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Abstract

Understanding learning with deep architectures has been a major research objective in the recent years with
notable theoretical progress. A main focal point of those studies stems from the success of excessively large networks.
We study empirically the layer-wise functional structure of overparameterized deep models. We provide evidence for
the heterogeneous characteristic of layers. To do so, we introduce the notion of (post training) re-initialization and
re-randomization robustness. We show that layers can be categorized into either “robust” or “critical”. In contrast
to critical layers, resetting the robust layers to their initial value has no negative consequence, and in many cases
they barely change throughout training. Our study provides evidence flatness or robustness analysis of the model
parameters needs to respect the network architectures.

1 Introduction

Deep neural networks have been remarkably successful in many real world machine learning applications. Distilled
understanding of the systems is at least as important as their state-of-the-art performance when applying them in
many critical domains. Recent work on understanding why deep networks perform so well in practice focused on
questions such as networks’ performance under drifting or even adversarially perturbed data distribution. Another
interesting and relevant to this work is research on how we can interpret or explain the decision function of trained
networks. While related, this work takes a different angle as we focus on the role of the layers in trained networks
and then relate the empirical results to robustness properties.

Theoretical research on the representation power of neural networks is well studied. It is known that a neural network
with a single sufficiently wide hidden layer is universal approximator for continuous functions over a compact domain
[11, 18, 2]. More recent research further examines whether deep networks can have superior representation power
than shallow ones with the same number of units or edges [27, 5, 24, 35, 31, 9, 23, 29]. The capacity to represent
arbitrary functions with finite samples is also extensively discussed in recent work [13, 40, 26, 39]. However, the
constructions used in the aforementioned work for building networks approximating particular functions are typically
“artificial” and are unlikely to be obtained by gradient-based learning algorithms. We focus instead on empirically
studying the role different layers in deep architecture take post gradient-based training.

In particular, we show empirically that the layers in a deep network are not homogeneous in the role they play at
representing a prediction function. Some layers are critical to forming good predictions while others are fairly robust
to the assignment of their parameters along training. Moreover, depending on the capacity of the network and the
complexity of the target function, gradient-based trained networks conserve the complexity by not using excess
capacity.

2 Setting

Let FP = {fy : 6 = (6\,..., 0p)} be the space of a particular neural network architecture with D (parametric) layers.
We use the term capacity to refer to properties of the entire space ' before training takes place (e.g. Rademacher
complexity, VC Dimension). The term complexity refers to properties of a single neural network fy, often employing
with notion of norm of the parameters 6 and possibly normalized by empirical quantities such as the margin.

We are interested in analyzing post-training behavior of layers of popular deep networks. Such networks are typically
trained using SGD with randomly sampled initial weights from pre-defined distributions 82 ~ Py, typically depending
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Figure 1: Robustness results for FCN 3 x 256 on MNIST. (a) Test error rate: each row corresponds to one layer in
the network. The last row shows the full model performance at the corresponding epoch as reference. The first column
designates robustness of each layer w.r.t re-randomization and the rest of the columns designate re-initialization
robustness at different checkpoints. The last column shows the final performance (at the last checkpoint during
training) as reference. (b-c) Weights distances: each cell in the heatmaps depict the normalized 2-norm (b) or co-norm
(c) distance of trained parameters to their initial weights.

on the type, fan-in, and fan-out of of each layer. In a deep network, the representations at a particular layer recursively
depend on all the layers beneath it. This complex dependency makes it challenging to isolate and inspect each layer
independently in theoretical studies. In this paper, we introduce and use the following two empirical probes to inspect
the individual layers in a trained neural network.

Re-initialization After training, for a given layer d = 1,..., D, we can re-initialize the parameters through as-
signment (9; — 92, while keeping the parameters for the other layers unchanged. The model with the parameters
(QT, s 0;_1, 69, 0;1, s 05) is then evaluated. Unless noted otherwise, we use the term performance to designate
classification error on test data. The performance of a network in which layer d was re-initialized is referred to as
the re-initialization robustness of layer d. Note that here 92 denotes the random values realized at the beginning of
the training. More generally, for k time steps 0 = 71 < 7 < - < 1p_1 < 7 = T, we can re-initialize the d-th layer by
setting GdT « 07, and obtain the re-initialization robustness of layer d after r updates.

Re-randomization To go one step further, we also examine re-randomization of a layer d by re-sampling random
values 8; ~ P, and evaluate the model’s performance for (QIT ey 9;_1, 04, 0;1, s 95). Analogously, we refer to the
evaluated performance as the re-randomization robustness of layer d.

Note that there is no re-training or finetuning after re-initialization or re-randomization, and the network is evaluated
directly with mixed weights. When a network exhibits no or negligible decrease in performance after re-initializing
or re-randomizing of a layer, we say that the layer is robust, and otherwise the layer is called critical.

3 Robustness of individual layers

We start by examining robustness of fully-connected networks (FCN). A FCN D x H consists of D fully connected
layers each of which of output dimension H and ReLU activation function. The extra final layer is a linear multiclass
predictor with one output per class. As a starter, we trained an FCN 3 x 256 on the MNIST digit classification task, and
applied the re-initialization and re-randomization analysis on the trained model. The results are shown in Figure 1(a).
As expected, due to the intricate dependency of the classification function on each of the layers, re-randomizing any
of the layers completely disintegrate the representations and classification accuracy drops to the level of random
guessing. However, for re-initialization, we find that while the first layer is very sensitive, the rest of the layers are
robust to re-initializing back to their pre-training random weights.

A plausible reason could be attributed to the fact that gradient norms increase during back-propagation to the point
that the bottom layers are being updated more aggressively than the top ones. If this was the case, we would expect a
smoother transition instead of a sharp contrast at the first layer. We thus measured how distant the weights of each
layer from their initialization using the normalized 2-norm and the co-norm, in Figure 1(b) and (c), respectively. It
turns out the robustness to re-initialization does not obviously correlate to either of the distances.
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Figure 2: Layer-wise robustness analysis with ConvNets. The heatmaps use the same layout as in Figure 1, but
they are transposed, to visualize the deeper architectures more effectively.

On large ConvNets that are used in practice, similar obversations could be found in Figure 2. Moreover, the layerwise
robustness patterns for ResNets are quite unique. We found that each stage (in which the “image” size of each layer
is the same) in a ResNet acts as a sub-network, and the robustness patterns within each stage resembles the VGGs
and FCNs. The skip connections also allow the residual blocks to be robust not only to re-initialization, but also to
re-randomization. Please see Appendix B for the full results and analysis.

To assess the effects of the network capacity and the task complexity on the layer robustness, we apply the same
analysis procedure to a large number of different configurations. In Figure 3(a), we compare the average re-initialization
robustness for all layers but the first with respect FCNs of varying hidden dimensions on MNIST. The upper layers
become more robust as the hidden dimension increases. We believe that it reflects the fact that the wider FCNs have
higher model capacity. When the capacity is small, all layers are vigil participants in representing the prediction
function. As capacity increases, it suffices to use the bottom layer while the rest act as random projections with
non-linearities. Similar observations can be found on CIFAR10, in Figure 3(b). These observations suggest that deep
networks automatically adjust their de-facto complexity. When a big network is trained on an easy task, only a few
layers seem to be playing critical roles.

4 Joint robustness and connection to other notions of robustness

In all the experiments so far, the analysis focuses on the robustness of each individual layer separately. A natural
question is that for all the layers that are individually robustness, are they also jointly robust? In other words,
if we re-initialize multiple layers jointly, would the trained network still retain the original performance? The
answer is no. It turns out that jointly re-initialize many consequtive layers (that are individually robust) completely
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Figure 3: Re-initialization robustness of all layers but the first using checkpoint-0 for FCNs. Each bar
designates the difference in classification error between a fully trained model and a model with one layer re-initialized.
The error bars designate one standard deviation obtained by running five experiments with different random
initialization.

destroy the model performance. However, via some clever grouping schemes of the layers, multiple layers can be
jointly re-initialized while maintaining resonable good model performances. Furthermore, if we explicitly constraing
the learning algorithm to not update a subset of layers, much better joint robustness can be achieved. Please see
Appendix D for full details.

The properties studied in this paper is closely related to a number of other notions of robustness. For example, the
notion of “flatness” refers to the property that neural network weights, after training, can be locally perturbed via
isotropic noises without changing the model performance. Our study is in a more restricted setting where we perturb
by moving along the training trajectory. More importantly, our empirical results show that while global flatness is
quite limited, (a subset of) the individual layers can have negligible affects when perturbed. Another interesting
connection is to the notion of adversarial robustness to the perturbations applied on the model inputs. Please see
Appendix E for a full study on those connections.

5 Conclusions

We investigated the functional structure on a layer-by-layer basis of over-parameterized deep models. We introduced
the notions of re-initialization and re-randomization robustness. Using these notions we provided evidence for the
heterogeneous characteristic of layers, which can be morally categorized into either “robust” or “critical”. Resetting
the robust layers to their initial value has no negative consequence on the model’s performance. Our empirical
results give evidence that optimization landscape based analysis (e.g. flatness or sharpness at the minimizer) is better
performed respecting the network architectures due to the heterogeneous behaviors of different layers. For future
work, we are interested in devising a new algorithm which learns the interleaving trained and partially random
subnetworks within one large network.
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Figure 4: Layer-wise robustness analysis with VGG networks on CIFAR10. The heatmaps use the same layout
as in Figure 1, but they are transposed, to visualize the deeper architectures more effectively.

A Related work

Modern neural networks are typically over-parameterized and thus have plenty of redundancy in their representation
capabilities. Previous work exploited over-parameterization to compress [12] or distill [16] a trained network.
Rosenfeld and Tsotsos [30] found that one can achieve comparable performance by training only a small fraction of
network parameters such as a subset of channels in each convolutional layer. Towards interpreting residual networks
as ensemble of shallow networks, Veit et al. [37] found that residual blocks in a trained network can be deleted or
permuted to some extent without hurting the performance too much. In another line of research, it is shown that
under extreme overparameterization, such as when the network width is polynomial in the training set size and input
dimension [1, 6, 7, 42], or even in the asymptotic regime of infinite width [19, 21], the network weights move slowly
during training. The observations in this paper show that in more practical regime, different layers could behave very
differently.

B Fullresults on layerwise robustness analysis of convolutional networks

On typical computer vision tasks beyond MNIST, densely connected FCNs are outperformed significantly by convolu-
tional neural networks. VGGs and ResNets are among the most widely used convolutional network architectures.
Figure 4 and Figure 5 show the robustness analysis on the two types of networks, respectively.

Since those networks are much deeper than the FCNs, we transpose the heatmaps to show the layers as columns. For
VGGs, a large number of layers are sensitive to re-initialization, but the patterns are similar to the observations from
the simple FCNs on MNIST: the bottom layers are more critical but the upper layers are robust to re-initialization.

The results for ResNets in Figure 5 is to be considered together with results on ImageNet in Figure 6. We found the
robustness patterns for resnets more interesting mainly for two reasons:

ResNets re-distribute sensitive layers. Unlike the FCNs and VGGs which put the sensitive layers at the bottom
of the network, ResNets distribute them across the network. To better understand the patterns, let us do a brief
recap of the ResNets architectures. It is common in theoretical analysis to broadly define ResNets as any neural
network architectures with residual blocks. In practice, a few “standard” architectures (and variants) that divide
the network into a few “stages” are commonly used. At the bottom, there is a pre-processing stage (stage®) with
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Figure 5: Layer-wise robustness analysis on residual blocks of ResNets trained on CIFAR10.

vanilla convolutional layers. It is followed by a few (typically 4) residual stages (stagel to stage4) consisting of
residual blocks, and then global average pooling and the densely connected linear classifier (final_linear). The
image size shrinks and the number of convolutional feature channels doubles from each residual stage to the next
one'. As a result, while most of the residual blocks have real identity skip connections, the first block of each stage
(stage*.resblk1) that connects to the previous stage has a non-identity skip connection due to different input /
output shapes. Figure 7 illustrates the two types of residual blocks.

With a big picture of the ResNet architectures, we can see that each stage in a ResNet acts as a sub-network, and the
layer-wise robustness patterns within each stage resembles the VGGs and FCNss.

Residual blocks can be robust to re-randomization. Among the layers that are robust to re-initialization, if
the layer is a residual block, it is also robust to re-randomization: e.g. compare the final_linear layer and any of
the robust residual blocks. A possible reason is that the identity skip connection dominates the residual branch in
those blocks. It is known from previous lesion studies [37] that residual blocks in a ResNet can be removed without
seriously hurting the performance. But our experiments put it in the context with other architectures and study the
adaptive robustness with respect to the interplay between the model capacity and the task difficulties. In particular,
comparing the results on CIFAR10 and ImageNet, we see that especially on ResNet18 from Figure 6(a), many residual
blocks with real identity skip connection also become sensitive comparing to bigger models due to smaller capacity.

C Theoretical Implications on Generalization

As mentioned earlier, if some parameters can be re-assigned to the randomly initialized values without affecting the
model performance, then the effective number of parameters is reduced as the random initialization is independent
of the training data. The benefits on improving generalization is most easily demonstrated with a naive parameter

!There are more subtle details especially at stage1 depending on factors like the input image size, whether residual blocks contain a bottleneck,
and the version of ResNets, etc.
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Figure 6: Layer-wise robustness analysis on residual blocks of ResNets trained on ImageNet.

skip (identity) connection downsample

input _L residual body input —> residual body
L @00 Uz 0R0

(a) Residual block (b) Residual block with downsampling

preact

Figure 7: Illustration of residual blocks (from ResNets V2) with and without a downsampling skip branch.
C, N and R stand for convolution, (batch) normalization and ReLU activation, respectively. Those are basic residual
blocks used in ResNet18 and ResNet34; for ResNet50 and more layers, the bottleneck residual blocks are used, which
are similar to the illustrations here except the residual body is now C —+ N —R — C — N — R — C with a 4x
reduction of the convolution channels in the middle for a “bottlenecked” residual.

counting generalization bound. For example, if we have a generalization bound of the form

R(f™) = Ra(f™) + B(C(m), n)

where fn’" is a model with m parameters trained on n i.i.d. samples. C(-) is some complexity measure based on counting
the number of parameters, and /3 is the corresponding generalization bound. For example, Anthony and Bartlett [2]
provides various bounds on VC-dimension based on the number of weights in neural networks, which could then
be plugged into standard VC-dimension based generalization bounds for classification [36]. Now if we know that a
fraction p € (0, 1) of the neural network weights will be robust to re-initialization after training, with a loss of the
(empirical) risk of at most ¢, then we get

REFP™) < Ro(fm) + £ + BC((1 - p)m), n)

where f,(,l_p )™ is a model obtained by re-initializing the p fraction of parameters of the trained model fnm. Note that
generalization bounds based on parameter counting generally does not work well for deep learning. Because of the
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Figure 8: Joint robustness analysis of FCN 5 x 256 on MNIST. The heatmap layout is the same as in Figure 1, but
the layers are divided into two groups (indicated by the * mark on the layer names in each figure) and re-randomization
and re-initialization are applied to all the layers in each group jointly. As a result, layers belonging to the same group
have identical rows in the heatmap, but we still show all the layers to make the figures easier to read and compare with
the previous layer-wise robustness results. The subfigures show the results from three different grouping schemes.

heavy over-parameterization, the resulting bounds are usually trivial. However, as noted in Arora et al. [3], most of
the alternative generalization bounds proposed for deep neural network models recently are actually worse than naive
parameter counting. Moreover, by tweaking the existing analysis with additional layerwise robustness condition,
some PAC-Bayes based bounds can also be potentially improved [38, 3, 41].

Note that like the results in Arora et al. [3], Zhou et al. [41], the bounds provided by re-initialization robustness are
for a different model (in our case the re-initialized one). Alternative approaches in the literature involve modifying
the training algorithms to explicitly optimize the robustness or some derived generalization bounds [25, 8]. However,
neither of the arguments provides guarantees for the model directly trained from SGD.

D Joint robustness

The theoretical analysis suggests that robustness to either re-initialization or re-randomization could imply better
generalization. Combined with the experimental results in previous sections, it seems to suggest a good way to
explain the empirical observations that hugely over-parameterized networks could still generalize well, as they are
only using a small portion of their full capacity. However, there is a caveat: the re-initialization and re-randomization
analysis in Section 3 study each layer independently. However, two or more layers being independently robust
does not necessarily imply that they are robust jointly. If, for example, we want a generalization bound that uses
only half of the capacity, we need to show that half of the layers are robust to re-initialization or re-randomization
simultaneously.

D.1 Are robust layers jointly robust?

In this section, we do joint robustness analysis on groups of layers. From Section 3, we see that on MNIST, for wide
enough FCNs, all the layers above layer1 are robust to re-initialization. So we divide the layer into two groups:
{layer1}and {layer2, layers3, ...}, and perform the robustness studies on the two groups. The results for FCN 5 x 256
are shown in Figure 8(a). For clarity and ease of comparison, the figure still spells out all the layers individually, but
the values from layer2 to layer6 are simply repeated rows. The values show that the upper-layer-group is clearly
not jointly robust to re-initialization (to checkpoint 0).

We also try some alternative grouping schemes: Figure 8(b) show the results when we group two in every three
layers, which has slightly improved joint robustness; In Figure 8(c), the grouping scheme that include every other
layer shows that with a clever grouping scheme, about half of the layers could be jointly robust.

Results on ResNets are similar. Figure 9 shows the joint robustness analysis on ResNets trained on CIFAR10. The
grouping is based on the layer-wise robustness results from Figure 5: all the residual blocks in stagel to stage4 are
bundled and analyzed jointly. The results are similar to the FCNs: ResNet18 is relatively robust, but deeper ResNets
are not jointly robust under this grouping. Two alternative grouping schemes are shown in Figure 10. By including
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Figure 10: Joint robustness analysis of ResNets on CIFAR10, with alternative grouping schemes. Grouping is
indicated by the * on the layer names.
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Table 1: Error rates (%) on CIFAR10 (top rows) and ImageNet (bottom rows), respectively. Each row shows
the performance of the full model, (the mean and std of) the layer-wise robustness to re-initialization, the performance
when training with a subset of layers fixed at random initialization, and the performance when training with a subset
of layers removed. In particular, the layer-wise robustness is averaged over all the residual blocks except the first one
at each stage. The layer-freezing and layer-removal operations are also applied to those residual blocks (jointly).

Full Layer-wise Layers  Layers

Arch
e Model Robustness Frozen Removed
o ResNet50 8.40 9.77+1.38 11.74 9.23
‘é ResNet101 8.53 8.87+0.50 9.21 9.23
S ResNet152 8.54 8.74+0.39 9.17 9.23
% ResNet50 34.74 38.54+5.36 44.36 41.50
&;n ResNet101 32.78 33.84+2.10 36.03 41.50
E ResNet152 31.74 32.42+1.55 35.75 41.50

only layers from stagel and stage4, slightly improved robustness could be obtained on ResNet50. The scheme that
groups every other residual block shows further improvements.

In summary, the individually robust layers are generally not jointly robust. But with some clever way of picking
out a subset of the layers, joint robustness could still be achieved for up to half of the layers. In principle, one can
enumerate all possible grouping schemes to find the best with a trade-off of the robustness and number of layers
included.

D.2 Could robust layers be made jointly robust?

Results from the previous section show that there is a gap between the layer-wise robustness patterns and the the
joint robustness. Here we try to see if we could close the gap by letting the training algorithm know that we are
interested in the robustness of a subset of the layers. It is complicated to express this desire algorithmically, but we
can make a stronger request by asking the learning algorithm to explicitly not “use” those layers. More specifically,
we try two approaches to the layers in the group that is desired to be robust: 1) freeze them so that their parameters
remain the same randomly initialized values; 2) remove the layers completely from the neural network architecture.

The results are shown in Table 1. When we explicitly freeze the layers, the test error rates are still higher than
the average layer-wise robustness measured in a normally trained model. However, the gap is much smaller than
directly measuring the joint robustness (see Figure 9 for comparison). Moreover, on CIFAR10, we found that similar
performance can be achieved even if we completely remove those layers from the network. On the other hand, on
ImageNet, the frozen random layers seem to be needed to achieve good performances, while the “layers-removed”
variant under-perform by a big gap. In this case, the random projections (with non-linearity) in those frozen layers
are helpful with the performance.

E Connections to other notions of robustness

The notion of layer-wise (and joint) robustness to re-initialization and re-randomization can be related to other
notions of robustness in deep learning. For example, the flatness of the solution is a notion of robustness with respect
to local perturbations to the network parameters (at convergence), and is extensively discussed in the context of
generalization [17, 4, 20, 33, 28]. For a fixed layer, our notion of robustness to re-initialization is more restricted
because the “perturbed values” can only be from the optimization trajectory; while the robustness to re-randomization
could potentially allow larger perturbation variances. However, as our studies here show, the robustness or flatness
at each layer could behave very differently, so analyzing each layer individually in the context of specific network
architectures allow us to get more insights to the robustness behaviors.

On the other hand, Adversarial robustness [34] focus on the robustness with respect to perturbations to the inputs. In
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Table 2: Accuracies (%) of various model configurations on clean CIFAR10 test set and under a weak (FGSM)
and a strong (PGD) adversarial attack, respectively. The adversarial attacks are evaluated on a subset of 1000
test examples. Every experiment is repeated 5 times and the average performance is reported. The hyperparameters
r and s in model configurations mean the number of random weights pre-created for each residual block, and the
number of stages that are re-randomized during each inference. 4> means a ResNet architecture with two stages,
where each stage contains four residual blocks; similarly 4* has four stages each with four residual blocks.

Model Configuration Clean FGSM PGD
baseline 91.05+0.00 12.75+0.04 0.33+0.16

42 r=4s=1 89.45+0.13 69.85+1.60 6.71+0.37
r=4,s=2 87.70 £ 0.25 71.18+0.49 9.65+0.27
baseline 90.08 + 0.00 8.45+0.00 0.00+0.00

44 r=4,s=1 89.64 £0.12 62.76 + 1.09 2.60 £ 0.26
r=4,s=2 89.13+0.13 67.20 £0.63 3.56 £ 0.48
r=4,s=4 88.24 £0.18 69.09 +1.59 5.60 £0.53

particular, it is found that trained deep neural network models are sensitive to input perturbations: small adversarially
generated perturbations can usually change the prediction results to arbitrary different classes. A large number of
defending and attacking algorithms have been proposed in recent years along this line. Here we briefly discuss the
connection to adversarial robustness. In particular, take a normally trained ResNet?, say with S stages and (B, ..., Bs)
residual blocks in each stage. Given configuration r > 0 and 0 < s < S, during each test evaluation, a subset of s stages
are randomly chosen, and for each of the chosen stages, a random residual block is picked and replaced with one
of the r pre-initialized weights for that layer. We keep r pre-allocated weights for each residual block instead of
re-sampling random numbers on each evaluation call, primarily to reduce the computation burden during the test
time.

From the previous robustness analysis, we expect the stochastic classifier to get only a small performance drop when
averaged over the test set. However, at individual example level, the randomness of the network outputs will make
it harder for the attacker to generate adversarial examples. We evaluate the adversarial robustness against a weak
FGSM [10] attack and a strong PGD [22] attack. The results in Table 2 show that, compared to the baseline (the
exact same trained model before being turned into a stochastic classifier), the randomness significantly increases the
adversarial robustness against weak attacks. The performances under strong PGD attack drop to very low, but still
with a non-trivial gap between the baseline.

In summary, the layer-wise robustness could improve the adversarial robustness of a trained model through injected
stochasticity. However, it is not a good defense against strong attackers. If we work hard enough, more sophisticated
attacks that explicitly deal with stochastic classifiers are likely to completely break this model.

F Details on experiment setup

Our empirical studies are based on the MNIST, CIFAR10 and the ILSVRC 2012 ImageNet datasets. Stochastic Gradient
Descent (SGD) with a momentum of 0.9 is used to minimize the multi-class cross entropy loss. Each model is trained
for 100 epochs, using a stage-wise constant learning rate scheduling with a multiplicative factor of 0.2 on epoch 30,
60 and 90. Batch size of 128 is used, except for ResNets with more than 50 layers on ImageNet, where batch size of 64
is used due to device memory constraints.

We mainly study three types of neural network architectures:

« FCNs: the multi-layer perceptrons consist of fully connected layers with equal output dimension and ReLU
activation (except for the last layer, where the output dimension equals the number of classes and no ReLU is

2We use a slightly modified variant by explicitly having a downsample layer between stages, so that all the residual blocks are with real identity
skip connections. See Figure 7.
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Table 3: Test performance (classification error rates %) of various models studied in this paper. The table
shows how much of the final performance is affected by training with or without weight decay (+wd) and batch
normalization (+bn).

Architecture N/A +wd +bn +wd+bn

ResNet18 104 75 69 5.5
ResNet34 102 69 66 5.1
ResNet50 84 99 76 5.0
S ResNet101 8.5 98 6.9 5.3
g ResNet152 85 97 73 47
5 VGG 118 107 94 8.2
VGG13 103 88 84 6.7
VGG16 110 114 85 6.7
VGG19 12.1 8.6 6.9
ResNet18 411 331 335 315
2 ResNet34 399 306 301  27.2
S ResNet50 348 318 282 250
£ ResNetl0l 329 209 269 229

ResNet152 319 291 276 22.6

applied). For example, FCN 3 x 256 has three layers of fully connected layers with the output dimension 256,
and an extra final (fully connected) classifier layer.

« VGGs: widely used network architectures from Simonyan and Zisserman [32].

« ResNets: the results from our analysis are similar for ResNets V1 [14] and V2 [15]. We report our results with
ResNets V2 due to the slightly better performance in most of the cases. For large image sizes from ImageNet,
the stage@ contains a 7 x 7 convolution and a 3 x 3 max pooling (both with stride 2) to reduce the spatial
dimension (from 224 to 56). On smaller image sizes like CIFAR10, we use a 3 x 3 convolution with stride 1 here
to avoid reducing the spatial dimension.

During training, CIFAR10 images are padded with 4 pixels of zeros on all sides, then randomly flipped (horizontally)
and cropped. ImageNet images are randomly cropped during training and center-cropped during testing. Global
mean and standard deviation are computed on all the training pixels and applied to normalize the inputs on each
dataset.

G Batch normalization and weight decay

The primary goal of this paper is to study the (co-)evolution of the representations at each layer during training
and the robustness of this representation with respect to the rest of the network. We try to minimize the factors
that explicitly encourage changing of the network weights or representations in the analysis. In particular, unless
otherwise specified, weight decay and batch normalization are not used. This leads to some performance drop in the
trained models. Especially for deep residual networks: even though we could successfully train a residual network
with 100+ layers without batch normalization, the final generalization performance could be quite worse than the
state-of-the-art. Therefore, in this section, we include studies on networks trained with weight decay and batch
normalization for comparison.

In particular, Table 3 shows the final test error rates of models trained with or without weight decay and batch
normalization. Note the original VGG models do not use batch normalization [32], we list +bn variants here for
comparison, by applying batch normalization to the output of each convolutional layer. On CIFAR10, the performance
gap varies from 3% to 5%, but on ImageNet, a performance gap as large as 10% could be seen when trained without
weight decay and batch normalization. Figure 11 shows how different training configurations affect the layerwise
robustness analysis patterns on VGG16 networks. We found that when batch normalization is used, none of the layers
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Figure 11: Layer-wise robustness analysis with VGG16 on CIFAR10. The subfigures show how training with
weight decay (+wd) and batch normalization (+bn) affects the layerwise robustness patterns.
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Figure 12: Layer-wise robustness analysis with ResNet50 on CIFAR10. The subfigures show how training with
weight decay (+wd) and batch normalization (+bn) affects the layerwise robustness patterns.

are robust any more.

Figure 12 and Figure 13 show similar comparisons for ResNet50 on CIFAR10 and ImageNet, respectively. Unlike VGGs,
we found that the layerwise robustness patterns are still quite pronounced under various training conditions for
ResNets. In Figure 12(d) and Figure 13(c,d), we see the mysterious phenomenon that re-initialing with checkpoint-1 is
less robust than with checkpoint-0 for many layers. We do not know exactly why this is happening. It might be that
during early stages, some aggressive learning is happening causing changes in the parameters or statistics with large
magnitudes, but later on when most of the training samples are classified correctly, the network gradually re-balances
the layers to a more robust state. Figure 15(d-f) in the next section shows supportive evidence that, in this case the
distance of the parameters between checkpoint-0 and checkpoint-1 is larger than between checkpoint-0 and the final
checkpoint. However, on ImageNet this correlation is no longer clear as seen in Figure 16(d-f). See the discussions in
the next section for more details.
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Figure 13: Layer-wise robustness analysis with ResNet50 on ImageNet. The subfigures show how training with
weight decay (+wd) and batch normalization (+bn) affects the layerwise robustness patterns.
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Figure 14: Layer-wise robustness studies of VGG16 on CIFAR10. (a) shows the robustness analysis measured
by the test error rate. (b) shows the normalized ¢, distance of the parameters at each layer to the version realized
during the re-randomization and re-initialization analysis. (c) is the same as (b), except with the £, distance.

H Robustness and distances

In Figure 1 from Section 3, we compared the layerwise robustness pattern to the layerwise distances of the parameters
to the values at initialization (checkpoint-0). We found that for FCNs on MNIST, there is no obvious correlation
between the “amount of parameter updates received” at each layer and its robustness to re-initialization for the two
distances (the normalized 2 and co norms) we measured. In this appendix, we list results on other models and datasets
studied in this paper for comparison.

Figure 14 shows the layerwise robustness plot along with the layerwise distance plots for VGG16 trained on CIFAR10.
We found that the £, distance of the top layers are large, but the model is robust when we re-initialize those layers.
However, the normalized ¢» distance seem to be correlated with the layerwise robustness patterns: the lower layers
that are less robust have larger distances to their initialized values.

Similar plots for ResNet50 on CIFAR10 and ImageNet are shown in Figure 15 and Figure 16, respectively. In each
of the figures, we also show extra results for models trained with weight decay and batch normalization. For the
case without weight decay and batch normalization, we can see a weak correlation: the layers that are sensitive have
slightly larger distances to their random initialization values. For the case with weight decay and batch normalization,
the situation is less clear. First of all, in Figure 15(e-f), we see very large distances in a few layers at checkpoint-1.
This provides a potential explanation to the mysterious pattern that re-initialization to checkpoint-1 is more sensitive
than to checkpoint-0. Similar observations can be found in Figure 16(e-f) for ImageNet.
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Figure 15: Layer robustness for ResNet50 on CIFAR10. Layouts are the same as in Figure 14. The first row (a-c)
is for ResNet50 trained without weight decay and batch normalization. The second row (d-f) is with weight decay

and batch normalization.
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Figure 16: Layer-wise robustness studies of ResNet50 on ImageNet. Layouts are the same as in Figure 14. The
first row (a-c) is for ResNet50 trained without weight decay and batch normalization. The second row (d-f) is with
weight decay and batch normalization.

I Alternative visualizations

The empirical results on layer robustness are mainly visualized as heatmaps in the main text. The heatmaps allow
uncluttered comparison of the results across layers and training epochs. However, it is not easy to tell the difference
between numerical values that are close to each other from the color coding. In this section, we provide alternative
visualizations that shows the same results with line plots. In particular, Figure 17 shows the layerwise robustness
analysis for VGG16 on CIFAR10. Figure 18 and Figure 19 show the results for ResNet50 on CIFAR10 and ImageNet,

respectively.
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Figure 17: Alternative visualization of layer robustness analysis for VGG16 models on CIFAR10. This shows
the same results as Figure 14, but shown as curves instead of heatmaps.
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Figure 18: Alternative visualization of layer robustness analysis for ResNet50 on CIFAR10.
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Figure 19: Alternative visualization of layer robustness analysis for ResNet50 on ImageNet.
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