PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

ArcVIEW: a LabVIEW-based
astronomical instrument control
system

Michael C. Ashe, Marco Bonati, Steven Heathcote

Michael C. Ashe, Marco Bonati, Steven Heathcote, "ArcVIEW: a LabVIEW-
based astronomical instrument control system," Proc. SPIE 4848, Advanced
Telescope and Instrumentation Control Software 1l, (13 December 2002); doi:
10.1117/12.461433

Event: Astronomical Telescopes and Instrumentation, 2002, Waikoloa,
SPIEo Hawai'i, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

ArcVIEW: a LabVIEW-based astronomical instrument control system
Michael Ashe®, Marco Bonati®, Steve Heathcote®

*SOAR Consortium, Casilla 603, La Serena, Chile
PCaltech, Pasedena, CA

ABSTRACT

To meet the needs of the SOAR 4.2-m telescope first-generation instrument suite, as well as new instruments for the
Blanco 4-m telescope, we developed a new camera controller system called ArcVIEW. In order to provide a strong
foundation and rapid development cycle, we decided to build the system using National Instrument's LabVIEW
environment. The advantages of this approach centers on the tools available for rapid prototyping, integration and
testing of components.

Over the past 2 years, we have taken ArcVIEW from a design document to the point of controlling two new instruments
being built at CTIO. The IR imager, ISPI, will complete final testing this semester and go into use on the Blanco
telescope in September 2002,

The second instrument, the SOAR Optical Imager, is due for completion this semester and will be the commissioning
instrument for the SOAR telescope, for which first light is expected in early 2003.

Keywords: Instrument, Control, LabVIEW, ArcVIEW, CCD, Optical, Infrared, software, distributed
1. INTRODUCTION

The ArcVIEW or “Array Controller in LabVIEW” software suite is a modularized set of software libraries written
primarily in LabVIEW that uses C for the low level driver and image data handling routines. It is described in the
document: “ArcVIEW - Design Study V2.doc” [1]. It is initially intended to implement the IR and CCD array controller
needs of the SOAR/CTIO instruments. It started as primarily an Array Controller, but has now evolved into a data
acquisition and instrument control (DAIC) system., with components for Real Time Display, Filter Wheel control,
Telescope Control System communications and other functions.

The focus of the project is to implement a generic controller architecture that uses the San Diego State University
(SDSU-II) hardware controllers, commonly known as “Leach™ or “*SDSU-II” controllers in its initial version, but which
also includes the internal and external “hooks™ to implement other instruments, using other controllers, in the future,
specifically multi-array, multi-controller configurations for large mosaics.

Currently implemented or planned installations of ArcVIEW include:

Instrument Detector Type Controller
ISPI (CTIO) 1 x 2kx2k HgCdTe SDSU-2
Optical Imager (CTIO) 2 x 2kx4k CCD SDSU-2
Goodman Spec (UNC) 2 x2kx4k CCD SDSU-2
IFU Spec (Brazil) 2 x 2kx4k CCD SDSU-2
Spartan Imager (MSU) 4 x 2kx2k HgCdTe E. Loh
Systems on Palomar various SDSU-2

In addition to the controller and communication components in ArcVIEW, there are several other software components.
The following table lists other software components.

508 Advanced Telescope and Instrumentation Control Software 1l, Hilton Lewis,

Editor, Proceedings of SPIE Vol. 4848 (2002) © 2002 SPIE - 0277-786X/02/$15.00

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Software Component Function(s) Overview

Optical Camera Control Implements manual setup and control of one camera. This is an ArcVIEW plug-in. The
GUI output can be sent as commands or returned for storage as part of an observation.

IR Camera Control GUI Same, except for IR camera.

OCS Demo GUI Enhanced demo to show capability of storing an Observation in a Queue. Manages

storage, editing and running of an Observation Queue as a capability demo. Allows
editing of Observations composed of the OCS demo data and Camera GUI data.
Save/retrieve from file(s) and live interaction with the Queue Manager.

SOAR Communications This implements a TCP/IP communications handler, using the SOAR libraries.

Status Panel GUI Shows variables requested from various system components via SCL calls.

Macro/Script Handler Processes scripts/macros written as text files. ArcVIEW will use GScript.

Image Data Manager Implements the image data buffer and access and control of the buffer.

SDSU LabVIEW Driver LabVIEW VIs to access the routines in the “C” driver library.

SDSU “C” Driver Low level control of the SDSU hardware via calls to the PCI/CompactPCI interface
card. An example is IRLabs DLL call library.

Telemetry Display of any telemetry from the camera/controller combination.

TCS Communications Uses the SOAR Communications Library (SCL) and LabVIEW code to implement
message routing/response.

TCS Control Module Specific control and response handling of TCS interaction such as would normally be
associated with a full DAIC system.

“PicRead” Reads the data out of the Image Buffer on the fly, unscrambles the data (if necessary)

and routes to displays or other computers as desired.

2. SYSTEM DESIGN MODEL

ArcVIEW is a modular system consisting of a main application server that always provides TCP/IP communications
services and a command processor. It loads the various modules that do the actual work at startup time (and later
dynamically if commanded). These modules do the work of running the particular CCD controller being utilized, as well
as control of other hardware subsystems such as filter wheels, mirrors, calibration lamps, etc. As such, ArcVIEW is
extremely configurable. The current implementation at SOAR/CTIO loads a single SDSU-II controller module, but there
is nothing to prevent loading two controller modules of the same type, or loading an SDSU-II and anther controller (such
as Monsoon or Arcon) once an ArcVIEW controller module has been written. See Fig 1 for ArcVIEW context.

In the current implementation, ArcVIEW is written in LabVIEW 6.0.2 and ‘C’, hosted on PC workstations. The client(s),
either GUISs or script interfaces, communicate with the ArcVIEW Main Application, and through it to the controller(s),
such as the Leach SDSU-II. The various ArcVIEW software modules such as User Interfaces, Status screens, and other
interfaces all route their communications through the SOAR Communication Library (SCL). The data is sent in the form
of text messages that are composed of a 4-byte size header, command and optional parameter and data sections. The
SCL routes packets between its various clients by setting up a series of TCP/IP — LabVIEW Queue processing “server
instances” (SI). Each SI handles the communications in two directions between a sender and a recipient. When the
Application starts it starts a VI to listen and spawn instances of SIs.

A Camera GUI formats the command sequences that are sent to the ArcVIEW main App. An alternative interface (or
one that may be used simultancously with a GUI) is to use the ScriptServer Plugln to the GUI. The ScriptServer Plugln
gives direct interface to the SCL from a TCP/IP socket. This allows any of the various standard scripting languages, such
as Tcl, IRAF, Perl, Python, etc to pass text commands to the ArcVIEW Application and receive the replies directly.

Proc. of SPIE Vol. 4848 509

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Observers |ge—— ArcVIEW Status
OCs
¢ AtGVIEW Setup (CS Obs Responses Queue
Y T
And commands ¢ ~ Demo
Quick look Ty ArcV] \‘—-———'— OCS Obs. Requests
Image Data E
\ Camera T'CS Interfaces:
e e SOAR TCS
WA — Blanco GWCRouter
\ ” -~ 4 T'CS Status Responses
Fa
%ii ArcVI A 1"‘-—-.._____‘__ Fdeseape
T'CS Status Requests Control
Display APPhCQ' —> System
Quick look /,—f - ’\ “
Image Data HW Status
SDSU Status Filter Cmds . f
FITS Data SDSU Cmds e Cmds,,u_
Data Files Filter Status
SDSU- Filter
I ApE Glabal Vars Gl |SPITTITITITIITICIIIT Hardwa
e Dretect ler re
FITS Files Image Data

/’/)/ Other Status

Filter_ Status

Vil

Instrument
Hatdware

SDSU Status
Y

\

SDSU Cmds

s

- Other

FITS Header Filter Cmds

<

Hardware Setup
Info Source

Controller Setup and
waveform information

Fig 1: ArcVIEW Context and Dataflow.

3. APPLICATION ARCHITECTURE

The ArcVIEW Main Application VI consists of a fairly simple GUI and a code diagram that has five (5) main
constructs: two sequence structures for startup and shutdown, and three (3) while-loops for front panel controls,
incoming command processing and status retrieval and display.

The diagram in Fig 2 shows a simplified version of the Application after startup. The StartUp Sequence (SUS) on the left
loads all the command processing VIs and passes a table of available commands to the main loop for use by the
command processor VI. The SUS also specifies the name of the SCL communications server that the app will respond
to. Above the SUS is the logging VI and the SCL Comm Server-II VI which listens for incoming connection requests
and dynamically spawns Server Instances (SIs) which are copies of the CommSvrIITPLT.vi which is found in the comm
library subdirectory. The SI then handles the TCP/IP communications link between the client GUI and the Command
Processing loop in the center of the diagram. When messages arrive via TCP/IP from the client (i.e., the Camera GUI)
the SI sends the message into the LabVIEW queue for that client link. The “Receive Command Messages Type-I1.vi” on
the left side of the loop waits for messages in the queue. It pulls messages out of the queue and sends them onto the
Command Processor VI (CPV) (CmdParser-ProcCaller.vi) in the center. The CPV looks up the first token of the
command as a lookup into the table of allowable commands and uses LabVIEW VIServer calls to run a VI of the same
name as the token. The command VI being run must parse and run the command and supply an immediate return, which
is returned to the Command Processor, which then passes it on to the “Send Cmd Ack Message Type-I1.vi” which inserts

510 Proc. of SPIE Vol. 4848

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

=1 home

-0 Archives the reply into the return queue associated with the remote client. This queue sends the
=) ArcvIEw reply back to the SI which extracts it from the queue and send back to the original
5] Cuenman calling client via TCP/IP.

L Command Processor
=] Commlbrary ¥3

(7] Calbecks Directory Structure
1 Dialog Templates
A j ?:E::'t ArcVIEW is installed in the “home” directory under both Linux and Windows. This
&3] Configries maintains a common path base for both platforms, and insures commonality with the
= 1 Dakabaca SOAR Telescope Control System.
2 _-WEI'T-THP The /ArcVIEW directory contains the libraries for the ArcVIEW Application (the

) heciEw ape server), the ArcVIEW GUI (camera GUI), the CCD Editor and the OCS Demo.
1 ArcYIEw 6L The /ArcVIEW/Common subdirectory is a central location for libraries and

=1 Rearmes subdirectories of libraries that supply either a major layer (such as the SOAR
j :“""Il‘:: Communications Library layer) or “glue” code and subroutines that are reusable over
f U
5 03 Logs v several places.
1 Brror_Lags The /ConfigFiles, /Database, /Logs, and /Scripts subdirectories are each central
|) Evert Lage locations for those types of items.
L] Misc The /docs subdirectory has two branches for /Readme files and for HTML help. The
& Modulas . . L .
&1 Plaglng /Modules and /Pluglns subdirectories are where Application and GUI extensions for
= Serigts ArcVIEW are placed.
o spawna | For Client 1 For Client "N"
Comms Config File Path server <-Note: These Vs are not actually onthe __ cornmunications

=1 Tomm | INstance o Ok diagram, but are dynamically copied and

| ——— Topenr] 900 [Tiech started in response to clients connecting.
i1l AR SOAE

Comm Server-II ->
i Log

1T Startup Sequence: Do oo oo Incoming Command Processing
i:ﬂ ; ® N Erar B
Server Mame
Set Callback Mode st : é”

Callback | Processor GU%UG
Client Name 4 Y1
1y Revcnd >Message ’;:_E'""m“ g 2 el ey

Mzgz-if=>Header > SHAE 4 <- Processing

This loads the libraries SUAR=>Errors> r‘
of command ¥1s ; Lﬁ]
Cnd Replf Type
A =>Command List >
Run? 4
Ooooooooooooooooo00g ’[\ 2

During startup the Load Cmd Procs Y1
loads all the ***_Crmds.App type VIs
from all the CrdProcs_*** libs in the
Thome/Arc¥IEW CommanfCommand
Processor] directory. This loads all
the command ¥Is into memory to make
thern available to the Command
Processor Y1 in the loop. =g =5

Crnds ‘ T Replies Cmdsl TRephes
SDSUIT Device N <- Hardware
Hardware Hardware

<- Modules & Drivers

Fig 2: simplified ArcVIEW Application software Diagram. Initialization sequence on left followed by main
application command processing loop on right.

Strictly speaking, ArcVIEW consists of the main Application and the Data Handling processes. The Camera GUI/Client
is simply one example of how to interface to the Main Application with a GUI as opposed to a scripting interface. The

Proc. of SPIE Vol. 4848 511

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

ArcVIEW system consists of several levels of standard APIs, implemented in LabVIEW, for plugging in components
unique to a particular telescope’s instrument load. (The first controller implemented was the SDSU-II Leach controller.).
A key feature of ArcVIEW is that it allows the addition of new features with little or no recoding and recompiling of the
main application or any applicable Camera GUI in most cases. It accomplishes this using Modules in the Main
Application and Plug-Ins in the Clients/Camera GUIs

4. PLUGIN - MODULE IMPLEMENTATION

ArcVIEW defines two types of dynamically usable code: Pluglns and Modules. Either item can be used in any
ArcVIEW client or Server, but normally the Pluglns are associated with GUIs and the Modules are Associated with
Instrument/Controller Applications.

Modules: Pluglns:

1.Major Components 1.Minor Components
2 Managers, Servers, etc 2.Clients, Wizards, Tools

—Ex: Instrument CCD Controller —Ex: Star Catalog Access

—Ex: Filter Wheel Motion Control —Ex: Data Simulator

—Ex: Real-Time-Display —Ex: New Report Formatter
3.Loaded mainly by Applications 3.Loaded mainly by GUIs
4.Tighter coupling 4.Looser coupling
5.Provides required functionalities 5.Provides convenience, power, integration, elegance

GUI Plug-Ins

GUI Plug-Ins add functionality to a GUI. They are dynamically loaded and can be started/opened and closed at will.
Multiple Plug-Ins can be run at the same time. Plug-Ins are normally located in the directory: /home/ArcVIEW/Pluglns
The normal form of a plugin is any VI with a PI prefix:

PI XXXX : all the VIs which starts with PI are the actual Plug-Ins. These are normally the main VI of a sub-
application which is stored in subdirectories: there is one subdirectory for each Plug-In. This contains the Plug-In library,
with all the VIs that are called by the main VI (which is the one which starts with the PI prefix. If the Plugln does not
need any extra VIs it may not need a subdirectory. In every subdirectory you will find a README file with some
specific explanation

Module Overview

The Modules are components that are added to the ArcVIEW Application Server and are the components which perform
the actions. This is because the ArcVIEW server Application shell does not know about detectors, TCS, filters, or other
functions. It just provides communications, logging, module management and other generic services and passes the
instrument commands to the modules. It is the modules that perform the actions and give the responses. The Application
shell routes the responses back to the client.

The concept of "Module" is very general, in the sense that it applies to any specific thing to do, not just detectors or even
specific hardware, but could be an interface module for external software to which you want to connect. A clear example
of this is the GWCRouter Module, which was done for connecting the ArcVIEW-World (LabVIEW) with the
GWCRouter World. This Module acts as an interface between these two worlds, and these two ways of communicating
(GWCRouter and soar communication library). Analog modules could be built for communicating with ANY external
environment

Every Module directory may have:

- VI libraries: have all the VIs which actually perform the actions

- C libraries: if there are some driver or specific hardware to drive, it should be here.
- README file for the explanation

512 Proc. of SPIE Vol. 4848

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

- Common Global Variables — located in the /Common subdirectory of the /Modules directory. In this place should
be added any variable that needs to be shared between modules. This is done in order to keep the modules independent
so, if you remove one, the other ones are not broken.

Every module is "linked" to some command handler VI which is called and run by the ArcVIEW Server. For example:
The AstroSDSU-II Module it is actually used through the SDSUILvi command handler. This SDSUILvi VI calls, using
different commands, to the VIs on the Astro Module directory. Modules are located in subdirectories of the
/home/ArcVIEW/Modules/ directory. Each module must have its own directory Module Management by the Application
When the ArcVIEW server starts, it loads into memory all the VIs which are in the AVAPP_Cmds.App VI, so your new
VI will be in memory, ready to be run. When a command arrives to the ArcVIEW Application server, it will parse the
command and will try to run a VI with a name which matches the first word of the arrived command, and will pass to it
the remaining arguments. In our example:

If a command arrives called "MONSOON SET ExposureTime 12000", it will look into its table (AVAPP_Cmds.Tbl) for
a command called MONSOON. If it is there it will run the VI called MONSOON.vi, and will pass the rest of the
arguments to it, SET ExposureTime 12000. This means that inside the MONSOON.vi you will need to add the necessary
code for handling ALL the commands that will arrive with the MONSOON prefix. This handling will, certainly, means
that you will call the MONSOON specific VIs, in your MONSOON module directory.

5. SCRIPTING CAPABILITIES

ArcVIEW employs a SriptServer VI to pass commands/responses between itself and scriptable languages and tools such
as IRAF and Tcl.

ArcVIEW Scripting Interface Plugin ArcVIEW SOAR Optical Camera GUI

> SockRou [PI_ScripkSs] =101 % [0 58 e o o e —;

i
R e | £ e | =)

observe.file

File Edit Operate Tools Browse ‘Window He

El =] @ | 13pt Application Font

ViIServer calls
to operate the)
front panel
directly

File Input

Corint Nerver Phao i Nevevre
Last Message routed
SDSUII IREXPOSE

itk
Sqf&hﬂess Enr!&erruf & Fog

TCP/IP - &

SOAR CommLib

Input T ' 27| calls to send
1. SOAR CommiLib commands just
auiobserve.socket 2. Read/Write VI Controldlike the GUI
observe.socket 3. Callback Management :
R =22 ArcVIEW application Server / SOAR CommLib calls
Rest the contig #ite r e i from GUI to App
ser def_image Ttitle ge_title cbaerve.last R

set host = Cegr
aet port =

flask ochaserver for the W
<snip> echos to scre

e parameters
nputs from chsecver

#loop, taking exposures uncil we finish

while {(§picn < §num pires)
sendsockemd -h fhost -p §port "SET Imsgellame $p
sendso
sendsockemd <h. §host -p §port "local callback c
sendsockemd -h $host -p fporc -t feaicforimage ":
pien = $picn + 1

$nameipic_num”
e fexp_time"
C ‘.‘_}JIAD'JU‘A L.wLT
SUII IREXPOSL™

end

#f we are done. Urite the last parameters to fils,
echo "image title §image ritle” >> chserve.last
echo "host $host® >> cbserve.last

echo "port §port® >» chserve.last|

Ll I a6

< Mg 8 Ovvies

Fig 3. ArcVIEW Scripting Components

Proc. of SPIE Vol. 4848 513

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

There are three “types” of scripting in the ArcVIEW

Panel Controls Record/Playback

This method allows the operator to input actions on a GUI, Every command/action that would normally get sent
to the Application or Subsystem is also recorded in an array of text commands. After recording is turned off, the
“Macro”, or script is saved by name. Later, the GUI/Operator may recall and “replay” the script file.

TCP/IP — File ScriptServer Plugin

This method uses a LabVIEW TCP/IP interface VI to wait on a socket, or the appearance of a file, to receive
input. The ScriptServer accepts “local” commands that are directed to it’s own configuration, and regular
commands that either send the command to a SOAR Communications channel, or Read/Write a VI interface
control directly. This is the equivalent of a “player piano” for the target GUI or LabVIEW global variable.

GScript (LabVIEW based scripting engine)
This method uses a scripting engine written entirely in LabVIEW that implements a syntax similar to structured
BASIC that allows subscripts, direct LabVIEW queue read/writes and plugin extensions.

6. TCP/IP COMMUNICATIONS

ArcVIEW uses the SOAR Communications Library for TCP/IP communications. The SOAR Communications Library (SCL)
provides a native LabVIEW (platform independent) set of VIs for implementing TCP/IP connections between multiple client
modules and server modules in a dynamically instantiated, non-blocking mode.

Many LabVIEW based TCP/IP server implementations either use a link-array/FOR-loop method for servicing each link
sequentially or multiple copies of a server VI running on a master VI diagram.

e The former method can handle an unlimited number of links, but cannot service links in parallel, therefore it
blocks other links while servicing the current link. It is also limited in how many links it can effectively handle
in one second.

e The later method is non-blocking, but is limited to one TCP/IP link for each server VI on the master diagram.

The SCL solves both issues by spawning a GOOP-based dynamically instantiated server for each client machine (IP address)
that initiates a connection.

Fig 4: TCS Operator Main GUI

Service handlers in the main application are connected to
the SCL Server Instances (SIs) by pairs of LabVIEW
Close Loop queucs.

— SPOP T Application State
% et The SCL has two major “modes of operation in the Type

II link. These are the Callback and Inbox Modes. These

Server Listener/Spawner

Spawn a [Server 5 X
Remote emda modes are only applicable to the Type II. The inbox mode

Clients rcprp commsw — par Gmd Processor will normally use an additional software module called a

Link Pairs _=F
 — < 7 packet router. The Callback Mode uses Callback

- Managers on both the client and server sides.

The main app receives incoming commands, using one or

conmsn v \A’ more Receive Loops and sends Immediate Responses to
. AT re=al Manager |y the calling client. If the requested action names a callback
Glet [——» (. ;

@

VI (i.e., the command will take time), the Command
Processor passes the action off to a processing VI *“P-n”
and registers a callback with the callback manager.

514 Proc. of SPIE Vol. 4848

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The P-n VI signals the CB Manager when the action is complete. The CB Manager sends a callback message to the
original client.

A Message Sequence Chart (Figure 5) shows the communications/command sequence of initializing the SDSU Module
in the SOAR Optical Imager implementation of ArcVIEW.

App Comm Server
GUI Swvr Instance Receive/Ack VI pai Command Processor
InitConn
| CrEdlE Bebicn,,
Connected
SDSUI INIT i
(Patl},VI.Callback, TimeOut) SDSUInit(ClientQ) SDSUT Init
(via TCP/P) - (Wire on main loop)
Register CB
Run SDSUI
Set CB Timer
SDSUImmedReply
(wire on main loop)
SI.)SUInltImmedReply SDSUInitlimmedReply
(via TCP/IP)
— —— —
Spawned
_ SDSUInitCallbackReply SDSTU Init
SDSUInitCallbackReply (via queue & callback mngr) Handler
(via TCP/IP) =l

Fig S: Message Sequence Chart of ArcVIEW Application software showing startup of a server instance (SI) to support the Camera Client and servicing of the
first command.. to initialize and load the SDSU-II module using a V1.

7. ARCVIEW CLIENT GUIS

ArcVIEW uses LabVIEW’s extensive graphical widgets along with many customized controls to implement a main GUI and
the various Pluglns. The ArcVIEW Camera GUI (engineering version) was modeled after the BTC Camera GUI with
modifications for SOAR/CTIO. This GUI and associated Pluglns comprised the bulk of the user interface for ArcVIEW.
Recently, new GUIs were implemented for the SOAR Optical Imager, the Infrared Side Port Imager (ISPI) (for the
4.0m Blanco Telescope) and a refit on one of the Palomar Instruments. Note that it is also possible to run the
Application using direct commands from it’s front panel and also from a shell/scripting language using the ScriptServer
Plugln

Proc. of SPIE Vol. 4848 515

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

/i3 SOAR Optical Imager GULvi
File Edt Operate Tools EBrowse MWindow Help

@ @ 10 | [150t Application Fort |~ (5]

R (o

i Exps:

W DCs nut0| GO l | PALISE ‘ ‘ ABORT | ;‘w# ps:

¥ Go ASAP T r) 4

0CS Next |RE5UME_ STOP \ -

Exp. Time: 9{ 1200

b

Fitter Molle Pattern Mode Precedence F1 |ColourBal j‘

& Single & Single £ Filters, Grid o 'V—_‘i
£ List £ Grids £ Gid, Fitters

Focus Focus Position

Guider vl 3245489

Filter Sequence

CLEAR ALARM HEALTH CHECK

[add =] [#Enps [Filter1

| Filter2 | Exp. Time |
B

Focus I Position I -

ColourBal

Guider

1Z00 Guider 36550

ColourEal
[save] | 01

0f4 ColourBal 1

1200 Guider 41500

ColourBal R

1|

Exposure Info

Basename:
{mono

Type: : 2 f‘;
Pathe [Object =] Sea#: 31 19
E—“uctioa?:\home\simager\images [ii

Title:]'test —
Comment:

Editors/Tools

CCD Editor

Current Status

. Connection ~ Electronics ~. 0cs
| Controller - TCS . DHS
Exposure Progress
! 200 1
(1} 200
i : |
0 Writer Progress 100
143
1 1
(1] 100
Path: l::'l,arcon\test?Z'l,n\teZ
Name: | bias103
disk usage h il
1 1
0 100
Local Environment:
UT: | 22:39:20.8 7f30/2002

Coords: |19:33:20.39 20:43:07.6 2000.0

Airmass: I 0.00

4

Observation Progress
= Grid Seq. i

Filter Seq. m—

EEEE
EEOO
OOEQ

mé@@

Esti;_l_lated Finish:
Seconds

| 2401

Front Wheel Back Wheel

CCD State:

[Idle |

Fig 6. SOAR Optical Imager GUI

516 Proc. of SPIE Vol. 4848

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019

Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

8. ARCVIEW DOCUMENTATION

Current ArcVIEW documentation consists of a 70 page Architecture/Design document, frame-based HTML Help files
and text Readme files. The next phase of ArcVIEW revision will start on the Operators Manuals, both for generic
ArcVIEW User Interface items, and specific addendums for the SOAR Optical Imager and ISPI user interfaces.

HTML Help for ArcVIEW
Figure 7 shows the HTML help for the ArcVIEW Application.
On the left frame of the HTML help window is a list of the top level VIs and all subVIs in an indented hierarchy. In the
far left column is a letter designating what type of VI is there. The symbols are:

*“G” indicates a global variable.
+“S” indicates a standard VI

+“C” indicates a control

+“P” indicates a polymorphic VI

The left frame contains links that bring up the VI in the right two frames. The left frame also shows the path location of
the VIs. The topmost frame shows all callers and callees, letting you see what VIs make use of, or are called by a
particular global. The lower right frame shows the VI front panel and controls with data types and the VI description.
This HTML help will be updated with time.

2} Toplevel - Microsoft Internet Explorer

- View Favorites T

Helo

el
5
el
el
s
3
a8
8
c
c
c
<
<
2
s
s
=
s
C
C
<
C
C
g
C
c
€
<
C
C
C
C
G
C
C
c
c
(o}
=3
-1
-f
g
-
4]

Hierarchy

Hierarchy of
ArcVIEW_Application.vi

HIERARCHICAL STRUCTURE OF AreVIEW Application vi with a total of 59
VIs (vilib excluded) 2002-01-15 11:15 AM Type, I=lnwalid VI, S=Standard VI,
C=Contrel, G=Global, P=Polymerphic VI

ArcVIEW Applicstion.Vi...eovererorenaranarars R

ComrServer Type II.wvi.. .
Init Comm Server-IT.vi..

SpawnType II Server.wi.....

Dynamic INSTARCIALOF Creste.
Dynhamic Instantistor Run.vwi...
Dynamic Instantister Front Panel Open.wi....
Dynhamic InSTantiator DESTroy.Vi.....oeseeaas
Sve-TI CrdlLink.cel. .
Svr-II CBLink.ctl

Svr-1I Commlink.c
Sve-1I Cmdlink.ctl

Sve-I1 CELinkK.Ctl.svsrrnsnrranananonnnonas
Dynamic Instantistor et Control Value.wi...
Comm3ve ITTPLT. Vi. ...

TCP_Read with Size

TCP lrite with 351z

Prepend Size.wvi.

ServerType.ctl.

Sve-I1 CndLink.ct,

Svr-I1 CELink.ctl

Svr-1I Commlil

Svr-1I linkhctioms.ctl.

MngServerlinks Type-II.vi

Svr-1I CmdLink.ctl
Svr-II CBLink.ctl
Svr-I1I CommLink.

Svr=11 linkkctions 1.

Svr-1I CommLinklisc.ctl
Sve-11 CndLink.cel.
Sve-1I CBLink.ctl
Sve-1I CommlLink,

GBEL-ConmServer Type-I
Sve-1I CndLink.crl.
Sve-1I CBLink.ctl..
Sve-11 CommLink.ctl
Sve-11 CommLinkLisc
Pending Action.col.

GBL-CommServer Type-II.vi
SendfrrocClusterTolngr.vi
ErrocReporcer
EventReporter.vi,

TR ———

+C:\home A
+Ci\homel Ar

+ . C:Vhome) dc

..Done it he

..Done it be.
. C:\home Ax

i .C:\hﬂm\kr’
it h_'Tlel

ol @A L Deh roons Py [FHA-E D
| Acass [] b\ r < 1EW DocsiHeip|ArVIEW_AFP1100._AeciTEW Apolcaion Hisarchy.ferd BT
=1 |
Callers

Callees 1’1‘@3«\«“1039 vi

ServerLogTraffic v UnloadModules vi

TCS weather. ol APPSendCommandToQues v rcader and Pendng |,

Message cfl |Action ctl =

+'\homel Ax

c
[
c
C1\home) Ax
o 4
<
c

1V home) A

€ :\home) Ax

+\home), Le
C:\homel Ar

Done it be
+\home), A

Ci\home\ Ar

Done it he
€\ home\ kr

€1\ home\ Ar

ArcVIEW_Application.vi

I

&1

Fig 7. ArcVIEW HTML help for programmers.

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Proc. of SPIE Vol. 4848 517

9. CURRENT STATUS & CONCLUSIONS

Presently, (July/August 2002), various instruments using ArcVIEW are revising their initial GUIs. The underlying SOAR
Communications Library was just revised to use a different instantiation method and improve error handling and recovery. Many
new Pluglns are being added to implement new features and make the instruments easier to use. During the September 2002 to
March 2003 months we expect to complete the detailed GUIs and install both the ISPI and SOI instruments. We will then
integrate Remote Observing Tools[5] and prepare for using ArcVIEW and the SOI for First Light on the 4.2m SOAR Telescope.

Choosing LabVIEW as the language and using a collaborative development process resulted in a comprehensive, yet flexible
instrument control system that will meet all requirements for SOAR instruments at First Light and beyond. In addition,
ArcVIEW has already been ported to two other telescopes for both new and refit instrument needs. ArcVIEW is adaptable to
new multi-controller large mosaics and other instrument needs and will continue to evolve for future astronomy community

requirements.
10. REFERENCES
1. M. Ashe, "ArcVIEW - Design Study V2.doc" 1999-07-16, Imaginatics.
2. M. Ashe, G. Schumacher, “The SOAR Telescope Control System: A Rapid Prototype and Development in

LabVIEW”, Advanced Telescope and Instrumentation Control Software, pp. 48-60, Hilton Lewis, SPIE,
Washington, 2000.

G. Schumacher, et al, “SOAR TCS: From Prototype to Implementation”, SPIE 4848-24, this proceedings.

M. Ashe, et al, “SOAR Control Systems Operation: OCS & TCS”, SPIE 4848-30, this proceedings.

G. Cecil, et al, “Remote Use of the SOAR 4.25m Telescope with LabVIEW”, SPIE 4845-12, this proceedings.
R. Probst, et al, “ISPIL: the Infrared Side Port Imager for the CTIO 4-m telescope.”, SPIE 4848-58, this
proceedings.

7. A Walker, et al, “The SOAR Optical Imager”, SPIE 4841-31, this proceedings.

AU

518 Proc. of SPIE Vol. 4848

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

