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Abstract— In the paper the role of anti-aliasing filters is
revised based on control quality assessment of various setups of
analog filters used prior to sampling, or their lack. Numerical
results show that contrary to common belief possible benefits
gained from anti-aliasing filters are very restricted.

I. INTRODUCTION

In the scientific literature [5], [8], [2] strong belief is

expressed that additional analog elements are necessary prior

to sampling to guarantee correct digital signal processing,

and control. Although various solutions are possible, these

elements called anti-aliasing filters usually take the form of

Butterworth filters whose cutoff frequency equals to the so

called Nyquist frequency ωN = π/h depending solely on

sampling period h. As an alternative [5], [6], [3] so called

integrating or averaging samplers are considered.

This belief is usually supported by heuristic speculations

based on Shannon-Kotelnikov Reconstruction Theorem, e.g.

[7], which states that in order to reconstruct the signal

s(t) from its samples s(ih),−∞ < i < ∞, the sampling

frequency should be twice the highest frequency component

in the signal. Since the spectra of physical signals often

stretch on infinite frequency range, this gives rise to the idea

of filters that cut off the portion of frequency spectrum lying

outside the region determined by that theorem.

The model of a realistic control system studied in the

paper is presented in Fig. 1 where Kc(s) is the transfer

function of control path of the plant, while Kd(s) and Kn(s)
represent filters forming stochastic disturbance and noise,

respectively. It is also assumed that the controller consists

of a linear state feedback with a discrete-time Kalman filter

in series estimating state from scalar measurements which

results from the LQG theory.

The aim of the paper is to develop tools for control quality

assessment for various configurations of filters or their lack.

This extends the results of papers [3], [4] from pure signal

processing to control problems.

Conclusions drawn from numerical examples show that

the common belief about necessity of anti-aliasing filters

is very often not true, and that continuous-time Kalman

filters that depend on disturbance and noise characteristics

are allways better than anti-aliasing filters that depend only

on the sampling period.
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II. MODELING OF THE ANALOG PART

A. Plant and noise model

To analyse the properties of sampling we will use state-

space models of the system control in Fig. 1 consisting of
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Fig. 1. Control system

control path:

ẋc(t) = Acxc(t) + bcu(t), xc(0) = 0, (1)

yc(t) = d′
cxc(t), (2)

disturbance signal

ẋd(t) = Adxd(t) + cdξ̇d(t), xd(0) ∼ N (0,Qd,0), (3)

d(t) = d′
dxd(t), (4)

and noise model

ẋn(t) = Anxn(t) + cnξ̇n(t), xn(0) ∼ N (0,Qn,0), (5)

n(t) = d′
nxn(t), (6)

where dim xc = nc, dim xd = nd, dim xn = nn, xc(t),
xd(t), xn(t) are state vectors, Ac, Ad, An are matrices, cd,

cn, dd, dn and dc are vectors of appropriate dimensions.

Processes ξ̇d(t) and ξ̇n(t) are independent continuous-time

white noises with zero means and covariance functions

defined as unit Dirac pulse functions, i.e.:

E [ξ̇d(t)] = 0, E [ξ̇d(t)ξ̇d(τ)] = δ(t − τ); (7)

E [ξ̇n(t)] = 0, E [ξ̇n(t)ξ̇n(τ)] = δ(t − τ). (8)

The disturbed signal y(t) is the sum of the signal of interest

yc(t) and disturbance d(t):

y(t) = yc(t) + d(t). (9)
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Measured signal y2(t) is the sum of the signal of interest

y(t) and noise n(t):

y2(t) = y(t) + n(t). (10)

B. Continuous-Time Filters

In the paper we consider Butterworth and averaging filters

as anti-aliasing filters as well as a continuous-time Kalman

filter.

1) Continuous-time Butterworth filter: Transfer function

of Butterworth filter has the form:

Kf (s) =
1

Bn

(

s
ωo

) , (11)

where Bn (∗) is the n-degree Butterworth’s polynomial and

ωo is called the cutoff frequency. In this paper ωo will be

assumed as Nyquist frequency ωo = ωN = π
h

. The first

Butterworth’s polynomials are definded as follows:

B1 (x) = x + 1; B2 (x) = x2 +
√

2 · x + 1.

2) Averaging filter: It has the following transfer function:

K(s) =
1 − e−sh

sh
(12)

Sampling the output of this filter can be replaced by so called

averaging sampling described further in sec. III.C.

3) Continuous-time Kalman filter: Since there is no white

noise added to the measured output, the classical Kalman

filter for system in (3)–(6) becomes singular. One way to

overcome the problem is to replace the continuous-time filter

with a discrete-time one working at sampling frequency 1/hf

high enough. The output of such filter could be resampled at

lower frequency if necessary. An alternative solution is to use

its continuous-time approximation obtained by expanding

F dn = I + Adnhf which leads to:

˙̂xdn(t) = (I − k
f
dnd′

dn)Adnx̂dn(t)+

+ k
f
c,dn

[

ydn(t) − d′
dnx̂dn(t)

]

(13)

with k
f
c,dn = k

f
dn/hf , where k

f
dn is the Kalman gain of the

discrete-time filter working with period hf .

C. State-space model of system with analog filter

Either filter, anti-aliasing or Kalman, can be expressed in

the following form

ẋf (t) = Afxf (t) + bfy2(t), (14)

yf (t) = df ′
xf (t). (15)

Then the system consisting of a filter in (14)–(15), together

with plant of (1)-(6) can be aggregated to the following

ẋ(t) = Ax(t) + bu(t) + Cξ̇(t), (16)

y(t) = d′
yx(t), (17)

y2(t) = d′
y2

x(t), (18)

yf (t) = d′x(t), (19)

where:
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




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
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
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




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




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


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




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






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


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
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




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ẋf (t)









, ξ̇(t) =

[

ξ̇d(t)

ξ̇n(t)

]

.

III. SAMPLING AND DISCRETE-TIME KALMAN FILTERING

A. Instantaneous sampling

Simple instantaneous sampling with sampling period h
consists in taking the values of the sampled signal at discrete

time instants ti = ih, i = 0, 1, . . .. Available measurements

zi are expressed as

zi = y2(ti). (20)

Then the problem defined by measurement equation (20) and

state equation (16) is equivalent with the following discrete-

time system:

xi+1 = Fxi + gui + wi, (21)

zi = d′xi, (22)

where:

F (τ) = eAAAτ , F = F (h), (23)

g(τ) =

τ
∫

0

eAAAνbdν, g = g(h) (24)

and wi is a zero mean vector Gaussian noise with

E {wiw
′
i} = W , and

W =

h
∫

0

eAAAsCC ′eAAA′sds. (25)

Vectors x0 and wi are independent for all i ≥ 0.

B. Discrete-time Kalman filter

The limiting Kalman filter, [1], that provides (x̂i|i =
E [xi|~zi]) for the discrete-time system in (21)-(22) as i → ∞
has the form:

x̂i+1|i+1 = x̂i+1|i + kf (zi+1 − d′x̂i+1|i), (26)

x̂i+1|i = F x̂i|i + gui, x0|−1 = 0, (27)

where

kf =
Σd

d′
Σd

, Σ = W + F

(

Σ − Σdd′
Σ

′

d′
Σd

)

F ′. (28)
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C. Averaging sampling [3], [5]

Let us define the mean value of y(t) over the sampling

interval h between the sampling times ti and ti+1 as

zi+1 =
1

h

ti+1
∫

ti

y2(t)dt. (29)

Then dividing the output equation by h we get

dz (t)

dt
=

1

h
y2(t) =

1

h
d′x(t). (30)

As a result, the state equation can be extended as follows

d

dt

[

x(t)
z(t)

]

=

[

A 0
d′

h
0

]

[

x(t)
z(t)

]

+

[

b

0

]

u(t) +

[

C 0
0 0

] [

ξ̇

0

]

.

where:

A =





Ac 0 0

0 Ad 0

0 0 An



 , b =





bc

0

0



 ,C =





0 0

cd 0

0 cn



 ,

d0 =





dc

dd

0



 ,d =





dc

dd

dn



 ,x(t) =





xc(t)
xd(t)
xn(t)



 , ξ̇(t) =

[

ξ̇d(t)

ξ̇n(t)

]

.

Integrating it between the i-th and (i+1)-th sampling instants

yields

xi+1 = Fxi + gui + wi, (31)

zi+1 = f ′xi + g∗ui + vi, (32)

with

F = eAAAh, g =

h
∫

0

eAAAνbdν, f ′ =
1

h
d′

h
∫

0

eAAAsds,

g∗ =
1

h
d′

h
∫

0

s
∫

0

eAAAνdνds b =

=
1

h
d′(A)−1

[

(A)−1
(

eAAAh − I
)

− Ih
]

b,

and

E

[

wiw
′
j wivj

viw
′
j vivj

]

=

[

W γ

γ′ ρ2

]

δij ,

where

[

W γ

γ′ ρ2

]

=

h
∫

0

eĀ̄ĀAs

[

CC ′
0

0 0

]

eĀ̄ĀA′sds, Ā =

[

A 0
1

h
d′ 0

]

.

D. Discrete-time Kalman filter for averaging sampling

The results of averaging sampling can further be improved

by using a discrete-time Kalman filter. We have the follow-

ing:

Lemma 1: Denote

d̄ =
γ

ρ2
, F̄ = F − d̄f ′, ḡ = g − d̄g∗, W = W − γγ′

ρ2
.

Then the Kalman filter for (31)-(32) that provides (x̂i|i =
E [xi|~zi]) has the following form

x̂i|i+1 = x̂i|i + kf (zi+1 − f ′x̂i|i − g∗ui), (33)

x̂i+1|i+1 = F̄ x̂i|i+1 + ḡui + d̄zi+1, x̂0|0 = 0, (34)

where

kf = Σf
(

f ′
Σf + ρ2

)−1
, (35)

and Σ is a solution of the matrix Riccati equation

Σ = W + F̄

(

Σ +
Σff ′

Σ

f ′
Σf + ρ2

)

F̄
′
. (36)

Proof Since wi and vi are correlated, we can introduce

w̄i defined as

w̄i = wi −
γ

ρ2
vi, (37)

such that w̄i and vi are independent, and

cov {w̄i, vj} = E

[

w̄iw̄
′
j w̄ivj

viw̄
′
j vivj

]

=

[

W 0

0
′ ρ2

]

δij . (38)

Inserting

wi = w̄i +
γ

ρ2
vi, (39)

from (37), and

vi = zi+1 − f ′xi − g∗ui, (40)

from (32) into (31) results in

xi+1 = F̄ xi + ḡui + d̄zi+1 + w̄i. (41)

From (41), Kalman filter equations (33)-(34) follow.

Equation (34) together with (33) give:

x̂i+1|i+1 = F̄ (I − kff ′)x̂i|i + (ḡ − F̄ kfg∗)ui+

+ (d̄ + F̄ kf )zi+1, x̂0|0 = 0. (42)

IV. CONTROL ALGORITHMS

A. Performance index and control law

The aim of the system is to keep the output of the system

close to the reference value yr(t) = 0 based on noisy

sampled measurements defined in (10), i.e. to make the error

e(t) = yr(t) − y(t) small.

To this end, a LQG control problem with a continuous

performance index J is formulated, where

J = lim
N→∞

E
1

Nh

Nh
∫

0

{

y2(t) + λu2(t)
}

dt. (43)

Since noise influences only state estimate x̂i|i and not the

control law being a linear function of x̂i|i the above sampled

data control problem can be reformulated as follows.

The problem defined by modulation equation

u(t) = ui, for t ∈ (ih, ih + h], i = 0, 1, . . . , (44)
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measurement equation (20), state equation (16) with:

A =

[

Ac 0

0 Ad

]

, b =

[

bc

0

]

, C = c =

[

0

cd

]

,

d =

[

dc

dd

]

, x(t) =

[

xc(t)
xd(t)

]

, ξ̇(t) = ξ̇d(t),

and performance index (43) is equivalent with the following

discrete-time problem with (21)-(22) defined as (23)-(24)

and:

J = lim
N→∞

E
1

N

N−1
∑

i=0

{

x′
iQ1xi + 2x′

iq12ui + q2u
2
i + qw

}

,

(45)

where

Q1 =
1

h

h
∫

0

F ′(τ)MF (τ)dτ, M = dd′

q12 =
1

h

h
∫

0

F ′(τ)Mg(τ)dτ,

q2 =
1

h

h
∫

0

g′(τ)Mg(τ)dτ + λ,

qw = d′







h
∫

0

τ
∫

0

F (τ − s)cc′F ′(τ − s)dsdτ







d,

The optimal control law minimizing the performance index

(45) for the discrete stochastic system (21) is a linear

function

ui = −k′
xx̂i|i, k′

x =
q12 + F ′Kg

q2 + g′Kg
, (46)

where x̂i|i denotes the Kalman filter estimate of the state xi

based on available information up to and including i from

(26)-(27) or (33)-(34). The feedback gain kx depends on

the positive definite solution K of the following algebraic

Riccati equation:

K = Q1 +F ′KF − (q12 + F ′Kg)(q12 + F ′Kg)′

q2 + g′Kg
. (47)

V. CONTROL SYSTEM ASSESSMENT

The quality of the control systems will be assessed based

on plots depicting standard deviation of the output variable

versus standard deviation of the control signal. They allow

the weighting factor λ of the performance index to be chosen

such that the standard deviation of the control signal does not

exceed certain value. Standard deviation is a good measure

of expected magnitudes of signals. To this end appropriate

variations should be calculated.

A. Output and control variances for systems with

continuous-time filters

The following formulae express the variances of interest:

σ2
y = var {yi} = d′

0V
od0, (48)

σ2
u = var {ui} = k′

xV fkx, (49)

where V o, V f , end V fo are submatrices of matrix V

V = E

{[

xi

x̂i|i

]

[

x′
i x̂

′
i|i

]

}

=

[

V o V of

V fo V f

]

(50)

which is a solution of the following matrix Lyapunov equa-

tion:

V = ΦV Φ
′ + ΩWΩ

′, (51)

with:

Λ = (I − kfd′)(F + gk′
x), Ψ = (Λ + kfd′gk′

x),

Φ =

[

F gk′
x

kfd′F Ψ

]

, Ω =

[

I

kfd′

]

.

B. Output and control variances for averaging sampling

In the case of averaging sampling we have:

σ2
y = var {yi} = d′

0V
od0, (52)

σ2
u = var {ui} = k′

xV fkx, (53)

where the covariance matrix V has the form as in eq. (50)

and:

V = ΦV Φ
′ + ΓWΓ

′ + ΓγE′ + Eγ′
Γ
′ + EE′ρ2, (54)

where:

Λ =
[

F̄ − F̄ kff ′ +
(

ḡ − F̄ kfg∗ + Υg∗

)

k′
x

]

;

Ψ = Υf ′, Υ = (d̄ + F̄ kf )

Φ =

[

F gk′
x

Ψ Λ

]

, Γ =

[

I

0

]

, E =

[

0

Υ

]

.

VI. EXAMPLES

We will study the properties of control systems for a plant

having control path

Kc(s) =
1

(1 + 0.5s)2
, (55)

with disturbance and noise modeled by:

Kd(s) =
kd

(1 + Tds)2
, Kn(s) =

kn

T 2
ns2 + 2ζnTns + 1

,

(56)

with Td = 2, Tn = 0.05, ζn = 1 and kd and kn chosen such

that var d(t) = 1, var n(t) = 0.52.

Spectral characteristics of disturbance and noise signals

along with sampling frequencies corresponding to values of

sampling intervals h studied further are displayed in Fig.2.

10
−2

10
−1

10
0

10
1

10
2

0

1

2

3

4

5

6

7

8

M
a

g
n

it
u

d
e

 (
a

b
s
)

h=0.05h=0.2h=0.5h=1

S
d
c(ω)

S
n
c(ω)

Power spectral density Sc(ω)

Frequency  (rad/sec)
10

−2
10

−1
10

0
10

1
10

2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
a

g
n

it
u

d
e

 (
a

b
s
)

h=0.05

h=0.2

h=0.5

h=1

S
d
c(ω)

S
n
c(ω)

Power spectral density Sc(ω)

Frequency  (rad/sec)

Fig. 2. Spectral densities: Sd
c (ω) and Sn

c (ω) for d(t) and n(t)

3203



Properties of control systems with various structures of

continuous-time filters are displayed in Fig.4 for different

values of sampling period h, and compared with systems

without any continuous-time filter. Discrete-time Kalman

filters were designed assuming system structures depicted

in Fig.3. General observation is that the smaller h the better

the results for all possible configurations, and that both anti-

aliasing filters give a marginal improvement with respect to

the system without any filter for h = 0.5 while for both

smaller and larger values of h the improvement is negligible.

The best results are attained for all values of h when

the continuous-time Kalman filter of eq.(13) with k
f
c,dn =

k
f
dn/h is employed. Classical approach to noisy systems

fitted with an anti-aliasing filter is forget about noise, add the

dynamics of the filter to the plant dynamics and solve the

problem as though the noise never existed. The result of such

approach is depicted in Fig.5 and compared with systems

where the discrete-time model takes the noise characteristics

into account. It is clear that neglecting noise leads to bad

results, resulting mainly in large control magnitudes.

Influence of noise characteristics characterized by the

value of damping parameter ζn determining the shape of

spectral density in Fig.6a) on the control quality is presented

in Fig.6b)-d) for h = 0.2. The main observation is that

the smaller is the value of ζn the better is disturbance

attenuation. Similarly, the influence of the parameter Tn

determining noise band is presented in Fig.7. The main

observation is that the smaller Tn the better disturbance

attenuation irrespectively of the type of filtering used. In all

cases the quality of systems with both types of antialiasing

filter is only marginally better.

VII. SIMPLIFIED MODELS

In the paper we assume a broadband noise, whose model

might not be available. Moreover, the noise model con-

tributes to Kalman filter complexity. It is likely that sim-

plified discrete-time system model with discrete-time white

noise with appropriately chosen variance can be good alter-

native to the exact one.
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A. Discrete Simplified models

We propose a discrete-time model of instantaneously sam-

pled noisy signal

x
p
i+1

= F px
p
i + gpui + w

p
i , (57)

zi = d′
px

p
i + ni, (58)

yi = d′
px

p
i , (59)

with

F p = eAAAph, gp =

h
∫

0

eAAApνbpdν,

W p =

h
∫

0

eAAApvcpcp′eAAAp′vdv,
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Fig. 6. a) Power spectral density for different values of ζn; b)-d) Results
for different values of ζn. Tn = 0.05
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Fig. 7. Results for different values of Tn. ζn = 1

with continuous-time description:

Ap =

[

Ac 0

0 Ad

]

, bp =

[

bc

0

]

, cp =

[

0

cd

]

, (60)

dp =

[

dc

dd

]

, xp(t) =

[

xc(t)
xd(t)

]

, (61)

in which noise is presented as discrete-time white noise ni

whose variance ρ2 equals to the variance of n(t) of the

original system, i.e. ρ2 = var {ni} = var {n(t)}, and can

be calculated as

ρ2 = d′
nQndn, (62)

where Qn fulfills the following Lyapunov equation:

AnQn + QnA′
n = −dnd′

n. (63)

B. Discrete-time Kalman filter for discrete simplified model

Kalman filter equations for system in (57)–(58) have

formally the same for as in (26)-(27), except for dim xm
i|i =

nm, and

kf = Σdp
(

dp′
Σdp + ρ2

)−1
, (64)

where Σ is a solution of

Σ = W p + F p

(

Σ − Σdpdp′
Σ

′

dp′
Σdp + ρ2

)

F p′. (65)

C. Examples

It is interesting that even a simplified discrete-time noise

model in the form of discrete-time white noise ni with

appropriately chosen variance leads to very good results. A

comparison of an exact and approximate systems is depicted

in Fig.8.
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Fig. 8. Full model DT Kalman filter vs. simplified DT with ni

VIII. CONCLUSION

The results of the paper show that the common belief

about necessity of using anti-aliasing filters in sampled data

control systems is not justified. Much more important is

the knowledge of the noise characteristics. The main tool

to improve the control system performance is increasing

the sampling and control signal modulation frequencies. No

additional continuous-time filters are then necessary to arrive

at good control quality.
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