
Arduino: A low-cost multipurpose lab equipment

Alessandro D’Ausilio

Published online: 25 October 2011
Psychonomic Society, Inc. 2011

Abstract Typical experiments in psychological and neuro-
physiological settings often require the accurate control of
multiple input and output signals. These signals are often
generated or recorded via computer software and/or
external dedicated hardware. Dedicated hardware is usually
very expensive and requires additional software to control
its behavior. In the present article, I present some accuracy
tests on a low-cost and open-source I/O board (Arduino
family) that may be useful in many lab environments. One
of the strengths of Arduinos is the possibility they afford to
load the experimental script on the board’s memory and let
it run without interfacing with computers or external
software, thus granting complete independence, portability,
and accuracy. Furthermore, a large community has arisen
around the Arduino idea and offers many hardware add-ons
and hundreds of free scripts for different projects. Accuracy
tests show that Arduino boards may be an inexpensive tool
for many psychological and neurophysiological labs.

Keywords I/O board . Cheap laboratory equipment .

Experimental control . Arduino . TTLs read . TTLs write

Introduction

Every lab running some kind of behavioral research makes
use of several types of equipment and software for
experimental control. The goal is typically to record events
(behavioral or physiological) and generate signals (i.e., to
control or synchronize different machines). Such tasks, in
most cases, require millisecond-to-millisecond accuracy

and thus require particular attention, since modern operat-
ing systems (OS) are not designed to operate in real-time
and with such accuracy (Canto, Bufalari, & D’Ausilio,
2011; Chambers & Brown, 2003; MacInnes & Taylor,
2001; Plant & Turner, 2009). Therefore, several different
approaches are used, such as programming the experimen-
tal I/O task via dedicated and optimized software packages
(i.e., E-Prime, Presentation, Psychophysics Toolbox for
MATLAB, etc.) or devolving critical tasks to dedicated
hardware with internal high precision clocks (i.e., external
I/O boards from National Instruments, Measurement Com-
puting, Cambridge Electronics Devices, etc.). In both cases,
the solution tends to be expensive (especially for external
boards), suboptimal insofar as it relies heavily on the OS’s
accuracy (this holds for all experimental control software),
or unsuited for specific experiments. This latter point is
particularly true when testing multiple participants at the
same time or in experiments requiring portable or wireless
battery-powered set-ups.

In some cases, however, many low-level I/O tasks do not
need specific software packages or expensive boards. For
example, if the experimenter wants an event to be triggered
when an event is detected via some sensors (i.e., touch
sensor, force sensor, etc.), it is not necessary to use
expensive hardware or software. In fact, simple and cheap
microcontroller boards may solve many of these laboratory
I/O tasks. Such boards are physical computing platforms
based on a simple microcontroller and a development
environment for writing software. These devices can be
used to develop interactive objects, taking inputs from a
variety of switches or sensors and controlling a variety of
lights, motors, and other physical outputs. Projects of this
kind can usually be stand-alone, or they can communicate
with software running on a computer. Such boards have
been around for several years and typically offer similar
characteristics differing only in processor architecture
(ARM, ATMEL, etc.), programming language (C/C++,

A. D’Ausilio (*)
RBCS - Robotics, Brain and Cognitive Sciences Department,
IIT - The Italian Institute of Technology,
Via Morego,
30-16163 Genova, Italy
e-mail: alessandro.dausilio@iit.it

Behav Res (2012) 44:305–313
DOI 10.3758/s13428-011-0163-z

BASIC, etc.), or other features (i.e., number of I/O
channels, presence of analog channels, etc.). Several
manufacturers have proposed quite popular solutions such
as Parallax Inc., Coridium Corporation, FTDI, Picaxe,
Arduino, as well as many others. All of these boards
typically cost around 50€. However, programming these
boards can be quite complicated, and the user requires at
least some basic electronics knowledge. Thus, the main
obstacle to widespread use of these boards in psychological
and neurophysiological labs is the steep learning curve.

However, Arduino boards (Fig. 1) offer one critical
advantage: the open source philosophy (both hardware and
software), which capitalizes on the massive nonexpert
community that has flourished around the Arduino concept.
A very rough estimate of the size of the community can be
gleaned from a Google search reporting more than 12
million hits for "arduino." In fact, a large user base and the
growing market have shown increasing interest around the
Arduino concept. There are hundreds of open-source
projects one can use or modify according to specific
(experimental) needs. Many web tutorials cover basic

programming and electronics issues, and there are active
forums for help. Thus, learning to use Arduino boards may
be a lot easier than learning to use similar products from
other manufacturers. Given the available support from the
Arduino community, even researchers with little programming
and electronics background should consider using Arduino
rather than other similar boards.

Arduino hardware consists of an open hardware design
with an Atmel AVR processor. Arduino boards can be
purchased preassembled, but hardware design information
is also available for those willing to build or modify them
(further information can be found at http://arduino.cc).
Several third-party makers have produced Shields (add-on
boards) that are able to extend the basic capabilities of an
Arduino (an updated list is at http://shieldlist.org/). Among
these shields, it is worth mentioning that the Motor Control
Shield allows the control of DC motors and read encoders,
the Xbee shield allows multiple Arduino boards to
communicate wirelessly, and the Critical Velocity Acceler-
ometer Shield integrates a 3-axis accelerometer. Addition-
ally, third parties (+30) have released several variations
based on the Arduino concept. These are companies
building boards (typically with better specs or lower price)
using the Arduino software.

The software consists of a standard programming language
and a firmware that runs on the board. Arduino hardware is
programmed using a language that is simplified C++, in a
processing-based IDE. The software is then compiled and
loaded on board. Arduino boards are compatible also with
Flash, Processing, MaxMSP, and MATLAB, and a few lines of
code often suffice to enable quite powerful behaviors (see
http://arduino.cc/en/Reference/HomePage). The basic
programming structure of an Arduino is composed of at least
two parts. These are the setup and the loop components. In the
set-up, which runs at the beginning and only once to set pin
mode or serial communication, the variables are declared. The
second part runs in a loop that enables the script to change, to
respond, and to control the Arduino board. After declaring
variables, controlling the Arduino involves classic control
structures (IF, IF…ELSE, FOR, etc.), arithmetic oper-
ators (+, -, /, *, etc.), and comparison operators (>, <, etc.) or
boolean (AND, OR, etc.). There is also a set of commands for
analog and digital read and write such as digitalwrite() or
digitalread(). Furthermore, other commands can set temporal
delays in milliseconds, perform basic mathematical and
trigonometry operations (min/max, absolute value, square
root, sine, cosine, etc.), or generate random numbers. For
more comprehensive information, please refer to web tutorials
or to the official documentation (http://www.arduino.cc/
playground/uploads/Main/arduino_notebook_v1-1.pdf).

As a practical example of use, suppose that the
experimental participant has to reach and grasp an object,
and a researcher wants to trigger another machine (i.e.,

Fig. 1 Arduino board. a The Arduino UNO external appearance.
Please note how small and portable is this device. b A simplified
schematic of the digital and analog input/output ports

306 Behav Res (2012) 44:305–313

http://arduino.cc
http://shieldlist.org/
http://arduino.cc/en/Reference/HomePage
http://www.arduino.cc/playground/uploads/Main/arduino_notebook_v1-1.pdf
http://www.arduino.cc/playground/uploads/Main/arduino_notebook_v1-1.pdf

Transcranial Magnetic Stimulation machine) 100 ms after
object contact. The typical solution is a touch sensor
communicating, via the parallel port, with a software
program on a computer (i.e., E-Prime or Presentation).
The software detects the state change, sets the delay, and
sends a TTL over the parallel port. This solution is
irreproachable, except that it requires the intervention of a
PC and software that may introduce temporal accuracy
problems (Plant & Turner, 2009). Simple I/O tasks, such as
the one suggested, require a few lines of code and very little
electronics on the Arduino boards (or any other similar
products) to process the information without a PC. In this
way, it may be possible to avoid temporal accuracy
problems, because the code is compiled and runs at full
speed without any other interfering process running in the
background. In fact, Arduino boards prove extremely useful
when acquiring sensor data and/or controlling motors as
well as sending/receiving TTL pulses.

Moreover, these low-level I/O tasks may be necessary for
unconventional set-ups in which additional hardware,
programming skills, and often some creative solutions are
usually needed. Consider, for example, this short list of open
projects that may be very useful in psychological and
neurophysiological laboratories. An easy-to-build and cheap
touch sensor (http://www.arduino.cc/playground/Code/
CapacitiveSensor) has been devised for use in behavioral
research that involves the measurement of reaction times
(RTs) of participants reaching and touching objects. Another
project shows how to build a photodiode (http://www.
arduino.cc/playground/Learning/LEDSensor) that may be
used, for instance, to detect onscreen stimuli presentations.
Finally, one other project shows how to introduce debouncing
capabilities to any input (http://arduino.cc/en/Tutorial/
Debounce), which is useful in view of the well-known fact
that most button pads offer noisy signals, and that debouncing
is a necessary step in order to pick the correct RT.

However, timing accuracy has the highest priority for all
experimentalists, even if it is expensive. Here, Arduino
boards should in principle be quite accurate, since the
scripts are compiled and then loaded on the board memory.
Thus, once the compiled script is loaded, it runs without
any other OS intervention or communication and thereby
avoids delay and accuracy bottlenecks. Accurate timing is
ensured by the fact that the embedded microprocessor has
its own clock and has only to run the script that has just
been loaded. Nevertheless, a thorough testing of timing
accuracy must be provided in common experimental
settings, and data must be controlled via external reliable
and research-grade hardware (Plant, Hammond, & Turner,
2004; Plant, Hammond, & Whitehouse, 2002; De Clercq,
Crombez, Buysse, & Roeyers, 2003). In the present study,
an Arduino board was verified in a series of common I/O
tasks to assess its timing accuracy.

Method and Results

Arduino Board

The Arduino Uno is a microcontroller board based on the
ATmega328. It has 14 digital input/output pins, and six of them
can be used as Pulse Width Modulation (PWM) outputs.
Furthermore, it is provided with six analog inputs, a 16-MHz
crystal oscillator, a USB connection, a power jack and an In
Circuit Serial Programming header. The Arduino Uno can be
powered via USB connection or with an external power supply
(i.e., a 9-V battery). The power source is selected automatically.
The board can operate on an external supply of 6 to 20 volts.
The ATmega328 has 32 KB (with 0.5 KB used for the
bootloader). It also has 2 KB of SRAM and 1 KB of EEPROM
(which can be read and written with the EEPROM library).

Each of the 14 digital pins on the Uno can be used as an
input or output, using pinMode(), digitalWrite(), and digital-
Read() functions. They operate at 5 volts. Each pin can
provide or receive a maximum of 40 mA, and has an internal
pull-up resistor (disconnected by default) of 20–50 kOhms.
In addition, some pins have specialized functions: Pins 0 and
1 may be used to receive (RX) and transmit (TX) TTL serial
data; Pins 2 and 3 can be configured to trigger an interrupt
on a low value, a rising or falling edge, or a change in value;
finally, Pins 3, 5, 6, 9, 10, and 11 provide 8-bit PWM output
with the analogWrite() function. The Uno has six analog
inputs, labeled A0 through A5, each of which provides 10
bits of resolution (1,024 different values). By default, they
measure from ground to 5 volts, although is it possible to
change the upper end of their range using the AREF pin and
the analogReference() function.

Accuracy Measurements and Tests

All input and output to the Arduino UNO board were recorded
in parallel via an external I/O board equipped with a high-
precision clock (CED Power1401, Cambridge Electronic
Devices, UK) and were controlled by Signal software (Version
4). Sampling rate was set to 10 KHz. Data were exported in
ASCII format and were loaded in MATLAB for further
analyses. Six tests were designed to verify timing accuracy
with increasingly complex tasks. Appendix A contains the
wiring script used in all tests. Figures 2, 4, and 6 contain a
pictorial description of each one.

Test 1: oneTTL Test number one was aimed at verifying the
basic timing capability of the system. The board had to
generate signals 900 ms long with a 100-ms interval
(Fig. 2). The compiled script was 1,116 bytes. The test
consisted of 1,000 pulses. The analyses consisted of
measuring the mean and standard deviation of TTL length
and intervals between TTL onsets.

Behav Res (2012) 44:305–313 307

http://www.arduino.cc/playground/Code/CapacitiveSensor
http://www.arduino.cc/playground/Code/CapacitiveSensor
http://www.arduino.cc/playground/Learning/LEDSensor
http://www.arduino.cc/playground/Learning/LEDSensor
http://arduino.cc/en/Tutorial/Debounce
http://arduino.cc/en/Tutorial/Debounce

Test 1 showed a TTL mean length of 0.9004 s (reference
value: 900 m) and a delay between TTL onsets of 1.0006 s
(reference value: 1,000 ms). Standard deviations were,
respectively, 0.000048 and 0.000048, thus showing a
negligible error and extremely small variability.

Test 2: fourTTL The second test scaled up the previous test
to four synchronous outputs. The aim was to verify whether
the use of multiple concurrent channels degrades perfor-
mance. At the same time, it was possible to measure
synchrony errors across channels (Fig. 2). The compiled
script was 1,176 bytes. The test consisted of 1,000 pulses in
each channel. The analyses consisted in measuring the
mean and standard deviation of TTL length and intervals
between TTL onsets for each channel. Furthermore, TTL
onset asynchrony across channels was measured and
reported as cumulative mean error and standard deviation.

Test 2 revealed similarly good results for each channel. The
TTLs’ lengths were consistently 0.9004 in all four channels
(reference value: 900 ms), whereas TTL onset delays were,
respectively, 1.0007, 1.0008, 1.0008, and 1.0008 s (reference
value: 1,000 ms) in channels 1, 2, 3 and 4. The standard
deviations were—for TTL length—0.000043, 0.000043,
0.000042, and 0.000042, and for TTL onset delay, they were
0.000043, 0.000043, and 0.000042 among the four output
channels. Thus, increasing the number of channels from two
to four did not affect the accuracy of the system. Furthermore,
the TTL onset asynchrony error across channels was only
0.000037 s on average, with a standard error of 0.000107, thus
showing almost no output synchronization error.

Test 3: overlapTTL The third test used four output channels,
as in test number two, but in an asynchronous manner. This

test should have further taxed the timing accuracy of the
system. Each TTL lasted 1,000 ms and had a 100-ms overlap
with the subsequent TTL. The task was more complex here,
since it tested multiple outputs with varying onsets and offsets
(Fig. 3). The compiled script is 1,248 bytes. The test
consisted of 800 pulses (200 for each channel). The analyses
consisted of measuring the mean and standard deviation of
TTL length in each channel. Furthermore, the mean delay
and standard deviation between the first TTL onset and last
TTL offset was measured.

Test 3 showed accurate TTLs with a length of 1.0005,
1.0005, 1.0005, and 1.0005 on average (reference value:
1,000 ms), and standard deviations of 0.000045, 0.00005,
0.000049, and 0.000046, respectively, in the four channels.
The whole cycle of overlapping TTLs, from channel 1
onset to channel 4 offset, lasted 3.7019 (reference value:
3.7 s; see Fig. 4) with a standard deviation of 0.000049,
showing a small but extremely stable (low standard
deviation) delay of 2 ms.

Test 4: LOOPoverlapTTL The fourth test was similar to the
previous one except for the programming structure. Here,
we used a more compact and efficient FOR structure to test
the impact of programming style differences in timing
performances. The compiled script was 1,212 bytes. The
test consisted of 800 pulses, 200 for each channel. The
analyses were the same as in Test 3.

Test 4 replicated the previous test by using a different
programming style. Here, the test showed accurate TTLs with
lengths of 1.0005, 1.0005, 1.0005, and 1.0005, on average
(reference value: 1,000 ms), and standard deviations of
0.000028, 0.000036, 0.00003, and 0.00002 in the four
channels. The whole cycle of overlapping TTLs, from channel
1 onset to channel 4 offset, lasted 3.7019 (reference value:
3.7 s; see Fig. 4), with a standard deviation of 0.00005. Here,
as in the previous test, there was a small but extremely stable
(low standard deviation) delay of less than 2 ms.

Fig. 2 Tests 1 and 2. The figure shows the TTLs durations and delays
in Test 1 and 2. Test 1 has only one channel, whereas Test 2 has four.
The analyses measured the TTL durations as well as the delay
between TTLs (black and gray dots). In Test 2, we also measured the
asynchrony error across channels

Fig. 3 Tests 3 and 4. The figure shows the TTLs durations and delays
in Tests 3 and 4. Test 3 differed only in the programming style. The
analyses measured the TTL durations as well as the cycle duration
(black and gray dots)

308 Behav Res (2012) 44:305–313

Test 5: ReadButtonWriteTTL In Test 5, we used a more
realistic scenario in which a participant’s button press
started a cascade of timed events. This test was also
important because it simulated a typical I/O task in which
the output was associated to an input. In fact, 200 ms after
the button was pressed, a 100-ms TTL was delivered by an
output channel (Fig. 5a). The compiled script was 1,294
bytes. Each test was repeated 1,000 times. The analyses
consisted in measuring the mean and standard deviation of
TTL delay after the input signal is received.

In Test 5, the TTLs onset delay with respect to the input
TTLs onset was 0.2001 (reference value: 200 ms), with a
standard deviation below the measurement accuracy of our
acquisition device (1.1107786e-15 s). The results of this
test showed essentially perfect accuracy: All repetitions
resulted in exactly the same delay in sending a timed TTL
given an external trigger.

Test 6: Read_Write_different_TTLs The script in Test 6
read from two parallel input channels. Input TTLs were
randomly presented in only one of the two channels at each
trial. The script waited 200 ms and delivered a 100-ms TTL
if the input was on channel 1, whereas if the input was on

channel 2, the waiting time was 100 ms and the TTL was
200 ms long (Fig. 5b). The compiled script was 1,372
bytes. Each test was repeated 1,000 times. The analyses
consisted in measuring the mean and standard deviation of
TTL delay and length.

The results show a very high degree of accuracy.
When the input was on channel 1, the TTL onset was
0.2002 s with a standard deviation of 6.1123e-16 and
lasted 0.100 with a standard deviation of 9.0296e-16
(ground truth: 0.200 and 0.100). When the input was on
channel 2, the TTL onset was 0.1001 s with a standard
deviation of 1.8337e-15, and lasted 0.2001 with a
standard deviation of 1.8337e-15 (ground truth: 0.100
and 0.200).

Test 7: ReadConditional_AND_WriteTTL In Test 7, we
verified the accuracy of the Boolean operator “AND.” The
script read from two digital inputs separately, as if they
were two independent buttons. When both were pressed at
the same time, it waited 100 ms and deliverd a 100-ms TTL
(Fig. 5c). The two simulated buttons (two digital inputs)
were 100 ms long with a 50-ms overlap. The compiled
script was 1,318 bytes. Each test was repeated 1,000 times.
The analyses consisted in measuring the mean and standard
deviation of TTL delay after the condition was met (both
digital inputs were HIGH).

In Test 7, the output TTLs were generated when both
input channels were in the logical HIGH state. Here, the
mean delay between the moment the condition was met and
the output TTL onset was 0.1997 s (reference value:
200 ms; see Fig. 6), with a standard error of 6.7185e-15.
Thus, it appears that accuracy was nearly perfect.

Test 8: Read_four_Conditional_AND_WriteTTL In Test 8,
we verified the accuracy of the Boolean operator “AND” on
four inputs. The script read from four digital inputs
separately, as if they were four independent signals (i.e.,
sensors or buttons), and when all of them were set to HIGH
at the same time, the script waited 100 ms and delivered a
100-ms TTL (Fig. 5d). The compiled script was 1,318
bytes. Each test was repeated 1,000 times. The analyses
consisted in measuring the mean and standard deviation of
TTL delay after the condition was met (all digital inputs
were HIGH).

In Test 8, the output TTLs were generated when both
input channels were in the logical HIGH state. Here, the
mean delay between the moment the condition was met and
the output TTL onset was 0.3017 s (reference value:
300 ms; see Fig. 6), with a standard deviation of 0.0024.
Therefore, it appears that this test was the most variable,
with a larger standard deviation, as is demonstrated better
by the large delta between the maximal and the minimal
values, 0.3121 and 0.301 s, respectively.

Fig. 4 Results of Tests 3 and 4 This histogram shows the length of
the whole cycle of overlapping TTLs, from channel 1 onset to channel
4 offset (ground truth: 3.7 s), for Test 3 (black) and Test 4 (gray)

Behav Res (2012) 44:305–313 309

Discussion and Conclusion

According to the tests shown in the present article, the
Arduino UNO is an accurate platform for a series of lab
settings. The tests reported presently indicate good reliabil-
ity in controlling TTL length and delays both in the single
channel and in four-channel experiments (Tests 1, 2, 3, and
4). The results from Tests 1 and 2 indicate that the
synchrony across channels is accurate and that scaling up
the number of channels does not affect accuracy. However,
one important factor in degrading or improving perfor-
mance can be the programming style. This is true for all
programming languages and platforms. The comparison
between Tests 3 and 4 shows negligible differences (Fig. 5),
from a practical point of view, both in accuracy and in
variability. Nevertheless, the use of a more efficient
programming structure (a “FOR” loop instead of a list of
commands) in Test 4 enabled only a small (<1 ms)
reduction in variability with respect to Test 3. Generally
speaking, simple tasks are not affected by programming

Fig. 5 Tests 5, 6, 7, and 8. The
figure shows the TTL durations
and delays in Tests 5, 6, 7, and
8. Gray square waves were
generated by an external source
and used as input signals,
whereas the Arduino UNO
generated output TTLs. In Test
5, one input triggered the output
pulse generation. In Test 6, the
Arduino generated either a long
output TTL (200 ms) with a
short delay (100 ms), or a short
TTL (100 ms) with a long delay
(200 ms), depending on which
input signal was delivered. In
Test 7, the Arduino generated
the output TTL when two input
channels both received a logical
HIGH signal (Boolean AND). In
Test 8, the Arduino generated
the output TTL when four input
channels received a logical
HIGH signal (Boolean AND).
The analyses measured the delay
between the moment the
condition was met and the actual
TTL generation (black and
gray dots)

Fig. 6 Results of Test 8. This histogram shows the delay between the
moment when the condition was met and the delivery of the output
TTL onset (ground truth: 300 ms)

310 Behav Res (2012) 44:305–313

style, and Arduino boards proved robust enough to be
accurate even with poor programming. It is beyond the
scope of the present research to investigate why such a
(very small) difference was observed. However, this
study is an important proof of concept regarding the
possible impact of programming strategies in adjusting
timing issues—especially when dealing with complex
and more realistic scripts.

On the other hand, Tests 5, 6, 7, and 8 were typical
input/ output tasks in which an output is produced when a
condition is met. All of these tests simulated the typical
situation in which an input from buttons or sensors must be
checked before releasing an output signal. Specifically, Test
5 consisted of a TTL delivered after the detection of an
input signal. This test showed an impressive accuracy:
1,000 trials led to the same exact value. Test 6, in contrast,
produced different delays and TTL lengths according to the
input provided. The results demonstrated an extremely high
degree of accuracy. In Tests 7 and 8, a Boolean operator
(AND) on two or four input channels was introduced.
These two tests showed mixed results, and, in fact,
accuracy was reduced when using the Boolean operator
on four input channels as opposed to two. Nevertheless, the
results still indicate a fairly high degree of reliability
(standard deviation around 2 ms). Taken all together, these
tests showed that Arduino boards can be quite accurate in
simple I/O tasks.

In conclusion, the critical advantage of the Arduino
concept is mostly related to the large open-source commu-
nity that has flourished. There are forums, mailing lists,
hardware schematics, and code freely available for many
projects. Moreover, the Arduino hardware is open source,
and many clones or special-purpose boards have been
marketed. The large and lively user base has produced
interesting projects that can be readily adapted to typical
experimental needs of psychological and neurophysiological
laboratories.

Importantly, these boards cost a few tens of Euros, which
is one order of magnitude less than entry-level I/O cards.
Therefore, Arduino can be a very cheap alternative to
expensive hardware. However, it is difficult to define a
threshold beyond which expensive research-grade equip-
ment is preferable to an Arduino-like board. Laboratories
with expertise in expensive equipment and/or software
should probably avoid spending time learning a new
platform. In fact, there is no doubt that any research-grade
I/O board will be more powerful and accurate than an
Arduino. However, there are a few interesting applications
in which an Arduino is the only viable solution—for
example, when running multiple participants at the same
time with the same set-up. Suppose a researcher wants to
run a test in different places with replicated set-ups. In this
case, each standard set-up (professional I/O board, PC or

Laptop, etc.) is very expensive and takes time to be
assembled. An Arduino-based set-up is extremely portable
(no need for a PC or Laptop), cheap, and easy to deploy in
large numbers. Furthermore, the Arduino platform can be
powered by standard 9-V batteries opening to a series of
wireless or wearable solutions, which is impossible with
standard I/O boards. Therefore, Arduinos may not neces-
sarily replace existing platforms in traditional settings.
Rather, thanks to the low price, small form factor, and ease
of use, they can be used in simple I/O tasks or in a whole
new set of scenarios. The critical advantage of the Arduino
concept is that the boards can be used by people with
modest programming and electronic backgrounds. In brief,
an Arduino-like board might be an easy and cheap
multipurpose tool for many labs.

Author Note I would like to thank Eleonora Bartoli, Laura
Maffongelli and John Michael for the help in revising the manuscript.

Appendix A

// Arduino Accuracy Tests
// Alessandro D'Ausilio
// 13 April 2011 - Revised 5 September 2011
int pin[] = {2,3,4,5,6,7,8,9};
int count;
void setup()
{
pinMode(pin[1],OUTPUT);
pinMode(pin[2],OUTPUT);
pinMode(pin[3],OUTPUT);
pinMode(pin[4],OUTPUT);
pinMode(pin[5],INPUT);
pinMode(pin[6],INPUT);
pinMode(pin[7],INPUT);
pinMode(pin[8],INPUT);
}
void loop()
{
// remove double slashes to execute the script //
//oneTTL (); // Test 1
//fourTTL (); // Test 2
//overlapTTL (); // Test 3
//LOOPoverlapTTL (); // Test 4
//ReadButtonWriteTTL (); // Test 5
//ReadConditional_AND_WriteTTL (); // Test 6
//ReadFour_AND_WriteTTL(); // Test 7
//ReadTwo_WriteDiffTTL(); // Test 8
}
// Test 1 - one TTL 900 ms long with a delay of 100 ms

//
void oneTTL (){

Behav Res (2012) 44:305–313 311

int delayTime = 100;
int durationTime = 900;
digitalWrite (pin[1], HIGH);
delay(durationTime);
digitalWrite (pin[1], LOW);
delay(delayTime);
}
// Test 2 - four synchronous TTLs 900 ms long with a

delay of 100 ms //
void fourTTL (){
int delayTime = 100;
int durationTime = 900;
digitalWrite (pin[1], HIGH);
digitalWrite (pin[2], HIGH);
digitalWrite (pin[3], HIGH);
digitalWrite (pin[4], HIGH);
delay(durationTime);
digitalWrite (pin[1], LOW);
digitalWrite (pin[2], LOW);
digitalWrite (pin[3], LOW);
digitalWrite (pin[4], LOW);
delay(delayTime);
}
// Test 3 - four asynchronous TTLs 1000 ms long, each

with a delay of 100 ms respect to the previous one //
void overlapTTL (){
int delayTime = 1000;
int overlapTime = 100;
digitalWrite(pin[1], HIGH);
delay(delayTime - overlapTime);
digitalWrite(pin[2], HIGH);
delay(overlapTime);
digitalWrite(pin[1], LOW);
delay(delayTime - overlapTime - overlapTime);
digitalWrite(pin[3], HIGH);
delay(overlapTime);
digitalWrite(pin[2], LOW);
delay(delayTime - overlapTime - overlapTime);
digitalWrite(pin[4], HIGH);
delay(overlapTime);
digitalWrite(pin[3], LOW);
delay(delayTime - overlapTime);
digitalWrite(pin[4], LOW);
delay(delayTime);
}
// Test 4 - four asynchronous TTLs 1 s long, each with a

delay of 100 ms respect to the previous one, using a FOR
structure //

void LOOPoverlapTTL (){
int delayTime = 1000;
int overlapTime = 100;
for(int j = 1; j < = 4; j++){
digitalWrite(pin[j], HIGH);

if(j == 1) {
delay(delayTime-overlapTime);
}
else if (j > 1){
delay(overlapTime);
digitalWrite(pin[j-1], LOW);
delay(delayTime-overlapTime-overlapTime);
}
if (j==4){
delay(overlapTime);
digitalWrite(pin[j], LOW);
}
}
delay(delayTime);
}
// Test 5 - read a button press, wait 100 ms and then

write a 100 ms TTL
void ReadButtonWriteTTL(){
int delayTime = 100;
int DigitalValue = digitalRead(pin[5]);
if (DigitalValue == HIGH) {
delay(2*delayTime);
digitalWrite(pin[1], HIGH);
delay(delayTime);
digitalWrite(pin[1], LOW);
}
}
// Test 6 - read two button presses. If button one is

pressed, wait 100 ms and then write a 100 ms TTL; If
button two is pressed, wait 100 ms and then write a 200 ms
TTL;

void ReadTwo_WriteDiffTTL(){
int delayTime = 100;
int DigitalValue1;
int DigitalValue2;
DigitalValue1 = digitalRead(pin[5]);
DigitalValue2 = digitalRead(pin[6]);
if (DigitalValue1 == HIGH) {
delay(delayTime*2);
digitalWrite(pin[1], HIGH);
delay(delayTime);
digitalWrite(pin[1], LOW);
}
if (DigitalValue2 == HIGH) {
delay(delayTime);
digitalWrite(pin[1], HIGH);
delay(delayTime*2);
digitalWrite(pin[1], LOW);
}
}
// Test 7 - read two button press, when both are pressed,

wait 100 ms and then write a 100 ms TTL
void ReadConditional_AND_WriteTTL(){

312 Behav Res (2012) 44:305–313

int delayTime = 100;
int DigitalValue1;
int DigitalValue2;
DigitalValue1 = digitalRead(pin[5]);
DigitalValue2 = digitalRead(pin[6]);
if (DigitalValue1 == HIGH && DigitalValue2 ==

HIGH) {
delay(delayTime);
digitalWrite(pin[1], HIGH);
delay(delayTime);
digitalWrite(pin[1], LOW);
}
}
// Test 8 - read four button presses, when all of them

pressed at the same time, wait 100 ms and then write a
100 ms TTL

void ReadFour_AND_WriteTTL(){
int delayTime = 100;
int DigitalValue1;
int DigitalValue2;
int DigitalValue3;
int DigitalValue4;
DigitalValue1 = digitalRead(pin[5]);
DigitalValue2 = digitalRead(pin[6]);
DigitalValue3 = digitalRead(pin[7]);
DigitalValue4 = digitalRead(pin[8]);
if (DigitalValue1 == HIGH && DigitalValue2 == HIGH

&& DigitalValue3 == HIGH && DigitalValue4 == HIGH)
{

delay(delayTime);
digitalWrite(pin[1], HIGH);

delay(delayTime);
digitalWrite(pin[1], LOW);
}
}

References

Canto, R., Bufalari, I., & D'Ausilio, A. (2011). A convenient and
accurate parallel Input/Output USB device for E-Prime. Behavioral
Research Methods, 43, 292–296.

Chambers, C. D., & Brown, M. (2003). Timing accuracy under
Microsoft Windows revealed through external chronometry.
Behavior Research Methods, Instruments, & Computers, 35,
96–108.

De Clercq, A., Crombez, G., Buysse, A., & Roeyers, H. (2003). A
simple and sensitive method to measure timing accuracy.
Behavior Research Methods, Instruments, & Computers, 35,
109–115.

MacInnes, W. J., & Taylor, T. L. (2001). Millisecond timing accuracy
on PCs and Macs. Behavior Research Methods, Instruments, &
Computers, 33, 174–178.

Plant, R. R., Hammond, N., & Turner, G. (2004). Self-validating
presentation and response timing in cognitive paradigms: How
and why? Behavior Research Methods, Instruments, & Computers,
36, 291–303.

Plant, R. R., Hammond, N., & Whitehouse, T. (2002). Toward an
experimental timing standards lab: Benchmarking precision in
the real world. Behavior Research Methods, Instruments, &
Computers, 34, 218–226.

Plant, R. R., & Turner, G. (2009). Millisecond precision
psychological research in a world of commodity computers:
New hardware, new problems? Behavior Research Methods,
41, 598–614.

Behav Res (2012) 44:305–313 313

	Arduino: A low-cost multipurpose lab equipment
	Abstract
	Introduction
	Method and Results
	Arduino Board
	Accuracy Measurements and Tests

	Discussion and Conclusion
	Appendix A
	References

