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ABSTRACT
Supporting ranking queries in database systems has been
a popular research topic recently. However, there is a lack
of study on supporting ranking queries in data warehouses
where ranking is on multidimensional aggregates instead of
on measures of base facts. To address this problem, we pro-
pose a query execution model to answer different types of
ranking aggregate queries based on a unified, partial cube
structure, ARCube. The query execution model follows a
candidate generation and verification framework, where the
most promising candidate cells are generated using a set of
high-level guiding cells. We also identify a bounding princi-
ple for effective pruning: once a guiding cell is pruned, all
of its children candidate cells can be pruned. We further
address the problem of efficient online candidate aggrega-
tion and verification by developing a chunk-based execution
model to verify a bulk of candidates within a bounded mem-
ory buffer. Our extensive performance study shows that
the new framework not only leads to an order of magnitude
performance improvements over the state-of-the-art method,
but also is much more flexible in terms of the types of rank-
ing aggregate queries supported.
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1. INTRODUCTION
Ranking (or top-k) query processing [7, 14, 6, 9, 21, 24, 12,

4, 32, 27] has become an increasingly important problem for
many applications in a variety of fields. While considerable
research has been devoted to ranking query processing in
Web search, data integration, multimedia data management,
etc., it has not been well-studied in the context of data ware-
housing and OLAP, including many important applications
like business intelligence, decision support, interactive and
explorative data analysis, etc., where efficient methods are
needed for producing ranked answers to aggregate queries in
multidimensional analysis.

Example 1. Consider a product manager who is analyzing
a sales database which stores the nationwide sales history
organized by location and time. The manager may pose the
following queries: “What are the top-10 (state, year) cells
having the largest total product sales?” and he may further
drill-down and ask“What are the top-10 (city, month) cells?”
in order to make his investment decisions.

Example 2. Consider an organization donation database,
where donators are grouped by “age”, “income”, and other
attributes. Interesting questions include: “Which age and
income groups have made the top-k average amount of do-
nation (per-donor)?” and “Which income group of donators
has the largest standard deviation in the amount of donation?

The above questions are examples of “ranking aggregate
queries”, characterized by the ranking on the aggregation
of multidimensional data. It is challenging to process rank-
ing aggregate queries efficiently due to the difficulties aris-
ing from both ranking and multidimensional analysis. Un-
fortunately, many existing ranking methods for traditional
database systems [7, 21, 24] are not efficient for answering
such queries, where data tuples must be aggregated before
any ranked result is produced. On the other hand, from the
perspective of OLAP and data warehousing, although data
cube [17, 10], relying on data precomputation and materi-
alization, has been a well-developed model to handle multi-
dimensional analysis, its current techniques [19, 34, 18, 30,
22] do not address ranking analysis directly.

The most relevant studies on this problem fall into ei-
ther one of the two categories: (1) no materialization, and



(2) full materialization. In the first category, the rankagg
framework [23] is proposed to support ad-hoc ranking ag-
gregate queries by making the query optimizer rank-aware
and considering an ordering of tuple accesses during query
execution. The maximum possible aggregate score is esti-
mated for each incomplete cell that is not yet fully verified;
a cell can be pruned if this score is no greater than the
current top-k score. In the second category, the Sorted Par-
tial Prefix Sum Cube [25] is proposed, and based on that,
a query execution algorithm is developed to produce top-k
answers to SUM queries for a given time range. The space
usage of the cube is the same as that of a full data cube.
In some cases, the current techniques may not assure sat-
isfactory performance because, without materialization, it
is expensive to compute aggregation from scratch, whereas
maintaining a full cube could be cursed by high dimension-
ality. Moreover, existing methods often are tailored to pre-
defined or monotone aggregation (e.g., SUM and COUNT );
therefore, flexible support for various other non-monotone
aggregate measures such as AVG (Average) and STDDEV
(Standard Deviation) is needed.

Motivated by these observations, we propose a new method
called ARCube (Aggregate-Ranking Cube), to address rank-
ing aggregate queries flexibly and efficiently. The ARCube,
in principle, seeks middle ground by adopting the partial
materialization approach: it is a concise structure consist-
ing of two types of materialized cuboids, guiding cuboid and
supporting cuboid, where the former contains a number of
guiding cells that provide concise, high-level data statis-
tics to guide the ranking query processing, whereas the lat-
ter provides inverted indices for efficient online aggregation.
Based on this structure, we develop a novel query execu-
tion model that exploits the interdependent relationships
between cuboids. For ranking queries on a non-materialized
cuboid, efficient online query execution is done via a candi-
date generation-and-verification framework, where the most
promising top-k candidate cells are generated by combining
a set of guiding cells, and their actual aggregate values are
then verified using the inverted indices.

Consider, for example, a query asking for the top-10 most
populated cities in the United States, and the population
information is materialized only at the state-level (guiding
cuboids). We can start by aggregating on cities in “New
York”, “California”, and so on (candidate cells), which are
likely to contain the top-k answers, instead of searching
sparsely populated cities in “Alaska”, “Wyoming”, etc.. The
intuition here is that “higher-ranking states imply higher-
ranking cities with high probability”; in other words, the
high-level, compact data statistics can be used to guide the
query processing so that promising candidates are given
higher priority. This intuition also applies to many other sce-
narios. For example, consider ranking in the DBLP dataset
[1]. Finding the most productive authors (SUM aggrega-
tion) in a particular conference (such as “SIGMOD”) can be
guided by first looking at productive authors in the associ-
ated research field (such as “Database Systems”).

The guiding cells, at the heart of the query execution
framework, play the key role not only in guiding, but also
in effective pruning. We identify for each guiding cell an
aggregate-bound, which is derived from the materialized high-
level statistics. By bounding principle, if a guiding cell’s
aggregate-bound is no greater than the current top-k aggre-
gate value, then none of the candidates generated by this

cell can be the top-k results, and therefore the cell can be
pruned. As a result, under the unified framework, different
types of aggregate query measures as well as complex mea-
sures can be flexibly supported using different aggregate-
bounds. We will specifically discuss aggregate-bounds for a
set of common measures including SUM , AVG, MAX and
STDDEV .

To further optimize query processing, we develop a chunk-
based execution algorithm that claims two advantages. First,
while the current techniques must verify aggregates on a cell-
by-cell basis, candidate cells in our framework are verified
in bulky way and thus a memory buffer can be reused for
efficient aggregation. Second, the query execution can be
finished within a bounded buffer, as opposed to using a pri-
ority queue for all candidate cells: if the number of cells is
large, the cost for maintaining the queue would be expensive.

The ARCube integrates ranking with aggregation, follow-
ing the partial materialization cubing strategy that balances
the cost and benefits of precomputation. To the best of our
knowledge, such integration has not been studied before.
Specifically, this paper has made the following contributions.

1. We develop the ARCube, a unified, partial cube structure
to efficiently process different types of ranking aggregate
queries. We show that this cube can be extended to sup-
port more complex ranking aggregate queries.

2. A query execution model is proposed based on the can-
didate generation and verification framework, and the
bounding principle is developed for effective pruning. Un-
der this framework, we further address the problem of
efficient candidate verification by upgrading the original
execution model to a chunk-based one that can utilize
a bounded memory buffer. We also develop a chunk
scheduling algorithm that can generate promising can-
didates and reuse the buffer simultaneously.

3. Encouraging results are shown in our extensive experi-
ments conducted on both synthetic and the TPC-H deci-
sion support benchmark. The proposed method is much
faster and more flexible than current techniques.

1.1 Problem Statement
Any ranking query problem can be characterized by ei-

ther a maximization or a minimization criterion, which de-
termines whether results with the highest or lowest scores
are interesting. In this paper we study ranking queries
with the maximization criterion, which is interesting in most
database and OLAP scenarios.

The problem of aggregate ranking can be formalized as
follows. Consider a fact table (or base relation), R(A, S),
with d attributes, A = {A1, A2, . . . , Ad}, and a raw score
attribute, S, with non-negative scores. A top-k aggregate
query with an aggregate function F Q

agg, which is formulated

on group-by attributes AQ = {AQ
1 , AQ

2 , . . . , AQ
q } (AQ ⊆

A, 1 ≤ q ≤ d), asks for k cells {c1, c2, . . . , ck} in the group-
by view R(AQ) such that for any other cell c′ ∈ R(AQ),
F Q

agg(c′) ≤ mink
i=1 F Q

agg(ci). Ties are broken arbitrarily.
In the remainder of the paper, we first present the struc-

ture of the ARCube in Section 2. In Section 3, we discuss
the basic query execution algorithm and the chunk-based
one, both using the SUM measure as an example. Addi-
tional ranking functions are discussed in Section 4. Section
5 reports the performance results, followed by a discussion
of related work and extensions in Section 6. Finally, Section
7 concludes our study.



tid A B C Score
t1 a1 b1 c3 63
t2 a1 b2 c1 10
t3 a1 b2 c3 50
t4 a2 b1 c3 16
t5 a2 b2 c1 52
t6 a3 b1 c1 35
t7 a3 b1 c2 40
t8 a3 b2 c1 45

Figure 1: A sample database.

A s1
agg(SUM )

a1 123
a2 68
a3 120

Figure 2: Guiding cuboid Cgd(A, SUM ).

B s1
agg(SUM )

b1 154
b2 157

Figure 3: Guiding cuboid Cgd(B, SUM ).

A Inverted Index
a1 (t1, 63), (t2, 10), (t3, 50)
a2 (t4, 16), (t5, 52)
a3 (t6, 35), (t7, 40), (t8, 45)

Figure 4: Supporting cuboid Csp(A).

B Inverted Index
b1 (t1, 63), (t4, 16), (t6, 35), (t7, 40)
b2 (t2, 10), (t3, 50), (t5, 52), (t8, 45)

Figure 5: Supporting cuboid Csp(B).

2. AR-CUBE STRUCTURE
In this section, we introduce the general partial cube struc-

ture, ARCube. The customization of the ARCube to differ-
ent query measures and complex functions will be discussed
in the next sections.

Definition 1. Given group-by attributes A′ = {A′1, A′2,
. . . , A′d′} (A′ ⊆ A, 1 ≤ d′ ≤ d) and m aggregate mea-
suresM = {F 1

agg, . . . , F m
agg} (m ≥ 1), we define the guiding

cuboid Cgd(A′,M) as a list of entries as follows. Each entry
has the format {g : s1

agg, . . . , sm
agg}, where g = (v1, . . . , vd′)

is a distinct guiding cell in the group-by view R(A′) and
si

agg = F i
agg(g) (1 ≤ i ≤ m). That is, s1

agg, . . . , sm
agg are

obtained by aggregating g on S using guiding measures
F 1

agg through F m
agg, respectively.

Definition 2. Given group-by attributes A′ = {A′1, A′2,
. . . , A′d′} (A′ ⊆ A, 1 ≤ d′ ≤ d), we define the support-
ing cuboid Csp(A′) as a list of entries as follows. Each
entry has the format {g : (t1, s1), . . . , (tlg , slg )}, where g =
(v1, . . . , vd′) is a guiding cell in the group-by view R(A′) and
(t1, s1), . . . , (tlg , slg ) is g’s inverted index, which is a list of
lg (tid,score)-pairs corresponding to g’s raw tuple id’s and
raw scores in R(A, S).

Definition 3. Given a set of group-by’s, A′1, . . . ,A′D, and
a set of aggregate measuresM, an ARCube , C(A′1, . . . ,A′D,
M), consists of D guiding cuboids Cgd(A′i,M) (1 ≤ i ≤ D)
and D supporting cuboids Csp(A′i).

Example 3. We illustrate part of an ARCube structure
using an example. Figure 1 shows a sample data set R con-
sisting of 8 base tuples and 3 attributes A, B, and C. For
illustrative purposes, we create a tid column that shows the
row number. The last column, Score, stores the raw score.
Figure 2 depicts a guiding cuboid Cgd(A,SUM ), which con-
tains 3 cells; in this cuboid, only SUM has been computed,
i.e., M = {SUM }. Similarly, Figure 3 shows the guiding
cuboid Cgd(B,SUM ). Figure 4 and 5 illustrate two sup-
porting cuboids, Csp(A) and Csp(B). For instance, cell a2

in Figure 4 has an inverted index of length 2 and the first
element (t4, 16) indicates that a2 has a raw tuple id t4 and
its raw score is 16.

Given a data set R, we consider two materialization plans.
The first is a baseline plan which materializes all cuboids
with single dimensions, i.e., D = d and Ai = {A1, . . . , Ad}.
This plan is sufficient to support any query but may not be
efficient. An alternative plan is that, given a cuboid size
threshold θCUBOID, we keep all guiding cuboids in the cube

space with cardinality no larger than θCUBOID and their cor-
responding supporting cuboids. For this plan, because guid-
ing cuboids are at high-level storing aggregate information,
they could fit in memory easily. Also, the overall material-
ization size would be much smaller than a full cube because
only selected cuboids are materialized. More discussions on
the materialization are deferred to Section 6.2.

3. QUERY EXECUTION FRAMEWORK
Existing database or data warehouse systems suffer from a

lack of efficient support for ranking aggregate queries. In this
section, we propose a novel query execution framework based
on the ARCube and use SUM as an example. Systematic
extensions of the framework to other aggregate measures
and complex functions will be discussed in Section 4.

3.1 Query Execution: A Motivating Example

Example 4. We motivate the query model using an ex-
ample continued from Example 3. Consider a query asking
for the top-1 SUM (i.e., F Q

agg = SUM ) aggregate grouped-

by AB (i.e., AQ = {A, B}). Given any ARCube, there are
two possibilities. First, if there exists a materialized guiding
cuboid Cgd(AB,M) such that SUM ∈ M, then scanning
the guiding cuboid once would answer the query efficiently.
Otherwise, the result cannot be found from the material-
ization directly and we need to utilize materialized ancestor
cuboids to help query processing. Suppose, as shown in
Example 3, that Cgd(A,SUM ), Cgd(B,SUM ), Csp(A), and
Csp(B) are materialized. Our intuition is that, because the
two guiding cuboids store the aggregate information that is
higher-level than what the top-k query is asking for, they can
serve as guidance to finding the actual top-k results. The
query execution process is illustrated in Figures 6 through
8. Figure 6 shows two sorted lists, labeled F agg(ai) and
F agg(bj), respectively. Each sorted list contains a number of
guiding cells and each cell g is associated with an aggregate
value, which we call g’s aggregate-bound (or F agg(g)).
We explain its meaning shortly.

Initially, as illustrated in Figure 6, the two sorted lists
are obtained from Cgd(A,SUM ) and Cgd(B,SUM ). The
aggregate-bound of each guiding cell is initialized to be the
materialized SUM and the guiding cells in each list are
sorted descendingly according to the aggregate-bound. Next,
we pull out the top guiding cell from each list and combine
them to generate the first candidate cell, (a1, b2). The in-
tuition is straightforward as a1 and b2 have larger SUM than
any other cell does. It is, however, not possible to terminate
early until we verify its true aggregate value and make sure



F agg(ai) F agg(bj)
a1 : 123 b2 : 157
a3 : 120 b1 : 154
a2 : 68

Candidate (a1, b2) : 60

Figure 6: Initial sorted lists.

F agg(ai) F agg(bj)
a3 : 120 b1 : 154
a2 : 68 b2 : 97
a1 : 63

Candidate (a3, b1) : 75

Figure 7: Sorted lists after the
first candidate verification.

F agg(ai) F agg(bj)
a2 : 68 (Pruned) b2 : 97
a1 : 63 (Pruned) b1 : 79
a3 : 45 (Pruned)
Candidate: no more

Figure 8: Sorted lists after the
second candidate verification.

any unseen candidate cell has no greater aggregate. To verify
the true aggregate, we turn to the inverted indices of a1 and
b2 in Csp(A) and Csp(B), respectively. We retrieve their in-
dices and intersect the two tid-lists, which results in {t2, t3},
and then compute the SUM of the raw scores over the inter-
secting tid-list, which results in F Q

agg(a1, b2) = 10+50 = 60.
Having known that SUM (a1, b2) = 60, we can infer thatP
j 6=2 SUM (a1, bj) = SUM (a1)−SUM (a1, b2) = 123−60 =

63. This means that any unseen cell (a1, bj) (j 6= 2) must
satisfy SUM (a1, bj) ≤ 63. Thus, we update the aggregate-
bound F agg(a1) from 123 to 63 (Figure 7). For the same
reason, F agg(b2) can be updated from 157 to 97, implying
that SUM (ai, b2) ≤ 97 (i 6= 1). Now, we come to the follow-
ing definition.

Definition 4. The aggregate-bound of a guiding cell g,
F agg(g), is the maximum possible aggregate (F Q

agg) of any
unseen candidate cell that could be combined by g.

After the first candidate verification, as shown in Figure
7, the order of the guiding cells in the two sorted lists has
changed due to the update. The top-1 cell from the two
lists are now a3 and b1, respectively. We generate the sec-
ond candidate (a3, b1) in the same fashion. To verify it, we
intersect the tid’s of a3 and b1, which results in {t6, t7} and
SUM (a3, b1) = 35 + 40 = 75. Then, we update F agg(a3) to
120− 75 = 45 and F agg(b1) to 154− 75 = 79 and adjust the
sorted lists, as shown in Figure 8. At the time, the maximum
aggregate-bound in the sorted list for ai, F agg(a2) = 68, is
no greater than the current top-1 aggregate value, 75. Al-
though both F agg(b1) are F agg(b2) are still greater than 75,
it is impossible to find any ai such that F Q

agg(ai, bj) could
be greater than 75. Therefore, we can terminate the query
process and output (a3, b1) : 75 as the final top-1.

In the example, there is a total number of 6 cells from
the query group-by AB, whereas the query execution only
touched 2 candidate cells without seeing the remaining 4.
This is in contrast to the existing methods which must see
all 6 cells, regardless of their raw scores or aggregate values,
before termination.

3.2 Query Execution Algorithm
We now formally present the query execution algorithm.

Consider a SUM query formulated on AQ asking for the top-
k cells. We address the problem of answering the ranking
query using a given query plan consisting of N (1 ≤ N ≤ q)
guiding cuboids, Cgd(A1,SUM ), . . ., Cgd(AN ,SUM ), and
N supporting cuboids, Csp(A1), . . ., Csp(AN ). Assume that

the query plan is valid:
SN

i=1Ai = AQ and ∀i∀j, i 6= j ⇒
Ai −Aj 6= φ. Notice that the query plan selection problem
is orthogonal to the query execution, and the baseline mate-
rialization plan of an ARCube guarantees that such a valid
query plan exists.

The query execution algorithm QueryExec() is described in
Table 1. The algorithm is made up of multiple iterations of
candidate generation and verification. At the beginning, N
sorted lists are initialized by scanning all the guiding cuboids
into memory and F agg(g) is initialized to be the materialized
SUM (g) for each guiding cell g (Line 1). θ indicates the k-
th largest aggregate value seen so far (Line 2). Moreover, a
candidate ĉ is generated by combining the top guiding cell
from each sorted list (Lines 3–4). This step is justified by
two reasons. First, the rank of guiding cells can serve as
good estimates of the rank of candidate cells so that large
aggregate cells are likely to generate large candidate cells.
Second, guiding cells with small aggregate-bounds are more
likely to be pruned and should have low priority.

A slight technicality is that the top cells from the N sorted
lists may not always be able to form a valid candidate (Line
5), because the candidate might have already been verified,
or the top cells could not be combined (e.g., (a1, b1) and
(b2, c3)). In that case we would need to recursively increment
the pointers to the sorted lists until the next non-verified
candidate is found.

In addition to verifying Fagg(ĉ) for each candidate ĉ (Line
6), the job of the candidate verification step also includes

Procedure: QueryExec()
Input: Top-k, AQ, Cgd(A1,SUM ), . . . , Cgd(AN ,SUM ),
Csp(A1), . . . , C

sp(AN ).
Output: Top-k aggregate cells.
Candidate generation
1 [Sorted List Initialization] For each guiding cuboid

Cgd(Ai, SUM) (i = 1..N), create a sorted list;
2 θ ← 0;

Initialize the top-k priority queue;
3 For each sorted list i = 1..N , select the guiding cell

gi with the maximum F agg(gi). Terminate the al-
gorithm if any sorted list is empty;

4 Generate a candidate cell ĉ by combining g1, . . . , gN ;
5 WHILE ĉ has been verified before DO

ĉ ← next candidate from the sorted lists;
Terminate if no more ĉ can be generated;

Candidate verification
6 Verify Fagg(ĉ), the actual aggregate value of ĉ, by

retrieving the inverted indices from the supporting
cuboids;

7 Update the top-k priority queue and let θ be the
current top-k threshold;

8 [Aggregate-Bound Updating]
For each i = 1..N , F agg(gi) ← F agg(gi)− Fagg(ĉ);

9 For each sorted list i = 1..N , prune all guiding cells
g where F agg(g) ≤ θ; Go to 3.

Table 1: Query execution algorithm for SUM .



updating the aggregate-bound (Line 8) and pruning (Line
9), which leads to the following lemmas.

Lemma 1. For an arbitrary guiding cell g, its aggregate-
bound, F agg(g), is monotonically decreasing during the query
execution.

Lemma 2. (Bounding Principle) Once a guiding cell g
satisfies F agg(g) ≤ θ, g no longer qualifies to generate any
candidate.

Lemma 1 follows from the fact that the domain of the score
attribute contains only non-negative values, while Lemma 2
can be justified by Definition 4.

The total cost of QueryExec() can be broken down into two
parts. First, the disk access cost for fetching the N guid-
ing cuboids. This part of cost is linear to the total number
of guiding cells and is often not large because the guiding
cuboids are at the higher-level of the cube lattice, having rel-
atively fewer cells. Second, for each candidate verification,
N random accesses are needed to fetch the inverted indices
for the N guiding cells, respectively. If an inverted index oc-
cupies more than one disk block, more sorted accesses would
be needed. This cost is approximately linear to the number
of candidates generated. Such block-level access of inverted
index [32] is much more efficient than verifying aggregates
on a tuple-by-tuple basis.

3.3 Chunk-based Query Execution Algorithm
with Buffer Reuse

In QueryExec(), the order of guiding cells can dynami-
cally change after each verification due to aggregate-bound
updating. This method, however, has two limitations and
we further optimize them in this section. Firstly, many
disk accesses to the inverted index are wasted. Consider
two consecutively generated candidates ĉ′, combined from
guiding cells g′1, . . . , g

′
N , and ĉ′′, from g′′1 , . . . , g′′N . The main

cost of verification for ĉ′ and ĉ′′ lies in 2N random accesses
for the inverted indices of g′1, . . . , g

′
N and g′′1 , . . . , g′′N . The

actual number of random accesses for verifying these two
candidates, however, could be reduced through inverted in-
dex reuse. For example, only 2N −N ′ random accesses are
needed if for some i1, . . . , iN′ we have g′ij

= g′′ij
(1 ≤ j ≤

N ′ ≤ N), because the inverted index of g′ij
can be cached in

the memory and reused by ĉ′′. Unfortunately, the candidate
scheduling method in QueryExec() (Line 3) is only concerned
with the goal of generating promising candidates while ig-
noring another goal of seeking more opportunities for reusing
in-memory inverted indices. Secondly, for the purpose of
avoiding redundancy in candidate generation, QueryExec()
needs to keep track of all the verified candidates (Line 5),
which requires unbounded memory space. Thus maintain-
ing such a flag array would employ a non-trivial amount of
CPU and memory cost.

To address the limitations, we propose a chunk-based query
execution model, which uses bounded memory buffer by par-
titioning the candidate space into chunks and scheduling the
chunks in a way that facilitates both pruning and buffer
reuse. As a result, inverted indices can be cached to benefit
subsequent candidate verifications as much as possible. In
addition, the scheduling algorithm would dynamically deter-
mine the order in which candidates are generated and waives
the necessity of maintaining the flag array.

Sublist F agg(ai)

SA
1 a6 : 150

a12 : 115
SA

2 a8 : 90
a1 : 84
a10 : 79

. . . . . .
SA

Pa
a2 : 18
a7 : 18
a3 : 13

Figure 9: Sublists of A.

Sublist F agg(bi)

SB
1 b7 : 120

b3 : 95
SB

2 b4 : 85
b6 : 82

. . . . . .
SB

Pb
b5 : 26
b9 : 22

Figure 10: Sublists of B.

AS1
AS2

BS1

BS2

...

A
Pa

S...

B
Pb

S

(a) Candidate space.

AS1
AS2

BS1

BS2

...

AS3

Pruned

...

P
runed

BS3

(b) Top-k-guided
scheduling (Tt).

AS1
AS2

BS1

BS2

...

AS3

Pruned

...

BS3

...

P
runed

(c) Buffer-guided
scheduling (Tb).

AS1
AS2

BS1

BS2

...

AS3

Pruned

...

BS3

P
runed

(d) Hybrid schedul-
ing (Th).

Figure 11: Examples of chunking and scheduling.

3.3.1 Partitioning Candidate Space into Chunks
The candidate space is a N -dimensional space formed by

the Cartesian product of the N sorted lists. Given a buffer
size threshold θCHUNK, we adopt an equi-depth partition
method and partition each sorted list into some sublists so
that the total size of the inverted indices corresponding to
each sublist must not exceed θSUBLIST = θCHUNK

N
. This can

be done at the initialization stage of the sorted lists. If the
i-th (1 ≤ i ≤ N) sorted list is partitioned into Pi sublists,

then the candidate space would have
QN

i=1 Pi chunks.

Example 5. We make up a new example for candidate
space partitioning. Figures 9 and 10 illustrate two imaginary
sorted lists, partitioned into Pa and Pb sublists, respectively.
The total inverted index size of all cells in each sublist (e.g.,
a8, a1, and a10) is no greater than θSUBLIST. Figure 11(a)
shows the corresponding candidate space with Pa ·Pb chunks,
where chunk SA

I × SB
J contains all candidates generated by

the cells from SA
I and SB

J (1 ≤ I ≤ Pa, 1 ≤ J ≤ Pb). For
instance, SA

1 ×SB
1 = {(a6, b7), (a6, b3), (a12, b7), (a12, b3)}.

One advantage of such chunking is that the candidates
in the same chunk can share the same set of inverted in-
dices (intra-chunk buffer reuse). Consider a chunk gen-
erated by N sublists, each having |S| guiding cells. For
QueryExec(), the worst-case random access cost of verifying



Procedure: ChunkQueryExec()
Input: Top-k, AQ, Cgd(A1,SUM ), . . . , Cgd(AN ,SUM ),
Csp(A1), . . . , C

sp(AN ), θCHUNK, Scheduling algorithm T .
Output: Top-k aggregate cells.
Chunk-based candidate generation
1 The same as in QueryExec(), Line 1;
2 The same as in QueryExec(), Line 2;
3 θSUBLIST = θCHUNK/N ;
4 For each i = 1..N , partition the i-th sorted list into

Pi sublists SAi
1 , . . . , SAi

Pi
;

5 Initialize buffer B ← φ;
~q ← null;

6 ~p ← T .getNextChunkPos();
Terminate if there is no available chunk left;

7 FOR i ← 1 TO N DO
8 IF ~p[i] 6= ~q[i] THEN

9 FOR each cell g in SAi
~q[i] DO

Clean the inverted index of g from B;

10 FOR each cell g in SAi
~p[i] DO

Fetch the inverted index of g into B;
11 ~q ← ~p;
Chunk-based candidate verification
12 FOR each candidate cell ĉ in the current chunk DO
13 Verify Fagg(ĉ) using inverted indices in B;
14 The same as in QueryExec(), Line 7;
15 The same as in QueryExec(), Line 8;
16 Prune all chunks H(~p) where FH(~p) ≤ θ;

Prune all guiding cells g where F agg(g) ≤ θ;
17 Go to 6;

Table 2: Chunk-based query execution for SUM .

all |S|N candidates in the chunk can be O(N |S|N ). In con-
trast, the cost can be reduced to O(N |S|) after chunking.

3.3.2 Chunk Scheduling
The job of a chunk scheduling algorithm, T , is to se-

quentially pick a chunk from the candidate space at each
iteration of candidate generation and verification. Assum-
ing that such an algorithm T is given, we first discuss the
chunk-based query execution model, followed by a discussion
on T . Table 2 shows the pseudocode for ChunkQueryExec().
Note that ~p and ~q are N -dimensional vectors recording the
currently and previously scheduled chunk positions, respec-
tively (Lines 5–6), and H(~p) represents the corresponding
chunk (Line 16, we explain FH(~p) momentarily). For exam-

ple, H(~p), where ~p = [2, 1], refers to the chunk SA
2 ×SB

1 . For
the i-th sublist, if ~p[i] is equal to ~q[i] (Line 8), then noth-
ing needs to be done because the corresponding inverted
indices have already been retrieved into the buffer (inter-
chunk buffer reuse). The candidate generation of Chunk-
QueryExec() uses bounded buffer of size θCHUNK, having no
overhead of bookkeeping any verified candidates regardless
of what scheduling method is used. Although the bulky can-
didate verification may sacrifice the priority of some promis-
ing candidates to a minor degree, it is able to achieve signif-
icant efficiency gain, as shown earlier.

Given a fixed partitioning scheme, the cost of the chunk-
based algorithm is determined by (i) the total number of
chunks pruned; and (ii) the inter-chunk buffer reusage, both
dependent on the scheduling algorithm T . To consider (i),

we first propose a top-k-guided scheduling method, Tt, which
tries to maximize the total number of chunks pruned. Tt

maintains a priority queue for all
QN

i=1 Pi chunks, whose

priority value, FH(~p), is defined as follows.

Definition 5. Given a chunk position vector ~p, we define
the aggregate-bound of H(~p) as

FH(~p) =
N

min
i=1

(
max

g∈Si
~p[i]

{F agg(g)}
)

.

This aggregate-bound indicates the upper-bound aggregate
score of all the candidates within chunk FH(~p). Each time
Tt.getNextChunkPos() (Line 6) is called, the chunk H(~p)
with the largest FH(~p) would be returned. If more than

one chunk share the same FH(~p), Tt would return the one

with the largest max{F agg(g)| 1 ≤ i ≤ N, g ∈ Si
~p[i]}. Notice

that FH(~p) may be dynamically updated after each chunk
is verified. The drawback of Tt is that it does not consider
inter-chunk buffer reuse, which may help save a considerable
amount of cost. To this end, we propose another method
called buffer-guided scheduling, Tb, that aims at optimizing
(ii). Tb starts at the chunk with the largest FH(~p) and tra-
verses the chunks in the axis order, greedily choosing the
next chunk that shares as many sublists as possible. The
following theorem shows that this greedy strategy is able to
maximize the inter-chunk buffer reuse. Its proof is straight-
forward and omitted here.

Theorem 1. For the
QN

i=1 Pi chunks, a buffer-guided sched-
ule minimizes the total disk accesses needed to fetch the
inverted indices compared to any other schedules.

Example 6. Figures 11(b) and 11(c) illustrate two exam-
ple schedules generated by Tt and Tb on a 2-d space, re-
spectively. The Tt-schedule starts at the lower-left chunk
which contains the most promising candidates and subse-
quently chooses a remaining chunk with the largest priority
value. As the top-k threshold θ becomes larger, the sub-
lists as well as the corresponding chunks at the tail of the
axes can be pruned. However, this schedule often cannot
reuse any cached sublist. For example, no inverted index is
shared by chunks SA

2 × SB
1 and SA

1 × SB
2 . The Tb-schedule,

on the other hand, contiguously traverses chunks following
SA’s axis horizontally and then SB ’s axis vertically. A sub-
list is cached and reused at every step. The Tb-schedule,
nevertheless, unnecessarily visited chunks that should have
been pruned, as illustrated. Although schedules may differ
as to different database instances, it is clear that both Tt

and Tb have drawbacks in principle.

To take into consideration both (i) and (ii), we develop
a hybrid scheduling algorithm, Th, that bridges Tt and Tb.
The idea is that, based on Tt’s priority queue, we further
group together chunks with the same aggregate-bound and
use Tb to schedule the chunks within a group. This idea fol-
lows from the fact that at any time of the query execution,
there are at most

PN
i=1 Pi distinct aggregate-bounds for theQN

i=1 Pi chunks, which can be justified by Definition 5. We
call a group of chunks sharing the same aggregate-bound an
equivalent group. At the beginning of the execution there
are no more than

PN
i=1 Pi equivalent groups, each contain-

ing µ =
QN

i=1 Pi/
PN

i=1 Pi chunks on average. µ could be



F Q
agg Definition (i = 1..n) M F agg = Γ(M)

SUM
P

i si SUM SUM
COUNT n COUNT COUNT

AVG s =
P

si/n MAX MAX
MAX maxi{si} MAX MAX
MIN mini{si} MAX MAX

VAR σ2 =
P

i(si − s)2/n MAX,MIN (MAX-MIN)2/4

STDDEV σ =
√

σ2 MAX,MIN (MAX-MIN)/2
MAD

P
i |si − s|/n MAX,MIN (MAX-MIN)/2

RANGE maxi{si} −mini{si} MAX,MIN MAX-MIN

Table 3: Aggregate measures and their corresponding guiding measures and aggregate-bound.

large when Pi’s and N are relatively large. Moreover, each
equivalent group of chunks may not have distinctly differ-
ent pruning power, but they are often spatially proximate
to each other. Thus, Th can be improved based on Tt as
follows. Instead of returning a single chunk H(~p) with the
largest FH(~p), we dynamically choose an equivalent group

of chunks having the largest FH(~p). Then we schedule the
chunks in the group using the buffer-guided approach; that
is, these chunks are retrieved and verified by following the
axis order, where adjacent ones are greedily scheduled.

Example 7. To demonstrate Th, we draw a schedule in
Figure 11(d). This schedule is still guided by FH(~p) at high-
level and chunks at the tail of the sublists can be pruned.
At each step except for the first one, a sublist in the buffer
can be reused. This amount of buffer reuse is comparable to
that of the Tb-schedule in Figure 11(c).

For higher-dimensional candidate space (3 ≤ N ≤ d), the
getNextChunkPos() operation cost of the scheduling algo-
rithms is inexpensive because the total number of chunks
is much smaller compared to the number of guiding cells.
Also, each operation needs to consider only chunks in the
proximity of the current chunk for the next step.

4. SUPPORTING GENERAL RANKING
FUNCTIONS

In this section, we address extensions to other common
aggregate and statistical measures, including AVG, MAX ,
VAR (Variance), STDDEV (Standard Deviation), RANGE ,
MAD(Mean Absolute Deviation), etc., as listed in Table 3.
We defer the discussion of supporting combination functions
as well as more complex measures to Section 6.2.

To handle more general types of query measures, we ex-
tend ChunkQueryExec(), the chunk-based algorithm for SUM ,
to GeneralChunkQueryExec() as shown in Table 4. While
the candidate generation and verification framework remains
unchanged, their key difference lies in the computation of the
aggregate-bound F agg(g) for any guiding cell g. By bound-
ing principle, F agg(g) should represent the maximum possi-
ble aggregate value of any candidate ĉ generated by g, i.e.,
F agg(g) ≥ F Q

agg(ĉ) must always hold for the query mea-

sure F Q
agg. Therefore, the aggregate-bound for SUM cannot

work for other query measures. We address the problem of
aggregate-bound computation for different measures in two
aspects: (1) the initialization F agg(g) for all guiding cells
(Line 1); and (2) how to update F agg(g) (Line 15), in the
sections below.

Procedure: GeneralChunkQueryExec()
Input: Top-k, F Q

agg, AQ, Cgd(A1,M), . . .,

Cgd(AN ,M), Csp(A1), . . . , C
sp(AN ), θCHUNK, T .

Output: Top-k aggregate cells.
1 [Sorted List Initialization] For each guiding

cuboid Cgd(Ai,M) (i = 1..N), create a sorted
list containing all guiding cells from that
cuboid and for each guiding cell g, initialize
F agg(g) according to F Q

agg;
2–14 The same as in ChunkQueryExec()
15 [Aggregate-Bound Updating]

For each i = 1..N , update F agg(gi) based on
gi’s inverted index;

16–17 The same as in ChunkQueryExec()

Table 4: General chunk-based execution algorithm.

4.1 Initializing F agg

Table 3 lists the guiding measures and the initial aggregate-
bound for different query measures. The initial aggregate-
bound of the first five query measures, SUM , COUNT ,
AVG, MAX , and MIN , can be obtained from a single guid-
ing measure, whereas the initial aggregate-bound of the re-
maining four query aggregate measures can be expressed as
a function Γ of more than one guiding measure. To initialize
the aggregate-bound of guiding cells for a particular query
measure F Q

agg, its corresponding guiding measures M should
be already materialized. The initialization process is simi-
lar to ChunkQueryExec() in that N sorted lists are created,
each containing all the guiding cells in the corresponding
guiding cuboid. For each guiding cell, its materialized guid-
ing measure values are retrieved, and its aggregate-bound is
computed using Γ on the materialized measure values.

Example 8. Suppose F Q
agg = VAR and a guiding cuboid

Cgd(A′,M) is given. Assume that MAX ,MIN ∈ M. To
initialize the sorted list ofA′, we scan the guiding cuboid and
get MAX (g) and MIN (g) for each guiding cell g, followed
by computing F agg(g) ← Γ(MAX ,MIN )(g) = (MAX (g) −
MIN (g))2/4. Finally we sort the list descendingly according
to F agg(g).

Notice that the same materialized guiding measures, M,
can be shared by different query measures. For example,
materializing M = {MAX ,MIN } would be able to pro-
vide aggregate-bound to multiple query measures like AVG,
STDDEV , etc.. This is in contrast to traditional data cubes
whose materialization often can only be tailored to a particu-



lar measure. Furthermore, the query measures and aggregate-
bounds supported by this framework are not confined to Ta-
ble 3. This integrated approach in fact gives users the free-
dom to customize M based on different needs. For example,
one may materialize the “top-k AVG” [18] as a guiding mea-
sure to provide tighter aggregate-bound for AVG and more
complex measures. It is also worth mentioning that the con-
tent of a supporting cuboid is independent of query measure;
once materialized, the supporting cuboid can provide verifi-
cation to an arbitrary ranking function. Below we give the
proof of correctness to the aggregate-bounds.

Theorem 2. The aggregate-bound is correct for each mea-
sure F Q

agg in Table 3.

Proof Sketch. The proof for SUM , COUNT , AVG,
MAX , MIN , and RANGE can be directly derived from the
containment relationship between parent and children ag-
gregates.

For F Q
agg = MAD , we prove F Q

agg(s1, . . . , sn) ≤ (MAX −
MIN )/2. Let s+ =

P
si>s(si − s), s− =

P
si≤s(s − si),

and λ = |{si|si > s}|. Without loss of generality, assume
1 ≤ λ < n. We have s+ = s−, s+/λ ≤ MAX − s, and
s−/(n − λ) ≤ s −MIN . Thus, F Q

agg(s1, . . . , sn) = 2s+/n ≤
2(MAX −s)(s−MIN )/[(MAX −s)+(s−MIN )] ≤ (MAX−
MIN)/2.

For F Q
agg = VAR, we prove F Q

agg(s1, . . . , sn) ≤ (MAX −
MIN )2/4. Without loss of generality, assume si ∈ [0, 1]
for 1 ≤ i ≤ n. The inequality holds when n = 1. When
n ≥ 2, we have ∂F Q

agg/∂si = 2si/n − 2s/n, meaning that

F Q
agg reaches local minimum when si = s ∈ [0, 1] and local

maximum when si = 0 or 1 if sj (j 6= i) is fixed. Thus,
F Q

agg(s1, . . . , sn) reaches global maximum only if ∀i ⇒ si = 0

or 1. Next we can prove that F Q
agg reaches global maximum

when bn
2
c of si’s are 0’s and the remaining dn

2
e are 1’s.

Therefore, F Q
agg ≤ 1

n
·n( 1

2
)2 = 1/4. STDDEV can be proved

similarly.

4.2 Updating F agg

Updating the aggregate-bound is equally important as the
initialization because the aggregate-bound is monotonically
decreasing, providing an increasingly tighter bound to prune
more guiding cells. Since aggregate-bound is derived from
guiding measures using Γ, to update the aggregate-bound
for a F Q

agg would require to update its corresponding guiding
measure values in the first place. Starting from the measures
in Table 3, we can see that any F Q

agg in the table can be de-
rived from one or two of the four guiding measures, SUM ,
COUNT , MAX , and MIN . For SUM , as we have discussed,
the updating procedure is F agg(g) ← F agg(g) − F Q

agg(ĉ),
where g a guiding cell and ĉ is a candidate generated by g.
This procedure applies to COUNT as well. For MAX and
MIN , the updating procedure is as follows. On the way to
verify ĉ, g’s inverted index must be fetched from the buffer
(Line 13). We maintain the set of g’s raw scores, denoted
as Sg, during the fetching process. After the intersection of
the inverted indices of all guiding cells, we can also know
the set of ĉ’s raw scores, denoted as Sĉ (⊆ Sg). Thus, the
updated MAX (g) would be max(Sg − Sĉ), whereas the up-
dated MIN (g) would be min(Sg − Sĉ). Finally, after all
the updated guiding measure values are obtained, Γ can be
applied to calculate the updated aggregate-bound F agg(g),
which must be monotonically decreasing.

Synthetic Dataset Parameter Notation Default

Number of tuples T 1M
Number of attributes d 10

Number of score attributes - 1
Average cardinality C 10000

Skewness of score distribution α 0.5

Table 5: Synthetic dataset parameters.

Query Workload Parameter Notation Default

Aggregate function - SUM
Workload size - 5

Top-k k 10
Number of guiding cuboids N 2

Table 6: Query workload parameters.

Example 9. Suppose F Q
agg = VAR and g’s inverted index

is {(t1, 100), (t3, 80), (t4, 120), (t7, 40), (t9, 50)} and its can-
didate cell ĉ has inverted index {(t4, 120), (t7, 40)} after ver-
ification. Then max(Sg −Sĉ) = 100 and min(Sg −Sĉ) = 50,
which means F agg(g) should be updated to Γ(100, 50) =
(100− 50)2/4 = 625.

As long as guiding measures can be derived from the set
Sg − Sĉ, the aggregate-bound can always be updated under
the framework. It is straightforward to prove that the gen-
eral updating process guarantees that Lemmas 1 and 2 still
hold for each of the query measures in Table 3, so we omit
the proof here.

5. EXPERIMENTAL EVALUATION
We compare five different query execution algorithms: the

tablescan approach that sequentially scans the data file and
computes top-k; the rankagg approach, which is the state-
of-the-art approach for ranking aggregate query processing
studied in [23]; and the chunk-based query execution ap-
proaches HYBRID , BUFFER, and TOPK , which use the
hybrid, buffer-guided, and top-k-guided scheduling methods,
respectively. We use both synthetic data sets and the stan-
dard decision support benchmark TPC-H [2] for evaluation.
The platform for the experiments is Pentium CPU 3GHz
with 1G RAM. Source codes are executed using JRE1.6.0
on Windows XP.

5.1 Experiments on Synthetic Data Sets
We generate synthetic data sets in single flat files with

the default parameters shown in Table 5 and query work-
loads with their default setting in Table 6. α denotes the
Zipf’s exponent that characterizes the distribution of the
raw scores, where α = 1 corresponds to a skewed score dis-
tribution whereas α = 0 corresponds to a uniform score dis-
tribution. For rankagg , an in-memory multi-key hash table
is built on the group-by attributes for each query and the
GroupOnly execution plan is used. For the construction of
ARCube, we use the baseline materialization approach that
materializes cuboids for all single attributes on the synthetic
data sets, which is approximately twice as large as the orig-
inal data set. Moreover, we materialize four guiding mea-
sures, SUM , COUNT , MAX , and MIN for the guiding cells
(i.e., M = {SUM, COUNT, MAX, MIN}) in order to pro-
vide aggregate-bound to different ranking query measures.
We set the disk block size to be 1KB and the chunk size to
be 1MB.
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(e) Disk access vs. top-k on
other query measures.
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Figure 12: Performance vs. query parameters on synthetic data sets.

5.1.1 Performance w.r.t. Top-k
We first examine the performance of tablescan, rankagg ,

HYBRID , BUFFER, and TOPKon the SUM measure. We
vary the parameter k and plot the disk access and query
execution time of the five methods in Figures 12(a) and
12(b), respectively. For k = 1, 10, and 100, the chunk-based
query algorithms consistently outperform tablescan in terms
of both disk access and execution time. The disk access of
HYBRID at k = 1 and 10 is 1/15 of that of tablescan. Also,
the chunk-based algorithms consistently outperform rankagg
by up to an order of magnitude except for that rankagg ’s disk
access at k = 1 is fewer; however, HYBRID is still 8 times
faster than rankagg at k = 1, due to rankagg ’s CPU over-
head of scanning through the in-memory multi-key index
and initializing a priority queue of many groups.

Among the three chunk-based algorithms, HYBRID con-
sumes less I/Os and is faster than the other two. BUFFER
needs more disk accesses than TOPK in general since its
traversal path does not give particular preference to promis-
ing candidates and therefore may visit chunks that could
have been pruned. This can be clearly seen from Figure
12(c), where we plot the percentage of chunks touched among
all chunks in the candidate space w.r.t. the parameter k for
the three chunk-based algorithms. The same query work-
loads are used for plotting this figure as for Figures 12(a)
and 12(b). The number of chunks touched by HYBRID
and TOPK are both lower than BUFFER and very close
to each other because they give promising chunks of can-
didates higher priority. This confirms our intuition that
HYBRID ’s schedule can take advantage of both chunk prun-
ing and buffer reuse.

On the other hand, when k = 103, tablescan is faster
than all the other four ranking query algorithms, since the
pruning power of the top-k threshold is no longer large. At
this time, BUFFER outperforms TOPK or even HYBRID
because it maximizes buffer reuse when most chunks cannot

be pruned anyway. We use disk access (i.e., total number of
I/Os) as our major performance metric hereafter.

5.1.2 Performance w.r.t. Query Measures
Besides SUM , we also evaluate the chunk-based algorithms

on other aggregate measures (F Q
agg). We select three repre-

sentative aggregate measures, AVG, MAX , and VAR for
the comparison. Notice that the commonly used STDDEV
(Standard Deviation) measure should generate the same per-
formance results as VAR because the former measure can
be derived by taking the square root of the latter. The
three measures are representative in that MAX ’s aggregate-
bound (as shown in Table 3) is itself; AVG and VAR’s
aggregate-bounds are linear and quadratic function of MAX
and (MAX -MIN ), respectively. We do not evaluate rankagg
in this test case because it does not explicitly support non-
monotone aggregate functions like VAR, i.e., adding a tuple
into a cell does not necessarily increase its aggregate.

The disk access cost of HYBRID , BUFFER, TOPK , and
tablescan is depicted in Figure 12(d), from which we can see
that HYBRID is better than the other methods in the fig-
ure: its cost is 1/15 of tablescan’s for AVG, 1/27 for MAX ,
and 1/9 for VAR. This matches our intuition because MAX
itself can provide the “tightest” aggregate-bound to its can-
didates: a candidate’s MAX value can be directly computed
from its guiding cells’ MAX values, enabling effective prun-
ing. Therefore, for MAX , we set the default chunk size of the
chunk-based algorithms to 0.1M to avoid loading unneces-
sary guiding cells. The tightness of VAR’ aggregate-bound,
which is a quadratic function of (MAX-MIN), is less than
that of MAX , as expected. AVG, however, has a tighter
aggregate-bound than VAR because it is a linear function
of (MAX-MIN). For AVG and VAR, BUFFER has slightly
less disk access cost than TOPK does, justifying the effec-
tiveness of buffer reuse. Nevertheless, for MAX , BUFFER’s
cost is approximately 3 times as much as TOPK ’s, showing
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Figure 13: Performance vs. synthetic data set parameters.
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other query measures.
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Figure 14: Experiments on the TPC-H benchmark.

that only considering buffer reuse may lead to the verifica-
tion of unnecessary chunks. In Figure 12(e), we plot the disk
access of HYBRID w.r.t. top-k on AVG, MAX , and VAR
and compare it to tablescan. For MAX and AVG, HYBRID
outperforms tablescan for k ≤ 104, while for VAR, its cost
is better than tablescan for k ≤ 103. This shows that the
aggregate-bounds of AVG and MAX indeed are better than
that of VAR. At k = 106, where the top-k threshold be-
comes very small and barely has pruning power, HYBRID ’s
cost on AVG and VAR agree with each other because they
tend to traverse the whole candidate space and therefore
have similar cost. The cost on MAX is larger because the
default chunk size has been set to 0.1M as discussed and
therefore more chunks need to be visited. We observe that
for a particular measure, HYBRID ’s cost for k = 1, 10, and
100 is very close to each other. This can be explained by
the bulky nature of the algorithm, which may be able to find
the top-k results by visiting only one or a few chunks.

5.1.3 Performance w.r.t. Multi-Way Combination
The evaluation on AVG, MAX , and VAR, together with

SUM , has demonstrated the effectiveness of the guiding
measures and the aggregate-bound on 2-way combination,
i.e., candidates are generated by combining guiding cells
from 2 cuboids. We now turn to the analysis of the HYBRID
algorithm on multi-way combination (i.e., N ≥ 3). Figure
12(f) shows HYBRID ’s disk access cost on the four query
measures in comparison to tablescan. For AVG, MAX , and
VAR, the ratio of HYBRID ’s cost on 3-way combination
(N = 3) to the cost of tablescan is no more than 1/18 at
k ≤ 102, which is slightly worse than the worst ratio in
Figure 12(e), 1/20. On the other hand, when k becomes
larger (i.e., k ≥ 103), the top-k threshold would become

smaller accordingly and lead to a cubic increase of number
of chunks that have to be verified. For the SUM measure,
HYBRID costs almost a half of tablescan’s disk access. In
fact, SUM ’s aggregate-bound becomes looser for multi-way
combination because the aggregate-bound of a guiding cell
could be aggregated over many candidate cells and thus is
harder to be bounded by the top-k threshold. Figure 12(g)
further plots the disk access of HYBRID w.r.t. top-k for 4-
way combination, which shows very similar trend of results
as in Figure 12(f). The disk access cost ratio of HYBRID
against tablescan is now at most 1/11 for AVG, MAX , and
VAR at k ≤ 103. For SUM , HYBRID ’s cost at k ≤ 102

is similar to the scenario in 3-way combination but exceeds
tablescan’s cost at k = 103.

Figures 12(e) through 12(g) have characterized the chunk-
based algorithm on different query measures and different
numbers of combination dimensions. For k ≤ 103, if the top-
k threshold is reasonably large, many guiding cells (sublists)
can be pruned and thus the total number of chunks to be
verified is not very sensitive to N . If, on the contrary, the
top-k threshold is small (because k is large), then the total
number of chunks to be verified would grow exponentially
w.r.t. N .

5.1.4 Performance w.r.t. Data Set Parameters
We compare the performance of HYBRID , rankagg , and

tablescan by twisting the data set parameters. We first vary
the Zipf distribution exponent, α (Figure 13(a)), which de-
termines the skewness of raw scores. When α is large, differ-
ent cells are likely to have skewed aggregate scores and, con-
versely, when α approaches 0, different cells are likely to have
more uniform aggregate scores. We can see that HYBRID ’s
cost is lower than rankagg and tablescan. Furthermore, its



cost on all four query measures is monotonically decreasing
w.r.t. α, showing that HYBRID favors more skewed score
distributions. This is because when the score distribution is
skewed, it becomes easier for the top-k threshold to prune
more guiding cells at the tail of the sorted lists. In con-
trast, for the SUM measure, rankagg shows no preference
to the skewed scores, because when the raw scores are more
skewed, the upper bound of a cell (i.e., the number of un-
seen raw tuples of that cell multiplied by the maximum raw
score in the data set) could correspondingly become larger
and harder to be pruned. For a fixed α, HYBRID performs
consistently on the four aggregate measures; that is MAX
has the lowest cost while SUM has the highest cost, which
matches the previously presented results.

Next, we vary C, the average cardinality of the attributes
and show the performance results in Figure 13(b). HYBRID
works best at C = 103 and 104. This can be explained by the
inverted index access method for candidate verification. The
inverted index of a guiding cell is stored in, say, L (L ≥ 1),
consecutive disk blocks, and to retrieve the inverted index
would need exactly 1 random access plus L − 1 sorted ac-
cesses. If the inverted index is too short (i.e., the length of
it is much smaller than the block size), then the retrieved
disk page would be largely “wasted”. On the other hand, if
it is too long, the cost for verifying a single candidate will
be very large. Therefore, the cost of HYBRID is higher at
C = 102, where the cost-per-candidate verification is large,
and 105, where the disk page utilization is low on average.

Figure 13(c) illustrates another set of test cases on differ-
ent number of raw tuples (T ). As expected, HYBRID ’s cost
increases w.r.t. T because the expected length of inverted
indices is linear to T and the disk access cost for candidate
verification is positively correlated with the length. For T =
10M , the disk access cost of HYBRID is 1/11 of rankagg ’s
cost on SUM and 1/150 of tablescan’s cost on MAX . Fi-
nally, we evaluate the algorithms w.r.t. the number of at-
tributes (d). As depicted in Figure 13(d), tablescan’s cost is
linear to the number of attributes, while both HYBRID and
rankagg are not affected by parameter d. Actually, the “ver-
tical format” (i.e., inverted index format) of ARCube makes
the chunk-based algorithms insensitive to d because candi-
dates are generated using N guiding cuboids, where N is
not determined by d. rankagg is also insensitive to d be-
cause there is a multi-key index on the query attributes and
the disk cost to probe any raw tuple through the index is
always a single I/O.

5.2 Experiments on the TPC-H Benchmark
For the TPC-H benchmark, we use the dbgen module

to generate a database and then extract the largest rela-
tion lineitem.tbl which contains 2M tuples and 16 attributes
stored in a flat file. We use the attribute extendedprice as
the raw score column and ignore the last attribute com-
ment that contains strings of variable length. Out of the
remaining 14 attributes, 6 attributes have cardinality below
10, 2 attributes are between 11–50, 3 attributes are between
2400–2600, and the rest are above 10000. We materialize all
guiding cuboids with less than θCUBOID = 200K (i.e., 10% of
the number of raw tuples) cells and their corresponding sup-
porting cuboids; the materialization size is approximately 10
times of the data size. For query plan selection, we randomly
choose one from all valid plans. We first plot the disk access
w.r.t. top-k for all the five query execution algorithms for

the SUM measure (Figure 14(a)). The chunk-based algo-
rithms, HYBRID , BUFFER, and TOPK , consistently out-
perform rankagg and tablescan. The cost ratio of HYBRID
to tablescan is no more than 1/9 at k = 1, 10, 102 and 1/7.8
at k = 103. Figure 14(b) shows the result of the chunk-based
query algorithms on other query measures. The cost ratios
of HYBRID to tablescan are now 1/33, 1/174, and 1/10, for
AVG, MAX , and VAR, respectively. The difference of cost
among the HYBRID , BUFFER, and TOPK is not large
in this test case because only a few chunks have been veri-
fied. We conduct another test for HYBRID on AVG, MAX ,
and VAR (Figure 14(c)), which has similar results to Figure
12(e). HYBRID ’s performance on MAX deteriorates faster
than on AVG and VAR because a smaller default chunk size
is used. We evaluate 3-way combination in the last test case.
The cost ratios on AVG, MAX , SUM , and VAR are 1/10,
1/16, 1/3, and 1/4. This indicates that the tightness of the
aggregate-bound for the four measures can be ranked de-
scendingly in the following order: MAX , AVG, VAR, and
SUM , which agrees with our previous results on the syn-
thetic data sets.

6. DISCUSSION

6.1 Related Work
Recently the problem of ranking (or top-k) query process-

ing attracts and holds the attention of increasingly more
researchers. It has been studied from the perspective of
RDBMS optimization [7, 21, 24, 12, 4, 32], middleware sys-
tems [14], and many other applications [6, 9, 3, 8, 20, 27].
A number of algorithms and techniques have been proposed
to efficiently return a result set with a limited cardinality
for easy digestion. In the field of data warehousing and
OLAP, the data cube model [17, 10] has been extensively
studied over a decade, playing the critical role in facilitating
multidimensional aggregation and exploration. Data cub-
ing methods rely on full materialization [34], partial mate-
rialization [19, 29, 26], or other forms of data compression,
summarization, and optimization [11, 30, 22] to provide ef-
ficient answers to OLAP operations. The traditional tech-
niques for ranking analysis, however, are often tailored to
ranking functions on individual tuples, where ranking is on
base facts of relational tables instead of on multidimensional
aggregations. Therefore, they cannot handle ranking aggre-
gate queries efficiently. Many techniques for data warehous-
ing and OLAP are able to facilitate multidimensional data
analysis through the data cube model, but, on the other
hand, are unaware of the ordering of aggregate values and
cannot yield satisfactory performance to ranking aggregate
queries.

The closest known methods to our study are based on ei-
ther no materialization (rankagg [23]) or full materialization
(the Sorted Partial Prefix Sum Cube [25]) approach. The
rankagg framework is proposed to support ad-hoc ranking
aggregate queries. It makes the traditional query optimizer
rank-aware and enforces an ordering on the physical access
of database tuples. It also estimates the maximum possi-
ble aggregate score for the groups whose aggregate score is
not completely verified yet, and then prunes the groups that
have a score upper bound no more than the top-k scores al-
ready achieved. In [25], a new cube structure called Sorted
Partial Prefix Sum Cube is precomputed to answer rank-
ing aggregate queries on a given time interval. These two



methods represent two major types of approaches and have
limitations in certain scenarios; while on-the-fly aggregation
may burden query processing, computing a full data cube
could be challenging when the dimensionality becomes high.

Another relevant problem is the iceberg cube computa-
tion. The iceberg cube is a practical model, where only cells
with aggregate above a certain threshold are saved in the
cube, while the other insignificant ones are discarded. In
[5, 33], efficient methods are proposed to compute iceberg
cubes given a threshold. [15] addresses the iceberg query op-
timization problem in the absence of precomputation. [18]
further discusses an algorithm to support complex measures
such as AVG for iceberg cubes. Note that iceberg cubes can-
not be applied to ranking aggregates effectively, because the
iceberg threshold needs to be predetermined, whereas the
top-k results of a ranking query may or may not be above
that threshold and have to be computed on the fly. Finally,
the problem of organizing and accessing multidimensional
data using chunks is not new. In [28, 34, 16, 13], various
chunking and caching methods are proposed and studied.
Nevertheless, none of them considers the aggregate ordering
and thus cannot deal with ranking queries efficiently.

6.2 Extensions
We discuss three extensions to the ranking functions. First,

if R has multiple score columns S1, . . . , Sξ (ξ ≥ 2), and the
ranking function consists of not only the aggregate function
F Q

agg, but also a combination function F Q
comb = f(s1, . . . , sξ)

(si ∈ dom(Si)) that aggregates over different score columns
(e.g., weighted sum). Then the ranking function can be

written as F Q = F Q
agg(F Q

comb) (i.e., first combine then ag-

gregate) or F Q
comb(F

Q
agg). In such cases, we need to ex-

tend the guiding cuboids to materialize other columns so
that M is materialized for each Si. The computation of
the aggregate-bound now becomes a function of Γ and f .
For example, if F Q

agg = SUM and F Q
comb is weighted sum,

then the aggregate-bound for a guiding cell g would become
the weighted sum of the materialized SUM (g) of all score

columns. If F Q
comb is a monotone combination function and

F Q = F Q
comb(F

Q
agg) (i.e., first aggregate then combine), then

our framework can be integrated with the TA-style algo-
rithms [14]. Second, for complex ranking functions (e.g.,
F Q

agg = (SUM − 100)2), the aggregate-bound must be com-
puted properly according to the bounding principle, which
requires that F agg(g) ≥ F Q

agg(ĉ) always holds. Third, for
databases with concept hierarchies on which queries are for-
mulated, this framework can be extended based on the in-
terdependent relationship between guiding cells and candi-
date cells. Specifically, given N high-level guiding cells, all
the candidate cells generated by their children cells in the
concept hierarchy may naturally form one or more chunks.
For example, guiding cells “United States” and “2008” at
(country, year)-level can be combined to generate all possi-
ble (state, month)-level cells as candidates using a concept
hierarchy.

The ARCube materialization and the query plan selection
are two orthogonal problems to the query execution, which
may be further optimized. To begin with, guiding cuboids
with larger skewness and correlation with children cuboids
should be preferably materialized. To reduce materialization
size and query cost, inverted indices can be compressed us-
ing existing techniques [31] while closely related supporting
cuboids (e.g., Csp(A) and Csp(AB)) may share the same set

of inverted indices. Moreover, in Section 2, we assume that
the group-by of a guiding cuboid and that of its correspond-
ing supporting cuboid should match. In principle, however,
these group-by’s may not be the same as long as candidate
cells can be appropriately verified. In that case, more flex-
ible partition scheme and scheduling method should be de-
veloped to handle the group-by mismatch.

Different query plans may lead to different query cost
due to the pruning power of different guiding cells. For
instance, plan Cgd(A,M) and Cgd(BC,M) could be bet-
ter than Cgd(A,M), Cgd(B,M), and Cgd(C,M) because
guiding cuboid Cgd(BC,M) may provide tighter aggregate-
bounds. Therefore, we will investigate in finding an effective
way to select the best plan for query processing.

Finally, we may further speed up query processing by
making the chunking algorithm adaptive to the cardinality
and distribution of the sorted lists in order to determine an
optimal chunk size and maximize the effectiveness of prun-
ing. For example, skewed sorted lists with more guiding cells
should be segmented into more sublists, which could result
in larger pruned space. We plan to explore these issues in-
depth in our follow-up research.

7. CONCLUSIONS
We have proposed a novel cube structure, ARCube, for

supporting efficient ranking aggregate query processing. The
ARCube consists of two types of materialized cuboids: guid-
ing cuboid and supporting cuboid. A query execution frame-
work has been developed based on the ARCube, where the
guiding cuboids can guide ranking query processing by pro-
viding high-level data statistics and generating promising
candidates, whereas the supporting cuboids provide efficient
aggregate verification. We have also proposed a chunk-based
optimization method to utilize the memory buffer. The per-
formance evaluation verified that this unified framework is
more efficient than the existing techniques in supporting var-
ious types of aggregate measures.
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8. REPEATABILITY ASSESSMENT RESULT
Figures 12(c)–(g), 13, and 14 have been verified by the

SIGMOD repeatability committee.
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