime (Fig. 4i–k).

Discussion
Chromatin accessibility data provides a lens through which we can 
observe the gene regulatory programs that underlie cellular state 
and identity. The highly cell-type-specific nature of cis-regulatory 
elements makes profiling of single-cell chromatin accessibility an 
attractive method to understand cellular heterogeneity and the 
molecular processes underlying complex control of gene expres-
sion. With the advent of methods to profile chromatin accessibil-
ity across thousands of single cells, scATAC-seq quickly became a 
method of choice for many single-cell applications. However, com-
pared to scRNA-seq, for which tools such as Seurat12, Monocle41 and 
Scanpy44 have gained widespread use, the analysis of scATAC-seq 
data is a comparatively newer field. Many existing tools facilitate 
certain aspects of the scATAC-seq workflow11–19 but are not suited 
for the scale of current data generation efforts (>80,000 cells) or 
do not support the breadth of analytical functionalities that would 
facilitate wider adoption of this technique.

To address this need, we developed ArchR, an end-to-end soft-
ware solution that will expedite single-cell chromatin analysis for 
any biologist. Low memory usage, parallelized operations and an 
extensive tool suite make ArchR an ideal platform for scATAC-seq 
data analysis. In contrast to currently available software packages, 
ArchR is designed to handle millions of cells using commonly avail-
able computational resources, such as a laptop running a Unix-based 
operating system. As such, ArchR provides the analytical support 
necessary for the massive scale of ongoing efforts to catalog the com-
pendium of diverse cell types at single-cell resolution45. In addition 
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to the dramatic improvements in runtime, memory efficiency and 
scale, ArchR supports state-of-the-art chromatin-based analyses, 
including genome-wide inference of gene activity, TF footprinting 
and data integration with matched scRNA-seq, enabling statistical 
linkage of cis- and trans-acting regulatory factors to gene expres-
sion profiles. Moreover, the improvements from ArchR enable 
interactive data analysis by which end users can iteratively adjust 
analytical parameters and thus optimize identification of biologi-
cally meaningful results. This is especially important in the context 
of single-cell data for which a one-size-fits-all analytical pipeline is 
not relevant or desirable. Supervised identification of clusters, reso-
lution of subtle batch effects and biology-driven data exploration 
are intrinsically necessary for a successful scATAC-seq analysis, and 
ArchR supports these efforts by enabling rapid analytical processes. 
ArchR provides an open-source analysis platform with the flex-
ibility, speed and power to support the rapidly increasing efforts to 
understand complex tissues, organisms and ecosystems at the reso-
lution of individual cells.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41588-021-00790-6.
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single-nucleotide variant were compiled into a master set, and then each cell line 
was genotyped at those specific single-base locations using SAMtools mpileup. 
The allelic depth at each position was converted into a quaternary genotype 
(homozygous A, heterozygous AB, homozygous B or insufficient data to generate 
a confident call). Next, for each cell line, inferred genotype probabilities were 
created based on those quaternary genotypes, and a VCF file was created for input 
to demuxlet using recommended parameters. Demuxlet was used to identify the 
cell line of origin for individual cells and to identify doublets based on mixed 
genotypes.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Bulk and scATAC-seq data from the cell line-mixing experiment are available 
under GEO accession number GSE162690. All other scATAC-seq data used 
were from publicly available sources as outlined in Supplementary Table 1. We 
additionally made other analysis files available on our publication page at https://
github.com/GreenleafLab/ArchR_2020.

Code availability
Extensive documentation and a full user manual are available at https://www.
archrproject.com/. The software is open source, and all code can be found on 
GitHub at https://github.com/GreenleafLab/ArchR. Additionally, code for 
reproducing the majority of analyses from this paper is available at the publication 
page https://github.com/GreenleafLab/ArchR_2020.
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Methods
Genome and transcriptome annotations. All analyses were performed with the 
hg19 genome (except for the Mouse Atlas, with mm9). R-based analysis used 
the BSgenome package with ‘BSgenome.Hsapiens.UCSC.hg19’ (‘BSgenome.
Mmusculus.UCSC.mm9’ for Mouse Atlas) for genomic coordinates and the TxDb 
package with ‘TxDb.Hsapiens.UCSC.hg19.knownGene’ (‘TxDb.Mmusculus.UCSC.
mm9.knownGene’ for Mouse Atlas) gene annotations unless otherwise stated.

Cell type abbreviations. In many of the figure legends, abbreviations are 
used for cell types of the hematopoietic system. HSC, hematopoietic stem cell; 
LMPP, lymphoid-primed multipotent progenitor cell; B, B cell; B cell prog., B 
cell progenitor; CMP, common myeloid progenitor; CLP, common lymphoid 
progenitor; GMP, granulocyte macrophage progenitor; CD4 mem, CD4 memory 
T cell; CD4 naive, CD4 naive T cell; CD8 naive, CD8 naive T cell; CD8 eff, CD8 
effector T cell; CD8 EffMem, CD8 effector memory T cell; CD8 CenMem, CD8 
central memory T cell; DN T cell, double-negative T cell; mono, monocyte; plasma, 
plasma cell; pDC, plasmacytoid dendritic cell; pre-B; pre-B cell; NK, natural killer 
cell; ery, erythroid; baso, basophil.

scATAC-seq data generation: cell lines. With the exception of MCF10A, all cell 
lines were cultured in the designated medium containing 10% FBS and penicillin–
streptomycin. Jurkat, THP-1 and K562 cell lines were ordered from ATCC and 
cultured in RPMI 1640. GM12878 cells were ordered from Coriell and cultured in 
RPMI 1640. HeLa, HEK293T and HT1080 cell lines were ordered from ATCC and 
cultured in DMEM. T24 cells were ordered from ATCC and cultured in McCoy’s 
5A medium. MCF7 cells were ordered from ATCC and cultured in EMEM 
containing 0.01 mg ml−1 human insulin (MilliporeSigma, 91077C). MCF10A cells 
were ordered from ATCC and cultured in DMEM/F12 medium containing 5% 
horse serum (Thermo Fisher, 16050130), 0.02 µg ml−1 human EGF (PeproTech, 
AF-100-15), 0.5 µg ml−1 hydrocortisone (MilliporeSigma, H0888), 0.1 µg ml−1 
cholera toxin (MilliporeSigma, C8052), 10 µg ml−1 insulin from bovine pancreas 
(MilliporeSigma, I6634) and penicillin–streptomycin. Cultured cells were viably 
cryopreserved in aliquots of 100,000 cells using 100 µl BAMBANKER freezing 
medium (Wako Chemicals, 302-14681) so that scATAC-seq could be performed 
on all cells at the same time. For each cell line, cells were thawed with the addition 
of 1 ml ice-cold resuspension buffer (RSB) (10 mM Tris-HCl, pH 7.4, 10 mM 
NaCl, 3 mM MgCl2) containing 0.1% Tween-20 (RSB-T). Cells were pelleted in a 
fixed-angle rotor at 300 r.c.f. for 5 min at 4 °C. The supernatant was removed, and 
the pellet was resuspended in 100 µl ice-cold lysis buffer (RSB-T containing 0.1% 
NP-40 and 0.01% digitonin) and incubated on ice for 3 min. To dilute the lysis 
reaction, 1 ml chilled RSB-T was added to each tube, and the cells were pelleted as 
before. The supernatant was removed, and the pelleted nuclei were resuspended 
in Diluted Nuclei Buffer (10x Genomics). The nuclei stock concentration was 
determined for each cell line using trypan blue, and a total of 5,000 nuclei from 
each cell line were pooled together and loaded into the 10x Genomics scATAC-seq 
(version 1) transposition reaction. The remainder of the scATAC-seq library 
preparation was performed as recommended by the manufacturer. Resultant 
libraries were sequenced on an Illumina NovaSeq 6000 using an S4 flow cell and 
paired-end 99-bp reads. In addition to this pooled scATAC-seq library, each cell 
line was used to generate bulk ATAC-seq libraries as described previously39. Bulk 
ATAC-seq libraries were pooled and purified by polyacrylamide gel electrophoresis 
before sequencing on an Illumina HiSeq 4000 using paired-end 75-bp reads.

scATAC-seq processing: cell line mixing. Raw sequencing data was converted to 
FastQ format using the ‘cellranger-atac mkfastq’ pipeline (10x Genomics, version 
1.0.0). scATAC-seq reads were aligned to the hg19 reference genome (https://
support.10xgenomics.com/single-cell-atac/software/downloads/latest) and 
quantified using the ‘cellranger-count’ pipeline (10x Genomics, version 1.0.0). 
Genotypes used to perform demuxlet were determined as follows for each cell line: 
bulk ATAC-seq FastQ files were processed and aligned using PEPATAC (http://
code.databio.org/PEPATAC/) as described previously34. Peaks were identified 
using MACS2, and a union set of variable-width accessible regions was identified 
using bedtools merge (version 2.26.0). These accessible regions were genotyped 
across all samples using SAMtools mpileup (version 1.5) and VarScan mpileup2snp 
(version 2.4.3) with the following parameters: ‘--min-coverage 5 --min-reads2 
2 --min-var-freq 0.1 --strand-filter 1 --output-vcf 1’. All positions containing a 
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Extended Data Fig. 1 | Comparison of supported features from currently available scATAC-seq software. a, Comparison of comprehensiveness of 

supported scATAC-seq features across ArchR and other existing software packages.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Benchmarking comparisons of runtime and memory usage for ArchR, Signac, and SnapATAC. a, Schematic describing the 

individual benchmarking steps compared across ArchR (blue), Signac (purple), and SnapATAC (orange) for (1) Data Import, (2) Dimensionality Reduction 

and Clustering, and (3) Gene Score Matrix Creation. b-i, Comparison of ArchR, Signac, and SnapATAC for run time and peak memory usage for the 

analysis of (b) ~20,000 cells from the PBMCs dataset using 128 GB of RAM and 20 cores (plot corresponds to Fig. 1b), (c) ~70,000 cells from the PBMCs 

dataset using 32 GB of RAM and 8 cores (plot corresponds to Fig. 1c), (d-e) ~10,000 cells from the PBMCs dataset using (d) 32 GB of RAM and 8 cores 

or (e) 128 GB of RAM and 20 cores, (f-g) ~30,000 cells from the PBMCs dataset using (f) 32 GB of RAM and 8 cores or (g) 128 GB of RAM and 20 cores, 

and (h-i) ~30,000 cells from the bone marrow dataset using (h) 32 GB of RAM and 8 cores or (i) 128 GB of RAM and 20 cores. Dots represent individual 

replicates of benchmarking analysis (N = 3). OoM corresponds to out of memory. j, Benchmarks from ArchR for run time and peak memory usage for the 

analysis of ~70,000 cells from the sci-ATAC-seq mouse atlas dataset (N = 13 tissues) for (left) 32 GB of RAM with 8 cores and (right) 128 GB of RAM with 

20 cores. Dots represent individual replicates of benchmarking analysis. k, t-SNE of mouse atlas scATAC-seq data (N = 64,286 cells) colored by individual 

samples.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Optimization of doublet identification using admixtures of cell lines. a, QC filtering plots from ArchR for (top) replicate 1 and 

(bottom) replicate 2 from the cell line mixing dataset showing the TSS enrichment score vs unique nuclear fragments per cell. Dot color represents the 

density in arbitrary units of points in the plot. b, Accuracy of various doublet prediction methods for (top) replicate 1 and (bottom) replicate 2 from the 

cell line mixing dataset, measured by the area under the curve (AUC) of the receiver operating characteristic (ROC), across different in silico cell loadings. 

Accuracy is determined with respect to genotype-based identification of doublets using demuxlet. Above each plot, ‘KNN’ represents the number of cells 

nearby each projected synthetic doublet to record when calculating doublet enrichment scores. The distance for KNN recording is determined in the LSI 

subspace for LSI projection and in the UMAP embedding for UMAP projection parameters. The smooth line represents a LOESS fit (shading represents 

95% confidence interval). c-h, UMAP of scATAC-seq data showing the (c-d) simulated doublet density, (e-f) simulated doublet enrichment, or (g-h) cell 

line identity based on genotyping information and demuxlet for (c,e,g) replicate 1 (N = 15,345 cells) and (d,f,h) replicate 2 (N = 22,727 cells) of the cell line 

mixing dataset.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Benchmarking of doublet identification in ArchR. a, Total number of sample-relevant single-nucleotide variants that overlapped 

scATAC-seq fragments for (blue) cells identified as doublets by demuxlet and not identified by ArchR, (red) cells identified as doublets by both demuxlet 

and ArchR, and (black) cells identified as singlets by demuxlet. Box-whisker plot; lower whisker is the lowest value greater than the 25% quantile minus 

1.5 times the interquartile range (IQR), the lower hinge is the 25% quantile, the middle is the median, the upper hinge is the 75% quantile and the upper 

whisker is the largest value less than the 75% quantile plus 1.5 times the IQR. b, Posterior probability of demuxlet doublet assignment. Coloration and 

box-whisker plot as in (a). c, Receiver operating characteristic (ROC) curves of doublet prediction using Scrublet or the number of nuclear fragments 

per cell compared to demuxlet as a ground truth. The area under the curve (AUC) for these ROC curves is annotated below the plot. The Scrublet ROC 

curve can be directly compared to ArchR in Fig. 1h. d, Precision recall (PR) curves of doublet prediction using (left) ArchR and (right) Scrublet doublet 

identification or the number of nuclear fragments per cell compared to demuxlet as a ground truth. The AUC is annotated below the plot. e, UMAP of 

PBMC mixing scRNA-seq from Kang et. al, 2017. Cells are colored as doublets (black) or singlets (gray) as identified by (left) demuxlet or (right) ArchR. 

f-g. (f) ROC curves or (g) PR curves of doublet prediction using ArchR (dark blue), Scrublet (red), or the number of total counts per cell (light blue) 

compared to demuxlet as a ground truth. The AUC is annotated below the plot. h, Schematic of 10x Genomics Multiome workflow. i, (left) TSS enrichment 

score vs unique nuclear fragments per cell (color is density), or (right) aggregate fragment size distributions for the cells passing ArchR QC thresholds 

from the PBMC Multiome data. j, Distribution of (top) the number of unique molecular identifiers (nUMIs) per cell passing scATAC-seq filtration and 

(bottom) the number of unique genes (nGenes) identified with at least 1 UMI per cell. Box-whisker plot as in (a). k, UMAPs of (left) scATAC-seq data or 

(right) scRNA-seq data from the Multiome dataset shown (top) with doublets present (black, N = 10,887) and (bottom) with ArchR-identified doublets 

removed (N = 9,702). l-m, (l) ROC and (m) PR curves of doublet prediction using ArchR (red) compared to the top doublets (N = 750) identified by 

Scrublet as a ground truth and vice versa (blue). The AUC is annotated below the plot. n, UMAP of scATAC-seq data from CD34 + bone marrow cells 

(green, purple, orange) and unfractionated bone marrow cells (blue and red) colored by (left) sample and (right) ArchR identified clusters (N ~ 30,000 

cells total). Plots are shown (left pair) without doublet removal and (right pair) with ArchR-based doublet removal.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Benchmarking of performance of clustering approaches in ArchR, SnapATAC, and Signac. a, Schematic of the iterative 

LSI procedure implemented in ArchR for dimensionality reduction. b, Schematic of the downsampling approach used on bulk ATAC-seq data to 

enable evaluation of clustering performance for simulated scATAC-seq data. c, Bar plot showing the number of replicates generated per cell type 

by downsampling of bulk ATAC-seq data from hematopoietic cells. d, t-distributed stochastic neighbor embedding (t-SNE) of downsampled bulk 

ATAC-seq data from hematopoeitc cells (N = 7,200) to various data quality scales. Left; low-quality scATAC-seq data (~1,000 fragments/cell). Middle; 

medium-quality scATAC-seq data (~5,000 fragments/cell). Right; high-quality scATAC-seq data (~10,000 fragments/cell). t-SNE plots were created for 

(top) ArchR (iterative LSI), (middle) SnapATAC (LDM), and (bottom) Signac (LSI). Within each group, these t-SNE plots are colored by (top) cell type and 

(bottom) sample replicate. e, Adjusted Rand Index (ARI) of clusters identified by ArchR (blue), SnapATAC (orange), and Signac (purple) for low-quality, 

medium-quality and high-quality downsampling of bulk ATAC-seq data from hematopoietic cells.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Assessment of gene score models. a-h, Distribution of Pearson correlations of inferred gene score and aligned gene expression 

for (a,c,e,g) each gene or (b,d,f,h) each cell group across groups of 100 cells (N = 500 groups). Distributions are either presented for (a,b,e,f) the top 

1,000 differentially expressed genes or (c,d,g,h) the top 2,000 most variable genes for each of the 56 gene score models. The red dotted line represents 

the median value of the best-performing model. Violin plots represent the smoothed density of the distribution of the data. In box plots, the lower whisker 

is the lowest value greater than the 25% quantile minus 1.5 times the interquartile range, the lower hinge is the 25% quantile, the middle is the median, 

the upper hinge is the 75% quantile and the upper whisker is the largest value less than the 75% quantile plus 1.5 times the interquartile range. SA, 

SnapATAC; SN, Signac; CoA, Co-accessibility. i-j, UMAPs of scATAC-seq data from (i) cells from the PBMCs dataset (N = 27,845 cells) or (j) cells from 

the bone marrow cell dataset (N = 26,748 cells) colored by (top) inferred gene scores or (bottom) gene expression for several marker genes. k, Schematic 

illustrating the methodology used to assess the accuracy of inferred gene scores. l, Heatmaps summarizing the accuracy (Pearson correlation) across all 

models for both the top 1,000 differentially expressed and top 2,000 variable genes for bulk ATAC-seq and RNA-seq from hematopoietic cell types. Each 

entry is colored by the model rank in the given test as described below the heatmap. The model class is indicated to the left. SA, SnapATAC; SN, Signac; 

CoA, Co-accessibility. m, Heatmaps of (left) gene expression or (right) gene scores for the top 1,000 differentially expressed genes (selected from bulk 

RNA-seq) across all cell types from the matched bulk ATAC-seq and RNA-seq data.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Confirmation of gene score model performance using paired scATAC-seq and scRNA-seq data from the same single cells. 

a, Schematic of 10x Genomics Multiome profiling of scATAC-seq and scRNA-seq in the same single cells. b, UMAPs of Multiome data from PBMCs 

(N = 9,702 cells) with removal of ArchR-identified doublets using (left) iterative LSI of scATAC-seq data, (middle) iterative LSI of scRNA-seq data, and 

(right) iterative LSI of combined scATAC-seq and scRNA-seq. Cells are colored by clusters identified from the combined analysis. Adjusted Rand Index 

(ARI) of clusters identified from (left) scATAC-seq and (middle) scRNA-seq compared to the combination are shown in the top right of each plot. c-f, 

Distribution of Pearson correlations of inferred gene score and aligned gene expression for (c,e) each gene or (d,f) each cell group across groups of 100 

cells (N = 500 groups). Distributions are either presented for (c,d) the top 1,000 differentially expressed genes or (e,f) the top 2,000 most variable genes 

for each of the 57 gene score models tested. See Extended Data Fig. 6 for further details. g, Heatmaps summarizing the accuracy (measured by Pearson 

correlation) across all models for both the top 1,000 differentially expressed and top 2,000 variable genes for paired scATAC-seq and scRNA-seq data. 

Each entry is colored by the model rank in the given test as described below the heatmap. The model class is indicated to the left of each heatmap. h, 

UMAPs of scATAC-seq data from the Multiome PBMCs dataset (N = 9,702 cells) colored by (bottom) inferred gene scores or (top) gene expression 

for several marker genes. i, Heatmaps of (left) gene expression or (right) gene scores for the top 1,000 differentially expressed genes (selected from 

scRNA-seq) across all cell types from the paired scATAC-seq and scRNA-seq data.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Analysis of the large hematopoiesis scATAC-seq dataset. a, Schematic for the projection of bulk ATAC-seq data into an existing 

single-cell embedding using LSI projection. Bulk ATAC-seq data (10–20 million fragments) is down sampled to a fragment number corresponding to the 

average single-cell experiment, and LSI-projected into the single-cell subspace. b, LSI projection of bulk ATAC-seq data from diverse hematopoietic cell 

types into the scATAC-seq embedding of the hematopoiesis dataset. c-d, UMAP of scATAC-seq data from the hematopoiesis dataset (N = 215,031 cells) 

colored by (c) sorted cells processed with the Fluidigm C1 system or (d) inferred gene scores for marker genes of hematopoietic cells. e, Schematic of 

the scalable chromVAR method implemented in ArchR. ArchR computes global accessibility within each peak and then computes chromVAR deviations 

for each sample independently. f, Dot plot showing the identification of positive TF regulators through correlation of chromVAR TF deviation scores 

and inferred gene scores in cell groups (Correlation > 0.5 and Deviation Difference in the top 50th percentile). These TFs were additionally filtered 

by the maximum observed deviation score difference observed across each cluster average to remove TFs that are correlated but do not have large 

accessibility changes in hematopoiesis. g, Schematic of TF footprinting with Tn5 bias correction in ArchR. Base-pair resolution insertion coverage files 

from sample-aware pseudo-bulk replicates are used to compute the insertion frequency around each motif for each replicate. For each motif, the total 

observed k-mers relative to the motif center per bp are identified. This k-mer position frequency table can then be multiplied by the individual sample 

Tn5 k-mer frequencies to compute the Tn5 insertion bias per replicate. h, TF footprint for the NFIA motif. Lines are colored by cluster identity from the 

hematopoiesis dataset shown in Fig. 3b. i, Benchmarking of run time for TF footprinting with ArchR for the 102 sample-aware pseudo-bulk replicates from 

the hematopoiesis dataset.
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Extended Data Fig. 9 | Cross-platform integration in ArchR enables linkage of gene expression and chromatin accessibility in cell type-specific marker 

genes. a, Side-by-side UMAPs for the hematopoiesis dataset cells colored by (top) gene expression (log2(Normalized Counts +1)) from scRNA-seq 

alignment or (bottom) inferred gene scores (log2(Gene Score +1)) from gene score Model 42 (see Fig. 2c) for key immune marker genes.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Peak-to-gene linkage and trajectory analysis in the large hematopoiesis dataset. a, Schematic of identification of peak-to-gene 

links with ArchR. First, all combinations of peak-to-gene linkages are identified. Second, the peak accessibility and gene expression for cell groups are 

calculated. Finally, all potential peak-to-gene linkages are tested and significant links (R > 0.45 and FDR < 0.1) are kept. b, Heatmap of 70,239 peak-to-gene 

links identified across the hematopoiesis dataset with ArchR. c, UMAP of scATAC-seq data from a subset of cells derived from Granja et al. 20197. This 

data is the same as the hematopoietic tutorial data set (N = 10,251) used in the ArchR user manual. Cells are colored by ArchR identified clusters. d, 

UMAP as shown in Extended Data Fig. 10c but colored by trajectory position along the (top) B cell trajectory and (bottom) Myeloid trajectory for (left) 

ArchR, (middle) Slingshot, and (right) Monocle3. e, One-to-one comparisons of ArchR, Slingshot and Monocle3 scaled trajectory positions (Scaled TP) 

across the (left) B cell trajectory and (right) Myleoid trajectory.
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Software and code

Policy information about availability of computer code

Data collection Cell Ranger 1.0.0 – Barcode Identification, Alignment, Filter, Deduplication

Data analysis Code Availability and Documentation 

Extensive documentation and a full user manual are available at www.ArchRProject.com. The software is open-source and all code can be 

found on GitHub at https://github.com/GreenleafLab/ArchR. Additionally, code for producing the majority of analyses from this paper is 

available at the publication page https://github.com/GreenleafLab/ArchR_2020. 
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R version 3.6.1 – R environment for all custom code 
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Irlba 2.3.3 – Running PCA/SVD on large matrices. 

Rcpp 1.0.4 – Used for writing helpful C++ code to speed up operations. 

Rtsne 0.15 – Used for t-SNE embeddings. 

matrixStats 0.56.0 – Used for mathematical operations on large matrices. 

cicero 1.4.2 – Used for calculating gene activity scores with Co-Accessibility. 

chromVAR_1.8.0 – Calculating TF deviation scores which can be associated with TF activity. 

Summarized Experiment 1.16.1 – R Data Class Environment used throughout analyses. 

Motifmatchr 1.8.0 – Matching TF Motifs within peak regions 

Seurat_3.1.2 – SNN Graph Clustering Implementation  

GenomicRanges 1.38.0 - Genomic Ranges Operations used for overlap analyses 

Matrix 1.2-14 – Sparse Matrix math implementations. 

BSgenome 1.54.0 – Toolkit used for getting Genomic DNA sequences for motif matching and footprinting. 
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Rsamtools 2.2.3 – For manipulating BAM files within R. 

uwot-0.1.5 - For creating UMAPs in R.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
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- A description of any restrictions on data availability

Data Availability 

Bulk and scATAC-seq data from the cell line mixing experiment are available through GEO accession number GSE162690. All other scATAC-seq data used were from 

publicly available sources as outlined in Supplementary Table 1. We additionally have made available other analysis files on our publication page https://

github.com/GreenleafLab/ArchR_2020.
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Sample size Sample size was set to make sure results were consistently reproducible. For computational benchmarking, we performed each analysis in 

triplicate. When possible, we included multiple replicates of scATAC-seq data sets to ensure fidelity in the analysis.

Data exclusions No data were excluded from the manuscript.

Replication All computational results presented in manuscript were reliably reproduced in triplicate. When possible, we included multiple replicates of 

scATAC-seq data sets to ensure fidelity in the analysis.

Randomization No randomization was used because analyses were performed mostly on previously published data sets.

Blinding No blinding was used because analyses were performed mostly on previously published data sets.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Jurkat, THP1, K562, HeLa, HEK-293T, HT1080, T24, MCF7, MCF10A from ATCC; GM12878 from Coriell

Authentication Cell lines were obtained directly from the listed provider and used shortly thereafter.



3

n
atu

re research
  |  rep

o
rtin

g
 su

m
m

ary
O

c
to

b
e

r 2
0

1
8

Mycoplasma contamination All cell lines tested negative for mycoplasma contamination prior to use in experiments.

Commonly misidentified lines
(See ICLAC register)

None of the cell lines used in this study are listed in this database.
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