
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

ArcVIEW: a LabVIEW-based
astronomical instrument control
system

Michael C. Ashe, Marco Bonati, Steven Heathcote

Michael C. Ashe, Marco Bonati, Steven Heathcote, "ArcVIEW: a LabVIEW-
based astronomical instrument control system," Proc. SPIE 4848, Advanced
Telescope and Instrumentation Control Software II, (13 December 2002); doi:
10.1117/12.461433

Event: Astronomical Telescopes and Instrumentation, 2002, Waikoloa,
Hawai'i, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

SPIE .

ArcVIEW: a LabVIEW-based astronomical instrument control system

Michael Ashe
a
, Marco Bonati

b
, Steve Heathcote

a

a
SOAR Consortium, Casilla 603, La Serena, Chile

b
Caltech, Pasedena, CA

ABSTRACT

To meet the needs of the SOAR 4.2-m telescope first-generation instrument suite, as well as new instruments for the

Blanco 4-m telescope, we developed a new camera controller system called ArcVIEW. In order to provide a strong

foundation and rapid development cycle, we decided to build the system using National Instrument's LabVIEW

environment. The advantages of this approach centers on the tools available for rapid prototyping, integration and

testing of components.

Over the past 2 years, we have taken ArcVIEW from a design document to the point of controlling two new instruments

being built at CTIO. The IR imager, ISPI, will complete final testing this semester and go into use on the Blanco

telescope in September 2002.

The second instrument, the SOAR Optical Imager, is due for completion this semester and will be the commissioning

instrument for the SOAR telescope, for which first light is expected in early 2003.

Keywords: Instrument, Control, LabVIEW, ArcVIEW, CCD, Optical, Infrared, software, distributed

1. INTRODUCTION

The ArcVIEW or “Array Controller in LabVIEW” software suite is a modularized set of software libraries written

primarily in LabVIEW that uses C for the low level driver and image data handling routines. It is described in the

document: “ArcVIEW - Design Study V2.doc” [1]. It is initially intended to implement the IR and CCD array controller

needs of the SOAR/CTIO instruments. It started as primarily an Array Controller, but has now evolved into a data

acquisition and instrument control (DAIC) system., with components for Real Time Display, Filter Wheel control,
Telescope Control System communications and other functions.

The focus of the project is to implement a generic controller architecture that uses the San Diego State University

(SDSU-II) hardware controllers, commonly known as “Leach” or “SDSU-II” controllers in its initial version, but which

also includes the internal and external “hooks” to implement other instruments, using other controllers, in the future,

specifically multi-array, multi-controller configurations for large mosaics.

Currently implemented or planned installations of ArcVIEW include:

Instrument Detector Type Controller
ISPI (CTIO) 1 x 2kx2k HgCdTe SDSU-2
Optical Imager (CTIO) 2 x 2kx4k CCD SDSU-2

Goodman Spec (UNC) 2 x 2kx4k CCD SDSU-2

IFU Spec (Brazil) 2 x 2kx4k CCD SDSU-2

Spartan Imager (MSU) 4 x 2kx2k HgCdTe E. Loh

Systems on Palomar various SDSU-2

In addition to the controller and communication components in ArcVIEW, there are several other software components.

The following table lists other software components.

Advanced Telescope and Instrumentation Control Software II, Hilton Lewis,
Editor, Proceedings of SPIE Vol. 4848 (2002) © 2002 SPIE · 0277-786X/02/$15.00

508

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Software Component Function(s) Overview

Optical Camera Control

GUI

Implements manual setup and control of one camera. This is an ArcVIEW plug-in. The

output can be sent as commands or returned for storage as part of an observation.

IR Camera Control GUI Same, except for IR camera.

OCS Demo GUI Enhanced demo to show capability of storing an Observation in a Queue. Manages

storage, editing and running of an Observation Queue as a capability demo. Allows

editing of Observations composed of the OCS demo data and Camera GUI data.

Save/retrieve from file(s) and live interaction with the Queue Manager.

SOAR Communications This implements a TCP/IP communications handler, using the SOAR libraries.

Status Panel GUI Shows variables requested from various system components via SCL calls.

Macro/Script Handler Processes scripts/macros written as text files. ArcVIEW will use GScript.

Image Data Manager Implements the image data buffer and access and control of the buffer.

SDSU LabVIEW Driver LabVIEW VIs to access the routines in the “C” driver library.

SDSU “C” Driver Low level control of the SDSU hardware via calls to the PCI/CompactPCI interface

card. An example is IRLabs DLL call library.

Telemetry Display of any telemetry from the camera/controller combination.

TCS Communications Uses the SOAR Communications Library (SCL) and LabVIEW code to implement
message routing/response.

TCS Control Module Specific control and response handling of TCS interaction such as would normally be

associated with a full DAIC system.

“PicRead” Reads the data out of the Image Buffer on the fly, unscrambles the data (if necessary)

and routes to displays or other computers as desired.

2. SYSTEM DESIGN MODEL

ArcVIEW is a modular system consisting of a main application server that always provides TCP/IP communications

services and a command processor. It loads the various modules that do the actual work at startup time (and later

dynamically if commanded). These modules do the work of running the particular CCD controller being utilized, as well

as control of other hardware subsystems such as filter wheels, mirrors, calibration lamps, etc. As such, ArcVIEW is
extremely configurable. The current implementation at SOAR/CTIO loads a single SDSU-II controller module, but there

is nothing to prevent loading two controller modules of the same type, or loading an SDSU-II and anther controller (such

as Monsoon or Arcon) once an ArcVIEW controller module has been written. See Fig 1 for ArcVIEW context.

In the current implementation, ArcVIEW is written in LabVIEW 6.0.2 and ‘C’, hosted on PC workstations. The client(s),

either GUIs or script interfaces, communicate with the ArcVIEW Main Application, and through it to the controller(s),

such as the Leach SDSU-II. The various ArcVIEW software modules such as User Interfaces, Status screens, and other

interfaces all route their communications through the SOAR Communication Library (SCL). The data is sent in the form

of text messages that are composed of a 4-byte size header, command and optional parameter and data sections. The

SCL routes packets between its various clients by setting up a series of TCP/IP – LabVIEW Queue processing “server

instances” (SI). Each SI handles the communications in two directions between a sender and a recipient. When the
Application starts it starts a VI to listen and spawn instances of SIs.

A Camera GUI formats the command sequences that are sent to the ArcVIEW main App. An alternative interface (or

one that may be used simultaneously with a GUI) is to use the ScriptServer PlugIn to the GUI. The ScriptServer PlugIn

gives direct interface to the SCL from a TCP/IP socket. This allows any of the various standard scripting languages, such

as Tcl, IRAF, Perl, Python, etc to pass text commands to the ArcVIEW Application and receive the replies directly.

Proc. of SPIE Vol. 4848 509

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Fig 1: ArcVIEW Context and Dataflow.

3. APPLICATION ARCHITECTURE

The ArcVIEW Main Application VI consists of a fairly simple GUI and a code diagram that has five (5) main

constructs: two sequence structures for startup and shutdown, and three (3) while-loops for front panel controls,

incoming command processing and status retrieval and display.
The diagram in Fig 2 shows a simplified version of the Application after startup. The StartUp Sequence (SUS) on the left

loads all the command processing VIs and passes a table of available commands to the main loop for use by the

command processor VI. The SUS also specifies the name of the SCL communications server that the app will respond

to. Above the SUS is the logging VI and the SCL Comm Server-II VI which listens for incoming connection requests

and dynamically spawns Server Instances (SIs) which are copies of the CommSvrIITPLT.vi which is found in the comm

library subdirectory. The SI then handles the TCP/IP communications link between the client GUI and the Command

Processing loop in the center of the diagram. When messages arrive via TCP/IP from the client (i.e., the Camera GUI)

the SI sends the message into the LabVIEW queue for that client link. The “Receive Command Messages Type-II.vi” on

the left side of the loop waits for messages in the queue. It pulls messages out of the queue and sends them onto the

Command Processor VI (CPV) (CmdParser-ProcCaller.vi) in the center. The CPV looks up the first token of the

command as a lookup into the table of allowable commands and uses LabVIEW VIServer calls to run a VI of the same

name as the token. The command VI being run must parse and run the command and supply an immediate return, which
is returned to the Command Processor, which then passes it on to the “Send Cmd Ack Message Type-II.vi” which inserts

510 Proc. of SPIE Vol. 4848

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Observers

Quick look

Image Data

FITS Data

Data Files

FITS Files

ArcVIEW Status

,u,vrnw s~p] , £'----
And oommands "' '

---.,' A1cVI '~-----

.... .,,

O CS Obs . Res ponse s

OCS Obs. Requests

TCS Interfaces

SOAR TC S
\ c!'!ra ,,~

- - ~ ' .,, _. ~ ._, TC S Status Respons es

---.._____,, ArcVI \~

Blanco GWCRouter

Quick look

Image Data

Im age Data

FITS Header

I EW ,-.~---- TCS Status Requests
,--¥ App lies ,._ ~- ········• _

I ,' ~
SDSU Status / - - Filte: C~d s H\X' S

ta
tus

App Glob al Var s

T elescope

Control

System

'----~;:,---·
. .- O ther .., __ _

H ardwa

re
/

O ther Status

SDSU Status

SDSU Cmd s

Instrument

Hardware

Controlle r Setup and

wavefor m information

O ther

Hardware Setup

Info Source

the reply into the return queue associated with the remote client. This queue sends the

reply back to the SI which extracts it from the queue and send back to the original

calling client via TCP/IP.

.

Directory Structure

ArcVIEW is installed in the “home” directory under both Linux and Windows. This

maintains a common path base for both platforms, and insures commonality with the

SOAR Telescope Control System.

The /ArcVIEW directory contains the libraries for the ArcVIEW Application (the

server), the ArcVIEW GUI (camera GUI), the CCD Editor and the OCS Demo.

The /ArcVIEW/Common subdirectory is a central location for libraries and

subdirectories of libraries that supply either a major layer (such as the SOAR

Communications Library layer) or “glue” code and subroutines that are reusable over

several places.

The /ConfigFiles, /Database, /Logs, and /Scripts subdirectories are each central

locations for those types of items.

The /docs subdirectory has two branches for /Readme files and for HTML help. The
/Modules and /PlugIns subdirectories are where Application and GUI extensions for

ArcVIEW are placed. �

Fig 2: Simplified ArcVIEW Application software Diagram. Initialization sequence on left followed by main

application command processing loop on right.

Strictly speaking, ArcVIEW consists of the main Application and the Data Handling processes. The Camera GUI/Client

is simply one example of how to interface to the Main Application with a GUI as opposed to a scripting interface. The

Proc. of SPIE Vol. 4848 511

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

P O home

.• ::Jmiives
8-L] At.liJEW

E'·W C~
.i ,:...) c~d Pw:es,;or
::ii D r:o;mrlbr<iry ~3

·CJ C.olb,ol<s

Cl mabg TemJ:iates

-.; ,_) GScrpt

CJ Tom
E ·CJ C~ figFr.e:s

E ,:.:J Da':abas:e

R -=:J Docs
3-CJ tfclp

--D ArCV,EW_flPP

D ~rtV,EW_GUI

~ :i R.oocmes
--CJ Maq.Jle•

-0 Ftug-rn,;.

:==_'.]LC!~

CJ ~rrc,r_!Air;,

CJ Ern -t:_lo g!l

s ..::i MiSc

:;. ~ Mooulss

£ CJ F1ug[n~

E :J Scrcit•

Comms Config File Path
[SJ

Startup Sequence

till)
Server Name

Client Name

This loads the libraries
of command Vls

During startup the Load Cmd Procs VI
loads all the••• _cmds.App type Vls
from all the CmdProcs *** .libs in the
/home/ ArcV!EW /Common/Command
Processor/ directory. This loads all
the command Vls into memory to make
them available to the Command
Processor VI in the loop.

spawn a
server
instance

~

[I]

For Client I For Client "N"

000

<- Note: These Vls are not actually on the
diagram, but are dynamically copied and
started in response to clients connecting.

Cmds Replies

Device N
Hardw«e

<- Communi cation s

< - Processing

<- Modules & Drivers

< -Hardware

ArcVIEW system consists of several levels of standard APIs, implemented in LabVIEW, for plugging in components

unique to a particular telescope’s instrument load. (The first controller implemented was the SDSU-II Leach controller.).

A key feature of ArcVIEW is that it allows the addition of new features with little or no recoding and recompiling of the

main application or any applicable Camera GUI in most cases. It accomplishes this using Modules in the Main

Application and Plug-Ins in the Clients/Camera GUIs

4. PLUGIN - MODULE IMPLEMENTATION

ArcVIEW defines two types of dynamically usable code: PlugIns and Modules. Either item can be used in any

ArcVIEW client or Server, but normally the PlugIns are associated with GUIs and the Modules are Associated with

Instrument/Controller Applications.

 Modules: PlugIns:
1.Major Components
2.Managers, Servers, etc

–Ex: Instrument CCD Controller

–Ex: Filter Wheel Motion Control

–Ex: Real-Time-Display

3.Loaded mainly by Applications

4.Tighter coupling

5.Provides required functionalities

1.Minor Components
2.Clients, Wizards, Tools

–Ex: Star Catalog Access

–Ex: Data Simulator

–Ex: New Report Formatter

3.Loaded mainly by GUIs

4.Looser coupling

5.Provides convenience, power, integration, elegance

GUI Plug-Ins
GUI Plug-Ins add functionality to a GUI. They are dynamically loaded and can be started/opened and closed at will.
Multiple Plug-Ins can be run at the same time. Plug-Ins are normally located in the directory: /home/ArcVIEW/PlugIns

The normal form of a plugin is any VI with a PI_ prefix:

PI_XXXX : all the VIs which starts with PI_ are the actual Plug-Ins. These are normally the main VI of a sub-

application which is stored in subdirectories: there is one subdirectory for each Plug-In. This contains the Plug-In library,

with all the VIs that are called by the main VI (which is the one which starts with the PI_ prefix. If the PlugIn does not

need any extra VIs it may not need a subdirectory. In every subdirectory you will find a README file with some

specific explanation

Module Overview
The Modules are components that are added to the ArcVIEW Application Server and are the components which perform

the actions. This is because the ArcVIEW server Application shell does not know about detectors, TCS, filters, or other
functions. It just provides communications, logging, module management and other generic services and passes the

instrument commands to the modules. It is the modules that perform the actions and give the responses. The Application

shell routes the responses back to the client.

The concept of "Module" is very general, in the sense that it applies to any specific thing to do, not just detectors or even

specific hardware, but could be an interface module for external software to which you want to connect. A clear example

of this is the GWCRouter Module, which was done for connecting the ArcVIEW-World (LabVIEW) with the

GWCRouter World. This Module acts as an interface between these two worlds, and these two ways of communicating

(GWCRouter and soar communication library). Analog modules could be built for communicating with ANY external

environment

Every Module directory may have:
- VI libraries: have all the VIs which actually perform the actions

- C libraries: if there are some driver or specific hardware to drive, it should be here.

- README file for the explanation

512 Proc. of SPIE Vol. 4848

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

- Common Global Variables – located in the /Common subdirectory of the /Modules directory. In this place should

be added any variable that needs to be shared between modules. This is done in order to keep the modules independent

so, if you remove one, the other ones are not broken.

Every module is "linked" to some command handler VI which is called and run by the ArcVIEW Server. For example:

The AstroSDSU-II Module it is actually used through the SDSUII.vi command handler. This SDSUII.vi VI calls, using
different commands, to the VIs on the Astro Module directory. Modules are located in subdirectories of the

/home/ArcVIEW/Modules/ directory. Each module must have its own directory Module Management by the Application

When the ArcVIEW server starts, it loads into memory all the VIs which are in the AVAPP_Cmds.App VI, so your new

VI will be in memory, ready to be run. When a command arrives to the ArcVIEW Application server, it will parse the

command and will try to run a VI with a name which matches the first word of the arrived command, and will pass to it

the remaining arguments. In our example:

If a command arrives called "MONSOON SET ExposureTime 12000", it will look into its table (AVAPP_Cmds.Tbl) for

a command called MONSOON. If it is there it will run the VI called MONSOON.vi, and will pass the rest of the

arguments to it, SET ExposureTime 12000. This means that inside the MONSOON.vi you will need to add the necessary

code for handling ALL the commands that will arrive with the MONSOON prefix. This handling will, certainly, means

that you will call the MONSOON specific VIs, in your MONSOON module directory.

5. SCRIPTING CAPABILITIES

ArcVIEW employs a SriptServer VI to pass commands/responses between itself and scriptable languages and tools such

as IRAF and Tcl.

Fig 3: ArcVIEW Scripting Components

Proc. of SPIE Vol. 4848 513

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

ArcVIEW Scripting Interface Plugln

observe.file
EM tdot Ql>etate Iools I°""'• l,'.indo¥, ti

~ [!!] I~ Applii:¥:ion Font

last MeSsaQe rcded

SDSUII IREXPOSE

Sod Mess Corrm.error Ir e:1.oo .. -
TCP/IP

nieMess p,oc. =-2 ~ - ..
Input

1. SOAR Commlib
~ .socket
observe.socket

React the con.t19 tlle

.,et ho:,t '" · e,:rl.'ep hO:,t oti:,erve .l•s t

:,et poet• 'ea c ep port oti:,erve .l&.:J I.

Mask observer :tor UU!! lt'119.ge para."lll!ters

.c,:nip> eeho,: to sc:reel'l , input:= ti:om ol;l.!u:i:vet

#l oop, takinq exposure:, until ve tinish
11h1le C$p1en < $niu,, p1cs)

2.

3.

send.5ockc:-md - h $ho:,e - p $port "StT Imacrc.Na:rc $pe,eh/~ni!ame:~plc n\111''°
:,cntbocki::m::1 -h $ho :,t -p $port " SD:SUII SET £icp o:5ureTime Sexp ~ime "

i,enctaoc~ - h $ho.st - p Sport "loce.1 c'!l.11..back cl!lll CB Rti..DOirT.v1"
!!ICncbockCll;'d -h $host -p $port. -t Sva1ttorHMqe "SD:SUI I IRfXP OSZ:"

pten • $plen + 1

we are done . Vr1ce the ll!lst parSJiteter:, to :tile,
e.eho " image t1 tle $Lma!!lu;,e t i tle" >> ob~erv~ . l-t.

echo "ho et ihoet" » obeirve . la.:,t
echo "po[t $po r t" >> obee[ve, l>!l!!ltl

• Al

VIServer calls
to operate the ►

front panel
directly

SOAR Commlib
calls to send

There are three “types” of scripting in the ArcVIEW

Panel Controls Record/Playback
This method allows the operator to input actions on a GUI, Every command/action that would normally get sent

to the Application or Subsystem is also recorded in an array of text commands. After recording is turned off, the

“Macro”, or script is saved by name. Later, the GUI/Operator may recall and “replay” the script file.

TCP/IP – File ScriptServer PlugIn
This method uses a LabVIEW TCP/IP interface VI to wait on a socket, or the appearance of a file, to receive

input. The ScriptServer accepts “local” commands that are directed to it’s own configuration, and regular

commands that either send the command to a SOAR Communications channel, or Read/Write a VI interface

control directly. This is the equivalent of a “player piano” for the target GUI or LabVIEW global variable.

GScript (LabVIEW based scripting engine)
This method uses a scripting engine written entirely in LabVIEW that implements a syntax similar to structured

BASIC that allows subscripts, direct LabVIEW queue read/writes and plugin extensions.

6. TCP/IP COMMUNICATIONS

ArcVIEW uses the SOAR Communications Library for TCP/IP communications. The SOAR Communications Library (SCL)

provides a native LabVIEW (platform independent) set of VIs for implementing TCP/IP connections between multiple client

modules and server modules in a dynamically instantiated, non-blocking mode.

Many LabVIEW based TCP/IP server implementations either use a link-array/FOR-loop method for servicing each link

sequentially or multiple copies of a server VI running on a master VI diagram.

• The former method can handle an unlimited number of links, but cannot service links in parallel, therefore it

blocks other links while servicing the current link. It is also limited in how many links it can effectively handle
in one second.

• The later method is non-blocking, but is limited to one TCP/IP link for each server VI on the master diagram.

The SCL solves both issues by spawning a GOOP-based dynamically instantiated server for each client machine (IP address)

that initiates a connection.

Fig 4: TCS Operator Main GUI

Service handlers in the main application are connected to

the SCL Server Instances (SIs) by pairs of LabVIEW

queues.

The SCL has two major “modes of operation in the Type
II link. These are the Callback and Inbox Modes. These

modes are only applicable to the Type II. The inbox mode

will normally use an additional software module called a

packet router. The Callback Mode uses Callback

Managers on both the client and server sides.

The main app receives incoming commands, using one or

more Receive Loops and sends Immediate Responses to

the calling client. If the requested action names a callback

VI (i.e., the command will take time), the Command

Processor passes the action off to a processing VI “P-n”
and registers a callback with the callback manager.

514 Proc. of SPIE Vol. 4848

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Server Listener /Sp awner

5
Close Loop

p .rJ"':::,op ~

~ ~ B
Spawn ~ Server

Remote 9
Clients TCP/IP CommSvr1 ~:~Q
rc,;;;i= ~ ~
~ -----=-~ ~

C3Ub3Ck Q

CommSvrn ~

rc,;;;i ~
l_!"r>"J ~ ~

Application State
Machine

I Rev Cmd ~ Cmd Proce ssor

I SndRsp j.-®)
~---~ ¥ ~

Callba ck ~

/

Manager

~

The P-n VI signals the CB Manager when the action is complete. The CB Manager sends a callback message to the

original client.

A Message Sequence Chart (Figure 5) shows the communications/command sequence of initializing the SDSU Module

in the SOAR Optical Imager implementation of ArcVIEW.

Fig 5: Message Sequence Chart of ArcVIEW Application software showing startup of a server instance (SI) to support the Camera Client and servicing of the

first command.. to initialize and load the SDSU-II module using a VI.

7. ARCVIEW CLIENT GUIS

ArcVIEW uses LabVIEW’s extensive graphical widgets along with many customized controls to implement a main GUI and

the various PlugIns. The ArcVIEW Camera GUI (engineering version) was modeled after the BTC Camera GUI with

modifications for SOAR/CTIO. This GUI and associated PlugIns comprised the bulk of the user interface for ArcVIEW.

Recently, new GUIs were implemented for the SOAR Optical Imager, the Infrared Side Port Imager (ISPI) (for the

4.0m Blanco Telescope) and a refit on one of the Palomar Instruments. Note that it is also possible to run the

Application using direct commands from it’s front panel and also from a shell/scripting language using the ScriptServer

PlugIn

Proc. of SPIE Vol. 4848 515

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

App CommServer

InitConn

Connected

GUI Svr Instance

GUI Svr Imtmu:e
~!°~a~ §_e,!_ V !I ➔ CcmmSvtr plfilvi

II INIT
Connected

Receive /Ack VI air

RcvCmdMsg-D. vi
SndCmdAck:Msg--ll.vi

Command Processor

ommand Precess
CmdParser _ProcCaller.vi

(Patl ,VI,Callback , Timeout)

(v ia CP/IP)

SDSUIIInit(C lientQ)
SDSUII Init

SDSUinithnmedRepl y

(via TCP/IP)

SDSUinit Callba ckReply

(via T CP/IP)

(Wire on main loop)

Run SDSUII

SDSUhumedRe I
(wire on main loop)

SDSUinitCallba ckReply

(via queue & callback mngr)

Spavvnecl

SDSU Init

Handler

Fig 6: SOAR Optical Imager GUI

516 Proc. of SPIE Vol. 4848

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

@i•M·i•Mtttiil1161114id1i6J
E.ile t_dit Qperate Iools §.rowse ~indow !::ielp

~ @1 • II I 13pt Application Font ly 11 ~ p Y i l ; □ , ; y i l $ y j

■ SOAR Optical Imager . ,,/

El 0(5 Auto ~I =G=o::::::::11 PAUSE 11 ABORT ' 1
p: Go ASAP] ocs NeKt) I RESUME] ~

r-

Filt er Mode

e) Singte

_pust

Pattern Mode

©_ Single

.Q. Grids

Pre cede nce

m Filters, Grid

!J Grid, Fitters

J
Cut11enrt Status

r-:=-Connection r-::' Electronics r::' OCS
r:; controller r-::. res r=' DHS

L
~
0

~
0

Exposure Progress

200

Readout Progress

71 I

I
200

' 100 Writer Progress .-----. 'l3' ______ _

' 0 100

Path: f :\arcon\test72\nite2

Name:! bias103

disk usage .-----------

100

Local Envir onment :

UT: I 22:39:20. 8 7/30/2002

Coords: 119:33:20.3 9 20:43:07.6 2000.0

Airmass:~

f ocus Focu s Pos ition

I Guider 3 I 32404891

Editor s/If oo ls

Grid Editor

CCDEditor

l , I: '

IAdd>l

~
I Save I

Filter Sequence

#Exps Filter l

4/4 ColourBal

0/4 ColourBal

Filter 2

B

R

Exp. Time focus Position .
1200 Guider 41080

1200 Guider 36550

0/4 ColourBal 1200 Guider 41500
~ 1-~-+----t-----+----;-------1c-----t

Estimated Fin ish:

Seconds
::·'

■ ■
I 2401 "

■■ ■■

n ■ ■■ ·~
n ~

Front Wheel Back Wheel

("· " ~ - ~ -~~ ~

~~~ -

-



8. ARCVIEW DOCUMENTATION 

 

Current ArcVIEW documentation consists of a 70 page Architecture/Design document, frame-based HTML Help files 

and text Readme files. The next phase of ArcVIEW revision will start on the Operators Manuals, both for generic 
ArcVIEW User Interface items, and specific addendums for the SOAR Optical Imager and ISPI user interfaces. 

 

HTML Help for ArcVIEW 
Figure 7 shows the HTML help for the ArcVIEW Application. �

On the left frame of the HTML help window is a list of the top level VIs and all subVIs in an indented hierarchy. In the 

far left column is a letter designating what type of VI is there. The symbols are: 
 

•“G”  indicates a global variable.�

•“S”  indicates a standard VI 

•“C”  indicates a control 

•“P”  indicates a polymorphic VI 

 

 The left frame contains links that bring up the VI in the right two frames. The left frame also shows the path location of 

the VIs. The topmost frame shows all callers and callees, letting you see what VIs make use of, or are called by a 

particular global. The lower right frame shows the VI front panel and controls with data types and the VI description. 

This HTML help will be updated with time. 

 

 
Fig 7: ArcVIEW HTML help for programmers. 

 

Proc. of SPIE Vol. 4848     517

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

+- "' • .,. · o Ill t;.'I I ~"«"' l'.!l- 13,_,, lili· ,i;i liif! · ii~ 
Address l@l C\home¼cYIEWlDocs\Heb\ArcVIEW..Af'P\lOO.fa'c\llEW Aookol:ion Hiererchy.htrrl 

Hie-rarcby 

Hierarclt) ' of 

ArcVIE, V_Application.vi 

HIERARCIDCAL STRUCTURE O F .ArcVfEW Application.vi with a total of 59 

Vis (vi.bb excluded) 2002-01-15 1115 AM:Type: I=Invalid VI, $=Standard VJ, 
C:aaContrnl. G=Global. P=Polymorphic VT 

S ArcV ltW AppUcat1on.v 1 . 
Co~erver fyp e ll. vt. 

. . . . . • . . c : \ home\ Ar 
. .c:\horne\Ar 

ln1t Coim, Se!:Ver - Il . vi. . . . .. . . . C: \t\on:,e\J.r 

S pe.1i1nType lI 5erv e r .v1. . . .. . C: \home\.li: 

DynNn1c Instan tl at or cre e te.v1 .. . . ... . . ... . c : \horne\A.t 
oynN'l'>iC ln su1nt1ator Run.v1. . . ..•.. c: \ horoe\ J.. 

Dyna1111c In su1nt1otor f ront Panel Opeti.vL . ,C:\t\oroe\Ar 
oynM1 c ln st.anct.ator Desc.roy. vL . . . . . . c: \ tloaue\ Ar 
svr - II CmdL1nk . ctl. 

SVt:'-II CBLink.ctl 

Svr -II CO!ffl>Link:. ct L. 

Svc -II Cnld.Link.c tl. . 

. . ... . . c:\nome\A.r 
. c : \nome\A.r 

..... . c : \horne\J.r 

. , .Do ne it: be 

Svr-II CBLinlo:. et: l "' . ........... . ..... . ., .Do ne it: be 

Dynam1c IJ\..5tan t1 a to r set: Control Value . v1. . C:\home\Ar 

Col'm\Svr IITPL T . vi . . C: \ bomc\J.r 

Pre pend Sh:e. v i 
Server Type .ctl. . ...... , •. , , , . 

. . . . c: \ horoe\A.r 

. C:\horoe\A.r 

.C:\h.ome\Ar 

.C:\homc\Ar 

.Do ne it be Sv .c:- II Cmdl,ink. ctl ... . .. .. . 

Sv.c:-II CBLi nk. c tl. . . . . Do ne it: be 

Svt:- I I Cotm:tl.ink, ct: l ••• • • • • • •• • • • • , •• ,Done it: b e 

. C:\h ome\A.r 

. C:\h. omc\A .-c: 

. Done it be 

Svc:-II Linld. c tion.,..ctl. •• , • • 

l'lngSe r ve.c:L ink :!! Type- II. v i. . 

Svr - I I CmdL1nk . ctl . . .... . 

Svc:-II CBLinlt .ct: l. ........ . ... •... . . Do~ it bl! 

.Do ne it: bl! 

.D on!! it: b l! 

. C:\h. ome\J.r 

. Done i t be 

. Done it be 

Sv.c:-II Co:t'fm.i nk,ctl. . 

Sv c - I I Linlt .lcti on :!!, ct.l. ,. 

Svr - II C<nmiLinkLi:!!t.ctl.. 

Sv.c:-II CmdL1nk . ctl. .... 

Svr-ll CBLink. ct l 

Sv.c:-Il Co!tmLi nk. ct l. . 

GBC.- CoromSecver Type-II.v i . 

Svr-11 Cl'l'<d.Link. ctl. 

Svr-ll CSLin k. ctl.. 

Svr -II Coll'l'lll..ink . c t.l 

Svr-11 ColmlLinkL1 st.ct l. . . 

Pending A.ctio n. ct. l. . 

GSL- CorrtroSecver Type-II. Vl 

Senctl!:ri::or Cl U9terTo!'lng r . v1 . . 

l!:rrorRl! po rt.ei::. v1 . . 

. . . .. . . Do ne it: be 

.C:\h onie \J.r 

, Done it: be 

. ... Done it be 

. Do ne i t b e 

. . Done it: be 

. . C: \horne\A. r 

.. Done t,; be 

. ... ... . C:\home\lr 

. C: \home\J.r 

.:l i"Go 11""'. 

F~, I ~ ~-. I - H<ader and Fen · ~ M--•·--•r'°-"""' ••••~~-•-•-M ., ., Art 
I I ~ cuon cu -

. £ 
Ar c VIE \ V _Ap pli ca ti on. vi 

-

! ve n t.Report e r . V1 . . 
r."<t, _r,.._... ... ,.., .... .,.., .,.,._ yy '" . . • . • C : \ hO!'IIE!\ ~ ◄ --- _-_ - _-_- _ - _ -_-_ - _-_- _ -_-_-_ - _-_- _ -_-_ - _-_- _ -_-_-_ - _-_- _ -_-_ - _-_- _ -_-_-_ - _-_- _ -_-_ - _ - _-_- _ -_-_ - _-_- _ -_-_- _ --------£ 



9. CURRENT STATUS & CONCLUSIONS 

 

Presently, (July/August 2002), various instruments using ArcVIEW are revising their initial GUIs. The underlying SOAR 

Communications Library was just revised to use a different instantiation method and improve error handling and recovery. Many 
new PlugIns are being added to implement new features and make the instruments easier to use.  During the September 2002 to 

March 2003 months we expect to complete the detailed GUIs and install both the ISPI and SOI instruments. We will then 

integrate Remote Observing Tools[5] and prepare for using ArcVIEW and the SOI for First Light on the 4.2m SOAR Telescope. 

Choosing LabVIEW as the language and using a collaborative development process resulted in a comprehensive, yet flexible 

instrument control system that will meet all requirements for SOAR instruments at First Light and beyond. In addition, 

ArcVIEW has already been ported to two other telescopes for both new and refit instrument needs. ArcVIEW is adaptable to 

new multi-controller large mosaics and other instrument needs and will continue to evolve for future astronomy community 

requirements. 

 

10. REFERENCES 

 

1. M. Ashe, "ArcVIEW - Design Study V2.doc" 1999-07-16, Imaginatics. 

2. M. Ashe, G. Schumacher, “The SOAR Telescope Control System: A Rapid Prototype and Development in 

LabVIEW”, Advanced Telescope and Instrumentation Control Software, pp. 48-60, Hilton Lewis, SPIE, 

Washington, 2000. 

3. G. Schumacher, et al, “SOAR TCS: From Prototype to Implementation”, SPIE 4848-24, this proceedings. 

4. M. Ashe, et al, “SOAR Control Systems Operation: OCS & TCS”, SPIE 4848-30, this proceedings. 

5. G. Cecil, et al,  “Remote Use of the SOAR 4.25m Telescope with LabVIEW”, SPIE 4845-12, this proceedings. 

6. R. Probst, et al, “ISPI: the Infrared Side Port Imager for the CTIO 4-m telescope.”, SPIE 4848-58, this 

proceedings. 
7. A. Walker, et al, “The SOAR Optical Imager”, SPIE 4841-31, this proceedings. 

 

518     Proc. of SPIE Vol. 4848

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/4/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


