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Odense, Denmark; 24UMR Inserm U1027, Université de Toulouse III Paul Sabatier, Toulouse, France; 25University of Oslo, Oslo, Norway;
26Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece; 27Department of Epidemiology,

Regional Health Service Lazio Region, Rome, Italy; 28Julius Center of Health Sciences and Primary Care, University Medical Center Utrecht,

University of Utrecht, Utrecht, the Netherlands; 29Institute of Epidemiology, German Research Centre for Environmental Health, Helmholtz

Zentrum München, Neuherberg, Germany; 30Department of Pediatric Pulmonology and Pediatric Allergology, GRIAC Research Institute,

University Medical Center Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, the Netherlands; 31Department of

Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland; 32VIB Inflammation Research Center, Ghent University,

Ghent, Belgium; 33Biomay AG, Wien, Austria; 34Department of Public Health and Biostatistics, EA 4064, Paris Descartes University; 35Paris

Municipal Department of Social Action, Childhood, and Health, Paris, France; 36EFA European Federation of Allergy and Airways Diseases

Patients’ Associations, Brussels, Belgium; 37Department of Respiratory Medicine, GRIAC Research Institute, University Medical Center

Groningen, Beatrix Children’s Hospital, University of Groningen, Groningen, the Netherlands; 38Inserm, U823, Grenoble, France; 39Bradford

Institute for Health Research, Bradford Royal Infirmary, Bradford, UK; 40Allergy-Centre-Charité at the Department of Dermatology, Charité –
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Abstract

Allergic diseases [asthma, rhinitis and atopic dermatitis (AD)] are complex. They

are associated with allergen-specific IgE and nonallergic mechanisms that may

coexist in the same patient. In addition, these diseases tend to cluster and patients

present concomitant or consecutive diseases (multimorbidity). IgE sensitization

should be considered as a quantitative trait. Important clinical and immunologi-

cal differences exist between mono- and polysensitized subjects. Multimorbidities

of allergic diseases share common causal mechanisms that are only partly IgE-

mediated. Persistence of allergic diseases over time is associated with multimor-

bidity and/or IgE polysensitization. The importance of the family history of

allergy may decrease with age. This review puts forward the hypothesis that aller-

gic multimorbidities and IgE polysensitization are associated and related to the

persistence or re-occurrence of foetal type 2 signalling. Asthma, rhinitis and AD

are manifestations of a common systemic immune imbalance (mesodermal origin)

with specific patterns of remodelling (ectodermal or endodermal origin). This

study proposes a new classification of IgE-mediated allergic diseases that allows

the definition of novel phenotypes to (i) better understand genetic and epigenetic

mechanisms, (ii) better stratify allergic preschool children for prognosis and (iii)

propose novel strategies of treatment and prevention.

IgE-mediated allergic diseases were defined by the World

Allergy Organization (1) and include allergic rhinitis (2),

allergic asthma (3), atopic dermatitis (AD) (4) and food

allergy. However, IgE-mediated allergy is not always

involved in the symptoms of these diseases (5–8) including

nonallergic rhinitis, nonallergic asthma and eosinophilic

esophagitis (EoE) (9–11).

In the present document, allergic diseases refer to an

immune-mediated mechanism. Only IgE-associated mech-

anisms are considered and allergic diseases refer to IgE-

mediated allergic diseases.

IgE-associated allergic diseases are very complex because

of the following (12):

1 IgE sensitization is characterized by the presence of aller-

gen-specific IgE to environmental allergens as demon-

strated by serum allergen-specific IgE or skin prick test

(SPT), but not all sensitized individuals present symptoms

(13).

2 Allergic and nonallergic mechanisms have been described

for the same target organ and often coexist in the same

patient (8).

3 Serum-specific IgE and SPT reactivities do not have the

same biological and clinical relevance, and patients with

dissociated tests may represent a different phenotype (14).

4 The role of family history is complex. Allergic parents

usually have children with allergic diseases (15) but the

majority of allergic children in the birth cohorts do not

have allergic parents.

5 The definition of atopy by Coca and Cooke was proposed

in 1923 (16) and included a genetic determinant. How-
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ever, many components of this definition do not currently

apply. The definition of atopy was modified by Pepys (17)

who proposed that atopy is ‘a form of immunological

reactivity of the subject in which reaginic antibody, now

identified as IgE antibody, is readily produced in response

to ordinary exposure to common allergens of the subject

environment’.

6 The relationship between asthma and IgE sensitization is

not clear (18, 19).

7 Allergic diseases tend to cluster and patients present

concomitant or consecutive diseases. The term ‘comor-

bidity’ is commonly used, but multimorbidity might be

more appropriate. Comorbidity is the presence of one

or more additional diseases co-occurring with a primary

disease or the effect of such additional disorders or dis-

eases. Multimorbidity is a term which means co-occur-

ring diseases in the same patient. In most studies, the

co-occurrence of a primary disease (e.g. asthma, rhini-

tis) has been studied and the term ‘comorbidity’ was

correct. However, in MeDALL, we studied the co-

occurrence of allergic diseases without clear information

on the primary disease and the term ‘multimorbidity’

appears to be more appropriate except in the case of

the allergic march.

8 IgE directed against allergens such as Staphylococcus

aureus enterotoxins may play an important role (20–23).
Complex interactions of structural and inflammatory cells,

cytokines, chemokines, growth factors, and mediators of

inflammation and remodelling are involved in allergic dis-

eases. It is possible that a common mechanism leads to mul-

timorbidities and IgE sensitization although IgE sensitization

does not explain the majority of multimorbidities in young

children (24).

The Mechanisms of the Development of ALLergy (Me-

DALL) project may help to understand the links between

multimorbidities and IgE polysensitization in allergic diseases

using a dual approach: hypothesis driven (classical approach)

and data driven (novel approach) (12, 25, 26).

This study is based on a thorough review of the literature.

It also includes the novel information found in the MeDALL

studies and is therefore able to (i) assess the links between

allergic multimorbidities and IgE sensitization as these associ-

ations have rarely been studied and (ii) propose hypotheses

for a unified approach on multimorbidities and IgE polysen-

sitization.

From allergen-specific IgE to IgE-mediated disease

In sensitized subjects, allergen-specific IgE is the initial trig-

ger of a complex inflammatory cascade leading to symptoms

and repair processes that differ between the various target

organs. However, some subjects with specific IgE are asymp-

tomatic.

Basophil activation

Basophils, mast cells and epithelial and dendritic cells repre-

sent the first cells to interact with allergens. The basophil

activation test may add some information on specific IgE in

certain allergic reactions such as cypress pollen (27), food

challenges (28, 29) or asthma severity (30, 31).

Allergen-specific IgE and skin tests in epidemiologic studies

IgE sensitization can be assessed using either serum-specific

IgE (32) or SPT or both, whereas in epidemiologic studies,

although they show considerable overlap, they do not have the

same value for the interpretation of the allergic risk (33, 34).

Asymptomatic subjects with IgE sensitization

Serum allergen-specific IgE or positive skin tests to common

aeroallergens are observed in asymptomatic subjects (35–42).
Using passive transfer tests, it has been shown that these

antibodies are functional (35, 36). In the Dutch European

Community Respiratory Health Survey (ECRHS) study,

43% of the subjects with IgE to inhalant allergens did not

present respiratory symptoms (41). Positive skin tests in non-

symptomatic subjects precede the onset of allergic symptoms

including asthma (43–48).
Asymptomatic subjects are often monosensitized (49) and

have lower serum allergen-specific IgE levels than symptom-

atic patients for inhalant (38, 39, 50) and food allergens (51–
58). Moreover, skin test reactivity to inhalant allergens is

reduced in asymptomatic subjects by comparison to symp-

tomatic patients (38).

An allergen microarray containing 103 allergen molecules

has detected a high prevalence of asymptomatic IgE sensiti-

zations to tropical pollen-derived cross-reactive carbohydrate

determinants (59, 60). The MeDALL allergen chip contains

176 allergen molecules including seven cross-reactive carbo-

hydrate determinants against which IgE are likely to be clini-

cally irrelevant (61). The MeDALL chip has revealed that

one mechanism of natural clinical tolerance to peanuts can

be IgE to low allergenic peanut (62).

Allergen-specific IgE is necessary for the development of

an allergic disease but many subjects have developed an

IgE sensitization without symptoms.

Multimorbidities of IgE-mediated allergic diseases

Multimorbidities

Major IgE-mediated chronic diseases (rhinitis, asthma, AD)

often cluster in multimorbidities. However, many unsolved

problems remain:

1 The hypothesis of an atopic march suggests that AD or

sometimes food allergy is the first manifestation of allergic

diseases, followed by asthma and rhinitis (63, 64). How-

ever, this is not very common in certain populations (65).

2 Atopic dermatitis is highly prevalent in preschool children

and tends to be less prevalent later in life when rhinitis
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becomes more common. However, this is not always the

case (66, 67).

3 Atopic dermatitis is seldom present in patients with severe

asthma (68), but adolescents with a severe form of AD

are prone to having asthma and rhinitis (69).

4 Lung function is lower at birth among children with co-

morbid diseases after 10 years of age, as compared to all

other children with asthma alone (70).

5 Genomewide association analysis has identified new risk

genes for asthma and rhinitis comorbidity (71).

Using the ‘classical’ hypothesis-driven approach (24), Me-

DALL has discovered that, at 4 and 8 years, the coexistence

of AD, rhinitis and asthma in the same child is more com-

mon than expected by chance, both in the presence and

absence of IgE sensitization. This discovery suggests that

these diseases share causal mechanisms. Although IgE sensiti-

zation is independently associated with excess comorbidity of

AD, rhinitis and asthma, its presence accounted for only

38% of comorbidity. This suggests that IgE sensitization can-

not be considered the dominant causal mechanism of comor-

bidity for these diseases at 4 and 8 years. The results of the

study have been confirmed by the ‘novel’ data-driven

approach (J. Garcia-Aymerich, submitted).

Multimorbidities of allergic diseases may share common

causal mechanisms and risk factors that are only partly

IgE-mediated.

Importance of multimorbidities on trajectories of allergic

diseases

In one of the cohort studies from the 12 European birth

cohort studies participating in MeDALL, a longitudinal

analysis modelled the relation between comorbidity at 4 years

of age and disease at 8 years of age (24). Children with mul-

timorbidities at 4 years with or without IgE sensitization had

higher relative risks of comorbidity at 8 years than those

with a single disease. The stability was observed in the Envi-

ronment and Childhood Asthma (ECA) study through pub-

erty (66). Furthermore, in the ECA study, children with

comorbid asthma, rhinitis and AD had significantly more

bronchial hyperresponsiveness and signs of allergic inflamma-

tion at 16 years than children with asthma alone.

Multimorbidities of allergic diseases are associated with

persistence of disease irrespective of IgE sensitization.

Comorbid allergic diseases without IgE sensitization

Many children and adults have symptoms resembling allergy

but do not have any IgE sensitization. In children, asthma,

rhinitis and AD multimorbidities prevail (24), whereas in

adults, AD comorbidity appears less common. In adults,

chronic rhinosinusitis may be associated with severe asthma

(72, 73). Another disease associated with this group is EoE.

This disease exists at all ages (9, 10) and is characterized by a

Th2 eosinophilic inflammation.

Multimorbidities of allergic diseases may occur in the

absence of IgE sensitization.

Mono- and polysensitization against allergens

Characteristics of mono- and polysensitization

Exposed to a common environment, the IgE-mediated

immune response differs among sensitized subjects. Some

react towards one or a limited number of allergens (mono-

or paucisensitized), whereas others are sensitized to a wide

array of allergens (polysensitized) (13, 74) (Table 1). How-

ever, the limit between pauci- and polysensitization is still

unclear.

Pepys categorized atopic status into 0, 1, 2 or 3 or more

groups according to the number of positive SPTs to a small

battery of allergens (pollens, house dust mites, cat and a

locally important mould allergen) (17, 75). Taking cross-reac-

tivities between allergens and panallergens (61, 76) into con-

sideration in clinical studies, a minority of symptomatic

patients are monosensitized, whereas over 70% are polysensi-

tized (77, 78). Similar results are found in epidemiologic stud-

ies in adults. On the other hand, polysensitization increases

with age in birth cohorts (32, 79, 80). IgE sensitization pat-

terns differ for rhinitis and AD between 4 and 16 years. In

rhinitis, the level of specific IgE increases, whereas for AD,

there is an increase in polysensitization. For asthma, there is

an increase in polysensitization as well as in IgE levels (32).

The discrimination between mono- and polysensitized sub-

jects is optimally achieved using purified natural or recombi-

nant allergens (81–87). New techniques for the determination

of IgE reactivity profiles using microarrays improve the char-

acterization of allergenic sensitization (85, 88). Different

allergy patterns of PR-10 and LTP have been found accord-

ing to the geographic location of the patients (89).

The characteristics of mono- and polysensitization may

differ using allergen extracts or allergen components.

Table 1 Definition of polysensitization

At the extract level: IgE reactivity to several nonrelated (or not

obviously related) allergenic source materials

At the molecular level: IgE reactivity to several nonrelated (or not

obviously related) allergenic molecules
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Allergic diseases and multimorbidities in mono- and

polysensitized subjects

In subjects with respiratory allergic symptoms, indoor aller-

gen sensitization is strongly associated with asthma. Sensiti-

zation to pollens is mostly associated with rhinitis (90) and

less with asthma (91), whereas polysensitization is more com-

monly associated with asthma and rhinitis comorbidity (90).

In a New Zealand cohort, in 13-year-old children, the

prevalence of diagnosed asthma increased with increasing

numbers of positive SPT. However, hay fever without asthma

was little affected above one positive skin test (92). In a

cross-sectional study, asthma was associated with polysensiti-

zation and significantly higher total IgE levels than rhinitis

(93). Polysensitization was also associated with the develop-

ment of asthma and its severity in the Manchester Asthma

and Allergy Study (MAAS) cohort (80).

The Epidemiological Study on Genetics and Environment

of Asthma, Bronchial Hyperresponsiveness and Atopy

(EGEA) study examined the number of inhalant allergens

assessed by SPT in subjects with rhinitis (94). The number of

positive SPT was increased in subjects with asthma comor-

bidity (E. Burte et al., submitted).

Bronchial hyperresponsiveness to nonspecific stimuli was

associated with allergen exposure (e.g. pollens) (95, 96) and

was increased in subjects with both mite and pollen allergy, but

not in those with a single allergenic sensitization (97). Increased

bronchial hyperresponsiveness was also associated with

asthma, rhinitis and AD comorbidity in the ECA study (66).

Rhinitis is usually associated with mono- or polysensitiza-

tion, whereas asthma is more often associated with poly-

sensitization and multimorbidities.

Severity of symptoms depending on sensitization

The impact of polysensitization on the severity of symptoms

has been examined in a few studies. Nasal challenge with

orchard grass induced similar symptoms and mediator release

in the mono- and polysensitized subjects (98). Overall, clini-

cal symptoms are equally severe in polysensitized and mono-

sensitized individuals both in adults and children (77, 78, 99,

100). However, some monosensitized adults have more severe

symptoms than polysensitized subjects during the ragweed or

tree pollen seasons (101, 102).

Some allergen components (nonprevalent sensitizing aller-

gen molecules) may be associated with symptom severity

(103) and/or response to allergen immunotherapy, as sug-

gested in children, but this requires further demonstration.

Mono- or polysensitization as an individual criterion can-

not differentiate the severity of allergic symptoms.

Trajectories of IgE sensitization

Allergy in wheezing infants starts by monosensitization

(104), but case histories of rapid onset of polysensitization

are common (BAMSE: Barn/Children, Allergy, Milieu,

Stockholm, Epidemiology). In childhood, most monosensi-

tized subjects develop polysensitization, but there may be

cases of transient sensitization later in life. In the MAS

(German Multicenter Allergy Study) cohort, the IgE

response against grass pollen molecules can start years

before disease onset as a weak monosensitization or

paucisensitization (105). The same data were found for

birch pollen sensitization in the BAMSE study (106).

Polysensitization, especially in early childhood, is a major

risk for developing allergic diseases (107, 108). The number

and level of IgE to the major PR-10 protein Bet v 1

(major birch pollen allergen molecule) at 4 years is related

to the prevalence and severity of birch pollen-related

allergy at 8 and 16 years of age (106). IgE may increase in

serum concentration and complexity through a ‘molecular

spreading’ process during preclinical and early clinical

disease stages (105). Parental allergy was shown to rein-

force IgE to pollen as a preclinical biomarker of hay fever

in childhood (109).

In clinical studies in adults, most monosensitized subjects

with symptoms are likely not to develop new sensitizations

(102, 110–113).

In young children, monosensitization is often followed by

polysensitization. In adults with rhinitis, monosensitiza-

tion tends to persist.

IgE immune response

Mono- and polysensitized patients differ in terms of their

immune response. By comparison to polysensitized

patients, monosensitized subjects usually have lower serum

total IgE levels (93, 111, 114) and lower serum allergen-

specific IgE levels (111, 115). In grass pollen allergy, mono-

sensitized patients usually react to one or two allergenic

proteins of orchard grass pollen (immunoprint), whereas

polysensitized patients have IgE against a large number of

them (98, 99). The same was found in mite allergy for

Dermatophagoides pteronyssinus (116). In MeDALL, the im-

munoprint data on mono- and polysensitization (98, 99)

have been reinforced, showing that polysensitization is

associated with a greater number of components for the

same allergen and a higher level of IgE for each compo-

nent (106, 117).

Clonality implies the state of a cell or a substance being

derived from one source or the other. Thus, there are terms

such as (i) polyclonal – derived from many clones; (ii) oligocl-

onal – derived from a few clones; and (iii) monoclonal –
derived from one clone. Although many patients are only
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sensitized to one allergen, at the clonal level, the immune

response is polyclonal.

The IgE immune response differs between mono- and

polysensitized patients, suggesting a dichotomy in low

and high IgE responders.

Genetic associations depending on the sensitization patterns

or total serum IgE levels

The immunogenetic mechanisms underlying heightened IgE

responsiveness seen in allergic diseases may be divided into

two types: antigen specific and nonspecific. IL-4 regulates

IgE (118). Genomewide association studies have investigated

groups of subjects with one or more skin tests or positive

specific IgE. These studies have therefore identified genes for

the non-antigen-specific response.

HLA plays a role in the development of the IgE

response to allergens, but genetic regulation appears to dif-

fer in mono- and polysensitized patients (119). Associations

between HLA haplotypes or HLA-DQ/DR molecules and

allergen sensitivity were confirmed only in patients with

either low total serum IgE levels or monosensitized (120–
124). Recent data suggest strong associations between

HLA-DQ/DR variants and peanut allergy (125), but less

clear associations with other food allergies such as milk or

egg. In low IgE responder patients (low total IgE and/or

monosensitized), the allergic sensitization depends more clo-

sely on HLA-DR or DQ molecules than in patients with

high total IgE or polysensitized (126, 127). In another

study, the Parietaria IgE antibody response was associated

with DRB1*1104 in patients with low total IgE and with

DRB1*1101 in patients with high total IgE (128). Genetic

restrictions of Ole e1 are associated with total serum IgE

levels (129).

The C11orf30-LRRC32 region may represent a common

locus for allergic diseases through biological pathways

involved in the regulation of IgE (130), polysensitization

(131), eosinophilic inflammation (132) and comorbid allergic

diseases (133) (Fig. 1).

Epigenetic associations between serum IgE concentrations

and methylation at loci concentrated in CpG islands genome-

wide were studied in 95 nuclear pedigrees. Methylation at

these loci differed significantly in isolated eosinophils from

subjects with and without asthma and high IgE levels (134).

The different patterns of IgE and type 2 immunity associ-

ated with cosensitization between biologically unrelated

allergens indicate that mono- and polysensitizations are

the expression of distinct IgE-associated phenotypes. We

hypothesize that they are also associated with different

genetic regulation.

Developmental origin of allergic diseases

Embryologic origin of IgE comorbid diseases

The embryologic development of the upper and lower air-

ways begins during the fourth week of gestation and contin-

ues for many years after birth. The nose and the skin

develop from the ectoderm and mesoderm, whereas the lungs

develop from the endoderm and the mesoderm (135–137).
The epithelial structures of the skin, that is the epidermis

(surface and infundibular), apocrine units, sebaceous units,

hair follicles, eccrine units and nail units, all come from ecto-

derm. Melanocytes, nerves and specialized sensory receptors

develop from neuroectoderm (138). Other elements of the

nose, lung and skin, that is inflammatory cells, fibrocytes,

blood vessels, lymph vessels, muscles and adipocytes, all orig-

inate from mesoderm. The extracellular matrix (ECM) inter-

acts with cells to regulate diverse functions, including

proliferation, migration and differentiation. ECM remodel-

ling is crucial for regulating the morphogenesis of the lung

(139) (Fig. 2). We hypothesize that these morphogenetic

capacities are being reused during chronic inflammatory dis-

ease with remodelling.

Common allergic locus
(c11orf30)

+ -

Elevated IgE levels
Poly-sensi za on

Eosinophilia
Mul morbidi es

HLA

+ -

Mono-sensi za on

Allergen
exposure

Co-factors

No sensi za on

Figure 1 Differences in genetic associations between mono- and

polysensitized subjects (119, 130, 131, 132, 133).
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Figure 2 Embryologic origin of comorbid allergic diseases.
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The Developmental Origins of Health and Disease

(DOHaD) hypothesis refers to the concept that malnutrition

and other environmental factors during the foetal period

induce a nature of thrift in foetuses, such that they have a

higher change of developing noncommunicable diseases, such

as obesity, diabetes or allergic diseases (140, 141). DOHaD

should be viewed as part of a broad biological mechanism of

plasticity by which organisms, in response to cues such as

nutrition, pollution or hormones, adapt their phenotype to

environment (142, 143).

Common causal mechanisms of allergic multimorbidities

may be associated with foetal genes from mesoderm (Th2 sig-

nalling) or from genes regulating/interacting with ectoderm

and/or endoderm (144, 145). On the other hand, genes regu-

lating remodelling differ from inflammatory genes (146, 147)

and are associated with endoderm (asthma, EoE) or ecto-

derm (AD, rhinitis) (Fig. 2).

We hypothesize that the common causal mechanisms of

multimorbidities may be associated with the foetal genes

from mesoderm. Individual diseases are likely to be asso-

ciated with the foetal genes of endoderm and ectoderm.

Perinatal and early life events

Pre- and perinatal events play a fundamental role in health,

in the development of diseases and in ageing (148). Allergic

diseases, the most common disorders in children, begin early

in life and persist across the life cycle.

The immunology of pregnancy is complex. The mother

must tolerate the ‘foreign’ foetus requiring some immunosup-

pression while needing to maintain immune function to fight

off infection. Successful pregnancy maintenance associates a

switch from Th1 to the Th2 profile and Treg interaction

(149, 150).

The process of immune deviation already begins in utero

(151, 152). IgE is produced by the foetus (153, 154), and its

level in cord blood is associated with the further develop-

ment of allergic diseases in childhood. The effect may be

weaning in adults (15, 155). The affinity of IgE may be low

in cord blood (156). The continuation of foetal allergen-spe-

cific Th2 responses during infancy appears to be a feature of

the inductive phase of allergic disease, although more data

are needed to fully understand the kinetics of Th1 and Th2

cytokines in infancy (157–159). Reduced IFN-c and

enhanced IL-4-producing CD4+ cord blood T cells are asso-

ciated with a higher AD risk at 2 years (160). The first

6 months of life are also critical for the development of the

Th2 response and allergic diseases (161). IL-4 production at

3 months is associated with IgE levels at 5 years (162). Birth

cohort studies are relevant for the investigation of the envi-

ronmental and lifestyle determinants of asthma and IgE-

associated diseases as well as the absence of such diseases

(163, 164) (Fig. 3).

Several sets of genes are likely to interact with the environ-

ment for the development of allergic diseases and asthma:

genes governing the IgE immune response, remodelling (165),

inflammation and oxidative stress (166) as well as those

involved in the epithelial barrier function (167, 168). Genes

encoding Th2 cytokines such as IL-4 and IL-13 (169–171) or
remodelling are conserved foetal genes persisting across the

life cycle (171) (Fig. 3). Several asthma susceptibility genes

are differentially expressed during lung development, which

suggests common mechanisms underlying lung morphogene-

sis and pathogenesis of asthma and allergic diseases (172).

Moreover, these genes interact in these diseases and multi-

morbidities (173). One example is the Th2 (IL-4, IL-13)

involved in IgE production, the regulation of the epithelial

barrier function in the skin (174) and the airways (175),

remodelling and fibrosis (176).

The allergy epidemic may have resulted from recent envi-

ronmental changes interacting with genes. Epigenetic mecha-

nisms may help to understand the epidemics of allergic

diseases and asthma, such as the important role of pre- and

postnatal environmental factors that may programme an

individual towards disease (177). Epigenetic phenomena may

contribute to a Th1 and Th2 imbalance (178). As epigenetics

mediates genomic imprinting during embryogenesis, it may

Allergic subjects

? ? ? ?
Allergens and other environmental exposure

birthPregnancy Childhood

Specific IgE

Th2 response

Th1 response

inflammation

Allergic asthma

Airway remodeling

1

? ? ? ?
Allergens and other environmental exposure

birthPregnancy Childhood

Specific IgE

Th2 response

Th1 response

2
inflammation

A

B

Figure 3 (A, B) Foetal gene persistence in allergic diseases and

asthma [from Ref. (178)].

Allergy 70 (2015) 1062–1078 © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd1068

Phenotypes of quantitative IgE sensitization Bousquet et al.



be involved with the multigenerational transmission of aller-

gic diseases and asthma (179).

Several sets of unsilenced foetal genes act in combination

to induce an IgE immune inflammation, remodelling

and multimorbidities. Epigenetic mechanisms are at the

forefront of the development of allergic diseases.

Importance of type 2 signalling in inflammation and

remodelling in allergic diseases

Asthma and rhinitis

Asthma is an inflammatory disease of the entire airways and

airway wall remodelling (180–182). In response to allergen

presentation by airway dendritic cells, Th cells of the adaptive

immune system control many aspects of the disease through

the secretion of IL-4, IL-5, IL-13, IL-17 and IL-22. These are

counterbalanced by cytokines produced by Treg cells (183).

IL-4, IL-13, IL-33 and thymic stromal lymphopoietin (TSLP)

(184) play a key role in allergic disease by their ability to initi-

ate, maintain and augment Th2 responses (185–187). Many

innate immune system cells (mast cells, basophils, neutrophils,

eosinophils and lymphoid type 2 cells ILCs) have an impor-

tant role. ICLs produce IL-5 and IL-13 (188). The bronchial

epithelium protects the internal milieu of the lung from nox-

ious agents by forming a physical barrier involving adhesive

complexes and a chemical barrier (189). It can release

cytokines and chemokines (190–192), is a sense exposure to

allergens and may result in IgE sensitization.

In asthma and rhinitis, the inflammation of nasal and

bronchial mucosa appears to be sustained by a similar

inflammatory infiltrate including eosinophils, mast cells, T

lymphocytes and macrophages (193), as well as similar pro-

inflammatory mediators (histamine, cysteinyl leukotrienes),

Th2 cytokines and chemokines. However, there are differ-

ences between the two sites and both unique and shared

genetic factors for asthma and rhinitis have been identified

(194). The importance of the Th2 pathway in eosinophilic

asthmatics is supported by the efficacy of a mAb against

IL4/IL-13 (195).

Remodelling is present in the airways of most if not all

asthmatics (180, 196) and is only partly associated with a

Th2 inflammation (180). Remodelling exists very early in life

in asthma. On the other hand, although the epithelial mesen-

chymal trophic unit exists in rhinitis, nasal remodelling in

rhinitis seems to be far less extensive than in the bronchi of

asthmatics (197). Tissue remodelling exists in rhinosinusitis

(198). Epithelial barrier and remodelling features close to

those of asthma are found in EoE, a Th2 often non-IgE-

associated disease of an endodermic organ (9, 199–203).
Periostin, an ECM protein belonging to the fasciclin fam-

ily, plays a critical role in remodelling during development or

repair (204). It is a downstream molecule of IL-4 and IL-13

and a component of subepithelial fibrosis in asthma (205).

Periostin expression is minimally increased in the nasal

mucosa of patients with allergic rhinitis, whereas it is highly

increased in rhinosinusitis (206).

Type 2 inflammation has a central role in asthma and

rhinitis. Remodelling is extensive in asthma, whereas it is

less extensive in rhinitis.

Atopic dermatitis

In AD, abnormalities in terminal differentiation of the epi-

dermal epithelium, leading to a defective stratum corneum,

allow enhanced allergen penetration and systemic IgE sensiti-

zation (207). Causes of this abnormal skin barrier are com-

plex and driven by a combination of genetic, environmental

and immunologic factors. Mutations in filaggrin (FLG), a

structural protein fundamental in the development and main-

tenance of the skin barrier, are the best identified. However,

variants associated with AD exist in genes encoding for other

proteins involved in the skin barrier (208). FLG variants also

increased risk of allergic multimorbidities, which may repre-

sent more severe and complex clinical phenotypes. Allergic

sensitization and AD modulated the association between

FLG variants, asthma and food allergy (209) but less with

rhinitis (210, 211).

The pathogenesis of AD is complex and includes a Th2

deviation, a role for specialized dendritic cells as well as

Th17 and Th22 cells (212). Periostin is also involved in AD

(213, 214). Dupilumab, a mAb against IL-4/IL-13, is effective

in AD. It improves molecular signature (215, 216) suggesting

that IL-4 and IL-13 drive a complex, Th2-centred inflamma-

tory axis in patients with AD. Skin fibrotic remodelling is a

major feature in AD, but as a consequence of skin irritation.

Atopic dermatitis is associated with a defective skin bar-

rier function and a complex immune response in which

type 2 signalling plays an important role.

Integration of concepts

Type 2 comorbid phenotypes

IgE-associated phenotypes

IgE-associated allergy with eosinophilic inflammation is a

common feature of allergic asthma, allergic rhinitis, some

forms of AD and allergic EoE (217, 218). Three extreme phe-

notypes appear to coexist with intermediate phenotypes and

nonsensitization. These phenotypes may vary with age.

1 Nonsensitized asymptomatic individuals

2 IgE response restricted to one environmental allergen

with no family history: low IgE responders (number of

components and level of IgE)
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a Nonsymptomatic subjects who are unlikely to develop

symptoms over time.

b Symptomatic subjects (symptoms similar to polysensi-

tized subjects):

• These subjects become sensitized because there is a

substantial level of allergen exposure and subse-

quent exposure to cofactors (e.g. traffic-related air

pollutants) (219). This is the case for tree pollens

(cypress, birch) or new pollens (ragweed in north-

ern Italy) (102) and soybean outbreaks (220).

• There is usually no family history.

• In cypress pollen allergic patients, at the beginning

of the disease, skin tests are not positive between

seasons, only during season.

• Patients mostly suffer from rhinitis (the case of

cypress and birch pollen allergy) (221).

3 Polyclonal IgE response to environmental allergens with

family history: high IgE responders (number of compo-

nents and level of IgE). Most subjects are symptomatic,

with an early life onset, a high rate of multimorbidities

and persistence of the disease over time.

4 Nonallergic polyclonal IgE without family history: Late-

onset disease and local polyclonal IgE: Some patients

develop asthma late in life. In these patients, positive

SPTs or serum IgE antibodies to inhalant allergens are

not common, but there is often an increase in total serum

IgE (222). These patients frequently suffer from comorbid

upper airway disease (rhinosinusitis) (72) and more severe

asthma (223). In chronic rhinosinusitis with nasal polyps

(CRSwNP), significantly associated with asthma comor-

bidity, there is a local IgE production in the upper airway

mucosa (224) and a strong polyclonal mucosal local IgE

production (IgE antibodies to several hundred allergens)

which is functional upon allergen exposure (225).

Together with specific IgE to inhalant allergens, IgE anti-

bodies to Staphylococcus aureus enterotoxins (SE-IgE)

can be demonstrated in the mucosa. The presence of this

antibody and a high increase in total IgE are significantly

associated with asthma comorbidity (22). In asthmatics,

serum SE-IgE correlates with total IgE and is associated

with the severity of the disease (226, 227). A Th2 immune

response has been demonstrated in the nasal polyps of

these patients (22).

5 Intermediate phenotypes

a Polyclonal IgE response without family history. The

role of cofactors (pollutants, viruses) needs to be

better understood.

b IgE response restricted to few allergens.

birth
Pregnancy Childhood Adulthood1 yr 3-4 yr

Th2

Family
history

Atopic march
Early sensi za on to inhalant allergen

Preschool children polysensi za on

Children polysensi za on

Post-puberty
Monosensi za on

Figure 4 Phenotypes of IgE-mediated allergic diseases.

Table 2 Implications of the novel definition of IgE-mediated allergic

diseases

Subphenotyping of allergic diseases: Phenotyping subtypes can be

used to characterize allergic diseases, severity and progression

and may help identify unique targets for prevention and treatment

Clinical practice: An updated definition provides a framework to

inform decisions relating to treatment priorities and to indicate

need for improvement in health care and delivery through better

organization for prediction, diagnosis and treatment. The

prediction of allergic disease trajectories in preschool children is

essential

Clinical trials: Clarity on definitions is essential for clinical trials,

evaluating efficacy and safety. The stratification of patients by

sensitization and comorbidity is essential in allergen

immunotherapy (for both treatment and prevention)

Research on mechanisms and genetics: The new definition is likely

to change the concepts of the mechanisms of allergic disease and

to propose novel mechanisms

Population studies: In longitudinal epidemiological population

studies, standardized definitions are required to be able to

compare cohorts across time and place and to develop dynamic

models capturing risk factors which predict transitions through

different stages of health

Public health planning: For public health purposes, a

comprehensive definition is needed (i) to identify the prevalence,

burden and costs incurred by all phenotypes; (ii) to improve quality

of care and optimize healthcare planning and policies; and (iii) to

model the economic and social benefits of specific interventions

to improve or maintain health

Social welfare planning: For social welfare purposes, a phenotypic

definition is also needed to predict the burden and costs at an

early age in order to model the individual and collective economic

and social benefits of specific interventions

Applicability to high- and low-income countries: A uniform allergy

definition should be applicable to the local and geographical

conditions of all countries, phenotypes, risk factors, availability and

affordability to treatment differing widely around the world. This

would help to better understand mechanisms specific to

different environments and interactions with parasitic diseases in

particular

Development of novel preventive approaches and therapies:

Detailed cellular and molecular phenotyping is needed to identify

novel primary and secondary prevention strategies, as well as

new targets for the development of novel therapies. Ultimately,

novel therapies studied in clinical trials should help define IgE-

mediated pathways and determine the importance of the

intervention in large patient populations or in subpopulations of

patients based on the concept of distinct phenotypes. The life

course approach of allergic diseases is of great interest as it may

lead to health promotion strategies
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Non-IgE-associated phenotypes

Eosinophilic diseases without IgE-mediated allergy exist in

both children and adults. They include asthma, rhinitis,

rhinosinusitis, some forms of AD and nonallergic EoE.

Temporal integrations of type 2 comorbid phenotypes

Allergens and environmental cofactors [inhaled (219, 228),

nutritional, bacterial and viral infections (164, 229, 230),

microbiome (231–234), etc.] act at different times of preg-

nancy and the life cycle in subjects with a variable genetic

predisposition to develop an IgE-mediated disease. Moreover,

the trajectories of subjects with an IgE response vary widely.

It is known that environmental factors can act in utero and

may have more impact in early life rather than in later life.

However, their role is still unclear.

Allergic diseases are highly heterogeneous including many

different and overlapping phenotypes which may, however,

be theoretically simplified in a few scenarios (Fig. 4):

1 Early-onset AD and subsequent comorbidities included in

the atopic march. A few children follow the typical atopic

march pattern (65), and in these subjects, it may be con-

sidered that foetal life type 2 signalling persists through-

out life from birth (235).

In the other groups, type 2 signalling re-occurs in response

to allergen and the effect of cofactors, increasing with age.

The importance of the family history of allergy decreases

with age, but genetic factors cannot be ruled out even in sub-

jects developing allergy in adulthood.

2 Early development of sensitization to an inhalant allergen

present in very high amounts in early life. Neonatal birch

pollen exposure can induce the development of birch pol-

len allergy in some (236–240) but not all studies (241).

The effect may also be seen with other allergens (240).

High-dose exposure to an inhalant allergen (birch pollen)

is needed for the development of sensitization and allergic

disease in high-risk children (238). The window of allergic

risk may be around 3 months after birth. Exposure of the

mother during pregnancy to inhalant allergens is less

likely to result in sensitization in the child than exposure

of the child in early infancy (242). In foods, an opposite

mechanism may be found.

3 Preschool children polysensitization: Children with a fam-

ily history of allergic diseases develop polysensitization

and multimorbidities in early childhood. The influence of

cofactors should be investigated. The disease will per-

sist over life. Some of the children may only be monosen-

sitized for a few years. One of the potential mechanisms

may be associated with the C11orf30-LRRC32 region

involved in the regulation of IgE (130), polysensitization

(131), eosinophilic inflammation (132) and comorbid

allergic diseases (133). Interestingly, C11orf30 interacts

with the zinc finger MYND domain-containing protein 11

(ZMYND11). The protein encoded by this gene binds the

adenovirus E1A protein. The protein localizes to the

nucleus. It functions as a transcriptional repressor, and

the expression of E1A inhibits this repression (243).

4 Polysensitization later in life: Children with or without a

family history of allergic diseases develop polysensitiza-

tion and multimorbidities later in childhood. The disease

will persist over life. However, some of the children may

only be monosensitized for a few years.

5 Monosensitization after puberty: In cypress and tree pol-

len allergy, many monosensitized individuals with an oli-

goclonal IgE response develop allergic symptoms (and

probably sensitization) after puberty and sometimes a

long time later. Cofactors (e.g. pollutants) may be of

importance.

Conclusion and implications of novel phenotypes of

allergic diseases

This review has compiled evidence that allergic diseases are

frequently associated as allergic multimorbidities and that

IgE polysensitization increases the risk of allergic comorbidi-

ty. Although the origin of allergic comorbidity and its link

with polysensitization are still unclear, we hypothesize that

the persistence or re-occurrence of foetal type 2 signalling

genes plays an important role. The integration of comorbidi-

ties and polysensitization has resulted in a new classification

framework of allergic diseases which could help to improve

the understanding of genetic and epigenetic mechanisms of

allergy as well as to better manage allergic diseases (Table 2).

Asthma, rhinitis, AD and EoE are manifestations of a sys-

temic immune imbalance, and a comprehensive approach

should be taken for prevention and treatment (244).

Many of the hypotheses raised in this study can be cur-

rently tested by the novel classification of allergic diseases

using data already available, in particular in the MeDALL

study.
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