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Abstract

With recent observations of diminishing summer Arctic sea ice extent, the hypothesis of
a “tipping point” in summer ice cover has been the focus of a number of studies. This
view suggests that as summer Arctic sea ice cover retreats it will reach a critical point
after which the ice–albedo effect will cause the summer ice cover to disappear altogether.
We have examined the heuristic argument behind this hypothesis using an idealized, but
observationally constrained, model of Arctic sea ice with representations of ice and ocean
mixed layer thermodynamics, varying open water fraction, an energy balance atmosphere,
and scalable CO2. We find that summer ice cover retreats toward an ice-free summer ocean
at an accelerating rate in a scenario with exponentially increasing CO2. However, we find no
critical CO2 concentration or “tipping point” using observationally based parameter values.
We identify in the extended parameter space a bifurcation associated with multiple summer
ice cover states and a cusp catastrophe, and we find that it occurs far from the physically
realistic parameter regime. Our results suggest that the argument for a “tipping point” in
summer Arctic ice cover brought on by ice albedo may not hold up when quantified. The
reason is related to the fact that ice cover has only just begun to retreat at the time of
maximum sunlight (June), and the minimum ice area occurs in September when there is
very little Arctic sunlight.

1 Introduction

The retreat of summer sea ice cover in the Arctic is one of the most dramatic signals of recent
climate change. While winter ice cover has remained fairly constant, summer ice extent has
diminished significantly during the past few decades (Fig. 1), with annual minimum extent
shrinking by 20% between 1979 and 2005 [34]. The high sensitivity of Arctic sea ice cover
is believed to be related to the difference in albedo (i.e., reflectiveness) between sea ice and
the open water that is exposed when it melts. Bare or snow-covered sea ice reflects most
sunlight back to space, while the dark ocean surface absorbs most incident light. Global
climate models have long predicted reduced Arctic sea ice cover as an amplified response to
global warming (e.g., Manabe and Stouffer [15]), prompting speculation more than a decade
ago about the use of Arctic ice observations to provide an early indicator of climate change
[35].
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Figure 1: Diminishing Northern Hemisphere summer sea ice extent based on satellite obser-
vations [3]. Ice extent is defined as the area of grid boxes with ice concentration of at least
15%, and September monthly mean values are plotted (note that September is the month
of minimum ice cover). The gray dashed line indicates a linear fit.

The ice–albedo effect could potentially lead to multiple states, and scientists have long
conjectured that the Arctic might support a second stable state under current climate
forcing which is at least seasonally ice-free (e.g., Ewing and Donn [5]). Heuristically, one
might indeed expect that ice-free and ice-covered stable states could exist, separated by
an unstable state in which the Arctic is partially covered by ice and absorbs just enough
sunlight to maintain the ice edge at the freezing temperature: adding a slight amount of
additional ice to this intermediate state would lead to less solar absorption, cooling, and
hence further expanded ice cover. As the background climate is warmed, the unstable state
would require more and more ice so that it reflects enough sunlight for the ice edge to
remain at the freezing temperature. This warming could be caused by rising greenhouse
gas levels, for example, or by some mechanism leading to increased heat transport into the
Arctic. At a particular level of warming, the background climate would become so hot that
the Arctic ocean would remain above the freezing point even if it were fully covered with
ice. At this point the stable ice-covered state and unstable intermediate state would merge
and disappear in a saddle-node bifurcation, leaving only the ice-free state. This scenario
suggests that if the Arctic were in the ice-covered state and climate were warmed beyond
the bifurcation point, it would make a rapid and irreversible transition to the ice-free state,
exhibiting behavior which is described mathematically as a catastrophe.

In light of the continued recent retreat of summer Arctic sea ice cover [29], the idea that
we may be approaching a threshold has been receiving a tremendous amount of attention in
the popular press. Often employing the term made popular by the title of Malcolm Glad-
well’s bestselling sociological treatise The Tipping Point (2000), widespread speculations
have suggested that the ice–albedo effect may cause an otherwise gradual global warming
to pass a point of no return, beyond which the Arctic would rapidly approach a state which
is ice-free each summer. The cover of the 3 April 2006 issue of Time Magazine suggests in
large bold letters: “Be Worried. Be Very Worried.... Earth at the tipping point.” Dimin-
ishing Arctic sea ice is a major focus of the cover story. A news feature in Nature on 15
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June 2006 titled “The tipping point of the iceberg” discusses the increasing interest in the
idea of tipping points in the climate system. The article states that among several plausible
tipping points under discussion, Arctic sea ice has received the most recent attention. It
reports that 234 newspaper articles mentioned a tipping point in connection with climate
change during the first five months of 2006, a stark increase from 45 such articles in 2004.

In the scientific literature, discussions about a bifurcation point in summer sea ice are
slightly less abundant, but several recent papers speculate about it. Lindsay and Zhang [14]
write, “The late 1980s and early 1990s could be considered a tipping point during which
the ice-ocean system began to enter a new era of thinning ice and increasing summer open
water because of positive feedbacks. It remains to be seen if this era will persist.... However,
at this point we can only state the tipping point as a hypothesis.” This is based on forcing
an ice-ocean model with atmospheric observations and finding significantly increased heat
absorption since the 1980s associated with ice albedo; they do not actually look for hys-
teresis. Overpeck et al [25] conclude that the arctic appears to be heading on “a trajectory
to a new, seasonally ice-free state” because of the ice–albedo feedback. They add, “The
processes and interactions among primary components of the Arctic system, as presently
understood, cannot reverse the observed trends toward significant reductions in ice”, imply-
ing that the system has passed a bifurcation point and ice will continue to decrease until it
arrives at a new state. Serreze and Francis [28] speculate about similar bifurcation behavior:
“We are likely near the threshold when absorption of solar radiation during summer limits
ice growth the following autumn and winter, initiating a feedback leading to a substantial
increase in Arctic Ocean surface air temperatures.” These papers do not actually claim
that there is a “tipping point”. Rather, they express it as a hypothesis and discuss its
plausibility.

It is not at all obvious, however, that the ice–albedo effect would lead to multiple Arctic
sea ice states and hence allow for the possibility of a catastrophe. There are many stabilizing
feedbacks in the Arctic climate system. Perhaps the most important of these in the context
of sea ice is the fact that thin ice grows considerably more rapidly than thick ice. For
example, Untersteiner [33] gives an annual increase in thickness of 0.8m for ice that is 0.6m
thick at the start of the growing season, but an increase of only 0.2m for ice that is initially
2.2m thick. Furthermore, if there were a second stable state that is at least seasonally
ice-free, it would seem likely that both states would have been explored by the climate
system in the past during the significant variability associated with glacial cycles. But most
paleoclimate reconstructions suggest that there was year-round Arctic sea ice for at least
the past million years (e.g., Moran et al [21]).

In this project, we have attempted to quantitatively investigate the plausibility of a
catastrophe in summer Arctic sea ice cover. One possible approach for such an inquiry
would be to employ the sophisticated global climate models which are used to predict future
climate change. As described in Section 2, however, these models disagree markedly in their
simulations of Arctic sea ice changes in a warming climate. Instead, we have approached
the problem by constructing an idealized model of the coupled Arctic ice-ocean-atmosphere
system. The model is physically stripped down to essentials, but it is observationally
constrained and includes all the ingredients in the heuristic argument for multiple summer
ice cover states brought on by the ice–albedo effect. To that extent, a positive result would
imply only the plausibility of a “tipping point”, but a negative result provides a somewhat
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stronger refutation. The model is described in Section 3. It is an extension of the Arctic sea
ice and atmosphere model of Thorndike [31] with additions to allow for partial ice cover,
an ocean mixed layer which is always active, a simple parameterization of ice dynamics,
scalable CO2, and a change in the treatment of atmospheric heat transport which is expected
to be more realistic in climate states that may be very different from today. The model
is represented by four coupled ordinary differential equations that evolve ice volume, ice
area, ice surface temperature, and ocean mixed layer temperature. These equations have
thresholds at the freezing temperature for the ice surface and ocean mixed layer, as well as
a threshold in the evolution of ice area associated with whether the ice volume is decaying.

The model results are described in Section 4. We begin by examining the model solution
in the parameter regime representing the climate today. We find only one sea ice state,
in contrast to the “tipping point” hypothesis. An exponential increase in CO2 leads to
retreating summer ice cover at an accelerating rate. When CO2 is increased somewhat
beyond the point where the ocean becomes ice-free each summer, the Arctic continues
to be completely ice-covered every winter. When CO2 is further increased, however, this
seasonally ice-covered state gives way to a state which is ice-free year-round. Only at this
point do multiple states exist: for a range of CO2 values, both seasonal ice cover and ice-free
year-round states are possible, leading to a fold catastrophe in winter ice cover as CO2 is
varied.

This suggests that the stabilizing effect of the growth-thickness relation may quantita-
tively outweigh the ice–albedo effect. To quantify the extent to which the former dominates
in this model, we explore the parameter space in search of a region with multiple summer
ice cover states. We find such a region, bounded by a saddle-node bifurcation of cycles,
when we significantly reduce the latent heat of sea ice fusion. An investigation of the cusp
catastrophe in CO2–latent heat parameter space reveals that the actual Arctic appears to
be far from the region where CO2 changes can cause a “tipping point” in summer sea ice
cover.

Concluding remarks and caveats regarding limitations of the idealized model are dis-
cussed in Section 5.

2 Arctic sea ice changes predicted by global climate models

Sophisticated global climate models (GCMs) have been used extensively to predict future
climate change associated with increasing levels of atmospheric CO2. About two dozen of
these models are being evaluated for the incipient Fourth Assessment Report (AR4) of the
Intergovernmental Panel on Climate Change (IPCC). The models typically have horizontal
resolutions of 1◦ to 4◦ in the ocean component and similar equivalent spectral resolutions
in the atmospheric component; the atmosphere and ocean components each typically have
10 to 50 vertical layers. All of the GCMs include representations of sea ice, with varying
levels of complexity in the sea ice models.

A possible approach to address the plausibility of a catastrophe in summer Arctic sea
ice cover would be to increase CO2 in one of these GCMs, continue the simulation until
the model is sufficiently spun up, and then decrease CO2 and look for hysteresis in the ice
cover. This hysteresis would imply a bifurcation or “tipping point”. The simulation would
be rather computationally intensive, as it would likely take more than 1000 simulation years
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to sufficiently reach a steady state for the elevated CO2 value.
The first 100 years of a similar experiment has already been evaluated with many of

these GCMs for the Special Report on Emission Scenarios (SRES) A1B scenario, which
is one of the CO2 future emission scenarios investigated in the IPCC AR4. The IPCC
AR4 Model Output Database at the Lawrence Livermore National Laboratory Program for
Climate Model Diagnosis and Intercomparison currently has ice cover data for the “Climate
of the 20th Century” and “SRES A1B” experiments from 16 of the models. We acquired
the monthly gridded data from Run 1 for each of these experiments and computed the time
series of total Northern Hemisphere sea ice extent by summing the area of grid boxes with
ice concentration greater than 15%. The 16 models are as follows: BCCR BCM2 (Norway),
CGCM3.1 T47 (Canada), CGCM3.1 T63 (Canada), CNRM CM3 (France), CSIRO Mk3
(Australia), ECHAM5 (Germany), GISS AOM (United States), GISS ER (United States),
HadCM3 (United Kingdom), HadGEM1 (United Kingdom), INM CM3 (Russia), IPSL
CM4 (France), MIROC3.2 low resolution (Japan), MIROC3.2 high resolution (Japan), MRI
CGCM 2.3.2a (Japan), and NCAR CCSM3.0 (United States).

The average seasonal cycle in Northern Hemisphere ice extent during 1980-1999 for each
of the 16 models is plotted in the top panel of Fig. 2. Ice extent during the same period
computed from ice concentration measurements derived by Cavalieri et al [3] from satellite
observations is included for comparison. The agreement between models and observations
is decent (cf. Parkinson et al [26]): observed ice extent varies between 6 and 16 million km2

during the seasonal cycle, and the intermodel spread is roughly ±3 million km2 (although
it is slightly greater than this during summer).

Predicted Northern Hemisphere summer minimum sea ice extent during 2000-2100 for
the “SRES A1B” experiment varies widely between the models. While the MIROC3.2 high
resolution model simulates an ice-free summer Arctic starting in 2030, GISS ER simulates
that in 2100 summer ice cover will be reduced by only 15%. The other models fill the space
of predictions in between. In should be noted that these GCMs show better agreement in
their predictions of future global mean temperatures, which is the result typically receiving
the most attention. This formidable intermodel spread in simulated ice cover discourages
the use of GCMs to assess the possibility of a future catastrophe in Arctic sea ice cover.
It motivates an approach using an idealized model with more transparent physics, which is
the method pursued in this report.

In a related project carried out this summer (Eisenman, Untersteiner, and Wettlaufer,
in prep), we used an idealized model to examine the possibility that the spread in IPCC
AR4 sea ice predictions is related to the sea ice models in the GCMs having been tuned
to simulate observationally reasonable ice cover today, despite a large spread in simulated
Arctic cloudiness which would otherwise lead to widely differing simulated present ice cover.
The detailed results of the project have been left out of this report for brevity.

3 Model description

Here the idealized model of the coupled Arctic sea ice, ocean, and atmosphere used in this
project is described. It is an extension of the model of Thorndike ([31], hereafter T92),
which is a single-column model with representations of vertical sea ice thermodynamics
and a thermal radiative balance atmosphere. When the ice melts to zero thickness in
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Figure 2: Simulated Northern Hemisphere sea ice extent in 16 IPCC AR4 GCMs. (Top
panel) Average seasonal cycle during 1980-1999 from “Climate of the 20th Century” exper-
iment. Ice extent derived from satellite observations during the same period is indicated
by a black line. Note the decent agreement between models and observations. (Bottom
panel) Predicted decrease in annual minimum monthly mean ice extent during 2000-2100
from “SRES A1B” experiment. Minimum extent is plotted for each model as a percent of
the minimum in the 1980-1999 mean seasonal cycle. The intermodel spread is formidable,
discouraging the use of GCMs to assess the possibility of a future ice catastrophe and
motivating the use of an idealized model.

Thorndike’s model, a thermodynamic ocean mixed layer is evolved until it reaches the
freezing temperature, at which point sea ice begins to form again. Thorndike’s model
displays two stable states. One is state ice-covered year-round and the other is ice-free
year-round. A third state also exists with seasonal ice cover, but it is unstable.

The model used here is extended to allow partial ice cover, which requires an ocean
mixed layer which is always in communication with the atmosphere unless the ocean is
completely ice-covered. The ice area is evolved using a methodology based on Hibler [10].
A simple parameterization of ice dynamics is included. The atmosphere used here is nearly
identical to Thorndike’s, except that CO2 can be varied and meridional heat transport into
the model domain depends on the implied meridional temperature gradient rather than
being specified at a constant value.

The state variables (Table 1) are ice volume, ice area, ice surface temperature, and
ocean mixed layer temperature. Their evolution is represented by four ordinary differential
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Table 1: Model state variables.
V Ice volume divided by area of box (units of m).
A Ice area (fraction of box covered by ice).
Ti Ice surface temperature (◦C).
Tml Ocean mixed layer temperature (◦C).

equations with thresholds associated with the freezing temperature of the ice surface and
ocean mixed layer, as well as a threshold in the evolution of ice area associated with whether
the ice volume is growing or decaying. The physical derivation of these equations is described
below.

3.1 Sea ice

3.1.1 Ice thermodynamics

Here we discuss the derivation of the idealized thermodynamic equations in T92, which
have been used in this model, starting from the fundamental conservation law for heat
transport in a two-phase, two-component system. We discuss the equations of Maykut and
Untersteiner [19] as an intermediate step.

As sea ice grows, differences in the rates of diffusion of heat and salt in seawater give rise
to a region adjacent to the ice-water boundary where the water is constitutionally super-
cooled. This triggers morphological instability of the interface: perturbations to a planar
interface grow because they protrude into the constitutionally supercooled region. Due to
this effect, sea ice develops a lamellar solid-liquid interface characterized by millimeter-
scale blades of ice with brine filling the narrow spaces between them. This is in contrast
to the more familiar situation of lake ice, which experiences none of these salinity-related
phenomena and grows with a planar solid-liquid interface.

At thermodynamic equilibrium, the interstitial brine in sea ice is at the freezing tem-
perature, maintaining the same temperate as the ice crystals immersed in it. As explained
by Maykut and Untersteiner [19], a rise in temperature causes ice crystals to melt until the
brine is diluted sufficiently to raise its freezing point to the new temperature. Hence the
heat capacity of a slab of sea ice is different from that of a simple solid: the brine pockets
serve as a thermal reservoir, enhancing the effective heat capacity.

This suggests a treatment of sea ice in which quantities are averaged over regions con-
taining both ice and interstitial brine. A region of mixed phase for a two-component fluid
(here salt and water) is called a mushy layer. Sea ice thermodynamics can thus be de-
scribed as a problem of vertical heat conduction in a mushy layer with the upper boundary
condition determined by the balance of surface fluxes.

The mushy layer equation for conservation of heat can be written (Worster [36], equation
6.20)

cm
∂T

∂t
+ cbu ·∇T = ∇ · (km∇T ) + L

∂φ

∂t
+ AR (1)

where T is the mushy layer temperature, φ is the solid fraction (i.e., fraction of the volume
which is ice), L is the latent heat of fusion per unit volume (proportional to the difference in
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enthalpy between brine and ice), and AR represents the absorption of solar radiation that
has passed through the surface of the ice. Here the mean volumetric specific heat capacity,
cm = ciφ+ cb(1−φ), is related to the volumetric specific heat of ice (ci) and brine (cb). The
mean thermal conductively of the mushy layer is approximated to be km = kiφ + kb(1−φ),
where ki and kb are the thermal conductivities of pure ice and brine; this relationship is
exact if the ice lamellae are oriented parallel to the heat flux, which is a good approximation
for sea ice. Note that in (1) we have corrected the typographical error (verified via personal
communication with Grae Worster) in the factor multiplying the advective term in Worster
[36] equation 6.20.

Feltham et al [6] showed that under certain physical assumptions the mushy layer conser-
vation equation (1) reduces to the temperature diffusion equation in the model of Maykut
and Untersteiner [19], which most current models of sea ice thermodynamics are based
on. Here we present a brief summary of the derivation in Feltham et al. Assuming local
thermodynamic equilibrium (i.e., brine is at freezing temperature) and a linear liquidus
relationship (i.e., linear dependence of brine freezing temperature, TL, on brine salinity, S),
we can relate the temperature to the brine salinity as

T = TL(S) = TL(0) − ΓS. (2)

We introduce the bulk salinity, Sbulk = (1−φ)S, using the assumption that the concentration
of salt incorporated into the ice crystals is negligible compared to the brine salinity. This
allows us to write the solid fraction φ in terms of brine salinity and hence, by (2), in terms
of temperature:

φ = −
ΓSbulk

θ
. (3)

Here we have defined θ ≡ T − TL(0) = T − 273◦C.
Maykut and Untersteiner [19] use a prescribed time-independent vertical salinity profile

for Sbulk, neglect brine flow (u = 0), and consider temperature variations in the vertical
only. Under these assumptions, (1) becomes

ceff
∂T

∂t
=

∂

∂z

(

keff
∂T

∂z

)

+ AR. (4)

with ceff ≡ cm − Ldφ
dθ and keff ≡ km. Inserting (3) and the definitions of cm and km, the

effective mushy layer heat capacity and conductivity can be written

ceff = ci −
ΓSbulk

θ
(cb − ci) + L

ΓSbulk

θ2
(5)

and

keff = ki −
ΓSbulk

θ
(kb − ki) . (6)

Equations (5) and (6) are equivalent to Feltham et al [6] equations 14 and 15 (with their
equation 14 corrected for a typographical error, verified by personal communication with
Danny Feltham, in the sign of the second term).

Approximate formulas for effective heat capacity and conductivity were derived by Un-
tersteiner [32]. Because they were found to be in good agreement with the theoretical
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expressions of Schwerdtfeger [27] and Ono [24], they were used by Maykut and Untersteiner
[19]. Feltham et al [6] demonstrate that sea ice heat capacity and conductivity obtained
by Schwerdtfeger [27] are identical to the mushy layer result (5)-(6) when L/ρi is assumed
constant, the conductivity of bubbly ice is assumed equal to ki, the volumetric heat capacity
of pure water is assumed equal to cb, and the densities of pure water, pure ice, and sea ice
are all assumed equal.

The equation in Maykut and Untersteiner [19] describing the evolution of the tem-
perature profile (their equation 6) has capacity and conductivity terms with parameters
multiplying powers of temperature and salinity in identical form to (5)-(6), with the ex-
ception that they do not have the Sbulk/θ term in (5). By illustrating this equivalence,
Feltham et al [6] demonstrate that these terms in the thermodynamic model of Maykut
and Untersteiner [19] are firmly grounded in the physics of mushy layers, thereby showing
exactly how the terms account for both the fractional inclusion of brine pockets and the
energy associated with phase change when this fraction evolves.

Maykut and Untersteiner [19] use a scaling argument to neglect the vertical derivative
of keff, simplifying (4) to

ceff
∂T

∂t
= keff

∂2T

∂z2
+ AR. (7)

They specify seasonally varying snowfall and include a layer of snow above the ice in which
temperature evolves according to

csnow
∂T

∂t
= ksnow

∂2T

∂z2
+ AR. (8)

In this layer, unlike in the mushy sea ice, the volumetric heat capacity (csnow) and con-
ductivity (ksnow) are constant parameters. The boundary condition at the upper surface,
z = hT , is a flux balance when the ice is below the freezing temperature and a Stefan
condition for surface melt otherwise:

ksnow

[

∂T

∂z

]

hT

− Ftop =

{

0 T (hT ) < 0oC

LdhT

dt T (hT ) = 0oC
(9)

where L is the latent heat of fusion of the surface material and Ftop represents the sum of
sensible, latent, downward and upward longwave, and shortwave heat fluxes at the surface.
All but the upward longwave flux are specified in their model based on observations. The
fluxes balance at the snow-ice interface (z = hsi):

ksnow

[

∂T

∂z

]

hsi+

=

[

keff
∂T

∂z

]

hsi−

. (10)

At the base of the ice layer, z = hB , a Stefan condition for ice growth or melt is applied:

−

[

keff
∂T

∂z

]

hB

− Fbot = −L
dhB

dt
. (11)

Here Fbot is the flux from the ocean mixed layer into the base of the ice, which is a specified
constant. Note from (9) and (11) that Maykut and Untersteiner evolve the upper and lower
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surfaces of the ice, hT and hB , separately. The actual predicted ice and snow thicknesses
are hice = hsi − hB and hsnow = hT − hsi.

The thermodynamic sea ice model of Maykut and Untersteiner [19] is summarized by
(7)-(11). They solved it numerically on a 10cm vertical grid with 12 hour time steps using
a $3 million 1960s IBM mainframe computer.

The simplified thermodynamic equations in T92 can be derived from (7)-(11) by ne-
glecting snow and sensible and latent surface heat fluxes, assuming the sea ice effective heat
capacity and conductivity to be independent of temperature and salinity (ceff(T, S) = c,
keff(T, S) = k), approximating all shortwave radiation to be absorbed at the upper sur-
face (AR = 0), and applying the quasi-stationary approximation to the diffusion equation
(7). This leads to equations for the evolution of surface temperature Ti and ice thickness
h ≡ hT − hB . The quasi-stationary approximation, which is based on assuming a large
Stefan number S ≡ L/ (cp∆T ), allows the left hand side of (7) to be integrated with the
assumption of a linear temperature profile:

∫ hT

hB

dz

(

c
∂T

∂t

)

= c

∫ hT

hB

dz

(

∂

∂t

(

z − hB

hT − hB
Ti

))

=
ch

2

dTi

dt
. (12)

This leads to an integrated version of the diffusion equation (7),

ch

2

dTi

dt
= k

[

∂T

∂z

]

hT

− k

[

∂T

∂z

]

hB

. (13)

Inserting into (13) the boundary conditions (9) and (11) leads to two sets of equations
depending on whether or not the surface is melting. In either case, the linear internal
temperature gradient is used for the lower boundary term (k [∂T/∂z]hB

= kTi/h) because
of the Stefan condition at the edge, and the lower boundary condition (11) becomes

−L
dhB

dt
= −k

Ti

h
− Fbot. (14)

When Ti < 0◦C, the first upper boundary condition in (9) gives k [∂T/∂z]hT
= Ftop. Insert-

ing this into (13) and using dh/dt = d/dt (hT − hB) = −dhB/dt in (14) leads to

ch
2

dTi

dt = Ftop − kTi/h, (15)

Ldh
dt = −k Ti

h − Fbot. (16)

When Ti = 0◦C, the Stefan condition at the upper edge leads to the use of the internal
temperature gradient for the upper boundary term, k [∂T/∂z]hT

= kTi/h. Using the second
upper boundary condition in (9), LdhT /dt = kTi/h − Ftop, (13) and (14) become

dTi

dt = 0, (17)

Ldh
dt = −Ftop − Fbot. (18)

Thorndike [31] separates the sea ice seasonal cycle into discrete steps representing cool-
ing, growing, warming, and melting. He uses (15)-(16) during growing and (17)-(18) during
melting, and during the warming and cooling steps he uses equations to evolve Ti and h
which are equivalent to letting dhB/dt = 0 in the lower boundary condition (11).
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In the model presented here, we use a continuously evolving seasonal cycle, using (15)-
(16) or (17)-(18) depending on whether Ti < 0◦C. Because we allow partial ice cover, unlike
in the models of Maykut and Untersteiner [19] and Thorndike [31], we evolve ice volume
rather than ice thickness. In the ice-covered fraction of the model domain A, this vertical
thermodynamic growth of the ice is represented by re-writing (16) and (18) as

L
dV

dt
= A

(

−k
Ti

h
− Fbot

)

, (19)

and

L
dV

dt
= A (−Ftop − Fbot) . (20)

3.1.2 Evolution of ice area

T92 describes the entire Arctic by a single ice thickness, using a thermodynamic ocean
mixed layer model which becomes active only when all the ice melts. In the model used
here, an open water fraction is included. When the open water fraction is small, it describes
the area of the Arctic covered by leads; when it is large, it describes extended regions of
open water.

While the thermodynamic sea ice equations in this model are derived from fundamental
physics, the area evolution is based on the observationally motivated methodology of Hibler
[10]. Hibler introduced this methodology to evolve ice concentration (fraction of grid covered
by ice) in each model grid box, allowing models to account for the presence of subgrid-scale
leads. Many of the GCMs today with the most sophisticated sea ice representations include
similar parameterizations of subgrid-scale leads and thickness distributions based on this
methodology. The box model used here effectively includes a single grid box, so Hibler’s
methodology can be similarly applied to the ice area in this box.

It should be noted that the open water fraction in this model, as in Hibler [10] and
similar models, is not meant to represent a truly ice-free region. Rather, the model domain
is split into a fraction containing thick ice, with the rest covered by a mixture of exposed
ocean and thin ice as in observed leads. The volume of this thin ice is assumed to be
negligible compared to the thick ice volume.

Hibler [10] presents a dynamic model in which the thermodynamic sea ice growth rate
is specified as a function of ice thickness and season, and concentration grows based on
the growth rate for zero-thickness ice. Here the thermodynamics are computed, and con-
centration increases when Tml reaches zero and tries to keep cooling: the mixed layer flux
imbalance Fni goes to making new ice volume as

dA

dt
=

Fni

Lh0
. (21)

As in Hibler, an equivalent thickness h0 must be assigned to the new volume to give it a
horizontal area. This parameter controls the rate at which ice cover grows; it is not to be
viewed literally as the typical thickness of new ice.

Area grows only when the mixed layer freezes; when the Stefan condition at the ice
base leads to volume growth, the ice grows vertically downward and area remains fixed.
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Figure 3: Schematic illustrating the proportionality between the rate of change of ice area
and the thermodynamic decrease of volume. This methodology follows Hibler [10].

Area decays, however, when volume is thermodynamically lost. Following the treatment in
Hibler, when dV

dt < 0 area decreases as

dA

dt
=

A

2V

dV

dt
. (22)

The proportionality between volume and area rates of change is based on an argument
in Hibler about the ice thickness distribution in the model domain. Assume that the ice
is distributed evenly in thickness between 0 and 2V/A. This gives a mean thickness of
V/A. (Note, however, that in both Hibler’s model and the model presented here the ther-
modynamic growth of ice is a nonlinear function of thickness and is computed under the
assumption that all ice is of the mean thickness V/A, rather than using an even distribution
between 0 and 2V/A.) It is assumed that all ice in the 0 to 2V/A distribution melts at the
same rate. Hence the rate of area decay is given by the rate of thickness decay times the
inverse slope of the thickness distribution

∆A = ∆h
dA

dh
=

∆V

A

A

2V/A
=

A

2V
∆V. (23)

This is illustrated schematically in Fig. 3.
Note that new ice area forms at Ti = 0, hence increasing the subzero ice surface tem-

perature when area is expanding during the growing season. This would add the term
−(T/A)dA/dt to dT/dt. Since T typically changes between 0◦and 30◦C while A evolves
between 0.75 and 1, (1/T )dT/dt tends to be far larger than (1/A)dA/dt, and the term is
expected to be insignificant and has been neglected.

Dynamics are represented in the model by requiring that A ≤ 0.95 (because of the
constant convergence and divergence of the wind field) and by imposing a net annual export
of 10% of the ice area based on observations of Kwok et al [13]. The latter adds the terms
−v0A and −v0V to the area and volume evolution equations.
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3.2 Atmosphere

3.2.1 Radiative equilibrium

The model has a gray-body thermal equilibrium atmosphere, as in T92 (cf. Goody and
Yung [9], Section 9.2), which is used to compute the downward longwave radiation at the
surface as a function of the surface temperature. To find this relationship it is necessary
to derive the full atmospheric vertical profiles of temperature and downward and upward
propagating longwave radiation. The atmosphere is assumed to be transparent to shortwave
(solar) radiation. A poleward atmospheric heat transport into the Arctic, D, is accounted
for in the model.

With longwave extinction coefficient κ(z) and atmospheric density ρ(z), the amount
of upward propagating longwave FUP at a given height can be found using dFUP /dz =
ρ(z)κ(z)FUP (z). This can be solved for intensity as a function of height,

FUP (z) = FUP (0) exp

(
∫ z

0
ρκdz′

)

= FUP (0) exp(η(z)), (24)

where FUP (0) is longwave radiated from the surface. Here we have defined the optical height,
η(z) ≡

∫ z
0 ρκdz′. An advantage of measuring height using η instead of z is that κ(z) and

ρ(z) drop out of the equations and the atmosphere can be described by a single parameter,
the total optical thickness N ≡ η(∞). Physically, an optical thickness of N means that a
longwave photon typically passes through 1/N of the atmosphere before being absorbed.

The longwave radiation from the surface can be linearized in surface temperature, Ts,
about the freezing temperature, Ts = 0◦C:

FUP (0) = σ(Ts + 273K)4 ≈ a + bTs. (25)

Here Ts is assumed to be measured in ◦C.
The atmosphere is absorbing and reradiating longwave radiation at all heights. The

intensity of downward radiation from the atmosphere above is given by FDN (η), which
must be zero at the top of the atmosphere:

FDN (N) = 0. (26)

The amount of radiation absorbed by a layer of thickness dη is (FUP (η) + FDN (η)) dη. We
assume the poleward heat transport is distributed evenly in optical height, so each layer
gains D/Ndη of heat from this advection. The longwave radiation from a given layer is
given by 2R(η)dη, where R(η) = a + bT (η) and the factor of 2 accounts for radiation from
the top and bottom of the layer. In thermodynamic equilibrium, this leads to

FUP (η) + FDN (η) +
D

N
= 2R(η). (27)

The fluxes vary in height because of absorption and reradiation:

dFUP (η)
dη = −FUP (η) + R(η), (28)

dFDN (η)
dη = FDN (η) − R(η). (29)
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Equations (27)-(29) are a system of one algebraic and two differential equations. They can
be solved using the boundary conditions (25)-(26) to give R, FUP , and FDN at all heights
η. The only part of the solution which is needed for the model is the dependence of the
downward longwave radiation at the surface on surface temperature, which is found to be

FDN (0) = (a + bTs)
N

2 + N
+

D

2
. (30)

3.2.2 Seasonal cycle

The seasonal cycle in this model if forced by varying specified shortwave radiation Fsw,
atmospheric optical thickness N , and 0–70◦N temperature which is used to compute the
poleward heat transport D (described in Section 3.2.3). T92 uses a step-function seasonal
cycle, with summer vales of N and Fsw for half the year and winter values for the other
half. This allows him to arrive at a closed form analytical solution to the model equations.
We solve the equations numerically, and hence we can use a continually varying seasonal
cycle.

Maykut and Untersteiner [19] force their model with specified shortwave forcing based
on observations of solar radiation incident at the surface. The values differ significantly
from the astronomically constrained top-of-the-atmosphere radiation, because the trans-
missivity of the Arctic atmosphere is typically only 40–70% [17]. We forced the model with
a non-negative sine-wave approximation to the monthly mean data used by Maykut and
Untersteiner (Fig. 4).

The optical thickness is higher during summer than winter because of increased cloudi-
ness. T92 tuned the values of N to simulate a seasonal cycle in ice thickness similar to the
more complicated model of Maykut and Untersteiner [19]; although the choice of N values
was motived by matching FDN (0) with observed surface downward longwave flux, using
summer and winter values of N which better match the cited FDN (0) observations (and
simulated surface temperature) cause all the ice to melt in the model of T92 for any initial
condition (not shown). The requirement that N be tuned to some extent is not surprising
in light of the many simplifications in the model, including neglecting sensible and latent
heat fluxes.

Björk and Söderkvist [2] constructed a single-column model with a sophisticated rep-
resentation of the Arctic ocean, 40 evolving ice thickness categories, and an atmospheric
thermal equilibrium model based on T92. They prescribed N to follow the observed annual
cycle of cloudiness but tuned its magnitude to give an observationally reasonable cycle of ice
thickness. We followed a similar procedure, using a non-negative sine-wave approximation
to the Arctic cloudiness observations made by Maykut and Church [17] (Fig. 4). This leaves
the seasonal maximum and minimum values of N as tunable constants, and we chose values
to give a physically reasonable seasonal cycle in ice thickness.

3.2.3 Poleward heat transport

T92 specifies a constant poleward heat flux in the atmosphere equivalent to a vertical flux
of 100W/m2, which is based on observations [23]. He finds a state similar to the observed
present-day Arctic, as well as a second stable state in which the Arctic is ice free with ocean
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Figure 4: Seasonal cycle in specified model forcing (black lines), and observations the forcing
is based on (gray circles and dashed line). (left) Shortwave radiation (W/m2) chosen to
fit observed incident solar flux at the surface [19]. (right) Optical thickness of the model
atmosphere, which is scaled to match Arctic cloudiness (percent) [17].

mixed layer temperatures varying seasonally between 6◦ and 14◦C. As mentioned in T92, it
is unlikely that the real atmosphere would maintain the present-day poleward heat transport
with the meridional temperature gradient significantly reduced. Thorndike later expanded
on this idea, letting D be a function of the meridional temperature gradient between two
boxes in a highly idealized climate model with no seasonal cycle or ice thermodynamics [30].
This method of approximating D is frequently employed in idealized atmospheric models
(e.g., Chen et al [4]), and we have adopted it here.

We let
D(Ts) = kD (T0−70N − Ts) (31)

with T0−70N specified to vary seasonally based on NCEP-NCAR [12] observed climatologi-
cal 1000mb temperature which was averaged both zonally and 0◦–70◦N. We used kD = 3.3,
equivalent to the value in Thorndike [30], which matches observed poleward heat transport
[23] fairly well using Ts from the standard model run (Fig. 5). Note that when this param-
eterization for D is inserted into the model of T92 the ice-free states disappears, leaving
only the state resembling the present-day Arctic.

J F M A M J J A S O N D

10

15

20

T 0−
70

N

J F M A M J J A S O N D

80

100

120

D

Figure 5: (left) Observed 0–70◦N mean seasonal cycle in 1000mb atmospheric temperature
T0−70N (gray circles and dash) and a sinusoidal fit used in the model (black). (right)
Observed poleward heat transport D (gray circles and dash), and computed values of D,
which use T0−70N and simulated Arctic surface temperature Ts, in the standard model run.
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3.2.4 Surface flux exchange

The surface is split into a region containing ice and an open water region, with average
surface temperature

Ts = ATi + (1 − A)Tml. (32)

Surface downward longwave radiation, FDN (0), was computed in Section 3.2.1 using the
average surface upward radiation FUP (0) = a+bTs. We assume that the downward longwave
radiation is everywhere uniform in the model domain and depends only on Ts, but we
compute the upward radiation separately for ice and open water as FUP (0) = a + bTi and
FUP (0) = a + bTml respectively. The longwave emissivities of ice and open water, both
roughly 0.95 or greater, have here been approximated to 1. (Note, however, that open
water and ice differ significantly in microwave emissivity, which is what satellite observing
systems like SSM/I are based on.) This leads to a surface longwave radiation imbalance
above ice or open water of

ε(T, Ts) ≡ FUP (0) − FDN (0) =
2a

2 + N
−

D(Ts)

2
+ b

(

T − Ts +
2Ts

2 + N

)

, (33)

with T = Ti or T = Tml inserted.
Shortwave radiation is also absorbed at the surface, adding an energy flux (1 − α)Fsw

with α = αml over open water and α = αi over ice. When ice is melting at the surface
(Ti = 0), a lower albedo is used to account for the ice and the presence of melt ponds (αmp).
The value of αmp is chosen based on observations of fractional pond cover in summer and
melt pond albedos [7].

3.2.5 Addition of CO2

We can crudely vary CO2 in the model by enhancing the Arctic optical thickness and
adjusting T0−70N in the equation determining poleward heat transport. Changes in radiative
forcing are typically approximated to have a logarithmic dependence on CO2 concentration,
and values associated with CO2 doubling are commonly discussed. The IPCC TAR [11]
cites a range of 1.5 to 4.5◦C for the equilibrium response of an atmospheric GCM to each
doubling of CO2, so we add 3◦C to T0−70N for CO2 doubling.

The IPCC TAR gives a range of 3.5-4.1 W/m2 for the direct longwave radiative forcing
due to a doubling of CO2, suggesting 3.7 W/m2 as the best estimate (their Section 6.3.1).
Solving (30) for N , we can write the relationship between optical thickness and longwave
forcing as

N = 2
FDN (0) − D/2

a + bTs − FDN (0) + D/2
. (34)

Replacing N with N + ∆N and replacing FDN (0) with FDN (0) + ∆F , this shows that the
change in optical thickness associated with an increase in longwave forcing is

∆N =
N(1 + N/2)

FDN (0) − D/2
∆F + O

(

∆F

FDN (0)

)2

. (35)

We insert into (35) mean values for N , FDN (0), and D from the standard model run, which
leads to an increase in N of ∆N = 0.2 associated with the enhancement in radiative forcing
of ∆F = 3.7 W/m2.
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Based on this, we vary CO2 in the model by replacing N with N + ∆N log2(co2) and
replacing T0−70N with T0−70N + ∆T log2(co2), where co2 represents the factor multiplying
present-day atmospheric CO2 concentrations, ∆N = 0.2, and ∆T = 3o.

3.3 Ocean mixed layer

The mixed layer is modeled as a thermodynamic reservoir. Its characteristic depth is Hml =
50m as in T92 (cf. observations of Morison and Smith [22]).

The flux of heat entrained through the bottom of the mixed layer is specified to be
Fent = 0.5W/m2 based on observations [22]. The turbulent heat flux between the ocean
and the base of the ice is given by Fw = ρcpchu∗0∆T , where ρ and cp are the density
and specific heat of seawater, ch = 006 is the heat transfer coefficient, u∗0 is the friction
velocity (square root of kinematic stress at ice-ocean interface), and ∆T is the difference in
temperature between ocean and ice [20]. Using a typical value of u∗o = 0.5cm/s based on
observations [18] and inserting ∆T = Tml (since T = 0 at the base of the mixed layer) leads
to

Fw = γTml (36)

with γ ≡ ρcpchu∗0 = 120W/m2.
The total heat flux into the mixed layer is thus

Fml = (1 − A) (−ε(Tml, Ts) + (1 − αml)Fsw) − AγTml + Fentr. (37)

If Tml > 0, this leads to heating or cooling according to

cmlHml
dTml

dt
= Fml, (38)

and no new ice area is formed, Fni = 0. When the mixed layer reaches the freezing tem-
perature (Tml = 0) and tries to keep cooling, the temperature remains at the freezing point
(dTml/dt = 0) and any additional heat loss goes into the formation of new ice (Fni = −Fml).

3.4 Summary

The model is described schematically in Fig. 6. It consists of four coupled ODEs which
are first-order and non-autonomous (Fsw, N , and D have time dependence). The model
equations described in Sections 3.1-3.3 are summarized below.

The surface longwave radiation imbalance is

ε(T, Ts) =
2a

2 + N
−

D(Ts)

2
+ b

(

T − Ts +
2Ts

2 + N

)

(39)

with surface temperature Ts = ATi + (1−A)Tml and atmospheric poleward heat transport
given by

D(Ts) = kD (T0−70N − Ts) . (40)

The mixed layer flux imbalance,

Fml = (1 − A) (−ε(Tml, Ts) + (1 − αml)Fsw) − AγTml + Fentr, (41)
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Figure 6: Schematic summarizing the model sea ice, atmosphere, and ocean thermodynam-
ics.

normally causes warming and cooling in the mixed layer and no production of new ice area,

cmlHml
dTml

dt
= Fml and Fni = 0. (42)

When Tml = 0 and Fml < 0, however, the mixed layer flux imbalance goes into forming new
ice,

dTml

dt
= 0 and Fni = −Fml. (43)

The equations for ice surface temperature and volume evolution are

ch
2

dTi

dt = −ε(Ti, Ts) + (1 − αi)Fsw − kTi

h , (44)

LdV
dt = A

(

−kTi

h − γTml

)

+ Fni − v0LV , (45)

except during surface melt, Ti = 0 and −ε(0, Ts) + (1 − αi)Fsw > 0, when ice melts at the
top and bottom according to

dTi

dt = 0, (46)

LdV
dt = A (ε(0, Ts) − (1 − αmp)Fsw − γTml) − v0LV. (47)

Here we have used the ice thickness, h = V/A.
The area evolves as

dA

dt
=

Fni

Lh0
−

A

2V
R

(

−
dV

dt

)

− v0A (48)

where the ramp function R(x) is 0 if x < 0 and R(x) = x if x > 0.
The model parameters are listed in Table 2.
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Table 2: Model parameters.
Fundamental physical parameters

c ice heat capacity 2 × 106 J/m3/K
L ice latent heat of fusion 3 × 108 J/m3

cml mixed layer heat capacity 4 × 106 J/m3/K
k ice thermal conductivity 2 W/m2/K
a for LW radiation: σ (Tf )4 320 W/m2

b for LW radiation: 4σ (Tf )3 4.6 W/m2/K
Parameters based closely on observations

Fsw shortwave radiation at ice or ocean surface seasonal, 0 to 300 W/m2

T0−70N 0◦–70◦mean temperature seasonal, 8 to 22◦C
αi ice albedo 0.65
αo ocean albedo 0.20
αmp ice albedo during surface melt 0.55
γ ocean–ice heat exchange coefficient 120 W/m2/K
Hml mixed layer depth 50 m
Fentr heat flux entrained into mixed layer 0.5 W/m2

kD atmospheric heat transport constant 3.3 W/m2/K
v0 dynamic export of ice from model domain 0.10 yr−1

1 − Amax minimum lead fraction 0.05
h0 equivalent thickness for newly formed ice 0.5 m

Tunable parameter, based loosely on observations
N optical thickness seasonal, 2 to 4.4

4 Results and discussion

The standard model run, using the parameter values in Table 2, is presented in Fig. 7. Ice
thickness (h = V/A) varies seasonally from 2.5 to 3.7m, in rough agreement with observa-
tions. This agreement in simulated thickness extrema, while encouraging, is not surprising
since we were able to tune the maximum and minimum seasonal values of N . Thickness
reaches a minimum in late October and a maximum in late May, which agrees fairly well
with Maykut and Untersteiner [19] who find minimum thickness in October/November and
maximum thickness in June.

The ice surface temperature (Ti) varies between 0◦and -32◦C, and the associated tra-
jectory in Ti versus V state space matches fairly well with the results of Maykut and
Untersteiner [19] and similarly Thorndike [31].

The minimum area occurs in September, in agreement with observations. The model
domain represents roughly the entire Arctic Ocean. Satellite observations [3] of the 1980-
1999 mean seasonal cycle in ice extent north of 70◦N (solid gray line) and 75◦N (dashed gray
line) are plotted next to simulated ice area for comparison. Note the fairly good agreement.

The mixed layer temperature varies between 0◦and 0.23◦C. When multiplied by γ, it
gives the ocean–ice heat flux. The annual average flux is Fw = 5.4 W/m2, which compares
well with the observational estimate by Maykut and McPhee [18] of 5.1 W/m2.
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Figure 7: Standard run results. There is only one stable periodic orbit in this parameter
regime, and any initial condition eventually converges on it. Plots represent evolution of
the model state during the course of the annual cycle. The first four are the state variables:
ice volume divided by box area V (m), ice surface temperature Ti (◦C), ice area A (fraction
of box covered by ice), and ocean mixed layer temperature Tml (◦C). The bottom center
plot represents the model trajectory through the state space projected onto the Ti–V plane.
The bottom right plot shows the evolution of ice thickness (h = V/A); note that the bump
in September is related to ice area rapidly expanding while volume slowly grows, causing
the average thickness to abruptly drop. Satellite observations [3] of the 1980-1999 mean
seasonal cycle are included in the ice area plot for comparison; the solid gray line indicates
ice extent north of 70◦N and the dashed gray line indicates ice extent north of 75◦N (both
are plotted in units normalized to have a maximum value of 0.95).
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Figure 8: Response of the model solution to scaling the CO2 parameter, which is crudely
related to atmospheric CO2 concentration. Values on the horizontal axis represent factors
multiplying the CO2 concentration today, with each tick mark representing one doubling.
For each level of CO2, the model solution is a periodic orbit in the 4-dimensional state
space. Solutions are represented here by four numbers: the summer (gray) and winter
(black) extrema of ice volume (left) and ice area (right). There is no hysteresis (or “tipping
point”) in summer ice cover. When CO2 levels reach about 5× the present-day value in this
model, the Arctic becomes ice-free each summer. Further increase of CO2 leads to multiple
states and hysteresis in winter ice cover, with an associated fold catastrophe: one state has
ice only in winter and the other is ice-free year-round. The multiple states exist in a narrow
range on the plots around the CO2 level of 16× the present-day value. The straight dotted
lines indicate the presence of an unstable state.

Varying the initial condition leads to no multiple states in the standard parameter
regime: every initial condition eventually converges on the limit cycle plotted in Fig. 7.
This disagrees with the “tipping point” hypothesis in which a second stable state which is
ice-free each summer would exist today.

We varied CO2, gradually raising the value and lowering it again to look for hysteresis
and hence multiple states. The summer and winter extrema in ice volume and ice area are
plotted in Fig. 8. A scenario in which CO2 exponentially increases in time is equivalent
to moving to the right on the horizontal axis at a constant speed: note the accelerating
approach to an ice-free summer (right; gray line). However, we find no “tipping point” in
summer ice cover.

When CO2 is further increased to the point where the ocean becomes ice-free year-
round, multiple states appear in a fairly narrow region of the parameter space. The region
is bounded on each side by a saddle-node bifurcation of cycles where a fold catastrophe or
“tipping point” occurs. Here, in an increasing CO2 scenario, when the CO2 level crosses
a threshold the climate rapidly switches from a state characterized by nearly ice-covered
winters to a state which is ice-free year-round. Note that the slight kink in the black line on
the right in Fig. 8 (CO2≈ 16, A ≈ 0.95) corresponds to a solution in which ice cover grows
continuously throughout the winter and nearly fills the model domain each year before it
begins to melt.

As indicated in Fig. 8, a catastrophe brought on by the demise of multiple sea ice states
can occur when one state is ice-free year-round, but not when one state is ice-covered year-
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Figure 9: Simulated ice area in the standard run (black solid line) and a seasonal ice cover
run with CO2 increased by 5.3× (black dashed line), compared with solar forcing in the
model (gray line; W/m2). In the seasonal ice cover state, as in present-day observations,
the minimum in ice area occurs several months after the maximum in sunlight, leading to
limited overlap between significant open water and intense Arctic sunlight. This mitigates
the ice–albedo effect, causing it to be outweighed by stabilizing effects and hence avoiding
a “tipping point” in the approach to an ice-free summer.

round as today. As an ice-free summer is approached in an increasing CO2 scenario, the
stabilizing thermodynamic thickness–growth effect (i.e., thin ice grows fastest) appears to
outweigh the destabilizing ice–albedo effect. In an attempt to understand why the heuristic
argument for a “tipping point” discussed in Section 1 failed in this model for the case the
present-day Arctic Ocean approaching ice-free summers, we consider why the argument
seemed to succeed for the approach to an ice-free year-round state.

Fig. 9 compares the model solar forcing, which is based on Arctic surface observations
(cf. Fig. 4), with simulated ice cover, which agrees fairly well with observed ice cover
(cf. Fig. 7). In both the standard run (solid line) and the enhanced CO2 seasonal ice
cover solution (dashed line), there is a significant phase lag between the times of maximum
sunlight and the times of minimum ice cover. This is indeed to be expected: the ice area
rate of change correlates fairly well with solar intensity. For the ice–albedo effect to lead to
multiple states and a catastrophe, the seasonal ice cover state must absorb significantly more
sunlight than a state which is ice-covered year-round with the same parameters. But the
temporal overlap in the seasonal ice state between having small ice area and experiencing a
high intensity of sunlight is somewhat limited: the sun shines on a fairly extended ice cover
for much of the summer. Compared to the seasonal ice state, the ice–albedo effect leads to
a far bigger change when making the transition to a year-round ice-free state in which the
sun shines on open water all summer.

To assess the extent to which the ice–albedo effect failed to lead to a “tipping point”
in summer ice cover, we investigated whether a region exists anywhere near the physically
realistic parameter regime where there are multiple summer ice cover states. We began
by pushing the disparity between ice and ocean albedo to the extreme. This was not
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Figure 10: Multiple sea states under the same forcing. Plots represent evolution of the
model variables during the seasonal cycle, as in Fig. 7, for the thin ice (left) and thick ice
(right) states. Here L∗ = 10 (i.e. sea ice latent heat of fusion is reduced 10×) and CO2 has
been increased to 1.5× the present-day value. It should be emphasized that we are pushing
the idealized model to the extremes in search of multiple summer ice states brought on by
the ice–albedo effect: neither a 10× diminished latent heat of fusion nor a simulated 19m
ice thickness are purported here to be physically realistic.

enough to lead to multiple states. We experimented with allowing the ice albedo to depend
on thickness following the parameterization of Maykut [16]. We tried varying the loosely
constrained parameters. None of these approaches led to multiple summer ice cover states.

The stabilizing thickness–growth effect becomes less pronounced as ice gets thicker (i.e.,
very thick ice does not grow much slower than fairly thick ice), so we considered allowing
excursions into state-space regions with large thickness. The most straightforward way to
do this is to make it easier to grow ice by reducing the latent heat of fusion. Defining the
original and observationally constrained sea ice latent heat to be Lorig, we scaled the latent
heat according to

L =
Lorig

L∗
. (49)

Letting L∗ = 10 led to multiple summer ice cover states (Fig. 10).
Although the multiple states demonstrated in Fig. 10 are related to the ice–albedo effect,

it should be noted that it is not the difference in albedo between open water and ice that is
primarily responsible. Rather, it is the difference between the cold sea ice albedo (αi) and
the albedo used to account for the presence of melt ponds when Ti = 0 (αmp). Both states
have minimal temporal overlap between extended open water and intense sunlight, but the
thin ice state has the ice surface at Ti = 0 for much of the peak of the summer, while in
the thick ice state the surface temperature remains below the freezing temperature for the
entire year.

Varying CO2 with L∗ = 10, we finally find the desired catastrophe (or “tipping point”)
in summer ice cover. This is illustrated in Fig. 11.

Next, we vary both CO2 and L∗ to explore the parameter space and find the edge of
the region associated with multiple summer ice states. To do this, we slowly increase and
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Figure 11: As in Fig. 8, by with L∗ = 10. Now two regions exist with multiple sea ice
states, and there is a catastrophe in summer ice cover (discontinuity in gray solid line).

then decrease CO2 for an array of L∗ values and look for hysteresis. The result is presented
in Fig. 12. There are two regions of multiple states, each bounded by lines on which a
saddle-node bifurcation of cycles occurs. These lines are associated with a cusp catastrophe:
entering and then exiting either of these regions by slowly varying the parameters will lead
to a catastrophe in which the current state suddenly disappears and the system rapidly
approaches a new state.

Fig. 12 suggests that a catastrophe in summer ice cover would be possible if the latent
heat of ice fusion were reduced from the observationally constrained value by a factor of at
least 4×. The latent heat of sea ice can change depending on salinity, and observed sea ice
has a salinity of roughly 0–8ppt (varying both vertically and seasonally). Theoretical and
empirical formulas suggest that the latent heat of melting sea ice is about 25% lower for ice
with 8ppt salinity than for pure ice (e.g., Bitz and Lipscomb [1]). The dominant variability
in global mean ocean salinity over the past million years is associated with glacial cycles,
during which salinity varies about the mean value of 35ppt by about 1ppt because of the
reduction in ocean volume caused by the presence of large ice sheets on land. If the mean
ocean salinity change associated with glacial cycles were carried into a change in mean sea
ice salinity, it would lower the latent heat of fusion by 3%. This implies that a reduction
in the latent heat of fusion of sea ice by 4× (i.e, 75%) would be quite significant, and it is
unlikely that it could be physically realized in the foreseeable future.

5 Conclusions

We have extended Thorndike’s [31] idealized Arctic sea ice model to allow for partial ice
cover, adding an active ocean mixed layer and scalable CO2. This model simulates an ac-
celerating approach to an ice-free Arctic summer as CO2 concentrations exponentially rise,
suggesting that the approach may be fairly abrupt. We find two regions in the parameter
space where multiple states are possible because of the ice–albedo effect. One region has
multiple winter ice cover states (with both states ice-free in summer); the other has multiple
summer ice cover states (with both states ice-covered in winter). Catastrophes are associ-
ated with exiting either region, but the actual Arctic appears to be far from the region in
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Figure 12: Regions where multiple states are possible in CO2 versus latent heat parameter
space. A saddle-node bifurcation of cycles associated with a cusp catastrophe occurs at the
edge of each shaded region. Inside each shaded region there are three possible solutions: two
stable periodic orbits and one unstable periodic orbit. The gray “x” marks the present-day
physical world. This implies that for a “tipping point” in summer ice cover to be possible,
the latent heat of sea ice fusion would have to be 4× smaller than it is in the present-
day physical world (L∗ = 4). This model does find a “tipping point” in the distant but
physically realizable parameter space (L∗ = 1, CO2= 20× present-day) associated with the
transition from seasonal ice cover to a state which is ice-free all year.
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parameter space where CO2 changes could cause a catastrophe in summer ice cover.
This research suggests that a “tipping point” in summer Arctic sea ice cover brought

on by the ice–albedo affect, which has been conjectured to be likely for the 21st century,
does not occur in a physically realistic region of the parameter space. In light of the fact
that the seasonal minimum in ice cover occurs several months after the time of maximum
Arctic sunlight, the destabilizing ice–albedo effect is not sufficient to outweigh the stabilizing
thickness–growth effect and produce multiple summer sea ice states.

This model is a significantly idealized representation of the physical world. Similar to
Thorndike [31], the model does not include ridging, snow, sensible and latent heat exchange,
salinity, or cloud feedbacks. It is possible that other bifurcations would be introduced by
adding more realistic physics to the model. For example, a wide variety of parameterizations
of sea ice albedo variations have been presented in previous studies (e.g., Maykut [16], Flato
and Brown [8]) and may affect these results. Furthermore, despite our fairly thorough
investigations, other bifurcations may be hiding nearby in the ∼ 20-dimensional parameter
space.

Nonetheless, all the physics in the standard argument for a “tipping point” brought on
by ice albedo has been faithfully represented in this model. This result suggests that the
popular heuristic may not hold up when properly quantified.
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