
The Annals of Statistics
1998, Vol. 26, No. 3, 801�849

ARCING CLASSIFIERS1

BY LEO BREIMAN

University of California, Berkeley

Recent work has shown that combining multiple versions of unstable
classifiers such as trees or neural nets results in reduced test set error.
One of the more effective is bagging. Here, modified training sets are
formed by resampling from the original training set, classifiers con-
structed using these training sets and then combined by voting. Freund
and Schapire propose an algorithm the basis of which is to adaptively

Ž .resample and combine hence the acronym ‘‘arcing’’ so that the weights in
the resampling are increased for those cases most often misclassified and
the combining is done by weighted voting. Arcing is more successful than
bagging in test set error reduction. We explore two arcing algorithms,
compare them to each other and to bagging, and try to understand how
arcing works. We introduce the definitions of bias and variance for a
classifier as components of the test set error. Unstable classifiers can have
low bias on a large range of data sets. Their problem is high variance.
Combining multiple versions either through bagging or arcing reduces
variance significantly.

1. Introduction. Some classification and regression methods are unsta-
ble in the sense that small perturbations in their training sets or in construc-
tion may result in large changes in the constructed predictor. Subset selection
methods in regression, decision trees in regression and classification and

� Ž .�neural nets are unstable Breiman 1996b .
Unstable methods can have their accuracy improved by perturbing and

combining, that is, generate multiple versions of the predictor by perturbing
the training set or construction method, then combine these multiple versions

Ž .into a single predictor. For instance, Ali 1995 generates multiple classifica-
tion trees by choosing randomly from among the best splits at a node and

Ž .combines trees using maximum likelihood. Breiman 1996b adds noise to
the response variable in regression to generate multiple subset regressions

Ž .and then averages these. We use the label P & C perturb and combine to
designate this group of methods.

� Ž .�One of the more effective P & C methods is bagging Breiman 1996a .
Bagging perturbs the training set repeatedly to generate multiple predictors

Ž . Ž .and combines these by simple voting classification or averaging regression .
Ž .Let the training set T consist of N cases instances labeled by n � 1, 2, . . . , N.

Ž .Put equal probabilities p n � 1�N on each case and using these probabili-

Received May 1996; revised May 1997.
1Supported in part by NSF Grant 1-444063-21445.
AMS 1991 subject classification. Primary 62H30.
Key words and phrases. Ensemble methods, decision trees, neural networks, bagging, boost-

ing, error-correcting, output coding, Markov chain, Monte Carlo.

801

L. BREIMAN802

Ž .ties, sample with replacement bootstrap N times from the training set T,
forming the resampled training set T ŽB .. Some cases in T may not appear in
T ŽB .; some may appear more than once. Now use T ŽB . to construct the
predictor, repeat the procedure and combine. Bagging applied to CART gave
dramatic decreases in test set errors.

Ž .Freund and Schapire 1996, 1997 recently proposed a P & C algorithm
which was designed to drive the training set error rapidly to zero. However, if
their algorithm is run far past the point at which the training set error is
zero, it gives better performance than bagging on a number of real data sets.

Ž .The crux of their idea is this: start with p n � 1�N and resample from T to
form the first training set T Ž1.. As the sequence of classifiers and training sets

Ž .is being built, increase p n for those cases that have been most frequently
misclassified. At termination, combine classifiers by weighted or simple vot-
ing. We will refer to algorithms of this type as ‘‘adaptive resampling and
combining,’’ or ‘‘arcing’’ algorithms. In honor of Freund and Schapire’s discov-
ery, we denote their specific algorithm by arc-fs and discuss their theoretical
efforts to relate training set to test set error in the Appendix.

To better understand stability and instability and what bagging and arcing
do, we define the concepts of bias and variance for classifiers in Section 2. The
difference between the test set misclassification error for the classifier and
the minimum error achievable is the sum of the bias and variance. Unstable
classifiers such as trees characteristically have high variance and low bias.
Stable classifiers like linear discriminant analysis have low variance, but can
have high bias. This is illustrated on several examples of artificial data.
Section 3 looks at the effects of arcing and bagging trees on bias and variance.

The main effect of both bagging and arcing is to reduce variance. Usually,
arcing seems to do better at this than bagging. Arc-fs does complex things
and its behavior is puzzling. However, the variance reduction comes from the
adaptive resampling and not the specific form of arc-fs. To show this, we
define a simpler arc algorithm denoted by arc-x4 whose accuracy is compara-
ble to arc-fs. The two appear to be at opposite poles of the arc spectrum.
Arc-x4 was concocted to demonstrate that arcing works not because of the
specific form of the arc-fs algorithm, but because of the adaptive resampling.

Ž .Freund and Schapire 1996 compare arc-fs to bagging on 27 data sets and
conclude that arc-fs has a small edge in test set error rates. We tested arc-fs,
arc-x4 and bagging on the 10 real data sets used in our bagging paper and got
results more favorable to arcing. These are given in Section 4. The results
show that arc-fs and arc-x4 finish in a dead heat. On a few data sets, one or
the other is a little better, but both are almost always significantly better
than bagging. We also look at arcing and bagging applied to the U.S. Postal
Service digit data base.

The overall results of arcing are exciting�it turns a good but not great
Ž .classifier CART into a procedure that seems usually to get close to the

lowest achievable test set error rates. Furthermore, the arc-classifier is
off-the-shelf. Its performance does not depend on any tuning or settings for

ARCING CLASSIFIERS 803

particular problems. Just read in the data and press the start button. It is
also, by neural net standards, blazingly fast to construct.

Section 5 gives the results of some experiments aimed at understanding
how arc-fs and arc-x4 work. Each algorithm has distinctive and different
signatures. Generally, arc-fs uses a smaller number of distinct cases in the

Ž .resampled training sets and the successive values of p n are highly variable.
The successive training sets in arc-fs rock back and forth and there is no

� Ž .4convergence to a final set of p n . The back and forth rocking is more
� Ž .4subdued in arc-x4, but there is still no convergence to a final p n . This

variability may be an essential ingredient of successful arcing algorithms.
Instability is an essential ingredient for bagging or arcing to improve

Ž .accuracy. Nearest neighbors are stable; Breiman 1996a noted that bagging
does not improve nearest neighbor classification. Linear discriminant analy-

Ž .sis is also relatively stable low variance and in Section 6 our experiments
show that neither bagging nor arcing has any effect on linear discriminant
error rates.

Sections 7 and 8 contain remarks, mainly to give understanding of how
bagging and arcing work. The reason that bagging reduces error is fairly
transparent, but it is not at all clear yet, in other than general terms, how
arcing works. Two dissimilar arcing algorithms, arc-fs and arc-x4, give com-
parable accuracy. It is possible that other arcing algorithms, intermediate
between arc-fs and arc-x4, will give even better performance. The experi-

Ž . Ž .ments here, in Freund and Shapire 1995 , in Drucker and Gortes 1997 and
Ž .in Quinlan 1996 indicate that arcing decision trees may lead to fast and

generally accurate classification methods and indicate that additional re-
search aimed at understanding the workings of this class of algorithms will
have a high pay-off.

2. The bias and variance of a classifier. In classification, the output
� 4variable y � 1, . . . , J is a class label. The training set T is of the form

�Ž . 4T � y , x n � 1, . . . , N where the y are class labels. Given T, somen n n
Ž .method is used to construct a classifier C x, T for predicting future y-values.

Assume that the data in the training set consists of iid selections from the
distribution of Y, X. The misclassification error is defined as

PE C , T � P C X, T � YŽ . Ž .Ž . Ž .X , Y

Ž . Ž Ž ..and we denote by PE C the expectation of PE C , T over T. Denote

P j � x � P Y � j � X � x ,Ž . Ž .
P dx � P X � dx .Ž . Ž .

The minimum misclassification rate is given by the ‘‘Bayes classifier C*’’
where

�C* x � argmax P j xŽ . Ž .
j

L. BREIMAN804

with misclassification rate

�PE C* � 1 � max P j x P dx .Ž . Ž .Ž .Ž .H
j

Let
�Q j x � P C x, T � jŽ .Ž . Ž .T

and define the aggregated classifier as
�C x � argmax Q j x .Ž . Ž .A

j

This is aggregation by voting. Consider many independent replicas T , T , . . . ;1 2
Ž . Ž .construct the classifiers C x, T , C x, T , . . . ; and at each x determine the1 2

Ž .classification C x by having these multiple classifiers vote for the mostA
popular class.

Ž . Ž . Ž .DEFINITION 2.1. C x, � is unbiased at x if C x � C* x .A

Ž . Ž .That is, C x, T is unbiased at x if, over the replications of T, C x, T picks
the right class more often than any other class. A classifier that is unbiased
at x is not necessarily an accurate classifier. For instance, suppose that in a

Ž � . Ž � . Ž � . Ž � .two-class problem P 1 x � 0.9, P 2 x � 0.1 and Q 1 x � 0.6, Q 2 x � 0.4.
Then C is unbiased at x but the probability of correct classification by C is
0.6 � 0.9 � 0.4 � 0.1 � 0.58. However, the Bayes predictor C* has probabil-
ity 0.9 of correct classification.

Ž .If C is unbiased at x then C x is optimal. Let U be the set of all x atA
which C is unbiased, and call U the unbiased set. The complement of U is
called the bias set and denoted by B.

DEFINITION 2.2. The bias of a classifier C is

Bias C � P C* X � Y , X � B � E P C X, T � Y , X � BŽ . Ž . Ž .Ž . Ž .X , Y T X , Y

and its variance is

Var C � P C* X � Y , X � U � E P C X, T � Y , X � U .Ž . Ž . Ž .Ž . Ž .X , Y T X , Y

This leads to the fundamental decomposition

PE C � PE C* � Bias C � Var C .Ž . Ž . Ž . Ž .
Note that aggregating a classifier and replacing C with C reduces theA

variance to zero, but there is no guarantee that it will reduce the bias. In fact,
it is easy to give examples where the bias will be increased. Thus, if the bias

Ž . Ž .set B has large probability, PE C may be significantly larger than PE C .A
As defined, bias and variance have the following properties:

1. Bias and variance are always nonnegative.
2. The variance of C is zero.A
3. If C is deterministic, that is, does not depend on T, then its variance is

zero.
4. The bias of C* is zero.

ARCING CLASSIFIERS 805

Ž . Ž .The proofs of 1 � 4 are immediate from the definitions. The variance of C
can be expressed as

� � �Var C � max P j x � Q j x P j x P dx .Ž . Ž .Ž . Ž . Ž .ÝH
jU j

The bias of C is a similar integral over B. Clearly, both bias and variance are
nonnegative. Since C � C* on U, its variance is zero. If C is deterministic,A
then on U, C � C*, so C has zero variance. Finally, it is clear that C* has
zero bias.

Use of the terms ‘‘bias’’ and ‘‘variance’’ in classification is somewhat
misleading, since they do not have properties commonly associated with bias

�and variance in predicting numerical outcomes, that is, regression see
Ž .�Geman, Bienenstock and Doursat 1992 . The most important aspect of our

definition is that the variance is the component of the classification error that
can be eliminated by aggregation. However, the bias may be larger for the
aggregated classifier than for the unaggregated.

Ž .Friedman 1996 gives a thoughtful analysis of the meaning of bias and
variance in two class problems. Using some simplifying assumptions, a
definition of ‘‘boundary bias’’ at a point x is given and it is shown that at
points of negative boundary bias, classification error can be reduced by
reducing variance in the class probability estimates. If the boundary bias is
not negative, decreasing the estimate variance may increase the classification
error. The points of negative boundary bias are exactly the points defined
above as the unbiased set. Other definitions of bias and variance in classifi-

Ž . Ž .cation are given in Kong and Dietterich 1995 , Kohavi and Wolpert 1996
Ž .and Tibshirani 1996 .

Ž .2.1. Instability, bias and variance. Breiman 1996a pointed out that
some prediction methods were unstable in that small changes in the training
set could cause large changes in the resulting predictors. I listed trees and
neural nets as unstable, nearest neighbors as stable. Linear discriminant

Ž .analysis LDA is also stable. Unstable classifiers are characterized by high
Ž .variance. As T changes, the classifiers C x, T can differ markedly from each

Ž .other and from the aggregated classifier C x . Stable classifiers do notA
Ž . Ž .change much over replicates of T, so C x, T and C x will tend to be theA

same and the variance will be small.
Procedures like CART have high variance, but they are ‘‘on average,

right,’’ that is, they are largely unbiased�the optimal class is usually the
winner of the popularity vote. Stable methods, like LDA achieve their stabil-
ity by having a very limited set of models to fit to the data. The result is low
variance. But if the data cannot be adequately represented in the available
set of models, large bias can result.

2.2. Examples. To illustrate, we compute bias and variance of CART for a
few examples. These all consist of artificially generated data, since otherwise

L. BREIMAN806

C* cannot be computed nor T replicated. In each example, the classes have
equal probability and the training sets have 300 cases.

Waveform: This is 21 dimension, 3 class data. It is described in the CART
� Ž .�book Breiman, 1984 and code for generating the data is in the UCI

Žrepository ftp address: ftp.ics.uci.edu directory pub / machine-
.learning-databases .

Twonorm: This is 20 dimension, 2 class data. Each class is drawn from a
multivariate normal distribution with unit covariance matrix. Class 1 has

Ž . Ž . Ž .1�2mean a, a, . . . , a and class 2 has mean �a, �a, . . . , �a ; a � 2� 20 .
Threenorm: This is 20 dimension, 2 class data. Class 1 is drawn with equal

Ž .probability from a unit multivariate normal with mean a, a, . . . , a and from
Ž .a unit multivariate normal with mean �a, �a, . . . , �a . Class 2 is drawn

Ž .from a unit multivariate normal with mean at a, �a, a, �a, . . . a ; a �
Ž .1�22� 20 .
Ringnorm: This is 20 dimension, 2 class data. Class 1 is multivariate

normal with mean zero and covariance matrix four times the identity. Class 2
Ž . Ž .1�2has unit covariance matrix and mean a, a, . . . , a ; a � 1� 20 .

Monte Carlo techniques were used to compute bias and variance for each of
the above distributions. One hundred training sets of size 300 were generated
and a CART tree grown on each one. An additional set of size 18,000 was
generated from the same distribution and the aggregated classifier computed
for each point in this latter set. The Bayes predictor can be analytically
computed, so each point in the 18,000 can be assigned to either the bias set or
its complement. The results of averaging over this set are in Table 1.

These problems are difficult for CART. For instance, in twonorm the
optimal separating surface is an oblique plane. This is hard to approximate
by the multidimensional rectangles used in CART. In ringnorm, the separat-
ing surface is a sphere, again difficult for a rectangular approximation.
Threenorm is the most difficult, with the separating surface formed by the
continuous join of two oblique hyperplanes. Yet in all examples CART has low
bias. The problem is its variance.

We will explore, in the following sections, methods for reducing variance by
combining CART classifiers trained on perturbed versions of the training set.
In all of the trees that are grown, only the default options in CART are used.
No special parameters are set, nor is anything done to optimize the perfor-
mance of CART on these data sets.

TABLE 1
Ž .Bias, variance and error of CART %

()Data set PE C* Bias Variance Error

Waveform 13.2 1.7 14.1 29.0
Twonorm 2.3 0.1 19.6 22.1
Threenorm 10.5 1.4 20.9 32.8
Ringnorm 1.3 1.5 18.5 21.4

ARCING CLASSIFIERS 807

3. Bias and variance for arcing and bagging. Given the ubiquitous
low bias of tree classifiers, if their variances can be reduced, accurate
classifiers may result. The general direction toward reducing variance is

Ž .indicated by the classifier C x . This classifier has zero variance and lowA
bias. Specifically, on the four problems above, its bias is 2.9, 0.4, 2.6, 3.4.
Thus, it is nearly optimal. Recall that it is based on generating independent
replicates of T, constructing a CART classifier on each replicate training sets
and then letting these classifiers vote for the most popular class. It is not
possible, given real data, to generate independent replicates of the training
set. But imitations are possible and do work.

3.1. Bagging. The simplest implementation of the idea of generating
� Ž .�quasi-replicate training sets is bagging Breiman 1996a . Define the proba-

Ž .bility of the nth case in the training set to be p n � 1�N. Now sample N
� Ž .4times from the distribution p n . Equivalently, sample from T with replace-

ment. This forms a resampled training set T �. Cases in T may not appear in
T � or may appear more than once. Here T � is more familiarly called a
bootstrap sample from T.

� Ž .4 ŽB .Denote the distribution on T given by p n as P . Then T � is iid from
P ŽB .. Repeat this sampling procedure, getting a sequence of independent
bootstrap training sets. Construct a corresponding sequence of classifiers by
using the same classification algorithm applied to each one of the bootstrap
training sets. Then let these multiple classifiers vote for each class. For any

Ž .point x, C x really depends on the underlying probability P that theA
Ž . Ž .training sets are drawn from C x � C x, P . The bagged classifier isA A

Ž ŽB .. Ž .C x, P . The hope is that this is an approximation to C x, P goodA A
enough that considerable variance reduction will result.

3.2. Arcing. Arcing is a more complex procedure. Again, multiple classi-
fiers are constructed and vote for classes, but the construction is sequential,

Ž .with the construction of the k � 1 st classifier depending on the performance
of the k previously constructed classifiers. We give a brief description of the
Freund�Schapire arc-fs algorithm. Details are contained in Section 4.

� Ž .4At the start of each construction, there is a probability distribution p n
on the cases in the training set. A training set T � is constructed by sampling

Ž .N times from this distribution or by reweighting, see Section 8.2 . Then the
probabilities are updated depending on how the cases in T are classified by
Ž .C x, T � . A factor � � 1 is defined which depends on the misclassification rate

�the smaller it is, the larger � is. If the nth case in T is misclassified by
Ž . Ž .C x, T � , then put weight � p n on that case. Otherwise define the weight to

Ž .be p n . Now divide each weight by the sum of the weights to get the updated
probabilities for the next round of sampling. After a fixed number of classi-
fiers have been constructed, they do a weighted voting for the class.

The intuitive idea of arcing is that the points most likely to be selected for
the replicate data sets are those most likely to be misclassified. Since these

L. BREIMAN808

are the troublesome points, focusing on them using the adaptive resampling
scheme of arc-fs may do better than the neutral bagging approach.

3.3. Results. Bagging and arc-fs were run on the artificial data set de-
scribed above. For each one, the procedure consisted of generating 100
replicate training sets of size 300. On each training set bagging and arc-fs
were run 50 times using CART as the classifier. For each training set this
gave an arced classifier and a bagged classifier. An additional 18,000-member
Monte Carlo set was generated and the results of aggregating the 100 bagged
and arced classifiers computed at each member of this latter set and com-
pared with the Bayes classification. This enabled the bias and variance to be
computed. The results are given in Table 2 and compared with the CART
results.

Although both bagging and arcing reduce bias a bit, their major contribu-
tion to accuracy is in the large reduction of variance. Arcing does better than
bagging because it does better at variance reduction.

3.4. The effect of combining more classifiers. The experiments with bag-
ging and arcing above used combinations of 50 tree classifiers. A natural
question is ‘‘What happens if more classifiers are combined?’’ To explore this,
we ran arc-fs and bagging on the waveform and twonorm data using combina-
tions of 50, 100, 250 and 500 trees. Each run consisted of 100 repetitions. In
each run, a training set of 300 and a test set of 1500 were generated, the
prescribed number of trees constructed and combined and the test set error
computed. These errors were averaged over 100 repetitions to give the results
shown in Table 3. Standard errors were less than 0.16%.

Arc-fs error rates decrease significantly out of 250 combinations, reaching
Ž .rates close to the Bayes minimum 13.2% for waveform and 2.3% for twonorm .

One standard of comparison is linear discriminant analysis, which should be

TABLE 2
Ž .Bias and variance %

Data set CART Bagging Arcing

Waveform
bias 1.7 1.4 1.0
var 14.1 5.3 3.6

Twonorm
bias 0.1 0.1 1.2
var 19.6 5.0 1.3

Threenorm
bias 1.4 1.3 1.4
var 20.9 8.6 6.9

Ringnorm
bias 1.5 1.4 1.1
var 18.5 8.3 4.5

ARCING CLASSIFIERS 809

TABLE 3
Ž .Test set error % for 50, 100, 250, 500 combinations

Data set 50 100 250 500

Waveform
arc-fs 17.8 17.3 16.6 16.8
bagging 19.8 19.5 19.2 19.2

Twonorm
arc-fs 4.9 4.1 3.8 3.7
bagging 7.3 6.8 6.5 6.5

almost optimal for twonorm. It has an error rate of 2.8%, averaged over 100
repetitions. Bagging error rates also decrease out to 250 combinations, but
the decreases are smaller than for arc-fs.

4. Arcing algorithms. This section specifies the two arc algorithms and
looks at their performance over a number of data sets.

4.1. Definitions of the arc algorithms. Both algorithms proceed in sequen-
tial steps with a user defined limit of how many steps until termination.

� Ž .4Initialize probabilities p n to be equal. At each step, the new training set is
� Ž .4selected by sampling from the original training set using probabilities p n .

After the classifier based on this resampled training set is constructed, the
� Ž .4p n are updated depending on the misclassifications up to the present step.

Ž .On termination, the classifiers are combined using weighted arc-fs or un-
Ž .weighted arc-x4 voting. The arc-fs algorithm is based on a boosting theorem

Ž .given in Freund and Schapire 1997 . Arc-x4 is an ad hoc invention.
Arc-fs specifics.

� Žk .Ž .41. At the kth step, using the current probabilities p n , sample with
replacement from T to get the training set T Žk . and construct classifier Ck
using T Žk ..

Ž .2. Run T down the classifier C and let d n � 1 if the nth case is classifiedk
incorrectly; otherwise zero.

3. Define

� � pŽk . n d n , � � 1 � � ��Ž . Ž . Ž .Ýk k k k
n

Ž .and the updated k � 1 st step probabilities by

pŽk�1. n � pŽk . n � dŽn.� pŽk . n � dŽn. .Ž . Ž . Ž .Ýk k

After K steps, the C , . . . , C are combined using weighted voting with C1 K K
Ž .having weight log � . We made two minor revisions to this algorithm. If �k k

becomes greater than 1�2, then the voting weights � go negative. We foundk
� Ž .4that good results were then gotten by setting all p n equal and restarting.

If � equals zero, making the subsequent step undefined, we again set thek

L. BREIMAN810

probabilities equal and restart. The definition given above of arc-fs differs in
appearance from the original definition given by Freund and Schapire, but is
mathematically equivalent.

A referee pointed out that the updating definition in arc-fs leads to the
Žk�1.Ž . Ž .interesting result that Ý p n d n � 1�2. That is, the probability weightn

Ž .at the k � 1 st step is equally divided between the points misclassified on
the kth step and those correctly classified.

Arc-x4 specifics.

1. Same as for arc-fs.
Ž .2. Run T down the classifier C and let m n be the number of misclassifica-k

tions of the nth case by C , . . . , C .1 k
3. The updated k � 1 step probabilities are defined by

4 4p n � 1 � m n � 1 � m n .Ž . Ž . Ž .Ž . Ž .Ý
After K steps the C , . . . , C are combined by unweighted voting.1 K
After a training set T � is selected by sampling from T with probabilities

� Ž .4p n , another set T � is generated the same way. T � is used for tree
construction, T � is used as a test set for pruning. By eliminating the need for
cross-validation pruning, 50 classification trees can be grown and pruned in
about the same cpu time as it takes for 5 trees grown and pruned using
10-fold cross-validation. This is also true for bagging. Thus, both arcing and
bagging, applied to decision trees, grow classifiers relatively fast. Parallel
bagging can be easily implemented but arc is essentially sequential.

Here is how arc-x4 was devised. After testing arc-fs, I suspected that its
success lay not in its specific form but in its adaptive resampling property,
where increasing weight was placed on those cases more frequently misclassi-
fied. To check on this, I tried three simple update schemes for the probabili-

� Ž .4 Ž .hties p n . In each, the update was of the form 1 � m n , and h � 1, 2, 4
was tested on the waveform data. The last one did the best and became
arc-x4. Higher values of h were not tested so further improvement is possible.

4.2. Experiments on data sets. Our experiments used the six moderate
�sized data sets and four larger ones used in the bagging paper Breiman

Ž .�1996a plus a handwritten digit data set. The data sets are summarized in
Table 4.

Of the first six data sets, all but the heart data are in the UCI repository.
Ž .Brief descriptions are in Breiman 1996a . The procedure used on these data

sets consisted of 100 iterations of the following steps:

1. Select at random 10% of the training set and set it aside as a test set.
2. Run 50 steps each of arc-fs and arc-x4 on the remaining 90% of the data.
3. Get error rates on the 10% test set.

Ž .The error rates computed in 3 are averaged over the 100 iterations to get
the final numbers shown in Table 5. We note that using arc-fs in the soybean
data set, frequently � � 0.5, causing restarting.k

ARCING CLASSIFIERS 811

TABLE 4
Data set summary

Data set � Training � Test � Variables � Classes

Heart 1395 140 16 2
Breast cancer 699 70 9 2
Ionosphere 351 35 34 2
Diabetes 768 77 8 2
Glass 214 21 9 6
Soybean 683 68 35 19

Letters 15,000 5000 16 26
Satellite 4,435 2000 36 6
Shuttle 43,500 14,500 9 7
DNA 2,000 1,186 60 3
Digit 7,291 2,007 256 10

The five larger data sets came with separate test and training sets. Again,
Žeach of the arcing algorithms was used to generate 50 classifiers 100 in the

.digit data which were then combined into the final classifier. The test set
errors are also shown in Table 5.

The first four of the larger data sets were used in the Statlog Project
Ž Ž .�Michie, Spiegelholter and Taylor 1994 , which compared 22 classification
methods. Based on their results, arc-fs ranks best on three of the four and is
barely edged out of first place on DNA. Arc-x4 is close behind.

The digit data set is the famous U.S. Postal Service data set as prepro-
cessed by Le Cun, Boser, Denker, Henderson, Howard, Hubbard and Jackel
Ž .1990 to result in 16 � 16 grey-scale images. This data set has been used as
a test bed for many adventures in classification at AT & T Bell Laboratories.
The best two-layer neural net gets 5.9% error rate. A five-layer network gets

Ž .down to 5.1%. Hastie and Tibshirani 1994 used deformable prototypes and

TABLE 5
Ž .Test set error %

Data set Arc-fs Arc-x4 Bagging CART

Heart 1.1 1.0 2.8 4.9
Breast cancer 3.2 3.3 3.7 5.9
Ionosphere 6.4 6.3 7.9 11.2
Diabetes 26.6 25.0 23.9 25.3
Glass 22.0 21.6 23.2 30.4
Soybean 5.8 5.7 6.8 8.6

Letters 3.4 4.0 6.4 12.4
Satellite 8.8 9.0 10.3 14.8
Shuttle 0.007 0.021 0.014 0.062
DNA 4.2 4.8 5.0 6.2
Digit 6.2 7.5 10.5 27.1

L. BREIMAN812

got to 5.5% error. Using a very smart metric and nearest neighbors gives the
� Ž .�lowest error rate to date�2.7% Simard, Le Cun and Denker 1993 . All of

these classifiers were specifically tailored for this data.
Ž .The interesting Support Vector machines described by Vapnik 1995 are

off-the-shelf, but require specification of some parameters and functions.
Their lowest error rates are slightly over 4%. Use of the arcing algorithms
and CART requires nothing other than reading in the training set, yet arc-fc
gives accuracy competitive with the hand-crafted classifiers. It is also rela-
tively fast. The 100 trees constructed in arc-fs on the digit data took about
four hours of CPU time on a Sparc 20. Some uncomplicated reprogramming
would get this down to about one hour of CPU time.

Looking over the test set error results, there is little to choose between
arc-fs and arc-x4. Arc-x4 has a slight edge on the smaller data sets, while
arc-fs does a little better on the larger ones.

5. Properties of the arc algorithms. Experiments were carried out on
the six smaller sized data sets listed in Table 1 plus the artificial waveform
data. Arc-fs and arc-x4 were each given lengthy 1000-step runs on each data
set. In each run, information on various characteristics was gathered. We
used this information to better understand the algorithms, their similarities
and differences. Arc-fs and arc-x4 probably stand at opposite extremes of
effective arcing algorithms. In arc-fs the constructed trees change consider-
ably from one step to the next. In arc-x4 the changes are more gradual.

5.1. Preliminary results. Resampling with equal probabilities from a
training set, about 37% of the cases do not appear in the resampled data
set�put another way, only about 63% of the data is used. With adaptive
resampling, more weight is given to some of the cases and less of the data is
used. Table 6 gives the average percent of the data used by the arc algorithms
in constructing each classifier in the sequence of 1000 steps. The third
column is the average value of beta used by the arc-fs algorithm in construct-
ing its sequence.

TABLE 6
Percent of data used

Data set Arc-x4 Arc-fs Average beta

Waveform 60 51 5
Heart 49 30 52
Breast cancer 35 13 103
Ionosphere 43 25 34
Diabetes 53 36 13
Glass 53 38 11
Soybean 38 39 17

ARCING CLASSIFIERS 813

Arc-x4 data use ranges from 35% to 60%. Arc-fs uses considerably smaller
fractions of the data�ranging down to 13% on the breast cancer data
set�about 90 cases per tree. The average values of beta are surprisingly
large. For instance, for the breast cancer data set, a misclassification of a

Ž .training set case lead to amplification of its unnormalized weight by a factor
Ž .of 103. The shuttle data unlisted leads to more extreme results. On average,

only 3.4% of the data is used in constructing each arc-fs tree in the sequence
of 50 and the average value of beta is 145,000.

5.2. A variability signature. Variability is a characteristic that differed
significantly between the algorithms. One signature was derived as follows:

Ž .in each run, we kept track of the average value of N*p n over the 1000-step
� Ž .4runs for each n. If the p n were equal, as in bagging, these average values

Ž .would be about 1.0. The standard deviation of N*p n for each n was also
computed. Figure 1 gives plots of the standard deviations vs. the averages for
the six data sets and for each algorithm. The upper point cloud in each graph
corresponds to the arc-fs values; the lower to the arc-x4 values. The graph for
the soybean data set is not shown because the frequent restarting causes the
arc-fs values to be anomalous.

Ž .For arc-fs the standard deviations of p n is generally larger than its
Ž .average and increase linearly with the average. The larger p n , the more

volatile it is. In contrast, the standard deviations for arc-x4 are quite small
Ž . Ž .and only increase slowly with average p n . Further, the range of p n for

arc-fs is 2 to 3 times larger than for arc-x4. Note that, modulo scaling, the
shapes of the point sets are similar between data sets.

5.3. A mysterious signature. In the 1000-step runs, we also kept track of
the number of times the nth case appeared in a training set and the number

Ž .of times it was misclassified whether or not it was in the training set . For
both algorithms, the more frequently a point is misclassified, the more its
probability increases, and the more frequently it will be used in a training
set. This seems intuitively obvious, so we were mystified by the graphs of
Figure 2.

For each data set, number of times misclassified was plotted vs. number of
times in a training set. The plots for arc-x4 behave as expected. Not so for
arc-fs; their plots rise sharply to a plateau. On this plateau, there is almost
no change in misclassification rate vs. rate in training set. Fortunately, this
mysterious behavior has a rational explanation in terms of the structure of
the arc-fs algorithm.

ŽAssume that there are K iterations and that � is constant equal to � ink
our experiments, the values of � had moderate sd�mean values for Kk

. Ž .large . For each n, let r n be the proportion of times that the nth case was
misclassified. Then

p n 	 � K r Žn.� � K r Žn.Ž . Ý

L. BREIMAN814

FIG. 1. Standard deviations vs. averages for resampling probabilities.

Ž . Ž .Let r* � max r n , L the set of indices such that r n � r* � � for a smalln
� � � �positive � , and L the cardinality of L. If L is too small, then there will be

an increasing number of misclassifications for those cases not in L that are
not accurately classified by training sets drawn from L. Thus, their misclassi-
fication rates will increase until they get close to r*. To illustrate this, Fig-

ARCING CLASSIFIERS 815

FIG. 2. Number of misclassifications vs. number of times in training set.

ure 3 shows the misclassification rates as a function of the number of
iterations for two cases in the twonorm data discussed in the next subsection.

Ž .The top curve is for a case with consistently large p n . The lower curve is for
Ž .a case with p n almost vanishingly small.

There are also a number of cases that are more accurately classified by
training sets drawn from L. These are characterized by lower values of the

L. BREIMAN816

FIG. 3. Proportion of times misclassified for two cases.

Ž .misclassification rate, and by small p n . That is, they are the cases that
cluster on the y-axes of Figure 2. More insight is provided by Figure 4. This is
a percentile plot of the proportion of the training sets that the 300 cases of

Ž .the twonorm data are in 10,000 iterations . About 40% of the cases are in a
very small number of the training sets. The rest have a uniform distribution
across the proportion of training sets.

5.4. Do hard-to-classify points get more weight? To explore this question,
we used the twonorm data. The ratio of the probability densities of the two

�Ž . �classes at the point x depends only on the value of x, 1 where 1 is the
�Ž . �vector whose coordinates are all one. The smaller x, 1 is, the closer the

FIG. 4. Percentile plot�proportion of training sets that cases are in.

ARCING CLASSIFIERS 817

Ž . �Ž . �FIG. 5. Average p n vs. x, 1 .

ratio of the two densities to one, and the more difficult the point x is to
classify. If the idea underlying the arc algorithms is valid, then the probabili-

�Ž . �ties of inclusion in the resampled training sets should increase as x, 1
Ž . �Ž Ž . . �decreases. Figure 5 plots the average of p n over 1000 iterations vs. x n , 1

for both arc algorithms.
Ž Ž .. �Ž Ž . . �While av p n generally increases with decreasing x n , 1 , the relation

is noisy. It is confounded by other factors that I have not yet been able to
pinpoint.

6. Linear discriminant analysis is not improved by bagging or
Ž .arcing. Linear discriminant analysis LDA is fairly stable with low vari-

ance and it should come as no surprise that its test set error is not signifi-
cantly reduced by use of bagging or arcing. Here our test bed was four of the
first six data sets of Table 1. Ionosphere and soybean were eliminated
because the within-class covariance matrix was singular, either for the full

Ž .training set ionosphere or for some of the bagging or arc-fs training sets
Ž .soybean .

The experimental set-up was similar to that used in Section 2. Using a
leave-out-10% as a test set, 100 repetitions were run using linear discrimi-
nant analysis alone and the test set errors averaged. Then this was repeated,
but in every repetition, 25 combinations of linear discriminants were built
using bagging or arc-fs. The test set errors of these combined classifiers were
also averaged. The results are listed in Table 7.

Recall that for arc-fs, if �
 0.5, then the construction was restarted withk
� Ž .4equal p n . The last column of Table 7 indicates how often restarting

L. BREIMAN818

TABLE 7
Ž .Linear discriminant test set error %

Data set LDA LDA: bag LDA: arc Restart frequency

Heart 25.8 25.8 26.6 1�9
Breast cancer 3.9 3.9 3.8 1�8
Diabetes 23.6 23.5 23.9 1�9
Glass 42.2 41.5 40.6 1�5

occurred. For instance, in the heart data, on the average, it occurred about
once every nine times. In contrast, in the runs combining trees, restarting
was encountered only on the soybean data. The frequency of restarting was
also a consequence of the stability of linear discriminant analysis. If the
procedure is stable, the same cases tend to be misclassified even with the
changing training sets. Then their weights increase and so does the weighted
training set error.

These results indicate that linear discriminant analysis is generally a low
variance procedure. It fits a simple parametric normal model that does not
change much with replicate training sets. To illustrate, we did a Monte Carlo
estimation of bias and variance using the synthetic threenorm data. Recall
that bias and variance for CART are 1.4% and 20.9%. For LDA they are 4.0%
and 2.9%. The problem in LDA is usually bias; when it is wrong, it is
consistently wrong, and with a simple model there is no hope of low bias
across a variety of complex data sets.

7. Improved bagging. The aggregate classifier depends on the distribu-
tion P that the samples are selected from and the number N selected. Letting

Ž .the dependence on N be implicit, denote C � C x, P . As mentioned inA A
Ž . Ž ŽB ..Section 3.1, bagging replaces C x, P by C x, P with the hope that thisA A

approximation is good enough to produce variance reduction. Now P ŽB ., at
best, is a discrete estimate for a distribution P that is usually smoother and
more spread out than P ŽB .. An interesting question is what a better approxi-
mation to P might produce.

To check this possibility, we used the four simulated data sets described in
Section 3. Once a training set was drawn from one of these distributions, we
replaced each x by a spherical normal distribution centered at x . Then n
bootstrap training set T ŽB . is iid drawn from this smoothed distribution. Two
or three values were tried for the sd of the normal smoothing and the best
one adopted. The results are given in Table 8.

The PE values for the smoothed P-estimates show that the better the
approximation to P, the lower the variance. But there are limits to how well
we can estimate the unknown underlying distribution from the training set.
The aggregated classifiers based on the smoothed approximations had vari-
ances significantly above zero, and we doubt that efforts to refine the P

ARCING CLASSIFIERS 819

TABLE 8
Ž .Smoothed P-estimate bagging�test set errors %

()Data set Bagging Bagging smoothed Arcing

Waveform 19.8 18.4 17.8
Twonorm 7.4 5.5 4.8
Threenorm 20.4 18.6 18.8
Ringnorm 11.0 8.7 6.9

estimates will push them much lower. However, note that even with the
better P approximation bagging does not do as well as arcing.

8. More on arcing.

8.1. Training set error. Arcing is much less transparent than bagging.
Ž .Freund and Schapire 1997 designed arc-fs to drive training set error rapidly

to zero, and it does remarkably well at this. But the context in which arc-fs
was designed gives no clues as to its ability to reduce test set error. For
instance, suppose we run arc-fs but exit the construction loop when the
training set error becomes zero. The test set errors and number of steps to

Žexit the loop averaged over 100 iterations of leave-out-10% for the smaller
.data sets are given in Table 9 and compared to the stop at k � 50 results

from Table 2.
For the smaller data sets, we also kept track of the last step at which the

training set error was nonzero. Their averages are given in the figures in
parentheses in the last column of Table 9. These values show that once the
training set error drops to zero, it almost invariably stays at zero. We also ran
bagging on the first six data sets in Table 5, exiting the loop when the
training error was zero, and kept track of the average number of steps to exit
and the average test set error over 100 repetitions of leave-out-10%. These

TABLE 9
Ž .Test error % and exit times for arc-fs

Data set Stop: k � 50 Stop: error � 0 Steps to exit

Ž .Heart 1.1 5.3 3.0 3.1
Ž .Breast cancer 3.2 4.9 3.0 3.0
Ž .Ionosphere 6.4 9.1 3.0 3.1
Ž .Diabetes 26.6 28.6 5.0 5.1
Ž .Glass 22.0 28.1 4.9 5.1

Letters 3.4 7.9 5
Satellite 8.8 12.6 5
Shuttle 0.007 0.014 3
DNA 4.2 6.4 5

L. BREIMAN820

TABLE 10
Ž .Test error % and exit times for bagging

Data set Stop: k � 50 Stop: error � 0 Steps to exit

Heart 2.8 3.0 15
Breast cancer 3.7 4.1 55
Ionosphere 7.9 9.2 38
Diabetes 23.9 24.7 45
Glass 23.2 25.0 22

Žnumbers are given in Table 10 soybean was not used because of restarting
.problems .

These results delineate the differences between efficient reduction in train-
ing set error and test set accuracy. Arc-fs reaches zero training set error very

Ž .quickly, after an average of five tree constructions at most . But the accom-
panying test set error is higher than that of bagging, which takes longer to
reach zero training set error. To produce optimum reductions in test set error,
arc-fs must be run far past the point of zero training set error.

8.2. Nonrandom arcing. An important question in understanding arcing
is what happens if the randomness is taken out. That is, in the definition of
arc-fs in Section 4.1, everything remains the same except that instead of

� Ž .4randomly sampling from the probabilities p n , these probabilities are fed
Ž . Ž .directly into the classifier such that p n is the weight for the case y , x .n n

CART was modified to use weights and run using a minimum node size of 10
on all data sets and the same test set error estimation methods used to get
the Table 5 results. The results are given in Table 11 as compared to random
arcing.

TABLE 11
Ž .Test set error arc-fs %

Data set Random Nonrandom

Heart 1.1 0.33
Breast cancer 3.2 3.0
Ionosphere 6.4 5.7
Diabetes 26.6 25.7
Glass 22.0 22.6
Soybean 5.8 5.7

Letters 3.4 2.8
Satellite 8.8 9.0
Shuttle 0.007 0.014
DNA 4.2 4.5
Digit 6.2 7.1

ARCING CLASSIFIERS 821

These results show that randomness is not an important element in
arcing’s ability to reduce test set error. This sharply differentiates arcing
from bagging. In bagging the random sampling is critical, and the weights
remain constant and equal.

8.3. Remarks. The arcing classifier is not expressible as an aggregated
classifier based on some approximation to P. The distributions from which
the successive training sets are drawn change constantly as the procedure

� Ž .4continues. For the arc-fs algorithm, the successive p n form a multivariate
Ž . ŽMarkov chain. Suppose they have a stationary distribution � dp which I

. Ž � . Ž Ž . .suspect is true, but a referee doubts . Let Q j x, p � P C x, T � j , whereT
the probability P is over all training sets drawn from the original trainingT
set using the distribution p over the cases. Then, in steady-state with

Ž � . Ž .unweighted voting, class j gets vote HQ j x, p � dp .
It is not clear how this steady-state probability structure relates to the

error-reduction properties of arcing, but its importance is suggested by our
experiments. The results in Table 3 show that arcing takes longer to reach its
minimum error rate than bagging. If the error reduction properties of arcing
come from its steady-state behavior, then this longer reduction time may
reflect the fact that the dependent Markov property of the arc-fs algorithm
takes longer to reach steady-state than bagging in which there is indepen-
dence between the successive bootstrap training sets and the law of large
numbers sets in quickly. But how the steady-state behavior of arcing algo-
rithms relates to their ability to drive the training set error to zero in a few
iterations is unknown.

Another complex aspect of arcing is illustrated in the experiments done to
date. The diabetes data set gives higher error rate than a single run of CART.

Ž . Ž .The Freund�Schapire 1996 and Quinlan 1996 experiments used C4.5, a
tree structured program similar to CART and compared C4.5 to the arc-fs and
bagging classifiers based on C4.5. In five of the 39 data sets examined in the
two experiments, the arc-fs test set error was over 20% larger than that of
C4.5. This did not occur with bagging. It is not understood why arc-fs causes
this infrequent degeneration in test set error, usually with smaller data sets.
One conjecture is that this may be caused by outliers in the data. An outlier
will be consistently misclassified, so that its probability of being sampled will
continue to increase as the arcing continues. It will then start appearing
multiple times in the resampled data sets. In small data sets, this may be
enough to warp the classifiers.

8.4. Future work. Arc-fs and other arcing algorithms can reduce the test
set error of methods like CART to the point where they are the most accurate
available off-the-shelf classifiers on a wide variety of data sets. The
Freund�Schapire discovery of adaptive resampling as embodied in arc-fs is a
creative idea which should lead to interesting research and better under-
standing of how classification works. The arcing algorithms have a rich
probabilistic structure and it is a challenging problem to connect this struc-

L. BREIMAN822

ture to their error-reduction properties. It is not clear what an optimum
arcing algorithm would look like. Arc-fs was devised in a different context
and arc-x4 is ad hoc. While the concepts of bias and variance seem suitable as
an explanation for bagging, and while arcing does effectively reduce variance,
the bias-variance setting does not give a convincing explanation for why
arcing works. Better understanding of how arcing functions will lead to
further improvements.

APPENDIX

Ž .The boosting context of arc-fs. Freund and Schapire 1997 designed
arc-fs to drive the training error rapidly to zero. They connected this training
set property with the test set behavior in two ways. The first was based on

� Ž .�structural risk minimization see Vapnik 1995 . The idea here is that
bounds on the test set error can be given in terms of the training set error
where these bounds depend on the VC-dimension of the class of functions
used to construct the classifiers. If the bound is tight, this approach has a
contradictory consequence. Since stopping as soon as the training error is
zero gives the least complex classifier with the lowest VC dimension, then the
test set error corresponding to this stopping rule should be lower than if we
continue to combine classifiers. Table 10 shows that this does not hold.

The second connection is through the concept of boosting. Freund and
Ž . �Schapire 1997 devised arc-fs in the context of boosting theory see Schapire

Ž .� Ž .1990 and named it Adaboost. We follow Freund and Schapire 1997 in
setting out the definitions: assume that there is an input space of vectors x

Ž . � 4and an unknown function Co x � 0, 1 defined on the space of input vectors
x that assigns a class label to each input vector. The problem is to ‘‘learn’’ Co.

A classifying method is called a weaklearner if there exist � � 0, 	 � 0 and
integer N such that given a training set T consisting of x , x , . . . , x drawn1 2 N

Ž .at random from any distribution P dx on input space together with the
Ž . Ž .corresponding j � Co x , n � 1, . . . , N and the classifier C x, T con-n n

Ž Ž . Ž . .structed, then the probability of a T such that P C X, T � Co X � T � 0.5
Ž .� � is greater than 	 , where X is a random vector having distribution P dx .

A classifying method is called a stronglearner if for any � � 0, 	 � 0 there
is an integer N such that if it is given a training set T consisting of

Ž .x , x , . . . , x drawn at random from any distribution P dx on input space1 2 N
Ž .together with the corresponding j � Co x , n � 1, . . . , N, and the classifiern n

Ž . Ž Ž . Ž .C x, T constructed, then the probability of a T such that P C X, T � Co X
.� T � � is less than 	 , where X is a random vector having distribution

Ž .P dx .
Note that a stronglearner has low error over the whole input space, not

just the training set; that is, it has small test set error. The concept of weak
Ž .learning was introduced by Kearns and Valiant 1988, 1989 , who left open

the question of whether weak and strong learnability are equivalent. The
question was termed the boosting problem since equivalent requires the

ARCING CLASSIFIERS 823

method to boost the low accuracy of a weaklearner to the high accuracy of a
Ž .stronglearner. Schapire 1990 proved that boosting is possible. A boosting

algorithm is a method that takes a weaklearner and converts it into a
Ž .stronglearner. Freund and Schapire 1997 proved that an algorithm similar

Ž .to arc-fs is boosting. Freud and Schapire 1997 prove that Adaboost is
boosting.

The boosting assumptions are restrictive. For instance, if there is any
Ž .overlap between classes if the Bayes error rate is positive , then there are no

weak or strong learners. Even if there is no overlap between classes, it is easy
to give examples of input spaces and Co such that there are no weak learners.
The boosting theorems really say ‘‘if there is a weak learner, then . . . ’’ but in
virtually all of the real data situations in which arcing or bagging is used,
there is overlap between classes and no weak learners exist. Thus the Freund

Ž .and Schapire 1997 boosting theorem is not applicable. In particular, it is not
applicable in all of the examples of simulated data used in this paper and
most, if not all, of the examples of real data sets used in this paper, in Freund

Ž . Ž .and Schapire 1996 and in Quinlan 1996 .
While there may be a connection between the ability of arcing algorithms

to rapidly drive training set error to zero and their steady-state test set
reduction, it is not rooted in the boosting context.

Acknowledgments. I am indebted to Yoav Freund for giving me the
draft papers referred to in this article and to both Yoav Freund and Robert
Schapire for informative E-mail interchanges and help in understanding the
boosting context, to Trevor Hastie for making available the preprocessed U.S.
Postal Service data, to Harris Drucker who responded generously to my
questioning at NIPS95 and whose subsequent work on comparing arc-fs to
bagging convinced me that arcing needed looking into, to Tom Dietterich for
his comments on the first draft of this paper and to David Wolpert for helpful
discussions about boosting. An Associate Editor and the referees made inter-
esting and constructive comments that resulted in an improved paper. In
particular, I am indebted to one of the referees for suggesting the experiment
with nonrandom arcing reported in Section 8.2.

REFERENCES
Ž .ALI, K. 1995 . Learning probabilistic relational concept descriptions. Ph.D. dissertation, Dept.

Computer Science, Univ. California, Irvine.
Ž .BREIMAN, L. 1996a . Bagging predictors. Machine Learning 26 123�140.
Ž .BREIMAN, L. 1996b . The heuristics of instability in model selection. Ann. Statist. 24 2350�2383.

Ž .BREIMAN, L., FRIEDMAN, J., OLSHEN, R. and STONE, C. 1984 . Classification and Regression Trees.
Chapman and Hall, London.

Ž .DRUCKER, H. and CORTES, C. 1996 . Boosting decision trees. Advances in Neural Information
Processing Systems 8 479�485.

Ž .FREUND, Y. and SCHAPIRE, R. 1996 . Experiments with a new boosting algorithm. In Machine
Ž .Learning: Proceedings of the Thirteenth International Conference L. Saitta, ed.

148�156. Morgan Kaufmann, San Francisco.
Ž .FREUND, Y. and SCHAPIRE, R. 1997 . A decision-theoretic generalization of on-line learning and

an application to boosting. J. Comput. System Sci. 55 119�139.

DISCUSSION824

Ž .FRIEDMAN, J. H. 1996 . On bias, variance, 0�1-loss, and the curse of dimensionality. Journal of
Knowledge Discovery and Data Mining. To appear.

Ž .GEMAN, S., BIENENSTOCK, E. and DOURSAT, R. 1992 . Neural networks and the bias�variance
dilemma. Neural Computations 4 1�58.

Ž .HASTIE, T. and TIBSHIRANI, R. 1994 . Handwritten digit recognition via deformable prototypes.
Unpublished manuscript. Available at ftp stat.stanford.edu�pub�hastie/
zip.ps.Z.

Ž .KEARNS, M. and VALIANT, L. G. 1988 . Learning Boolean formulae or finite automata is as hard
as factoring. Technical Report TR-14-88, Aiken Computation Laboratory, Harvard
Univ.

Ž .KEARNS, M. and VALIANT, L. G. 1989 . Cryptographic limitations on learning Boolean formulae
and finite automata. In Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing. 433�444. ACM Press, New York.

Ž .KOHAVI, R. and WOLPERT, D. H. 1996 . Bias plus variance decomposition for zero-one loss
functions. In Machine Learning: Proceedings of the Thirteenth International Confer-

Ž .ence. L. Saitta, ed. 275�283. Morgan Kaufmann, San Francisco.
Ž .KONG, E. B. and DIETTERICH, T. G. 1995 . Error-correcting output coding corrects bias and

variance. In Proceedings of the Twelfth International Conference on Machine Learning
Ž .A. Prieditis and S. Russell, eds. 313�321. Morgan Kaufmann, San Francisco.

LE CUN, Y., BOSER, B., DENKER, J., HENDERSON, D., HOWARD, R., HUBBARD, W. and JACKEL, L.
Ž .1990 . Handwritten digit recognition with a back-propagation network. Advances in
Neural Information Processing Systems 2 396�404.

Ž .MICHIE, D., SPIEGELHALTER, D. and TAYLOR, C. 1994 . Machine Learning, Neural and Statistical
Classification. Ellis Horwood, London.

Ž .QUINLAN, J. R. 1996 . Bagging, Boosting, and C4.5. In Proceedings of AAAI ’96 National
Conference on Artificial Intelligence 725�730.

Ž .SCHAPIRE, R. 1990 . The strength of weak learnability. Machine Learning 5 197�227.
Ž .SIMARD, P., LE CUN, Y. and DENKER, J. 1993 . Efficient pattern recognition using a new

transformation distance. Advances in Neural Information Processing Systems 5 50�58.
Ž .TIBSHIRANI, R. 1996 . Bias, variance, and prediction error for classification rules. Technical

Report, Dept. Statistics, Univ. Toronto.
Ž .VAPNIK, V. 1995 . The Nature of Statistical Learning Theory. Springer, New York.

DEPARTMENT OF STATISTICS

UNIVERSITY OF CALIFORNIA

367 EVANS HALL �3860
BERKELEY , CALIFORNIA 94720-3860
E-MAIL: leo@stat.berkeley.edu

DISCUSSION

YOAV FREUND AND ROBERT E. SCHAPIRE

AT & T Labs

We thank Leo Breiman for his interest in our work on boosting, for his
Ž .extensive experiments with the AdaBoost algorithm which he calls arc-fs

and for his very generous exposition of our work to the statistics community.
Breiman’s experiments and our intensive e-mail communication over the last
two years have inspired us to think about boosting in new ways. These new
ways of thinking, in turn, led us to consider new ways for measuring the

ARCING CLASSIFIERS 825

performance of the boosting algorithm and for predicting its performance on
out-of-sample instances.

It is exciting for us to have this communication channel with such a
prominent practical statistician. As computer scientists we try to derive our
algorithms from theoretical frameworks. While these frameworks cannot
capture all of our prior beliefs about the nature of real-world problems, they
can sometimes capture important aspects of the problem in new and useful
ways. In our case, boosting was originally derived as an answer to a theoreti-

� �cal question posed by Kearns and Valiant 7 within the PAC framework, a
model for the study of theoretical machine learning first proposed by Valiant
� �15 . We probably would have never thought about these algorithms had the
theoretical question not been posed. On the other hand, an experimental
statistician such as Leo is usually more interested in the actual behavior of
algorithms on existing data sets and pays a lot of attention to the actual
values of various variables during the run of the algorithm. Running Ad-
aBoost on several synthetic and real-world data sets, Breiman observed that
the algorithm has surprisingly low out-of-sample error, which, while consis-

Žtent with our theory at the time, was not predicted by it. Theories usually
give only upper and lower bounds on the actual performance of algorithms.
The gap between these bounds is a reflection of the degree to which our
theories fail to reflect the world and of our shortcomings in the mathematical

.analysis.
It is this challenge from the experiments of Breiman reported here, as well

� � � �as those of Drucker and Cortes 3 and Quinlan 10 , that prompted us to
think harder about the problem and come up with a new theoretical explana-
tion of the surprising behavior, which we describe in our paper with Bartlett

� �and Lee 13 . This explanation suggests new measurable parameters, which
can be tested in experiments, and the adventure continues! Theory suggests
new algorithms and experiments, while experiments give rise to new observa-
tions which challenge the theory to come up with tighter bounds.

Our communication with Leo has been challenging and exciting. We hope
to see further communication developing between researchers in computa-
tional learning theory and statistics.

Note: all the theoretical bounds to which we refer in this discussion are
nonasymptotic and can be used to generate specific numerical bounds for
finite sample sizes. However, these bounds are still numerically pretty loose.

1. Boosting and bagging. Breiman’s paper is about improving the
performance of a learning algorithm, sometimes also called a prediction
algorithm or classification method. Such an algorithm operates on a given set

Ž .of instances or cases to produce a classification rule which we refer to as a
hypothesis. The goal of a learning algorithm is to find a hypothesis with low
generalization or prediction error, that is, a low misclassification rate on a
separate test set.

Bagging and boosting are two general methods for improving the perfor-
mance of a given learning algorithm, which we call the base learning

DISCUSSION826

algorithm. On a certain level, the algorithms are very similar; they both work
by feeding perturbed versions of the training set to the base learning algo-
rithm and combining the resulting rules by a majority vote.

While these similarities are apparent, there are some important differ-
ences between the two algorithms. Probably the most important difference is
that the perturbation introduced by bagging are random and independent

Ž .while the perturbations introduced by boosting on a given training set are
chosen deterministically and serially, with the nth perturbation depending
strongly on all of the previously generated rules.

In his paper, Breiman uses boosting-by-resampling, instead of boosting-
Žby-reweighting and in this way combines the two methods. In boosting-by-re-

weighting, we assume that the learning algorithm can work directly with a
weighted training sample, while in boosting-by-resampling, training samples
are generated by picking examples at random according to the distribution

.over the training set. However, in Section 8.2, Breiman reports results from
using the deterministic version of boosting and his results indicate that in the
experiments reported here randomization is not an important element. On
the other hand, Breiman has informed us that there are other, yet unpub-
lished, experimental results regarding boosting of unpruned decision trees, in
which boosting-by-resampling seems to have an advantage over boosting-by-
reweighting.

It seems to us that the difference between boosting-by-reweighting and
bagging should not be overlooked. Breiman analyzes both bagging and boost-
ing in terms of the bias and variance decomposition of the error. We argue
that this analysis is not appropriate for boosting. We have proposed a
different analysis that seems to be appropriate for boosting but leaves out the
effects of randomization. Giving a good theory of these randomization effects
and a characterization of the cases in which they are advantageous is an
interesting open problem.

The rest of this discussion is organized as follows. In Section 2, we give a
historical perspective of the development of boosting algorithms. In Section 3,
we summarize our arguments against explaining boosting using the bias-
variance decomposition. In Section 4, we sketch our explanation for the small

Žgeneralization error of boosting a full description of this analysis appears
� �.in 13 . We conclude by describing some practical and theoretical open

questions.

2. Boosting in and out of the PAC framework. The differences be-
tween boosting and bagging reflect the very different frameworks in which

� �the two algorithms have been developed. Breiman 1, 2 developed bagging in
the context of reducing the variance of learning algorithms, while boosting

� �was developed as an answer to a theoretical question posed in 7 within the
PAC learning literature. Stated somewhat informally, the question is: sup-
pose we have a computationally efficient learning algorithm that can gener-

ARCING CLASSIFIERS 827

ate a hypothesis which is slightly better than random guessing for any
distribution over the inputs. Does the existence of such a ‘‘weak’’ learning
algorithm imply the existence of an efficient ‘‘strong’’ learning algorithm that
can generate arbitrarily accurate hypotheses?

� �The answer to this question, given first by Schapire 12 , is ‘‘yes.’’ The
proof is constructive; that is, it describes an efficient algorithm which trans-
forms any efficient weak learning algorithm into an efficient strong one.

� �Later, Freund 5 described a simpler and considerably more efficient boost-
ing algorithm called boost-by-majority. Our AdaBoost algorithm is the most

� �recent of the proposed boosting algorithms 6 . While nearly as efficient as
boost-by-majority, AdaBoost has certain practical advantages over the pre-
ceding boosting algorithms, which we discuss below.

The goal of all boosting algorithms, starting with Schapire’s, has always
been to generate a combined hypothesis whose generalization error is small.
One of the means for achieving this reduction has been to reduce the error of
the combined hypothesis on the training set. The expectation that reducing
the training error of the boosted hypothesis will also reduce the test error was

� � Ž .justified by appealing to uniform convergence theory 16 VC theory or to
� �arguments that rely on sample compression 4 . As a result of this analysis,

the expectation was that there would be no point in running boosting beyond
the point at which the training error of the combined hypothesis is zero.

� � � �It is only with the experimental work in 3 and 10 and the work of
Breiman reported here, that it was realized that it is sometimes worthwhile
to run the boosting algorithm beyond the point at which the error of the
combined hypothesis is zero. The fact that doing so can cause the test error
to decrease even further was very surprising to us, and, indeed, completely
contradicted our intuitions about the relations between the training error and
test error of learning algorithms.

The fact that these discoveries were made on the latest boosting algorithm
‘‘AdaBoost’’ rather than previous boosting algorithms has possibly more to do
with the fact that this algorithm is very efficient in practice and less to do
with its generalization properties. Indeed, both previous boosting algorithms
can be classified as ‘‘arcing’’ algorithms according to Breiman’s terminology.
It would be interesting to see whether these previous boosting algorithms
also decrease the test error after a training error of zero has been reached.
In addition, boost-by-majority is quite different than AdaBoost in the
way it treats outliers, which suggests that it might be worth exploring
experimentally.

The reason that AdaBoost is especially efficient in practice is that it is
adaptive. Previous boosting algorithms had to receive as input, in advance of
observing the data, a parameter
 � 0. This parameter is the amount by
which we believe that our classification method is better than random
guessing. More formally, in order for the proof on the prediction error of the
combined rule to work, the hypotheses generated by the weak learning
algorithm have to all have error smaller than 1�2 �
 . In practice, it is hard

DISCUSSION828

to know how to set
 in advance. There are two aspects to this problem which
we discuss in turn.

1. As Breiman remarks in the Appendix, it might be the case that for some
distributions over the inputs there is no hypothesis whose error is smaller
than 1�2. This reflects a limitation of the original PAC framework, in
which boosting was originally analyzed, where the assumption of weak
learning is made uniformly with respect to all distributions. However,
boosting algorithms can be analyzed outside this framework, as was done
for AdaBoost where the theoretical framework of the analysis was ex-
panded to better reflect the real-world problems. The cost of this expansion
is that in the more general framework we lose the clear and simple
definition of a ‘‘weak learner.’’ In other words, the degree to which a
learning algorithm can be boosted is characterized only as ‘‘an algorithm
that gives small errors when run under AdaBoost.’’ This is a very unsatis-
fying characterization because it involves both the base classification
method and the boosting algorithm, while we would like to have a charac-
terization that involves only the classification method. A somewhat differ-
ent framework was used to give an extended analysis of boost-by-majority

� �which, to some degree, overcomes this difficulty 5 , Section 4.1.
2. It may be possible to use boost-by-majority in cases where the weak

learning algorithm depends on the input distribution. The fact that we
need to know
 in advance may not really be such a big problem because
we might be able to run the algorithm several times and perform a binary
search for the largest value of
 that works. However, there is an impor-
tant computational efficiency problem. The problem is that the number of
iterations required by boost-by-majority grows like 1�
 2 so, for example, if

 � 0.01 we need several tens of thousands of boosting iterations. This
problem was fixed by AdaBoost, which can take advantage of the iterations
in which the error of the weak hypotheses is smaller than 1�2 �
 and
gain a large computational efficiency from that. While this last point might
seem subtle, it is the main reason that AdaBoost is very efficient on
real-world problems and this is ultimately the reason that it has so far
played the dominant role in the application of boosting to real-world
problems.

The development of boosting algorithms is a result of continuous interac-
tion of practical and theoretical considerations, which demonstrates the
importance of the interaction between these two modes of research. Breiman’s
work and our response to it represent the most recent chapter of this
interaction.

3. The bias�����variance explanation. Breiman’s analysis of bagging and
boosting is based on a decomposition of the expected error of the combined
classifier into a bias term and a variance term. There are several difficulties

ARCING CLASSIFIERS 829

Žwith the use of this analysis for boosting more details are given in our paper
� �.with Bartlett and Lee 13 :

1. The bias-variance decomposition originates in the analysis of quadratic
regression. Its application to classification problems is problematic, as

� � � � � �reflected in the large number of suggested decompositions 8 , 9 , 14 , in
addition to the one given by Breiman in this paper. One unavoidable
problem is that voting over several independently generated rules can
sometimes increase, rather than decrease, the expected error.

2. Even in those cases where voting several independent classifiers is guar-
anteed to decrease the expected error, it is not always the case that voting
over several bagged classifiers will do the same. The analysis of bootstrap
estimation, which underlies bagging, has only asymptotic guarantees that
might not hold for real-world sample sizes.

3. We have performed an analysis of the behavior of bagging and boosting on
� �top of both Quinlan’s C4.5 decision-tree algorithm 11 and an algorithm

which we call ‘‘stumps,’’ which generates the best rule which is a test on
Ž .a single feature i.e., a one-level decision tree or decision ‘‘stump’’ . We

computed the bias and variance of these methods on some of the synthetic
problems used by Breiman. We used the definitions of bias and variance of

� �both Kong and Dietterich 9 and of Breiman. The results are summarized
in Table 1. It seems clear that while bagging is mostly a variance reducing
procedure, boosting can reduce both variance and bias. This is evident
mostly in the experiments using stumps, which is a learning algorithm

TABLE 1
Bias-variance experiments using boosting and bagging on synthetic data*

[]Kong and Dietterich 9 definitions Breiman definitions

Stumps C4.5 Stumps C4.5
� � � � � � � �Name — Boost Bag — Boost Bag — Boost Bag — Boost Bag

Waveform
bias 26.0 3.8 22.8 1.5 0.5 1.4 19.2 2.6 15.7 0.9 0.3 1.4
var 5.6 2.8 4.1 14.9 3.7 5.2 12.5 4.0 11.2 15.5 3.9 5.2
error 44.7 19.6 39.9 29.4 17.2 19.7 44.7 19.6 39.9 29.4 17.2 19.7

Twonorm
bias 2.5 0.6 2.0 0.5 0.2 0.5 1.3 0.3 1.1 0.3 0.1 0.3
var 28.5 2.3 17.3 18.7 1.8 5.4 29.6 2.6 18.2 19.0 1.9 5.6
error 33.3 5.3 21.7 21.6 4.4 8.3 33.3 5.3 21.7 21.6 4.4 8.3

Threenorm
bias 24.5 6.3 21.6 4.7 2.9 5.0 14.2 4.1 13.8 2.6 1.9 3.1
var 6.9 5.1 4.8 16.7 5.2 6.8 17.2 7.3 12.6 18.8 6.3 8.6
error 41.9 22.0 36.9 31.9 18.6 22.3 41.9 22.0 36.9 31.9 18.6 22.3

Ringnorm
bias 46.9 4.1 46.9 2.0 0.7 1.7 32.3 2.7 37.6 1.1 0.4 1.1
var �7.9 6.6 �7.1 15.5 2.3 6.3 6.7 8.0 2.2 16.4 2.6 6.9
error 40.6 12.2 41.4 19.0 4.5 9.5 40.6 12.2 41.4 19.0 4.5 9.5

*Columns labeled with a dash indicate that the base learning algorithm was run just once.

DISCUSSION830

with very high bias. Moreover, in the experiment on the ‘‘ringnorm’’ data
using boosting on stumps actually increases the variance, while at the
same time it decreases the bias sufficiently to reduce the final error. These
experiments demonstrate that variance-reduction cannot completely
explain the performance of boosting.

� �4. The margins explanation. In 13 , we describe an alternative expla-
nation for the fact that boosting can often decrease the test error even after
the training error is zero. Here is a sketch of the explanation. Assume, for the
sake of simplicity, that the problem is a binary classification problem and
that the two possible labels are �1 and �1. Denote the input by x, the

Ž . � 4prediction of the ith rule by h x and the correct label by y � �1, �1 .i
Then the weighted vote rule generated by AdaBoost can be written as

Ž n Ž .. n � �sign Ý � h x , where Ý � � 1. The vote is correct on the examplei�1 i i i�1 i
Ž . n Ž . � n Ž . �x, y if yÝ � h x � 0. It is natural to think of Ý � h x as a mea-i�1 i i i�1 i i
sure of the confidence of the prediction. With this intuition in mind, we define
Ž . n Ž . Ž .m x, y � yÝ � h x to be the margin of x, y . A large positive margin˙ i�1 i i

indicates a confident correct prediction; a large negative margin indicates a
confident but incorrect prediction and a small margin indicates unconfident
predictions.

The claim of our explanation is that after boosting achieves zero training
error, it goes on to generate a combined hypothesis whose margin is large on
all of the examples in the training set and that it is this large margin that
causes a decrease in the generalization error.

For example, in one experiment, we ran AdaBoost on top of C4.5 on the
‘‘letters’’ dataset, used also by Breiman in his paper. On the left of Figure 1,

Žwe have shown the training and test error curves lower and upper curves,
.respectively of the combined hypothesis as a function of the number of trees

Ž .combined. The test error of C4.5 on this dataset run just once is 13.8%. The
Žtest error of boosting 1000 trees is 3.1%. Both of these error rates are

FIG. 1. Error curves and the cumulative margin distribution graph for boosting C4.5 on the
‘‘letters’’ dataset.

ARCING CLASSIFIERS 831

.indicated in the figure as horizontal grid lines. After just five trees have been
combined, the training error of the combined hypothesis has already dropped
to zero, but the test error continues to drop from 8.4% on round 5 down to
3.1% on round 1000.

As indicated above, our explanation for this phenomenon is based on the
distribution of the margins of the training examples. We can visualize these

Žmargins by plotting their cumulative distribution i.e., we can plot the
� �.fraction of examples whose margin is at most x as a function of x � �1, 1 .

On the right side of Figure 1, we show the cumulative margin distributions
that correspond to the experiment described above. The graphs show the
margin distributions after 5, 100 and 1000 iterations, indicated by the

Ž .short-dashed, long-dashed mostly hidden and solid curves, respectively.
Our main observation is that boosting tends to significantly increase the

margins of the training examples, even after the training error reaches zero.
Ž .In this case, although the training error remains unchanged at zero after

round 5, the margin distribution changes quite significantly so that after 100
iterations all examples have a margin larger than 0.5. In comparison, on
round 5, about 7.7% of the examples have margin below 0.5.

We present both experimental and theoretical evidence for the margin-
based explanation for the effectiveness of boosting. Examining the margin
distributions for a variety of problems and algorithms, we demonstrate a
connection between the generalization error and the distribution of margins
on the training set. We then back up these empirical observations with a
theoretical explanation in two parts: first, we prove that, for sufficiently large
training sets, there is a bound on the generalization error which is a function
of the margin and which does not depend on the number of base hypotheses
combined into the boosted hypothesis. Second, we prove that if the training
errors of the base hypotheses are sufficiently small, then boosting is guaran-
teed to generate a combined hypothesis with large positive margins on all of
the examples.

5. Some open problems. Breiman’s work demonstrates the effective-
ness of ‘‘perturb and combine’’ methods for reducing classification error.
While a lot of understanding has been gained, many questions remain. Here
are a few questions that seem particularly interesting to us.

1. What is the relation between the randomized effect of bagging and the
deterministic effect of boosting? Can the two effects be separated in
experiments?

2. Alternatively, is there a unified theory, based on provable theorems, which
explains both boosting and bagging in a single framework?

3. Can we characterize the learning algorithms and�or the data generation
processes which are most likely to benefit from boosting or from bagging or
from their combination?

DISCUSSION832

4. Is resampling the best way for randomly perturbing the training data?
What about adding random noise to the label or to the features? How can
we analyze these effects?

� �5. Quinlan 10 has reported that, in unusual cases, boosting can actually
increase the generalization error of the base learning algorithm by a small
amount. Can we characterize or predict when boosting will fail in this
manner?

� �6. In Section 4, we discussed one explanation 13 for theoretically bounding
the generalization error of voting methods like bagging and boosting. Are
there other more practical and accurate methods for estimating the gener-
alization error?

REFERENCES
� � Ž .1 BREIMAN, L. 1996 . Bagging predictors. Machine Learning 26 123�140.
� � Ž .2 BREIMAN, L. 1996 . The heuristics of instability in model selection. Ann. Statist. 24

2350�2383.
� � Ž .3 DRUCKER, H. and CORTES, C. 1996 . Boosting decision trees. Advances in Neural Informa-

tion Processing Systems 8 479�485.
� � Ž .4 FLOYD, S. and WARMUTH, M. 1995 . Sample compression, learnability, and the Vapnik�

Chervonenkis dimension. Machine Learning 21 269�304.
� � Ž .5 FREUND, Y. 1995 . Boosting a weak learning algorithm by majority. Inform. and Comput.

121 256�285.
� � Ž .6 FREUND, Y. and SCHAPIRE, R. E. 1997 . A decision-theoretic generalization of on-line

learning and an application to boosting. J. Comput. System Sci. 55 119�139.
� � Ž .7 KEARNS, M. and VALIANT, L. G. 1994 . Cryptographic limitations on learning Boolean

formulae and finite automata. J. Assoc. Comput. Mach. 4 67�95.
� � Ž .8 KOHAVI, R. and WOLPERT, D. H. 1996 . Bias plus variance decomposition for zero-one loss

functions. In Machine Learning: Proceedings of the Thirteenth International
Ž .ConferenceL. Saitta, ed. 275�283. Morgan Kaufmann, San Francisco.

� � Ž .9 KONG, E. B. and DIETTERICH, T. G. 1995 . Error-correcting output coding corrects bias and
variance. In Proceedings of the Twelfth International Conference on Machine Learning
Ž .A. Prieditis and S. Russell, eds. 313�321. Morgan Kaufmann, San Francisco.

� � Ž .10 QUINLAN, J. R. 1996 . Bagging, boosting, and C4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence 725�730.

� � Ž .11 QUINLAN, J. R. 1993 . C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco.

� � Ž .12 SCHAPIRE, R. E. 1990 . The strength of weak learnability. Machine Learning 5 197�227.
� � Ž .13 SCHAPIRE, R. E., FREUND, Y., BARTLETT, P. and LEE, W. S. 1998 . Boosting the margin: a

new explanation for the effectiveness of voting methods. Ann. Statist. 26. To appear.
� � Ž .14 TIBSHIRANI, R. 1996 . Bias, variance and prediction error for classification rules. Technical

Report, Univ. Toronto.
� � Ž .15 VALIANT, L. G. 1994 . A theory of the learnable. Communications of the ACM 27 1134�1142.
� � Ž .16 VAPNIK, V. N. 1982 . Estimation of Dependences Based on Empirical Data. Springer, New

York.

AT & T LABS

180 PARK AVENUE

FLORHAM PARK, NEW JERSEY 07932-0971
E-MAIL: yoav@research.att.com

schapire@research.att.com

ARCING CLASSIFIERS 833

DISCUSSION

YALI AMIT1 AND DONALD GEMAN 2

University of Chicago and University of Massachusetts

The subject of multiple decision trees, and, more generally, of aggregating
classifiers, deserves attention from the statistics community and we thank
Leo Breiman for the spotlight provided by his article. Aggregation should and
does work, there now being evidence from diverse quarters, and we appreci-
ate the broad view taken here, incorporating recent developments in machine
learning, neural networks and pattern recognition. We have also reported
good results with multiple decision trees, originally for handwritten digit

� � � � � �recognition 1 , 4 and more recently for face detection 3 ; in addition, we
� �attempted to provide some theoretical understanding in 2 . We have a

somewhat different opinion about why aggregation works and a sharply
different view on ‘‘off-the-shelf’’ classifiers. It might be best to first explain the
context of our work, since it is not exactly standard tree induction a la CART.`

1. Shape quantization. Our interest is shape recognition. Developing
algorithms which rival human performance has long vexed researchers in
this domain, although there are some success stories in machine vision, for
example in optical character recognition. Still, no machine can read the
courtesy numbers on a bank check. Face recognition is another difficult
problem; face detection is simpler. To be concrete we shall focus on the
problem discussed in the article�recognizing isolated handwritten digits.

ŽThis avoids complications which arise and are arguably at the heart of the
.matter in working with real images, such as those due to ‘‘context,’’ ‘‘clutter’’

and the ‘‘segmentation problem.’’ In addition, all our remarks are about
multiple trees. However, most of the discussion about aggregation extends to
other classifiers.

The raw data are in image format�a huge matrix of integers which
represent quantized intensity values. There is no obvious ‘‘feature vector’’
other than the catenated intensities, which may vary in number from image

� 4to image. The digit recognition problem is to assign label Y � 0, 1, . . . , 9 to
each image I. Our approach begins with an enormous set of ‘‘queries’’ or

� 4‘‘splitting rules’’ Q � Q , . . . , Q ; these are binary functions of the image1 M
Ž Ž . . Ž Ž . .data, each corresponding to the presence Q I � 1 or absence Q I � 0 of

a geometric arrangement of labeled edge fragments. Note that Q contains all

1Supported in part by Army Research Office Grant DAAH04-96-1-0061 and Department of
Defense Grant DAAH04-96-1-0445.

2Supported in part by NSF Grant DMS-92-17655, ONR Contract N00014-91-J-1021 and
Ž .Army Research Office MURI Grant DAAH04-96-1-0445.

DISCUSSION834

possible arrangements of anything between two to several tens of edge
fragments and is therefore virtually infinite. The exact nature of the queries
is not important for this discussion. Suffice it to say that the total information
content is very high: two images which answer the same to every query must

Ž .contain very similar shapes. In fact, we assume and we believe that Q
determines Y; thus the theoretical Bayes error rate is zero. However, it is not
evident how we might determine a priori which features are particularly
informative for separating digits and thereby reduce M to order hundreds or
even thousands. In contrast, in standard CART the queries are of the form
Q � I , where X is one component of a fixed-length feature vector andm �X � c4 ii

c is a constant. One could of course use multivariate functions or ‘‘trans-gen-
� �erated features’’ 7 .

Suppose we examine some of the queries by constructing a single binary
tree TT by the usual data-driven induction method: stepwise entropy reduc-
tion estimated from a training set LL . Since we cannot entertain all possible
splits at each node, we exploit a natural partial ordering on the set Q and
examine only a tiny fraction of them. Basically we incrementally grow the
geometric arrangements as we proceed down the tree. The classifier based on

Ž . Ž .TT is then C Q, LL � arg max P Y � j � TT . If the depths of the leaves of TTj
Ž .are far smaller than M, then evidently C Q, LL is not the Bayes classifier.

However, for depths on the order of hundreds or thousands we could expect
that

P Y � j � TT � P Y � j � Q ,Ž . Ž .
Ž .the difference in some appropriate norm being a kind of ‘‘approximation

error.’’ Of course, we cannot actually create or store a tree of such depth, and
Žthe best classification rate we obtained with a single tree of average depth

.around ten was about 90% on test sets similar to the one discussed by Leo
Breiman.

2. Multiple trees. Our justification for considering multiple trees was
the simple fact that the amount of information about Y in TT was far less
than in Q. Given the superior performance of ‘‘bagging’’ and ‘‘arcing,’’ the

� 4same must be true relative to the query set I for a standard feature�X � c4 i, ci

vector. So our goal was to efficiently produce and aggregate a set of trees.
Hopefully we could examine enough features to control the approximation
error, provided we could suitably aggregate the evidence. The aggregation

Ž .method we choose see below required that we also control another source of
Ž .error: regardless of the depth of TT, we do not know P Y � j � TT ; rather it

Žmust be estimated from LL by simply counting the number of training
.images of each class j which land at each terminal node of TT . Call this

ˆ Ž .estimate P Y � TT . If TT is not too deep thenLL

P̂ Y � j � TT � P Y � j � TT .Ž . Ž .LL

The difference is ‘‘estimation error.’’ Both approximation error and estimation
error are controlled by building multiple trees TT , . . . , TT of modest depth.1 N
Consequently, another departure from the standard case is that we do

ARCING CLASSIFIERS 835

not continue ‘‘quantizing’’ the shapes until the nodes are ‘‘pure’’ and then
‘‘prune back.’’ Instead, we stop splitting early enough to keep the estimation
error low. Clearly this error tradeoff is related to that between ‘‘bias’’ and
‘‘variance.’’

In recent years various authors have proposed methods for generating
multiple trees which are sufficiently ‘‘different’’ from one another to improve

� �classification; for example, Shlien 9 used different splitting criteria. Breiman
Ž � �.describes three procedures, one based on simple resampling ‘‘bagging’’ 5

and two based on adaptive resampling. The best results are obtained when
the misclassified data points from an existing set of trees, TT , . . . , TT , are1 k
given larger weight in the training set used to produce the next tree TT �thek�1

� �method of Freund and Shapire 6 . These weights effect either the bootstrap
resampling scheme or, in the non-random case, the probabilities calculated by
the classifier.

Since our aim is to access the information in Q we produce the different
� �trees by using different subsets of the queries. We experimented in 1 with

several protocols for choosing these subsets and settled on randomization.
Suppose we are at a node t and Q is the subset of queries which are allowedt

Žas splitting rules. Although Q is only a small subset of Q due to the growtht
.restrictions mentioned above it is still very large, typically thousands or tens

of thousands. We select a random subset from Q and choose the query int
that subset which yields the greatest reduction in uncertainty. In the experi-

� � � �ments reported in 10 and 4 , the size of the random subset is 100. Of course
this requires having a very large pool of splitting rules in the first place.

The different trees created in this manner provide different ‘‘points of
view’’ on the shapes. This can be illustrated graphically by looking at the final
arrangements of edge fragments at the leaves reached by an image, from tree
to tree. We were not able to achieve the same degree of variability by
randomizing only on the training sample.

FIG. 1. The arrangement found on a sample ‘‘3’’ in three different trees. The lines connect pairs of
points for which the relative orientation is defined in the arrangement.

DISCUSSION836

3. Aggregation. In ‘‘bagging’’ and ‘‘arcing’’, each tree votes for a class
and the trees are subsequently aggregated by a plurality rule. This leads to
substantial reductions in the variance component of the total error. We
experimented with many protocols for aggregation and settled on simple

Žaveraging in the following sense. Recall that for each tree TT, we store an
. � Ž . 4estimate of the distribution P Y � j � TT � t , j � 0, . . . , 9 at leaf t. Each

tree does not vote. Rather we average these distributions by computing

N1
� j � � j; TT , . . . , TT � P Y � j � TTŽ . Ž . Ž .Ý1 N nN n�1

Ž . Ž .and then classify the digit with the mode of �: C Q, LL � arg max � j . Ourj
very first experiments with multiple trees lifted our classification rate to
about 96% and eventually over 99%.

Our rationale for randomization was to produce trees TT , . . . , TT providing1 N
different points of view. Statistically speaking, this means the trees are
weakly dependent conditional on Y, and it appears to us that this is the
underlying explanation for the variance reduction of the classifiers that Leo
Breiman analyzes. Probably ‘‘bagging’’ produces more conditionally depen-
dent trees than ‘‘arcing.’’ Randomization is just one way to accomplish this
Ž .indeed nonrandomized ‘‘arcing’’ works as well .

� �In 2 we tried to estimate the error rate as a function of second-order
properties of the set of trees. Assume the mean aggregated distribution is
well on target:

E � j � Y � j � E � k � Y � j , k � j.Ž . Ž .Ž . Ž .

Ž .This was true in our case. Then a simple argument based on Chebyshev’s
Ž Ž . �inequality yields a crude bound on the misclassification error P C Q, LL � j

. Ž � . Ž Ž �Y � j in terms of E � Y � j and the conditional covariances Cov P Y � k
. Ž � . � .TT , P Y � k TT Y � j , 1 � n, m � N. Naturally, small covariances lead ton m

small errors. More generally, if the trees are produced with some sampling
mechanism from the population of trees, involving either resampling from LL

or random restrictions on the queries, then the quantities above can be
analyzed by taking expectations relative to the space of trees. In regard
to arcing, probably the deterministic reweighting on misclassified examp-
les produces new trees which are quite different from the previous ones.
Moreover, the errors induced on data points which were correctly classified
by the existing trees are sufficiently randomized to avoid any systematic
deterioration.

4. Off-the-shelf classifiers. In his Introduction, Leo Breiman says:
‘‘Furthermore, the arc-classifier is off-the-shelf. Its performance does not
depend on any tuning or settings for particular problems. Just read in the
data and press the start button.’’

ARCING CLASSIFIERS 837

Most of the science in the imaging problems we study is in finding
powerful representations and meeting domain-specific constraints. For exam-
ple, it is futile to think about object recognition without thinking in advance
about computation and about invariance with respect to photometric and
geometric transformations which leave the class label unchanged. Moreover,
the raw data are rarely directly accessed in learning-based methods and in
general the appropriate ‘‘features’’ are by no means apparent. Echoing the

� �discussion in 8 , no ‘‘off-the-shelf’’ classifier is going to learn about these
things no matter how much training data is provided.

More specifically, we do not preprocess the image data and compute a
vector of features. Rather, we jointly induce the features and the classifier; in
effect, the tree is the representation of the data. It might well be that most of
the success of neural nets and related methods is due to painstaking efforts to
find good problem-specific features, rather than due to the type of classifier.
In particular, Leo Breiman’s relative success on handwritten digits is likely
due to the clever and thoughtful preprocessing and standardization methods
developed at AT & T, and perhaps many other ‘‘off-the-shelf’’ classifiers can
take one this far. But something else is needed to go further and match
human performance.

REFERENCES
� � Ž .1 AMIT, Y. and GEMAN, D. 1994 . Randomized inquiries about shape; an application to

handwritten digit recognition. Technical Report 401, Univ. Chicago.
� � Ž .2 AMIT, Y. and GEMAN, D. 1997 . Shape quantization and recognition with randomized trees.

Neural Computation 9 1545�1588.
� � Ž .3 AMIT, Y., GEMAN, D. and JEDYNAK, B. 1998 . Efficient focusing and face detection. In Face

Ž .Recognition: From Theory to Applications H. Wechsler and J. Phillips, eds. Springer,
Berlin.

� � Ž .4 AMIT, Y., GEMAN, D. and WILDER, K. 1997 . Joint induction of shape features and tree
classifiers. IEEE Trans. PAMI 19 1300�1306.

� � Ž .5 BREIMAN, L., FRIEDMAN, J., OLSHEN, R. and STONE, C. 1984 . Classification and Regression
Trees. Wadsworth, Belmont, CA.

� � Ž .6 FREUND, Y. and SCHAPIRE, R. 1997 . A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. System Sci. 55 119�139.

� � Ž .7 FRIEDMAN, J. H. 1973 . A recursive partitioning decision rule for nonparametric classifica-
tion. IEEE Trans. Comput. 26 404�408.

� � Ž .8 GEMAN, S., BIENENSTOCK, E. and DOURSAT, R. 1992 . Neural networks and the bias�vari-
ance dilemma. Neural Computation 4 1�58.

� � Ž .9 SHLIEN, S. 1990 . Multiple binary decision tree classifiers. Pattern Recognition 23 757�763.
� � Ž .10 WILDER, K. 1998 . Decision tree algorithms for handwritten digit recognition. Ph.D. disser-

tation, Univ. Massachusetts, Amherst.

DEPARTMENT OF STATISTICS DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CHICAGO AND STATISTICS

CHICAGO, ILLINOIS 60637 UNIVERSITY OF MASSACHUSETTS

E-MAIL: amit@galton.uchicago.edu AMHERST, MASSACHUSETTS 01003
E-MAIL: geman@math.umass.edu

DISCUSSION838

DISCUSSION

T. G. DIETTERICH

Oregon State University

1. Introduction. Leo Breiman’s article makes several important obser-
Žvations and raises many interesting questions about bagging and boosting or

.‘‘arcing’’ classifiers. The most important observation in the paper confirms
Ž .the earlier results of Freund and Schapire 1996 : ensembles of decision trees

constructed via the AdaBoost algorithm can achieve excellent classification
accuracy.

I will leave to the other discussants the task of dissecting the details of
AdaBoost and Arc-X4 and instead focus on what I take to be the most
fundamental question raised by this work: What is the best way to construct
an ensemble of classifiers?

The goal of an ensemble classification methods is to construct an accurate
and diverse set of classifiers. If such a collection of classifiers can be con-
structed, then simple or weighted voting will yield a better classifier, because
a diverse set of classifiers will ‘‘scatter’’ their errors across the input space,
and an accurate set of classifiers will make relatively few errors. Hence, a
majority vote of accurate, diverse classifiers will yield more accurate classifi-
cation decisions.

2. Manipulating the training data. What do we know about methods
for constructing accurate, diverse classifiers? The bagging and boosting meth-
ods that Breiman describes can all be characterized as ways of manipulating
the training set to generate diverse classifiers. As Breiman points out, this
strategy only works if the fitting algorithms are unstable.

3. Manipulating the input features. Many other strategies have been
explored recently. The first strategy involves manipulating the input features
Ž .i.e., the predictor variables . In settings where there are many highly corre-
lated inputs, the fitting algorithm can be given different subsets of these
inputs in each run. For example, in analyzing images from Venus, Cherkauer
Ž . Ž1996 applied several different preprocessing methods including principle

.components analysis and Fourier analysis to produce 119 candidate input
features. He then trained 32 neural networks based on eight different subsets
of the features and four different hidden layer sizes. The resulting ensemble
classifier was able to match the performance of human experts in identifying
volcanoes.

4. Manipulating the output targets. A second strategy involves ma-
nipulating the output targets. Adopting Breiman’s notation, suppose our data

1Supported by NSF Grant Number 9626584-IRI.

ARCING CLASSIFIERS 839

Ž . � 4consist of pairs y , x , n � 1, . . . , N, where y � 1, . . . , J is the class label.n n n
Ž .Dietterich and Bakiri 1995 describe a technique called error-correcting

output coding. Suppose that the number of classes, J, is large. Then derived
classification problems l � 1, . . . , L can be constructed by randomly partition-
ing the J classes into two subsets A and B . The input data can then bel l
relabeled so that any of the original classes in set A are given the derivedl
label 0 and the original classes in set B are given the derived label 1. Thisl
relabeled data is then given to the fitting algorithm, which constructs a

Žclassifier h . By repeating this process L times generating different subsetsl
.A and B , we obtain an ensemble of L classifiers h , . . . , h .l l 1 L

Now given a new data point x, how should we classify it? The answer is to
Ž .have each h classify x. If h x � 0, then each class in A receives a vote. Ifl l l

Ž .h x � 1, then each class in B receives a vote. After each of the L classifiersl l
has voted, the class with the highest number of votes is selected as the
prediction of the ensemble.

An equivalent way of thinking about this method is that each class j is
encoded as an L-bit codeword C , where bit l is 1 if and only if j � B . Thej l
lth learned classifier attempts to predict bit l of these codewords. When the L
classifiers are applied to classify a new point x, their predictions are com-
bined into an L-bit string. We then choose the class j whose codeword C isj

Ž .closest in Hamming distance to the L-bit output string. Methods for design-
Žing good error-correcting codes can be applied to choose the codewords C orj

.equivalently, subsets A and B . The technique can naturally be extended tol l
work with classifiers that estimate the probability that x belongs to each of

Ž .the classes or sets of classes .
Dietterich and Bakiri report that this technique improves the performance

Ž .of both Quinlan’s 1993 C4.5 decision-tree method and the backpropagation
neural network method on a variety of difficult classification problems. Diet-

Ž .terich and Kong 1995 present data suggesting that output coding methods
only work with global classifiers such as decision trees and neural networks
and not with local methods such as the nearest neighbor rule or related
kernel methods.

5. Randomizing the fitting procedure. A third strategy for construct-
ing accurate and diverse ensembles is to randomize the fitting procedure. In
neural network training, for example, the initial weights are typically set to
small random values. Several different networks can be fit to the data by

Ž .starting with different random weights. Perrone and Cooper 1993 and
Ž .Hashem 1993 report good results on regression problems by taking a

weighted vote of multiple networks trained in this fashion. Many people have
experimented with randomizing tree fitting algorithms. Breiman mentions

Ž .the work of Ali and Pazzani 1996 , who employ a Boltzmann-like distribution
to choose among the best candidate splits at each node in the tree. Kong and

Ž .Dietterich 1995 experimented with a variant of C4.5 that chooses randomly
Ž .with equal probability among the top 20 best candidate splits. They report

DISCUSSION840

Žthat this procedure gives performance comparable to and sometimes much
.better than bagging on several large classification tasks.

Perhaps the most complex methods for randomizing fitting algorithms are
Ž . � Ž .�the Markov chain Monte Carlo MCMC techniques Neal 1993 . The basic

idea of MCMC is to construct a Markov chain that generates an infinite
sequence of hypotheses h . In a Bayesian setting, the goal is to generate anl

Ž � .hypothesis h with probability P h T , where T is the training sample. Tol l
apply MCMC, we define a set of operators that convert one h into another.l
For a neural network, such an operator might adjust one of the weights in the
network. In a decision tree, the operator might interchange a parent and a
child node in the tree or replace one node with another. The MCMC process
works by maintaining a current hypothesis h . At each step, it selects anl

Ž .operator, applies it to obtain h , and then computes the likelihood of thel�1
resulting classifier on the training data. It then decides stochastically, based
on the computed likelihood, whether to keep h or discard it and go back tol�1
h . Under various technical conditions, it is possible to prove that a process ofl
this kind will eventually converge to a stationary probability distribution in
which the h ’s are generated in proportion to their posterior probabilities. Inl
practice, it can be difficult to determine when this stationary distribution is
reached. A standard approach is to run the Markov process for a long period
Ž .discarding all generated classifiers and then collect a set of L classifiers
from the Markov process. Markov chain Monte Carlo methods have been

Ž . Ž .applied to neural networks by MacKay 1992 and Neal 1993 with impres-
sive results, especially on small data sets.

6. Concluding remarks. This brief review shows that the bagging and
boosting methods described by Breiman are just one of many different
approaches to generating ensembles. An important question for future re-
search is to understand how these different methods are related. For exam-
ple, how is the boosting method related to the MCMC techniques? Both
methods construct a complex stochastic process and then combine the classi-
fiers generated by that process.

Another important question is to determine whether these different meth-
ods can be combined. One step in this direction is the recent work of Schapire
Ž .1997 , which shows that AdaBoost can be combined with error-correcting
output coding to yield an excellent ensemble classification method that
he calls AdaBoost.OC. The performance of the method is superior to the
ECOC method alone and to bagging alone. AdaBoost.OC gives essentially the

Ž .same performance as another quite complex algorithm, called AdaBoost.M2.
Hence, the main advantage of AdaBoost.OC is implementation simplicity: it
can work with any fitting algorithm for solving two-class problems.

REFERENCES
Ž .ALI, K. M. and PAZZANI, M. J. 1996 . Error reduction through learning multiple descriptions.

Machine Learning 24 173�202.

ARCING CLASSIFIERS 841

Ž .CHERKAUER, K. J. 1996 . Human expert-level performance on a scientific image analysis task by
a system using combined artificial neural networks. In Working Notes of the AAAI

Ž .Workshop on Integrating Multiple Learned Models P. Chan, ed. 15�21. AAAI Press,
Menlo Park, CA.

Ž .DIETTERICH, T. G. and BAKIRI, G. 1995 . Solving multiclass learning problems via error-cor-
recting output codes. J. Artificial Intelligence Res. 2 263�286.

Ž .DIETTERICH, T. G. and KONG, E. B. 1995 . Machine learning bias, statistical bias, and statistical
variance of decision tree algorithms. Technical Report, Dept. Computer Science,
Oregon State Univ., Corvallis, Oregon. Available from ftp:��ftp.cs.orst.
edu�pub�tgd�papers�tr-bias.ps�gz.

Ž .FREUND, Y. and SCHAPIRE, R. E. 1996 . Experiments with a new boosting algorithm. In Proceed-
Ž .ings of the Thirteenth International Conference on Machine Learning L. Saitta, ed.

148�156. Morgan Kaufmann, San Francisco.
Ž .HASHEM, S. 1993 . Optimal linear combinations of neural networks. Ph.D. dissertation, School of

Industrial Engineering, Purdue Univ., Lafayette, IN.
Ž .KONG, E. B. and DIETTERICH, T. G. 1995 . Error-correcting output coding corrects bias and

Žvariance. In Twelfth International Conference on Machine Learning A. Prieditis and
.S. Russell, eds. 313�321. Morgan Kaufmann, San Francisco.

Ž .MACKAY, D. 1992 . A practical bayesian framework for backpropagation networks. Neural
Computation 4 448�472.
Ž .NEAL, R. 1993 . Probabilistic inference using Markov chain Monte Carlo methods. Technical
Report CRG-TR-93-1, Dept. Computer Science, Univ. Toronto.

Ž .PERRONE, M. P. and COOPER, L. N. 1993 . When networks disagree: ensemble methods for
Žhybrid neural networks. In Neural Networks for Speech and Image Processing R. J.

.Mammone, ed. 126�142. Chapman and Hall, London.
Ž .QUINLAN, J. R. 1993 . C4.5: Programs for Empirical Learning. Morgan Kaufmann, San Fran-

cisco.
Ž .SCHAPIRE, R. E. 1997 . Using output codes to boost multiclass learning problems. In Proceedings

of the Fourteenth International Conference on Machine Learning 313�321. Morgan
Kaufmann, San Francisco.

DEPARTMENT OF COMPUTER SCIENCE

OREGON STATE UNIVERSITY

303 DEARBORN HALL

CORVALLIS, OREGON 97331-3202
E-MAIL: tgd@cs.orst.edu

REJOINDER

LEO BREIMAN

University of California, Berkeley

First, I thank the discussants. All have made significant contributions to
the general theme raised in my paper, that is, the idea that getting a
collection of classifiers by perturbations of a single algorithm and having
them vote for the class membership of a case can raise fairly mediocre
classifiers into world-beater status.

As in Rashomon, we have different views of a phenomenon. But, unlike
Rashomon, the diverse views add to the richness of the subject. I’ll respond
individually first and then make some general remarks. Before I begin, note

REJOINDER842

that terminology in the machine learning and neural network literature
sometimes differs from that in statistics. For instance, what Dietterich calls a
‘‘hypothesis’’ we would call a ‘‘classifier.’’ Freund and Schapire use the word
‘‘instance’’ instead of our ‘‘case.’’

Dietterich.

Generating the ensemble. I agree with Tom’s assessment that the most
crucial element in making voting methods work is how the ensemble of
classifiers is generated. There is a secondary question of how to assign a vote

Žto each one Adaboost uses weighted voting; Amit and Geman average the
.class probabilities . Numbers of methods have been successfully used. Just

among the discussants and myself, we have:

Ž1. Alter the training set Freund and Schapire�Adaboost, Breiman�bagging
.and arcing ;

Ž .2. Randomize the choice of splits in the tree Kong and Dietterich ;
Ž .3. Randomize the set of features that can be split on Amit and Geman .

In their 1995 paper, Dietterich and Kong generate an ensemble of trees by
a random selection among the 20 best splits at every node and combine using
unweighted voting. They analyze the performance in terms of a bias-variance
framework, although with a slightly different definition than I use. But the
idea is similar�variance is that component of error that can be reduced by
ensemble voting. Bias cannot. Their method of generating an ensemble gives
test set performance close to that of bagging. In particular, the variance
reductions were similar.

Not all methods of generating ensembles are equal. For instance, in fitting
Ž .neural nets by gradient descent, the initial weights parameters are taken as

small random numbers. Starting from a different random selection of initial
weights usually gives a different final neural net. So a seemingly natural way
of generating an ensemble of neural nets is by using different random
selections of initial weights. However, a number of studies have shown that
this gives results decidedly inferior to bagging. The reason may be that
changing the initial weights simply does not perturb enough. The bias-vari-
ance context says that the optimum reduction in variance is given when the
ensemble of classifiers are grown on independent copies of the training set.

Any method of perturbation that does variance reduction succeeds by
generating a similar ensemble. Bagging clearly mimics the independent
copies. The random split selection succeeds by generating a similar ensemble,
even though it does this by perturbing the classifier construction and not the
training set. An interesting question raised by this line of reasoning is how to
introduce enough randomness into the construction of a neural net so that
the ensemble has the ‘‘independent copies’’ property.

Ž Ž .In a paper just received, Dietterich 1998 reports on a more extensive
comparison of bagging, randomizing the choice of splits, and Adaboost. In
these results, some systematic differences appear between bagging and ran-

ARCING CLASSIFIERS 843

domization, with randomization sometimes producing more accurate results
.than bagging. This deepens the mystery.

Perturbing the data is more universal. An advantage of bagging or arcing
is that they produce an ensemble of classifiers when applied to any algorithm.
Thus, there is no need to tinker with the innards of the algorithm in order to
perturb it. The perturbation is done to the data. Furthermore, the resulting
accuracy can be surprisingly high even for very simple algorithms. For

Ž .example, Ji and Ma 1996 , apply a form of arcing to the two-class algorithm
that passes a hyperplane through the space of the x-vectors and classifies all

Ž . Ž .the points on one side as being in class 1 2 , on the other as class 2 1 . Using
this simple classifier, they show that high test set accuracy can be gotten on
large and complex data sets. Freund and Schapire run Adaboost on an
algorithm called the stump, which is a tree restricted to do only one split.
They show that even the stump can perform with high accuracy when voting

Ž .is taken over the Adaboost ensemble see Table 1 in their Discussion .

Coding classes. The two-class coding idea for multiple class problems
impressed me when I first heard Tom talk about it some years ago, and I
spent some time mulling it over. A nice feature is that, like perturbing
training sets, it does not depend on the structure of the classification algo-
rithm, and it has been applied both to neural nets and trees. Dietterich and

Ž .Kong 1995 assert that it works by reducing bias. I’m not sure that is the
right explanation, and I’m waiting for one that really hits the target for me.
Overall, I think it is one of the better ideas to come up in the last few years.

Bayes. Dietterich is optimistic about the use of Bayesian methods and
MCMC to generate the ensemble of classifiers. I am less so. The work in Neal
Ž .1993 uses an awesome amount of machinery and cpu cycles to get results on
several small data sets. There has not yet been any testing on a suite of data
sets comparable to the ones used in my paper. Seeing is believing!

Freund and Schapire.

Are increased margins the answer? The interaction between Freund and
Schapire and me has been a creative one, leading to new insights. A number
of empirical studies show that Adaboost generally works better than bagging.
Furthermore, the empirical results presented in their comments show that
while bagging is a variance reducing method, Adaboost works by reducing
both bias and variance. So the question is, ‘‘Why?’’

Freund and Schapire advance a plausible hypothesis�that Adaboost is
more effective than bagging in increasing the margins. Their basic premise is

Žthat the higher the margins, the lower the generalization error � infinite
. � Ž .�test set error . Recent work of mine Breiman 1997 shows that this is not

the case.

REJOINDER844

In this latter paper, I formulate both regression and classification as
sum�zero two-person games. For instance, a simplified version of the classi-

�fication game is this: there is a finite collection H of classifiers h , m �m
� Ž .1, . . . , M . Player II selects an y, x from the training set. Player I, not

Ž .knowing II’s selection, chooses a classifier h from H. If h x � y, then II wins
one unit. A mixed strategy on I’s part is equivalent to assigning a nonnega-
tive vote to each classifier in H such that the votes total to one. A mixed
strategy for II is a probability distribution on the training set.

The mini-max theorem then gives an upper bound for the minimum value
of the margin over the training set. An arcing algorithm called arc-gv is found
which converges to this upper bound. Arc-gv consistently produces higher
values of the margins than Adaboost. For instance, on the ionosphere data,
arc-gv produced margins that were larger than the corresponding Adaboost
margin for every case in the training set, yet the test set errors for the
combinations produced by arc-gv were generally higher over a variety of data
sets than those produced by Adaboost. Trying to get the margins too high
resulted in overfitting the data and increased test set error. So if the
Freund�Schapire explanation is only a partial answer, then where are we?

Ž .Arc-gv goes to the bottom of the valley highest margins and then takes
very small steps. Adaboost does not go to the bottom but circulates around
the inner rim of the valley taking steps that are about the same size and
generating votes that are about the same size. What I think is happening is
that Adaboost and other arcing algorithms such as arc-x4 mark out a certain
part of the training set population consisting of cases that are hard to classify
and then circulate among subsets of this ‘‘difficult’’ subpopulation in a man-
ner similar to bagging.

At any rate, the theoretical explanation is still unclear, but the empirical
results are fascinating.

VC-type bounds may not tell the whole story. Another aspect of the inter-
change between us is the issue of VC-type bounds on the generalization error.

� Ž .�These bounds Vapnik 1995 have received much attention in the machine
learning and neural nets communities. Although they are generally too large
to be useful estimates, they are considered to provide accurate theoretical
guidance to the classification mechanism.

Ž .In their initial paper on Adaboost, Freund and Schapire 1996 used the
concept of VC-dimension to explain the success of Adaboost in producing low
generalization error. I pointed out that, as more and more classifiers were
combined, the VC-dimension of the combined classifiers increased while the
empirical estimates of the generalization error consistently decreased.

Ž .Freund and Schapire, together with Bartlett and Lee 1997 then found an
elegant derivation showing that the generalization error of a convex combina-
tion of classifiers could be bounded in terms of the margin distribution and
the VC-dimension of each classifier, no matter how many were combined. As
their Discussion notes, this formed the theoretical guidance for their idea
that the larger the margins, the lower the generalization error.

ARCING CLASSIFIERS 845

� Ž .�In my paper Breiman 1997 I derived a tighter VC-type bound based on
the minimum value of the margin over the training set. Both bounds were
still quite loose, but the important point is that these bounds do not tell the
complete theoretical theory. On the surface, their implication is that if the
margins are raised, the generalization error decreases, but the empirical
evidence does not support this.

Open problems. Freund and Schapire list a number of interesting open
problems. The first one concerns the difference between forming a new

Žtraining set by resampling from the original set weighted as in arcing or
.unweighted as in bagging as contrasted to forming a new training set by

altering the weights on each case.
My empirical results show that there is little difference between the two as

far as Adaboost is concerned. But there is a large difference in implementa-
Ž .tion. I’ve found and so has Dietterich that when using trees, the best results

are gotten by not doing any pruning of the trees grown on the resampled data.
In general, each terminal node of the tree contains only the resampled
duplicates of a single training case. Thus, very large trees are being com-
bined, such that the terminal nodes of each represents only one training
sample, yet overfitting does not occur. The fact that at each iteration the
classifier works on a training set that excludes a large fraction of the original
training set seems to regularize it. Furthermore, the combination process
averages over a large number of these noisy trees. In the bias-variance
framework, one could explain this by saying, ‘‘Grow large tree to reduce bias,
then combine to reduce variance.’’

In reweighting, the size of the tree has to be limited. Assuming all weights
nonnegative, the largest tree will contain one training case in each terminal
node and have training error zero. Then Adaboost will stop. In my runs, I
limited the size of the tree by not splitting any node of size 10 or less. This
was a purely ad hoc rule but seemed to work fairly well. Even with this
limitation, the trees grown are much larger than the optimally pruned trees.

In resampling and reweighting, an important ingredient is that the trees
grown are large but still misclassify some of the cases. Then the weights on
the points misclassified are increased to grow the next tree. The more curious
of the two methods is resampling. Here, each individual training point, in the
trees in which it occurs, is surrounded by a small rectangular region which
contains no other distinct training point. Each test point is classified on the
votes of these regions that it falls into. Thus, the method has the flavor of a
nonmetric based k-nearest neighbor classification scheme.

Another question that Freund and Schapire raise is whether resampling or
reweighting is the best way of perturbing the data and suggest the possibility
of perturbing the class labels or features. As to the former, in Breiman
Ž .1996b I got excellent results by averaging subset-selection regressions, each
one grown by adding noise to the response variable only. Whether this can be
extended to classification is so far unknown. An interesting sideline is that, in
his 1998 study, Dietterich did some random perturbations of the class labels,

REJOINDER846

and found that bagging was more robust to this kind of noise than random-
ization, with Adaboost the least so.

As to perturbing the features, Dietterich, in his Discussion, points to a
successful application by Cherkauer that grows neural nets on randomly

Ž .selected features. In their work on images, Amit and Geman 1997 grow
trees on randomly selected subsets of features. So we have at least two
compelling pieces of evidence saying that growing classifiers on different sets
of features and combining can give excellent accuracy. But to the best of my
knowledge, there has been no systematic general investigation or attempt to
construct a theoretical framework. Most of the other questions Freund and
Schapire raise concern the need for theory to understand what is going on. I
agree. We know what is happening in the laboratory; we watch the apple fall.
But why?

Ž .Amit and Geman. The Amit and Geman article 1997 on shape recogni-
tion is a fascinating study and I recommend it to readers who are interested
in pattern recognition. My take on their major contributions relevant to this
discussion is this:

1. Don’t worry about how many features you define in a complex problem.
Define enough to distinguish the classes, the more, the merrier.

2. Grow many trees by presenting a random selection of features available
for splitting at each node. Grow trees to a medium depth and average
estimated class probabilities to combine the trees.

Get better solutions by increasing the dimensionality. For a long time, the
prevalent wisdom in pattern recognition was to try to extract a small number
of features that contained all of the relevant information, that is, reducing
the dimensionality of the problem. Recent work has shown that the opposite
approach may be more promising, that is, increasing the dimensionality
drastically by increasing the number of input features. The trick, then, is to
squeeze the relevant information out of this multitude of features without

�overfitting the data. For instance, the idea of support vector machines Vapnik
Ž .�1995 for two-class problems is to increase the dimensionality of the input
space of features until there is a hyperplane in the high-dimensional space
that separates the classes. The Amit�Geman approach is another successful
instance.

In the mid-1980s we had to keep telling new CART users not to worry
about how many features they fed in. The tree structure will pick out those
having information and the pruning will eliminate the noninformation splits.
The tree structure does try to focus on the informative variables, but in the
applications that Amit and Geman are focused on�with many thousands of
features, each with a small piece of information�growing a single deep tree
using splits on a single feature is not an efficient way of extracting the
information. Instead, at each node, a large class of admissible features is

ARCING CLASSIFIERS 847

defined, a small subset of these is randomly selected and the best split on this
subset found. With this, another interesting avenue is opened on growing
multiple classifiers and combining them. But it also raises the question,
‘‘Why does it work; how can we understand it?’’ Amit and Geman combine
trees by averaging class probabilities, thus putting it into a regression-like
context. Why bagging works in regression has a clear and sensible explana-
tion in terms of bias and variance, but an explanation for the Amit�Geman
procedure seems further off.

How small a tree for accurate estimation? In each terminal node t of a
Ž � .tree, the estimate for P j t is the proportion of class j cases in node t. Amit

and Geman want to keep the estimation error small, so they use trees with
enough samples in each terminal node to make the estimation error small.
Actually t is a big rectangle in multidimensional space. What is really

Ž � .required is not that the estimation error in P j t be small, but that the
Ž � .estimation error in P j x be small where x is any vector of features in t.

Ž .In Breiman 1996c I show that on a variety of synthetic data sets the
Ž � .major part of the error in estimating P j x comes from the within-mode

Ž � . Ž � .variability, that is, the error in approximating P j x by P j t . The smaller
the tree, the larger the within-node variability. Thus, the rationale used by
Amit and Geman to justify smaller sized trees does not square with my
empirical results. Also, both Dietterich and I and a number of others have
found that, when combining, one should use very large trees. So there are two
sets of empirical results pointing in directions that appear opposite.

Off-the-shelf-classifiers. Amit and Geman take umbrage at my statement
that arcing CART provides an excellent off-the-shelf-classifier. But this is a
simple statement of fact. I think our differences are due to our differing
perspectives. There are many thousands of data analysts over the world,
statisticians, economists, business analysts, biologists, and so on, who are
trying to make sense out of their data. Often they are trying to form
predictors of future outcomes to understand which structures are most
predictive. They do not have the time or the technical skills to construct a
state-of-the-art prediction method tailored to the precise problem on hand. So
I believe it is an obligation of the statistical community to provide them with
the best off-the-shelf tools available. As a result of the research on bagging
and arcing, both are offered in the CART distribution.

From another perspective I am in complete agreement with them. On
complex problems, to get past the point where off-the-shelf predictors can go,
one needs to incorporate knowledge about the problem. For instance, the
most accurate classifier to date on the AT & T digit recognition problem is a
nearest neighbor classifier that uses a distance measure based on the nature
of the problem, that is, locally invariant to transformations such as rotations,
translations, thinning and so on. However, an important point here is that
the off-the-shelf Euclidean distance nearest neighbor algorithm did pretty

REJOINDER848

well on this data to begin with. The strategy that seems to have worked the
best on these complex problems is that one begins with a good off-the-shelf
classifier and then, by incorporating problem-specific information, pushes up
its accuracy.

Vapnik’s off-the-shelf support vector machine gets a test set error of 1.1%
on a NIST data base of 60,000 handwritten characters with a test set of
10,000. The lowest error to date is 0.7% resulting from a method of training
a large neural net that is problem specific. On a different subset of the

Ž .NIST data, the Amit�Geman trees get an error rate of 0.7%. Vapnik 1995
remarks, concerning closing the gap between 1.1% and 0.7%, ‘‘Probably one
has to incorporate some a priori knowledge about the problem.’’

So I agree that to close the small gap between the best off-the-shelf
methods and what is the best attainable by a machine algorithm, problem-
specific knowledge will have to be incorporated, but it has often been accom-
plished by taking a good off-the-shelf method and tweaking it in the right
directions.

General. The differing approaches presented by the discussants and my
paper reflect the rich texture of this problem. The fact that in a wide range
of problems, we can, by growing an ensemble of B-classifiers and combining,
get an A� classifier, is barely short of magical. As usual with magic, one
wonders how it was done. The more empirical data we get, the more ques-
tions appear that are mystifying and urgent.

Crossing over. There has been great burst of work in the last decade in
the machine learning and neural net community focused on hard problems in
classification and regression. Many other areas have also come under fresh
and enthusiastic scrutiny: unsupervised learning aka clustering, nonlinear
principle components and factor analysis, hidden Markov chains, reinforced
learning aka dynamic programming with large state spaces, graphical mod-
els, nonlinear control systems and so on and on. An idea of the breadth of this
research can be gotten by looking at one of the Neural Information Processing
Systems conference proceedings. The applications are generally to large and
complex problems, of which speech and character recognition are the more
recognizable, but they are also to things such as playing world-class back-
gammon using a neural net or controlling a Tokomak reactor.

Cross-overs between our field and theirs would encourage and strengthen
research in important applied areas. The shared interests between fields is
shown by discussants of this paper. Tom Dietterich is Editor of the Journal of
Machine Learning. Yoav Freund and Robert Schapire have made important
contributions to machine learning theory. Amit and Geman belong to statis-
tics and mathematics, but have crossed over in the sense that their recent
article on shape recognition appears in the Journal of Neural Computing.
For the crossing over in this article and its discussion, I am grateful to the
adventuresome spirit of John Rice, Coeditor of The Annals of Statistics.

ARCING CLASSIFIERS 849

REFERENCES
Ž .AMIT, Y. and GEMAN, D. 1997 . Shape quantization and recognition with randomized trees.

Neural Computation 9 1545�1588.
Ž .BREIMAN, L. 1996c . Out-of-bag estimation. Available at ftp.stat�users�breimanas OOBes-

timation.
Ž .BREIMAN, L. 1997 . Prediction games and arcing algorithms. Technical Report 504, Dept.

Statistics, Univ. California, Berkeley. Available at www.stat.berkeley.edu.
Ž .DIETTERICH, T. 1998 . An experimental comparison of three methods for constructing ensembles

of decision trees: bagging, boosting and randomization. Machine Learning 1�22.
Ž .FREUND, Y. and SCHAPIRE, R. 1996 . Experiments with a new boosting algorithm. In Machine

Ž .Learning: Proceedings of the Thirteenth International Conference L. Saitta, ed.
148�156. Morgan Kaufmann, San Francisco.

Ž .JI, C. and MA. S. 1997 . Combinations of weak classifiers. IEEE Trans. Neural Networks 8
32�42.

Ž .KONG, E. B. and DIETTERICH, T. G. 1995 . Error-correcting output coding corrects bias and
variance. In Proceedings of the Twelfth International Conference on Machine Learning
Ž .A. Prieditis and S. Russell, eds. 313�321. Morgan Kaufmann, San Francisco.

Ž .SCHAPIRE, R., FREUND, Y., BARTLETT, P. and LEE, W. S. 1998 . Boosting the margin: a new
explanation for the effectiveness of voting methods. Ann. Statist. 26. To appear.

Ž .VAPNIK, V. N. 1995 . The Nature of Statistical Learning Theory. Springer, New York.

DEPARTMENT OF STATISTICS

UNIVERSITY OF CALIFORNIA

367 EVANS HALL

BERKELEY , CALIFORNIA 94720-3860
E-MAIL: leo@stat.berkeley.edu

