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DOG GENOMICS

Arctic-adapted dogs emerged at the
Pleistocene–Holocene transition
Mikkel-Holger S. Sinding1,2,3,4,5*†, Shyam Gopalakrishnan1*, Jazmín Ramos-Madrigal1*,

Marc de Manuel6*, Vladimir V. Pitulko7*, Lukas Kuderna6, Tatiana R. Feuerborn1,3,8,9,

Laurent A. F. Frantz10,11, Filipe G. Vieira1, Jonas Niemann1,12, Jose A. Samaniego Castruita1,

Christian Carøe1, Emilie U. Andersen-Ranberg3,13, Peter D. Jordan14, Elena Y. Pavlova15,

Pavel A. Nikolskiy16, Aleksei K. Kasparov7, Varvara V. Ivanova17, Eske Willerslev1,18,19,20,

Pontus Skoglund21,22, Merete Fredholm23, Sanne Eline Wennerberg24, Mads Peter Heide-Jørgensen4,

Rune Dietz25, Christian Sonne3,25,26, Morten Meldgaard1,3, Love Dalén8,27, Greger Larson10,

Bent Petersen1,28, Thomas Sicheritz-Pontén1,28, Lutz Bachmann2, Øystein Wiig2,

Tomas Marques-Bonet6,29,30,31†‡, Anders J. Hansen1,3†‡, M. Thomas P. Gilbert1,32†‡

Although sled dogs are one of the most specialized groups of dogs, their origin and evolution has

received much less attention than many other dog groups. We applied a genomic approach to investigate

their spatiotemporal emergence by sequencing the genomes of 10 modern Greenland sled dogs, an

~9500-year-old Siberian dog associated with archaeological evidence for sled technology, and an

~33,000-year-old Siberian wolf. We found noteworthy genetic similarity between the ancient dog and

modern sled dogs. We detected gene flow from Pleistocene Siberian wolves, but not modern American

wolves, to present-day sled dogs. The results indicate that the major ancestry of modern sled dogs

traces back to Siberia, where sled dog–specific haplotypes of genes that potentially relate to Arctic

adaptation were established by 9500 years ago.

D
espite decades of studies, consensus has

yet to be reached on when and where

dogs were first domesticated and when

they were first deliberately used inmany

of the roles they exhibit today. In Siberia,

late Upper Paleolithic artifacts of carved bone,

antler, and ivory similar to tools used bymodern

Inuit for securing dog harness straps suggest

ancient origins of dog sledding (1). Furthermore,

archeological findings fromZhokhov Islandpro-

vide evidence of sled technology and dogs by

the Sumnagin Mesolithic culture ~9000 to

8000 years ago (1–3) (fig. S1), offering an op-

portunity to use genomics to further our un-

derstanding of early dog domestication and

the origin of sled dogs.

We generated nuclear genomes from a

dog mandible present at this site (“Zhokhov,”

9.6× coverage), dated to 9524 calendar years

before present (YBP) (Fig. 1A and fig. S2),

and a Siberian Pleistocene wolf mandible

(“Yana,” 4.7× coverage), dated to 33,019.5 YBP

(Fig. 1A and fig. S3). In addition,we sequenced

10 modern Greenland sled dog genomes, a

dog best described as an indigenous land-

race breed used for hunting and sledging by

Inuit. Samples consisted of two individuals

from each of five geographically diverse lo-

calities (Fig. 1A), thus providing a broad rep-

resentation of the indigenous dog diversity.

We analyzed our data alongside genomes

from 114 geographically and genetically diverse

canids (table S1) using whole-genome pairwise

distances, principal componentanalysis, TreeMix

(4) admixture graphs, andD statistics (Fig. 1).

Yana appeared alongsidewolves (Fig. 1, B andC),

whereas Zhokhovwas found to bemost closely

related to dogs. Specifically, Zhokhov was most

similar to modern sled dogs (Greenland sled

dogs, Alaskan malamutes, and Alaskan and

Siberian huskies) andAmerican pre-European-

contact dogs (PCDs), best illustrated by the ~2×

Port au Choix dog from Maritime Archaic cul-

tural context ~4000 YBP (3). Unsupervised clus-

tering analyses with NGSadmix software (4)

(fig. S6) grouped modern domestic dogs into

four clusters: African, European, Asian, and

sled dogs including Zhokhov. These relation-

ships were confirmed by an admixture graph

in which Yana was more closely related to a

Pleistocene wolf from Taimyr Peninsula than

tomodernwolves, whereas Zhokhov represents

a lineage that diverged from the ancestor of

present-day sled dogs (Fig. 1C and figs. S8 and

S9). This suggests genetic continuity in Arctic

dog breeds for at least the past ~9500 years,

setting a lower bound on the origin of the sled

dog lineage.

Next, D statistics indicated an excess of allele

sharing between Yana-Taimyr wolves and PCDs-

Zhokhov-sled dogs (Fig. 1D and fig. S14), corrob-

orating previous reports (3, 5). This suggests

that the admixture occurredbetweenPleistocene

wolves and the ancestors of PCDs, Zhokhov, and

sled dogs.

Previous studies have demonstrated an asso-

ciation between canine transmissible venereal

tumors (CTVTs) and sled dogs, especially PCDs

(3). Here, we evaluated the relationship among

Zhokhov, two CTVT genomes (table S1), and

dogs and wolves using f3 statistics and phylo-

genetic analysis. Recent analyses of exome data

suggested that CTVT expanded across Eurasia

~6000 years ago (6), thus reducing the likeli-

hood that this transmissible cancer originated

in the Americas. In our study, both the phylo-

genetic analysis (fig. S9) and f3 statistics (fig. S10)

placed the CTVT genomes closer to PCDs than

to sled dogs or Zhokhov. These results suggest

that the basal dog lineage that led to PCDs (3)

occurred in Eurasia ~6000 years ago and/or

there were multiple introductions of PCD-like

dogs to the Americas.

We usedNGSadmix, admixture analyses, and

D statistics (figs. S6 to S8 and S11 to S15) to

evaluate gene flow and shared ancestry be-

tween Zhokhov andmodern dogs andwolves.

We found no significant gene flow between

any sled dog (including Zhokhov) andmodern

American–Arctic wolf populations compared
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with the Eurasian wolf (fig. S15), suggesting

that gene flow from modern wolves has not

contributed to the sled dog gene pool within

the past 9500 years. This result was surprising

given genetic evidence for postdomestication

admixture between other wolves and dog breeds

(5, 7). Furthermore, ethnographic evidence from

Greenland indicates that, at least historically,

dog-wolf matings were not uncommon (8). If

true, then the lack of gene flow from modern

American-Arctic wolves into sled dogs implies

selection against hybrids.

The clustering and admixture results show

gene flow between some sled dogs and other

modern dog breeds (Fig. 1C and figs. S6 to S8).

We further explored this by comparing pairs

of sled dogs with Zhokhov using D statistics

(Fig. 2A). Although pairs of Greenland sled dogs

are symmetrically related to Zhokhov (D~0),

indicating a lack of admixture, comparisons

involving non-Greenland sled dogs were not

always consistent with the null hypothesis

of no admixture. D-statistics and admixture

analyses (Fig. 2B and fig. S13) indicated that

non-Greenland sled dogs carry ancestry from

non-sled dogs and that Greenland sled dogs

are the least admixed. These results imply that

Greenland sled dogs have largely been kept

isolated from contact with other dog breeds,

and that their lineage traces more genomics

ancestry to Zhokhov-like dogs relative to other

dog breeds. Isolation of Greenland sled dogs

was supported by inference of their histori-

cal effective population size (fig. S16), which

showed that these dogs had a relatively stable

population size until a severe bottleneck

~850 years ago. The timing of the bottleneck

is consistent with the colonization of Green-

land by Inuit (9), suggesting isolation inGreen-

land ever since.

Numerous generations of sled dogs living in

the Arctic environment and being used as

draft animals may have provided a unique

selection pressure to these dogs. To detect pu-

tative signals of positive selection, we used

population branch statistics (PBS) (10) to scan

for genomic regions highly differentiated in

modern sled dogs relative to non-sled dogs

(hereafter referred to as “other dogs”) and

wolves.We computed these statistics onmod-

ern genomes of 17 sled dogs, 61 other dogs,
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Fig. 1. Geographic location of the samples and overall genetic affinities.

(A) Identity by state pairwise distances between Zhokhov and present-day

dogs (table S1) of geographic affiliation of dogs and archaeological sites.

Color scale indicates genetic distance between Zhokhov and each sample.

Circles and triangles represent modern and ancient dogs, respectively.

Stars show Zhokhov and Yana sites. (B) Principal component analysis

(PCA) using whole-genome data (2,200,623 transversion sites) on all

samples. (C) TreeMix admixture graph built using whole-genome data

(766,082 transversion sites) on a dataset consisting of 66 canids merged

into 15 groups according to their geographic location and admixture

profile (table S1 and fig. S6). Colors indicate main groups as in (B). Arrows

show inferred admixture edges colored by migration weight. (D) D statistic

of the form D(H1, boxer dog; Taimyr or Yana, Andean fox) testing for

Pleistocene wolf gene flow in ancient and modern dogs and whether samples

share more alleles with Taimyr (x-axis) or Yana (y-axis) wolves when compared

with the boxer dog. Color indicates the type of sample in H1. Points show

the D statistic, and horizontal and vertical lines show 3 SEs for the test with the

Taimyr (x-axis) and Yana (y-axis), respectively. The results obtained from

both ancient wolves fall along the diagonal, suggesting that they are

symmetrically related to all dogs.
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and 30 wolves (table S1). A sliding window

analysis revealed several genomic regions

with high PBS values, hinting at selection

in sled dogs (Fig. 3A). We took an outlier

approach and focused on the most extreme

values of the empirical distribution (above

the 99.95th percentile). For each of these

outlier regions (table S4), we identified over-

lapping genes and compared haplotypes

across samples.

Enrichment analysis (4) on genomic regions

with high PBS values (above the 99.95th per-

centile) identified three gene ontology (GO)

terms that were overrepresented (table S6):

g-aminobutyric acid secretion (GO: 0014051,

p = 0.119), calcium ion import (GO: 0070509,

p = 0.119), and calcium ion transmembrane

transport (GO: 0070588, p = 0.382). To inves-

tigate further, we focused on eight genomic

regions that are highly differentiated in sled

dogs and three regions where other dogs dif-

fer from sled dogs and wolves (Fig. 3A and fig.

S18), and validated the autosomal regions with

a cross-population composite likelihood ratio

statistic (5) (fig. S21). In the differentiated re-

gions, we focused on two sets of genes: those

in which Zhokhov carries the same haplotype

as modern sled dogs and those involved in

adaptation to different diets.

TRPC4 is highly differentiated in sled dogs,

and the putatively selected haplotype bears a

marked similarity to Zhokhov (Fig. 3, A and B).

TRPC4 is a transient receptor potential (TRP)

channel protein that plays an important role

in vasorelaxation and lung microvascular per-

meability (11). It is also involved in a temper-

ature sensitivity pathway (12, 13), where it

interacts with TRPV2, which is also highly

differentiated in sled dogs (99.8th PBS per-

centile; table S4 and fig. S19A) and codes for

temperature and potentially pain receptors

(14). Several related thermo-TRP sensors in

the same pathway, calcium ion transmembrane

transport, have been previously reported to be

under selection in cold-adapted woolly mam-

moths (15), which suggests convergent evolu-

tion in Arctic adaptation.

Another highly differentiated gene in sled

dogs is CACNA1A (Fig. 3, A and C), a calcium

channel subunit that plays an essential role

in skeletal muscle contraction (16). Further,

CACNA1A has been reported to be under posi-

tive selection in humans, specifically the Bajau

sea nomads (17), where it is involved in hy-

poxia adaptation (18), indicating a possible

role in managing exercise-induced hypoxia

in sled dogs. We hypothesize that the TRPC4,

TRPV2, and CACNA1A genes are involved in

functions beneficial to physical activity in the

Arctic. If so, given that the differentiated hap-

lotypes are also found in Zhokhov (Fig. 3, A

and B, and fig. S19A), any advantages that they

confer would have been important to dogs in

the Arctic ~9500 YBP.

Most domestic dogs are adapted to starch-

rich diets through marked increases in

AMY2B copy numbers and strong positive

selection for a dog-specific MGAM haplo-

type (19). Consistent with previous findings

(20), we observed that sled dogs carry sub-

stantially fewer AMY2B copies than other

dog breeds (fig. S20). We also found that

MGAM and AMY2B are the regions of the

genome with the lowest PBS, suggesting high

differentiation of other dogs relative to sled

dogs and wolves (Fig. 3A). Because negative

PBS can arise under different demographic

scenarios, we confirmed these observations

by computing PBS with other dogs as the

focal population (fig. S18). Indeed, modern

sled dogs and Zhokhov are among the only

dogs in our dataset that carry the ancestral

MGAM haplotype found at high frequency in

wolves (Fig. 3C and fig. S18). Therefore, our

observations suggest that sled dogs do not

carry the genetic adaptations to starch-rich

diets seen in other dog breeds.
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By contrast, sled dogs harbor specific hap-

lotypes of genes involved in copingwith a high

intake of fatty acids. SLC25A40, a mitochondrial

carrier protein involved in clearing triglycerides

from the blood (21), and APOO, an apolipo-

protein gene involved in regulating high levels

of fat and fatty acid metabolism (22), are both

highly differentiated in sled dogs (Figs. 3A).

The derived haplotypes of both genes are ab-

sent in Zhokhov, indicating that the haplo-

types are specific to modern sled dogs and

postdate their common ancestors with Zhokhov

(fig. S19, B and E). As another example of con-

vergent evolution, another gene of the apolipo-

protein family, APOB, is reported to be under

selection in polar bears, possibly as a result of

adaptation to fat-rich diets and clearance

of cholesterol from the blood (23). Overall,

similar adaptations to high intake of fatty

acids have been described in Inuit and other

Arctic human populations (24, 25), so our ob-

servations suggest that sled dogs adapted to a

fat-rich and starch-poor diet, echoing the dietary

adaptations of the Arctic human cultures with

whom they coexisted.

Bone composition of polar bears and rein-

deer consumed at the Zhokhov site indicate an

extensive hunting range and transport of large

body parts back to camp (26). Further, abun-

dant obsidian tools found at the site reveal

movement of obsidian from ~1500 km away

(3). Together, these findings indicate substan-

tial long-distance travel and transportation

of resources, in which dog sledding would

have been highly advantageous—if not neces-

sary. Putative sled remains and our genomic

analyses of a 9500-year-old dog from the

Zhokhov site indicate that the traditions and

key genomic variations that define modern

sled dogs were established in the northeast

Asian Arctic >9500 years ago. Our results

imply that the combination of these dogs with

the innovation of sled technology facilitated

human subsistence since the earliest Holocene

in the Arctic.
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Fig. 3. Adaptation.

(A) Manhattan plot of

the PBS values (y-axis)

in windows of 100 kg

base pairs (kb) using a

20-kb slide across

chromosomes (x-axis).

Data points between

the 20th and 80th

percentile of the empir-

ical distribution are

not plotted and dashed

red lines show the

99.95th and 0.05th per-

centiles. Names of

genes within the highest

peaks are shown, with

asterisks representing

no overlap with genes.

We note that other

genes not displayed in

the figure can overlap

the outlier regions; a full

list can be found in

tables S4 and 5.

(B to D) Haplotype

structures for TRPC4

(B), CACNA1A (C), and

MGAM (D). Rows

represent individuals,

and columns represent

polymorphic positions in

the dog genome. Cells

are colored by genotype:

Dark gray indicates that the alternative allele is homozygous, light gray that it is heterozygous, and white that the reference allele is homozygous. The row height for

ancient individuals was increased to facilitate visualization. Zhokhov is highlighted with a red asterisk. SDs, sled dogs.
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