NBER WORKING PAPER SERIES

ARE BUSINESS CYCLES ALL ALIKE?

Olivier J. Blanchard

Mark W. Watson

Working Paper No. 1392

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 June 1984

Presented at the NBER's Conference on Business Cycles, Puerto Rico, March 23 to 25, 1984. We thank Rudi Dornbusch, Stan Fischer, Robert Hall, Pok-sang Lam, Larry Summers, Victor Zarnowitz, and participants in the Monetary and Fiscal Policy Seminar at Harvard University for discussions and suggestions. We also thank Pok-sang Lam for careful research assistance, and the NBER and NSF for financial support. The research reported here is part of the NBER's research program in Economic Fluctuations. Any opinions expressed are those of the authors and not those of the National Bureau of Economic Research.

Are Business Cycles All Alike?

ABSTRACT

This paper examines two questions. The first is whether economic fluctuations-business cycles-are due to an accumulation of small shocks or instead mostly to infrequent large shocks. The paper concludes that neither of these two extreme views accurately characterize fluctuations. The second question is whether fluctuations are due mostly to one source of shocks, for example monetary, or instead to many sources. The paper concludes that evidence strongly supports the hypothesis of many, about equally important, sources of shocks.

To analyze the empirical evidence and to reach these conclusions, the paper uses two different statistical approaches. The first is estimation of a structural model, using a set of just identifying restrictions. The second is non-structural and may be described as a formalization of the Burns Mitchell techniques. Both approaches are somewhat novel and should be of independent interest.

```
Olivier J. Blanchard
Department of Economics
M.I.T. E52-274B
Cambridge, MA 02139
(617) 253-8891
```

```
Mark W. Watson
Department of Economics
Harvard University
Cambridge. MA 02138
(617) 495-5148
```

The propagation-impalse framework, which was introduced in economics by Frisch [1933] and Slutsky [1927], has come to dominate the analysis of economic fluctuations. Fluctuations in economic activity are seen as the result of small, white noise, shocks--impulses--which affect the economy through a complex dynamic propagation system. ${ }^{1,2}$ Much, if not most, of empirical macroeconomic investigations have focused on the propagation mechanism. In this paper we focus on the characteristics of the impalses, and the implications of these characteristics for business cycles.

It is convenient, if not completely accurate, to smmarize existing research on impalses as centered on two independent but related questions. The first question concerns the number of sources of impulses. It asks Whether there is one or many sources of shocks to the economy. Monetarists often single out monetary shocks as the main source of fluctuations; ${ }^{\mathbf{3}}$ this theme has been echoed recently by Lacas [1977] and examinedempirically by the estimation of index or dynamic factor analysis models. The alternative viev, that there are many, equally important, sources of shocks seems to dominate most of the day-to-day discussions of economic fluctuations.

The second question concerns the way in which the shocks lead to large flactuations. It asks whether flactuations in economic activity are cansed by an accumalation of small shocks, where each shock is unimportant if viewed in isolation, or rather whether fluctuations are due to infrequent large shocks. The first view derives theoretical support from Slotsky, who demonstrated that the accumalation of small shocks could generate data wich mimicked the behavior of macroeconomic time series. It has been forcefally restated by

Lacas [1977]. The alternative view is less articalated bat clearly underlies many descriptions and policy discussions. It is that there are infrequent, large, identifiable shocks which dominate all others. Particular oconomic fluctuations can be ascribed to particalar large shocks followed by periods daring wich the economy retarns to equilibriam. Such a view is implicit in the description of specific periods as the Vietnam Far expansion, the oil price recession, or the Volcker disinflation.

The answers to both questions have important implications for economic theory, economic policy, and econometric practice. We cite three examples. The role of monetary policy is quite different if shocks are predominantly monetary or arise partly from policy and partly from the behavior of private agents. The discussion of rales versus discretion is also affected by the nature of shocks. If shocks are small and frequent, policy riles are clearly appropriate. If shocks are instead one of a kind, discretion appears more reasonable. ${ }^{4}$ Finally, if infrequent large shocks are present in economic time series, then standard asymptotic approximations to the distribation of estimators may be poor, and robnst methods of estimation may be asefal.

This paper examines both questions, using two different approaches to analyze the empirical evidence. The first approach is the natural, direct approach, in wich we specify and estimate a structaral model. This allows us to examine the characteristics of the shocks and to calcalate their contributions to economic flactations. In Section I we discuss the structural model, the data, and the methodology in detail. In Section II we present the empirical results. We conclade that flactuations are due, in roughly equal proportions to fiscal, money, demand, and supply shocks. We find substantial evidence against the small shock hypothesis. What emerges however is not an
economy characterized by large shocks and gradual retarn to equilibriam, but rather an economy with minture of large and small shocks.

Orr second approach to analyzing the data is andirect one, which tests one of the implications of the small shock hypothesis. If economic fluctuations arise from an accumulation of small shocks, business cyclesmast then be, in some precise sense, alike. We therefore look at how "alike" they are. The comparative advantage of the indirect approch is that it does not require specification of the structaral model; its comparative disadvantage is that it may have low power against the large shock hypothesis. It is very similar to the study by Burns and Mitchell [1947] of commonality and differences of business cycles. Instead of focusing on graphs, we focus on correlation coefficients between variables and an aggregate activity inder. While these correlation coefficients are less revealing than the Burns and Mitchell graphs they do allow us to precisely state hypotheses and carry out statistical tests. Our conclusions are somewhat surprising: Business cycies are not at all alike. This, however, is not inconsistent with the small shock hypothesis, and provides only mild support in favor of the view that large specific events dominate individual cycles. These results cast doubt on the usefalness of using "the business cycle" as a reference frame in the analysis of economic time series. These results are developed in Section III.

Section I. The Direct Approach. Methodology

1. The Stractaral Model

Let X_{t} be the vector of variables of interest. We assume that the dynamic behavior of X_{t} is given by the stractaral model: ${ }^{5}$

$$
\begin{array}{r}
X_{t}=\sum_{i=0}^{n} A_{i} X_{t-i}+\varepsilon_{t} \tag{1}\\
E\left(\varepsilon_{t} \varepsilon_{\tau}^{\prime}\right)=D \text { if } t=\tau \\
0 \text { otherwise }
\end{array}
$$

where D is diagonal matrix.

Onr vector X_{t} inclades four variables. Two are the basic macroeconomic variables, the variables of ultimate interest; they are ontpat and the price level. The other two are policy variables. The first is monetary aggregate, M_{1}, the second is an index of fiscal policy. We shall describe them more precisely below.

The stractural model is composed of four equations. The first two are aggregate demand and aggregate supply. The other two are equations describing policy; they are policy feedback rales. The vector ε_{t} is the vector of four structural distorbances. It includes aggregate supply and demand distarbances, as well as the disturbances in fiscal and monetary policy. The matrices $A_{i}, i=0, \ldots n$ represent the propagation mechanism.

We assume that the structural disturbances are contemporaneonsly uncorrelated, that their covariance matrix, D, is diagonal. However, we do allow the matriz A_{0} to differ from zero, so that each stractural distarbance is
allowed to affect all four variables contemporaneously.

Leaving aside, for the moment, the issue of identification and estimation of (1). We now see how we can formalize the different hypotheses about the nature of the disturbances.
2. Is there a dominant source of disturbances?

There may be no single yes or no answer to this question. A specific source may dominate short-ran movements in outpat but have little effect on mediam-ran and long-ran movements. One source may dominate prices movements, another may dominate output movements.

Variance decompositions are a natural set of statistics to use for shedding light on these questions. These decompositions show the proportion of the K-step ahead forecast error variance of each variable which can be attributed to each of the four shocks. By choosing different values of K, we can look at the effects of each stractural disturbance on each variable in the short, medium and long rins.

3. Are there infregnent large shocks?

A first, straightforward, way of answering this question is to look at the distribation of disturbances - or more precisely the distribution of estimated residuals. The statement that there are infrequent large shocks can be interpreted as saying that the probability density function of each shock has thick tails. A convenient measure of the thickness of tails is the kartosis coefficient of the marginal distribation of each distarbance. $E\left[\left(e_{j} / \sigma_{j}\right)^{4}\right]$. We shall compate these kartosis cofficients. In addition we shall see whether we can relate the large realizations to specific historical
events and fluctuations.

This first approach may, however, be too cride for at least two reasons. The first is that articular source of shocks may dominate aiven time period, not because of a particular large realization but becanse of a sequence of medium-sized realizations of the same sign. The second reason is similar bat more subtle. The system characterized by (1) in a highly aggregated system. Dnless it can be derived by exact aggregation - and this is unlikely - it should be thought of as a dowension representation of the joint behavior of the four variables X_{t}. In this case the "structural" distarbances ε will be linear combinations of current and lagged values of the underlying disturbances. An underlying "oil shock" may therefore appear as a sequence of negative realizations of the supply disturbance in (1). For both reasons, we go beyond the comprtation of kurtosis coefficients. For each time period we decompose the difference between each variable and its forecast constructed K periods before, into components due to realizations of each structural disturbance. If we choose K large enough, forecast errors mirror major fluctuations in output as identified by NBER. We can then see Whether each of these fluctations can be attributed to realizations of a specific structural disturbance, for example whether the 73-75 recession is mostly due to adverse supply shocks.

4. Identification and Estimation

Orr approach to identification is to avoid as mach as is possible overidentifying but controversial restrictions. We impose no restrictions on the lag structure, that is on $A_{i,} i=1, \ldots, n$. We achieve identification by restrictions on A_{0}, the matrix characterizing contemporaneous relations between
variables, and by assming that the covariance matrim of structural disturbances, D, is diagonal. We now describe our approach and the data in more detail.

Choice of variables

We use quarterly data for the period 1947-1 to 1982-4. Ontput, the price level, monetary and fiscal variables are donoted Y, P, M and G respectively. Outpat, the price level and the monetary variable are the logarithms of real GNP, of the GNP deflator and of nominal M_{1}. The price and money variables are maltiplied by four so that all structural disturbances have the interpretations of rates of change, at annal rates. The fiscal variable G is an index which attempts to measure the effect of fiscal policy, that is, of government spending, deficits and debt, on aggregate demand. It is derived from other work (Blanchard [1984]) and is described in detail in Appendix B.

Reducing form estimation

As we impose no restrictions on the lag stractare, $A_{i}, i=1, \ldots, n$, we can proceed in two steps. The reduced form associated with (1) is given by:

$$
\begin{align*}
& X_{t}=\sum_{i=1}^{n} B_{i} X_{t-i}+x_{t} \tag{2}\\
& E\left(x_{t} x_{t}^{\prime}\right)=\Omega \quad \text { if } t=\tau \\
& =0 \quad \text { if } t \neq \tau
\end{aligned} \quad \begin{aligned}
& B_{i}=\left(I-A_{0}\right)^{-1} A_{i} ; \Omega=\left[\left(I-A_{0}\right)^{-1}\right] D\left[\left(I-A_{0}\right)^{-1}\right]^{\prime}
\end{align*}
$$

We first estimate the unconstrained reduced form (2). Under the Ierge shock hypothesis, some of the realizations of the ε_{t} and thos of x_{t} may be large; we use therefore method of estimation which may be more efficient
than OLS in this case. We use the bounded influence method developed by Krasker and Welsch [1982], which in effect decreases the weight given to observations with large realizations. ${ }^{6}$ Fe choose a lag length, n, equal to $4 .^{7}$
x_{t} is the vector of une xpected movements in Y, P, Mand G. Let lower case letters denote unexpected movements in these variables, so that this first step in estimation gives us estimated time series for y, p, mand .

Structural estimation

The second step takes us from x to ε. Note that (1) and (2) imply:

$$
\begin{equation*}
\mathbf{x}=A_{0} \mathbf{x}+\varepsilon \tag{3}
\end{equation*}
$$

Thus, to go from x to ε we need to specify and estimate A_{0}, the set of contemporaneous relations between the variables. We specify the following set of relations:

$$
\begin{array}{lll}
y=b_{1} p & +\varepsilon^{s} & \text { (aggregate supply) } \\
y=b_{2} m-b_{3} p+b_{4} g & +\varepsilon^{d} & (\text { aggregate demand) } \\
g=c_{1} y+c_{2} p & +\varepsilon^{g} & (\text { fiscal role) } \\
m=c_{3} y+c_{4} p & +\varepsilon^{m} & (\text { money role }) \tag{7}
\end{array}
$$

We have chosen standard specifications for aggegate supply and demand. Output supplied is a function of the price level. ${ }^{8}$ Output demanded is a function of nominal money, the price level and fiscal policy: this should be viewed as the reduced form of an IS-LM model, so that ε^{d} is a linear combi-
nation of the $I S$ and $L M$ disturbances. The last two equations are policy rules, which allow the fiscal index and money to respond contemporaneorsly to outpat and the price level. ${ }^{9}$

Even with the zero restrictions on A_{0} implicit in the above equations, the system of equations (4) to (7) is not identified. The model contains 8 coefficients and 4 variances which mast be estimated from the 10 unique elements in Ω. To achieve identification we use priori information on two of the parameters.

Within a quarter, there is little or no discretionary response of fiscal policy to changes in prices and outpat. Most of the response depends on institutional arrangements, such as the structure of income tar rates, the degree and timing in the indexation of transfer payments and so on. Thus the coefficients c_{1} and c_{2} can be constructed directly; the details of the compatations are given in appendix B. Using these coefficients, we obtain $\hat{\boldsymbol{\varepsilon}}^{\mathrm{g}}$ from (6).

Given the two constracted coefficients c_{1} and c_{2} wew have six unknown coefficients and for variances to estimate using the ten unique elements in Ω. The model is just identified. Estimation proceeds as follows: \hat{e}^{g} is usedas an instrument in (4) to obtain $\hat{\varepsilon}^{s}$. $\hat{\varepsilon}^{\mathrm{g}}$ and $\hat{\varepsilon}^{\mathrm{s}}$ are used as instraments in (7) to obtain $\hat{\varepsilon}^{m}$. Finally, $\hat{\varepsilon}^{g}, \hat{\varepsilon}^{s}$ and $\hat{\varepsilon}^{m}$ are usedas instruments in (5) to obtain \hat{e}_{d}.

The validity of these instruments at each stage depends on the planibility of the assumption that the relevant disturbances are uncorrelated.

Although we do not believe that this is exactly the case, we find it plansible
that they have low correlation, so that our identification is approrimaty correct.

It may be usefal to compare our method for the identification and estimation of shocks to the more common method used in the vector antoregression literature. A common practice in that literature is to decompose, as we, the forecast errors into ase of uncorrelated shocks. There the identification problem is solved by assming that the matrix ($1-A_{0}$) is triangalar or can be made triangalar by rearranging its rows. This yields a recursive structure that is efficiently estimated by OLS. We do not assume recursive structure but rather impose four zero restrictions in addition to constracting two coefficients c_{1} and c_{2} - Our method produces estimated disturbances mach closer to true stractural disturbances than would be obtained by imposing a recursive structure on the model.

Section II. The Direct Approach. Results

1. Reduced form evidence

The first step is the estimation of the reduced form given by (2). The estimated $B_{i}, i=1, \ldots 4$ are of no particular interest. The estimated time series corresponding to unexpectedmovements of x, that is of y, m, p and g are of more interest. Table 1 gives, for y, m, p and g, the value of residuals larger than 1.5 standard deviations in absolute value, as well as the associated standard deviation and estimated kartosis.

The kartosis coefficient of normally distributed random variable is equal to 3. The 99% significance level of the krotosis coefficient, for a sample of 120 observations drawn from normal distribotion is 4.34. Thus, ignoring the fact that these are estimated residuals rather than actual realizations, three of the four disturbances have significantly fat tails. As linear combinations of independent random variables have kartosis smaller than the maximam kartosis of the variables themselves, this strongly suggests large kurtosis of the structural disturbances. ${ }^{10}$ We now turn to structural estimation.

2. The structural coefficients

The second step is estimation of A_{0}. from equations (4) to (7). We use constructed values for c_{1} and c_{2} of -.34 and -1.1 respectively. Unexpected increases in outpat increase taxes more than expenditares and lead to fiscal contraction. Dnexpected inflation increases real tames but decreases real erpenditures, leading also to fiscal contraction. We are less confident of c_{2}, the effect of inflation than we are of c_{1}. In Appendiz A report

Table 1
Large Reduced Form Disturbances

Daさe		y	5	m	p
13	4				－2．6
$\therefore 1$	1				－2．2
$?$	4	－2．4			
－	1	3.2	2.6		
\because	2		－5．1		1.6
ご	3	1.3	－1．6		5.1
－！	1				3.7
$5!$	2		4.2		－2．8
$5:$	3		2.2		-1.6
5	1			1.6	
\because ？	2		1.6		
－？	3		1.7		
5 ？	$\stackrel{4}{4}$	1.6			
こう	1		1.6		
57	4				－1．6
$5 \times$	1	－1．7			2.1
32	1	－2．2			
$5 ?$	1		－1．8		
59	3	－2．7			
59	4			－2．9	
6.8	1	2.2	－2．7		
$6 \pm$	4	－1．9			
62	3			－1．5	
65	4	1.5			
－	3			－2．2	
67	3			1.8	
$7 \pm$	4	－1．8			
71	3	－1．6			
72	2				－1．5
72	4		1.7		
74	4	－1．6			1.7
75	1	－3．1			
75	2		3.6		－1．7
75	3		－3．1		
75	4			－1．6	
73	2	2.2			2.1
79	2			1.7	
5.1	2	－2．5		－4．2	
E． 3	3	2.4		4.7	
31	3			－3．5	
82	4			3.8	
	rror	．0885	． 8431	． 0244	． 0182
rto	is	4.8	10.2	8.6	8.2

alternative structural coefficient estimates based on $c_{2}=-1.3$ and $c_{2}=-1.0$.

The results of estimating (4) - (7) are reported in Tabie 2. Ali coefficients except one are of the expected sign. Nominal money has negative contemporaneous offect on outpat: this is consistent with positive correlation between unexpected movements in money and outpat becanse of the positive effect of outpat on money supply. Indeed the correlation m and y is. 32 . (Anticipating results below. we find that the effect of nominal money on ont pat is positive after one quarter.) Aggregate supply is upward sloping; a comparison with the results of Table Al sugest that the slope of agregate supply is sensitive to the value of c_{2}.

Given our estimates of the reduced form and of A_{0}, we can now decompose each variable (Y, P, M, G) as the sum of four distribated lags of each of the structaral distarbances $\varepsilon^{d}, \varepsilon^{s}, \varepsilon^{m}$, and ε^{g}. Technically, we can compate the stractural moving average representation of the system characterized by (1).

3. One or many sources of shocks. Variance decomposition.

Does one source of shocks dominate? We have seen that a natural way of answering this question is to characterize the contribation of each distarbance to the nexpected movement in each variable. Te define unexpected movement as the difference betwen the actual value of ariable and the forecast constracted X periods earlier using equation (1). We use 3 values of K. The first case, $K=1$, decomposes the variance of y, p, m, and g into their 4 components, the variances of $\varepsilon^{d}, \varepsilon^{s}, \varepsilon^{m}$ and ε^{g}. The other 2 valnes, $K=4$ and $K=20$ correspond to the mediom run and the long run respectively.

The results are reported in Table 3. Demand shocks dominate output in

Table 2. Structural Estimates

Fiscal*	$g=-.34 y-1.1 p$	$+\varepsilon^{g}$
Money supply	$m=\underset{(1.4)}{1.40 y}+\underset{(.7)}{.19 p}$	$+\varepsilon^{\text {m }}$
Aggregate supply	$\begin{aligned} y= & .81 p \\ & (1.1) \end{aligned}$	$+\varepsilon^{s}$
Aggregate demand	$\begin{aligned} & y=-.10 p-.20 m+.06 g \\ &(-3.1)(-2.2)(2.4) \end{aligned}$	$+\varepsilon^{\text {d }}$
* Coefficients co	t estimated	

Standard deviations

ε^{g}	ε^{m}	ε^{s}	ε^{d}
.041	.024	.017	.011

Table 3. Variance Decompositions

Structural disturbance: $\varepsilon^{\varepsilon}$
ε^{s}
ε^{m}
ε^{d}

Contemporaneously

$Y-E_{-1} Y$.03	.19	.04	.74
$G-E_{-1} G$.78	.14	.00	.08
$M-E_{-1} M$.01	.01	.74	.25
$P-E_{-1} P$.01	.74	.01	.24

4 quarters ahead

$Y-E_{-4} Y$.15	.16	.16	.54
$G-E_{-4}{ }^{G}$.70	.13	.00	.16
$M-E_{-4}{ }^{M}$.13	.03	.67	.17
$P-E_{-4}{ }^{P}$.01	.65	.01	.33

20 quarters ahead

$Y-E_{-20} Y$.27	.20	.17	.37
$G-E_{-20^{G}}$.66	.12	.05	.17
$M-E_{-20^{M}}$.28	.04	.64	.05
$P-E_{-20^{2}}$.15	.22	.36	.26

the short run. supply shocks dominate price in the short ran. In the mediam and long run, however, all forr shocks are important in explaining the behavior of outpat and prices. There is no evidence in sopport of the one-dominant-source-of-shocks theory.
4. Are there infregnent large shocks? I

Table 4 reports values and dates for all estimated realizations of $e^{d}, \varepsilon^{s}, \varepsilon^{m}$ and ε^{g} larger than 1.5 times their respective standard deviation. We can compare these to traditional, informal, accounts of the history of economic fluctuations since 1948 and see whether specific events which have been emphasized there correspond to large realizations. A usefal, concise summary of the events associated with large post-war flactations is contained in Table 1 in the paper by Eckstein and Sinai in some volme.

The first major expansion in our sample, from 1949-4 to 1953-2 is usually explained by both fiscal shocks associated with the Korean War and a sharp increase in private spending. We find evidence of both in 1951 as well as in 1952. From 1955 to the early $70^{\prime} s$, large shocks are few in number and not easily interpretable. There are, for example, no large shocks to either fiscal policy or private spending corresponding to either the Kennedy tax cat or to the Vietnam War. In the $1970^{\prime} s$, major fluctoations are asolly explained by the two oil shocks. There is some evidence in favor of this description. We find two large supply shocks in 1974-4 and 1975-1; we also find large fiscal and large demand shocks during the same period. The two recessions of the early 1980^{\prime} s are msally ascribed to monetary policy. We find substantial evidence in favor of this description. There are large shocks to money supply for most of the period 1979-2 to 1982-4, and two very large negative shocks in

Table 4
Large Structural Disturbances

D?		Fiscal	Supply	Money	Demand
43	3	1.9			
6	4		2.5		
69	1	-1.5			-1.9
42	4				-1.8
Ej	1	3.8	1.8		2.0
5	2	-4.6	-1.6		
5:	3		-3.7		3.6
5:	1	1.7	-3.6		
51	2	3.1	3.2		
5	3	1.6	1.8		
31	4			1.6	
¢?	2	1.5			
「?	3	2.0			
$5 ?$	4				1.7
-3	4				-1.6
\because	1		-2.8		
5.	3		1.8		
8	\therefore				-1.7
8	1		-1.5		-1.7
\because	3	1.7			
-	1		-1.6		
\therefore ?	3				-2.3
$\therefore ?$	\therefore			-2.6	
...	1	-2.6			2.4
	3			1.5	
\%	\because				-2.0
i	3			-2.2	
\because	4			1.5	
71	2			2.1	
71	3				-1.8
72	2		1.6		
$7 ?$	4	1.7			
7%	4.		-2.4		
75	1		-2.5		-2.4
!';	2	3.1	1.9		
!	3	-3.1			
73	4			-1.8	
73	2				2.7
79	2			1.6	
\because	2		-2.1	-3.2	-2.7
0	3			3.4	3.4
[1	2			1.6	
C:	3			-3.8	
87	1			1.6	
C2	4			3.7	

1980-2 and 1981-3.

The overall impression is therefore one of infrequent large shocks, bat not so large as to dominate all others, and the behavior of agregate variables for long periods of time. To confirm this impression, we report the kurtosis coefficients of the structural disturbances in Table 5a; in all cases we can reject normality with high confidence. In Table 5 b we ase aner descriptive device. We assume that each structural disturbance is an independent drav from mized normal distribution, that is for $x=g$, d, \quad or m:

$$
\begin{array}{ll}
\varepsilon^{\mathbf{I}}=\varepsilon_{1}^{\mathbf{I}} & \text { with probability } 1-P_{\mathbf{I}} \\
\varepsilon^{\mathbf{I}}=\varepsilon_{2}^{\mathbf{I}} & \text { with probability } P_{\mathbf{I}}
\end{array}
$$

where

$$
\begin{gathered}
\varepsilon_{1}^{x} \sim N\left(0, \sigma_{1 \mathrm{I}}^{2}\right) \\
\sigma_{1 \mathrm{I}}^{2}<\varepsilon_{2 \mathrm{I}}^{\mathrm{x}} \sim \mathrm{~N}\left(0, \sigma_{2 \mathrm{I}}^{2}\right) \\
\end{gathered}
$$

The realization of each disturbance is drawn from either anoral distribation with large variance, with probability P, or from a normal distribrtion with small variance, with probability 1 - P. The estimated values of $\sigma_{1 x}, \sigma_{2 x}, P_{z}$, estimated by maximum 1 ikelihood are reported in Table $5 b$. The results suggest large, but not very large, ratios of the standard deviation of large to the standard deviation of small shocks; they also suggest infrequent, but not very infrequent large shocks. The estimated probabilities imply that one ont of six fiscal or money shocks, and one out of three supply or domand shocks came from the large variance distributions.
(a) Estimated Kurtosis
$\varepsilon^{g} \quad \varepsilon^{s}$
ε^{m}
ε^{d}
K
7.0
5.4
5.9
4.6
(b) Disturbances as mixed normals

σ_{1}	.68	.63	.72	.68
σ_{2}	$(.08)$	$(.10)$	$(.09)$	$(.13)$
Ratio	2.01	1.62	1.97	1.50
Probability	$(.64)$	$(.41)$	(1.03)	$(.41)$
	2.95	2.57	2.73	2.21
	.15	.27	.14	.30
	$(.09)$	$(.15)$	$(.15)$	$(.22)$

Standard errors in parentheses

The dating of the 1 arge shocks in Table 4 sagests two more characteristics of shocks. First, large shocks tend to be followed by large shocks, anggesting some form of antoregressive conditional heteroskedasticity as discussed in Engle (1982). Second, there sems to be some tendency for large shocks to happen in anison. In $50: 1$ for example we find large fiscal. supply, and demand shocks, wile in $80: 3$ we find large supply, money, and demand shocks. To confirn these impressions we present in Table 6 the correlations and first a u tocorrelations between the squares of the structaral shocks. 11 The table shows large positive contemporaneous correlation between the square of the supply shock and the square of the demand shock. A waker contemporaneous relationship between supply and the fiscal shock is present. The squares of all shocks are positively correlated with their own laged values; there is also significant correlation between demand, the lagged fiscal and supply shocks, and between the fiscal shock and lagged supply shock. All in all these results suggest an economy characterized by active, volatile periods followed by quiet, calm periods both of varied duration.

5. Are there infrequent large shocks? II

We discussed in Section I the possibility that a specific source of shocks may dominate some episode of economic fluctustions, even if there are no large realizations of the shock. To explore this possibility, we construct an une rpected output series, where the expectations are the forecasts of outpat based on the estimated model corresponding to (1), 8 quarters before. We chose 8 quarters becanse the troughs and peaks in this unexpected output series correspond closely to NBER troughs and peaks. We then decompose this forecast error for GNP into components due to each of the four structural dis-

Table 6. Correlations Between Squares of Structural Disturbances

	$\left(\varepsilon^{g}\right)^{2}$	$\left(\varepsilon^{s}\right)^{2}$	$\left(\varepsilon^{\mathrm{m}}\right)^{2}$	$\left(\varepsilon^{\mathrm{d}}\right)^{2}$
$\left(\varepsilon^{\mathrm{g}}\right)^{2}$	-	.27	-.05	.08
$\left(\varepsilon^{\mathrm{s}}\right)^{2}$		-	-.01	.36
$\left(\varepsilon^{\mathrm{m}}\right)^{2}$			-	.28
$\left(\varepsilon^{\mathrm{d}}\right)^{2}$				-
$\left(\varepsilon_{-1}^{\mathrm{g}}\right)^{2}$.33	.43	.00	.33
$\left(\varepsilon_{-1}^{\mathrm{s}}\right)^{2}$.35	.38	.03	.13
$\left(\varepsilon_{-1}^{\mathrm{m}}\right)^{2}$.02	-.09	.23	.21
$\left(\varepsilon_{-1}^{\mathrm{d}}\right)^{2}$.15	.08	.13	.16

tarbances. This decomposition is represeated graphically in Figure 1; the corresponding time series are given in Table A_{2}, in Appendix A.

No single recession can be attributed to only one source of shock. Post war recessions appear to be due to the combination of two or three thocks. The 1960-4 trough for example, where the GNP forecast error is -6.7\% is attributed to fiscal shock component (-2.4\%), anply shock component (-1.1\%), money shock component (-1.7%) and a demand shock component (-1.4%). The 1975-1 trongh, where the GNP forecast error is also -6.7\% seems to have a large supply shock component (-3.6%) and a demand shock component (-2.9%). The 1982-4 trongh, here the GNP forecast error if - 4. 5\% is decomposed as -1.4% (fiscal). 1.1\% (snpply), -1.4% (money) and -2.8% (demand).

To sumarize the results of this section, we find substantial evidence against the single source of shock hypothesis. We find some evidence of large infrequent shocks; however they do not seem to dominate economic fluctuations.

Section III. The indirect approach.

If economic flactuations are due to ancumalation of small shocks, then in some sense, business cycles should be all alike. In this section, we make precise the sense in wich cycles should be alike and examine the empirical evidence.

The most influential contributions to the position that cycles are alike is the empirical work carried out by Burns and Mitchell on pre-World war II data. Their work was not only focused on the characteristic cyclical behavior of many economic variables but also on how, in specific cycles, the behavior of these variables differed from their characteristic cyclical behavior. When looking at their graphs, one is impressed at how similar the behavior of most variables is across different cycles; this is true of quantities, for which it may not be too surprising but also, for example, of interest rates.

We considered extending the Burns-Mitchell (B-M) graph method to the eight post War cycles bat decided against it. Many steps of the method, and in particular their time deformation, are judgemental rather than mechanical. As result, it is impossible to derive the statistical properties of their results. When comparing for example the graphs of short rates across two cycles, we have no statistical yardstick to decide whether they are similar or significantly different. As result also, we do not know which details, in the wealth of details provided in these graphs, should be thought of as significant.

Therefore, we use an approach which is in the spirit of Burns and Mitchell but allows us to derive the statistical properties of the estimators we ase. The trade of is that the statistics we give are mach less revealing
than the B-M graphs. Our approach is to compute the cross correlations at different leads and lags between various variables and reference variable such as GNP, across different cycles.

The construction of correlation coefficients

The first step is to divide the sample into subsamples. We adopt the standard division into cycles, with trough points determined by the NBER chronology. This division may not be, under the large shock hypothesis, the most appropriate as a large shock may well dominate parts of two cycles. It is, howerer, the most uncontroversial. Defining the trough-to-trough period as a cycle, there are seven complete cycles for wich we have data; their dates are given in Table 7. This gives us seven subsamples.

For each subsample, we compute cross-correlations at various leads and lags between the reference variable and the variable considered. Deterministic seasonality is removed from all variables before the calculation of the correlations. A more difficult issue is that of the time trend: the series may be generated either by a deterministic time trend or atochastic time trend or by both. In the previous two sections, this issue was unimportant in the sense that inclusion or exclusion of deterministic trend together ith unconstrained lag structures in the reduced form made little difference to estimated realizations of the disturbances. Here, the issue is moch more important. Computing deviations from a single deterministic trend for the whole sample may be very misleading if the trend is stochastic. On the other hand taking first or second differences of the time series probably removes non-stationarities associated with a stochastic trend but correlations between first or second differences of the time series are difficult to interpret.

In their work, Burns and Mitchell adopt an agnostic and flexble solation to that problem. They compate deviations of the variables from subsample means. Thus they proxy the time trend by a step function: aithough this does not capture the time trend within each sabsample, it does imply that across sabsamples. the estimated time trend $\begin{gathered}\text { ill } t r a c k ~ t h e ~ u n d e r l y i n g ~ o n e . ~ W e ~\end{gathered}$ initially followed B-M in their formalization but fond this procedure to be misleading for variables with strong time trends. During each subsample, both the refereace and the other variable are below their means at the beginning and above their means at the end; this generates spuriously high correlation between the variables. Fe modify the $B-M$ procedure as follows: for each subsample, we allow both for a level and time trend; the time trend is given by the slope of the line going from trough to trough. This should be thought of as flexible (perhaps too flexible) parameterisation of the time trend, allowing for siz level and slope changes over the complete sample.

The cross-correlations are then compoted for deviations of each of the two series from its trend. We compate correlations of the reference variable and of the other variable, up to two leads and lags.

The construction of confidence levels

For each variable we calculate cross-correlations with our reference variable, GNP, for each of the seven cycles. We then want to answer the following questions: should we surprised by the differences in estimated correlation across cycles? More precisely, under the null hypothesis that fluctuations are due to the accumalation of small shocks, how large are these differences in the correlation coefficients likely to be? Thus, we must derive the distribution of the differences between the largest and smallest
correlation coefficients, at each lag or lead for each variable. This distribution is far too difficult to derive analytically; instead we rely on Monte Carlo simalations.

The first step is to estimate, for each variable, the biveriate process generating the reference variable and the variable under consideration. We allow for four lags of each variable and a linear time trend, for the period 1947:1 to 1982:4. The method of estimation is, for the same reasons as in

The second step is to simalate the bivariate process, using disturbances drawn from normal distribution for disturbances. (Thos we implicitly characterize the "small shock" hypothesis as a hypothesis that this joint distribution is normal.) We generate 1000 samples of 147 observations each. We then divide each sample into cycles by identifying troughs in the GNP series. Let x_{t} denote the $10 g$ of real GNP at time t. Time t is a trough if two conditions are satisfied. The first is thet

$$
x_{t-1}>x_{t}<x_{t+1}<x_{t+2}<x_{t+3}
$$

and the second that x_{t} be at least $1 / 2$ below the previous peak value of x. The first insures that expansions are longer than 3 periods and the second eliminates minor downtarns. (When applied to the actual sample, this rale correctly identifies NBER troughs, except for two which differ from the NBER trough by one quarter.) Given this division into cycles, we compate, as in the actual sample, cycle specific correlations, and obtain, for each of the 1000 samples, the difference between the largest and the smallest correlation. Finally, by looking at the 1000 smples, we get an empirical distribution for
the differences.

Abstract

What we report in Table 7 for each variable and for correlations at each lead and lag are probabilities that in the corresponding empirical diatributions, the difference between the largest and smallest correlation exceeds the value of this difference in the actual sample. This probability is denoted P. A very small value of P indicates that the difference observed in the actual sample is surprisingly large onder the small shock hypothesis. It would therefore be evidence against the small shock bypothesis.

The choice of variables

Most quantity variables, such as consumption or investment apper highly correlated with real GNP. Most of the models we have imply that it should be 80, nesrly irrespective of the source of shocks. Most models imply that correlations of prices and interest rates with GNP will be of different signs depending on the source of shocks. We report results for various prices, interest rates, policy variables, and quantities.

We look at three real wages. In all three cases, the nomerator is the same, the index of average hourly earnings of production and non-supervisory workers, adjusted for overtime and interindustry shifts, in manafacturing. In Table 7a, the $\begin{aligned} & \text { age } i s \text { deflated by the GNP deflator. In Table 7b, it is }\end{aligned}$ deflated by the CPI and is therefore consumption real wage. In Table 7c, it is deflated by the producer price index for manafactorers and is therefore a product wage. In all three cases, we take the logarithm of the real wage so constructed.

We then look at two felative prices. Both are relative prices of materi-
als in terms of finished goods. Becanse of the two oil shocks, we consider two different prices. The first is the ratio of the price of crade fuels to the producer price index for finished goods and is studiedin Table 7d. Table 7e gives the behavior of the price of non-food, non-fuel materials in terms of finished goods.

We then look the behavior of interest rates. Table 7 f characterizes the behavior of the nominal three month treasury bill rate. Table 7 g gives the behavior of Moody's AAA corporate bond yield.

We consider the two policy \forall ariables: the fiscal index defined in the first section, and nominal M_{1}. The results are given in Tables 7 hand 7 i.

Finally, we consider three quantity variables. Table 7 j shows the behavior of real consumption expenditures. Tables 7k and 71 show the behavior of non-residential and residential investment.

General results.

In looking at Table 7, there are two types of questions we want to answer. The first is not directly the subject of the paper bat is clearly of interest. It is about the typical behavior of each variable in the cycle. The answer is given, for each variable by the sequence of average correlation coefficients at the different lags and leads. How do these sequences relate to $B-M$ graphs? The relation is roughly the following: If the sequence is flat and close to zero, the variable has little cyclical behavior. If the sequence is flat and positive, the variable is procyclical, peaking at the cycle peak: if flat and negative, it is countercyclical, reaching its trongh at the cycle peak.

If the sequence is not flat, the variable has cyclical behavior but reaches its peak, or its trough if countercyclical, before or after the cyclical peak. If for example, ρ_{-1} is large and negative, this suggests that the variable is countercyclical, reaching its trough one quarter before the cyclical peat. As expected the quantity variables are pro-cyclical; there seems to be a tendency for non-residential investment to lag GNP by one quarter and residential investment to lead $G N P$ by one quarter. We find little average cyclical behavior of real wages. Relative fuel prices and long-term interest rates are coantercyclical and lead GNP by at least two quarters. Relative non-food/non-fuel materials and short-term rates appear to be procyclical. We now turn to the second question, which is one of the subjects of this paper. How different are the correlations and are these differences surprising?

The first part of the answer is that correlations are very different across cycles. This is true both for variables with little cyclical behavior such as the real wage, or for variables which vary cyclically, such as nominal rates. These differences suggest that business cycles are indeed not all alike. The second part of the answer may however also be surprising: it is that under the small shock hypothesis, such differences are not unusual. For most correlations and most variables, the P values are not particularly small. Thas, the tentative conclusion of this section is that, although business cycles are not very mach alike, their differences are not inconsistent with the hypothesis of the accamalation of small shocks through an invariant propagation mechanism.

Table 7. Correlations

Cycles : trough to trough

1	$49-4$	to $54-2$	(peak $: 53-2$
2	$54-2$ to $58-2$	$: 57-3$	
3	$58-2$ to $61-1$	$: 60-2$	
4	$61-1$ to $70-4$	$: 69-4$	
5	$70-4$ to $75-1$	$: 73-4$	
6	$75-1$ to $80-2$	$: 79-4$	
7	$80-2$ to $82-4$	$: 81-2$)	

ρ_{i} : correlation between the reference variable, logarithm of real GNP at time t and the other variable at time $t+i$.

Real Wages

(a) Real wage in terms of the GNP deflator (in log)

		ρ_{-2}	ρ_{-1}	ρ_{0}	ρ_{+1}	ρ_{+2}
Cycle	1	-.81	-.70	-.36	-.25	.09
2	-.06	-.41	-.48	-.18	.44	
3	-.17	.02	.03	-.35	-.59	
4	-.11	-.13	-.01	-.04	-.00	
5	.85	.90	.90	.65	.37	
6	.75	.84	.84	.75	.63	
7	.62	.61	.06	-.29	-.38	

Average	-.15	-.16	.14	.04	.08
Difference	1.67	1.61	1.38	1.10	1.22
P	.04	.07	.27	.65	.52

(b) Real wage in terms of the CPI (in log)

	ρ_{-2}	ρ_{-1}	ρ_{0}	ρ_{+1}	ρ_{+2}
Cycle 1	-.53	-.58	-.57	-.64	-.57
2	.09	.44	.79	.85	.76
3	-.15	.29	.75	.47	-.07
4	.56	.57	.63	.56	.49
5	.84	.67	.47	.02	-.31
6	.78	.89	.88	.78	.65
7	.57	.32	-.31	-.53	-.24
		.30	.37	.37	.21
Average	1.37	1.47	1.45	1.49	1.34
Difference	.48	.31	.32	.22	.49
P					

(c) Real wage in terms of the PPI (in log)

	P_{-2}	${ }^{\text {P-1 }}$	ρ_{0}	ρ_{+1}	${ }^{+}+$
Cycle 1	-. 68	-. 71	-. 63	-. 55	-. 28
2	. 17	. 60	. 91	. 88	. 63
3	-. 29	. 45	. 87	. 62	. 27
4	-. 46	-. 56	-. 62	-. 72	. .76
5	. 88	. 74	. 52	. 08	-. 27
6	. 78	. 86	. 82	. 71	. 59
7	-. 42	-. 70	-. 72	-. 60	. 01
Average	-. 02	. 09	. 16	. 06	. 02
Difference	1.57	1.57	1.62	1.61	1.40
P	. 17	. 18	. 13	. 11	. 44

Relative Prices

(d) Relative price of crude fuels in terms of finished goods (in log)

	ρ_{-2}	ρ_{-1}	ρ_{0}	ρ_{+1}	ρ_{+2}
Cycle 1	-. 65	-. 61	-. 45	-. 43	-. 19
2	-. 25	-. 04	. 09	. 31	. 41
3	-. 07	. 45	. 42	. 46	. 17
4	-. 61	-. 75	-. 86	-. 91	-. 91
5	-. 66	-. 86	-. 91	-. 81	-. 63
6	. 47	. 46	. 35	. 34	. 44
7	-. 56	-. 39	-. 23	-. 16	-. 01
Average	-. 33	-. 24	-. 22	-. 17	-. 10
Difference	1.13	1.33	1.33	1.37	1.35
P	. 56	. 39	. 39	. 30	. 38

(e) Relative price of non-food/non-fuel materials in terms of finished goods (in log)

	p_{-2}	p_{-1}	ρ_{0}	ρ_{+1}	ρ_{+2}
Cycle 1	. 62	. 66	. 56	. 30	-. 12
2	. 17	. 69	. 92	. 78	. 51
3	. 32	. 75	. 89	. 64	. 24
4	. 09	. 06	. 02	. .16	-. 35
5	-. 06	. 28	. 62	. 82	. 89
6	-. 75	-. 77	-. 58	-. 40	-. 23
7	-. 02	. 59	. 92	. 82	. 32
Average	. 05	. 32	. 47	. 40	. 18
Difference	1.38	1.53	1.51	1.22	1.24
P	. 32	.16	. 95	. 37	. 56

Quantity Variables

(j) Logarithm of real consumption expenditures

	p_{-2}	ρ_{-1}	ρ_{0}	$\rho+1$	ρ_{+2}
Cycle 1	. 22	. 35	. 32	-. 02	-. 46
2	.47	. 78	. 97	. 72	. 23
3	-. 03	. 61	. 90	. 84	. 33
4	.69	. 78	. 88	. 91	. 90
5	. 87	. 96	. 88	. 59	. 26
6	. 69	. 83	. 96	. 76	. 60
7	. 39	. 86	. 91	. 40	-. 03
Average	.47	. 74	. 83	. 60	. 26
Difference	. 90	. 61	. 65	. 93	1.36
P	. 73	. 69	. 42	. 54	. 35

(k) Logarithm real residential investment expenditures

	ρ_{-2}	ρ_{-1}	ρ_{0}	${ }^{p+1}$	$p+2$
Cycle 1	. 34	. 18	-. 09	-. 49	-. 82
2	. 77	. 71	. 55	-. 00	-. 50
3	. 31	. 78	. 92	. 65	. 08
4	. 02	-. 01	$-.11$	-. 29	-. 47
5	. 91	. 88	. 78	. 43	-. 01
6	. 73	. 86	. 94	. 73	$\ldots .52$
7	. 72	. 93	. 68	. 16	-. 37
Average	. 54	.62	. 52	. 17	-. 22
Difference	. 91	. 94	1.05	1.21	1.34
P	. 58	. 38	. 28	. 22	. 17

(1) Logarithm real non-residential investment expenditures

	ρ_{-2}	ρ_{-1}	ρ_{0}	ρ_{1}	ρ_{2}
Cycle 1	. 30	. 50	. 63	. 39	-. 19
2	. 02	. 45	. 86	. 90	. 75
3	$-.65$	-. 23	. 28	. 81	. 84
4	. 75	. 83	. 89	. 91	. 87
5	. 38	. 68	. 92	. 97	. 89
6	. 39	. 53	. 77	. 88	. 89
7	-. 58	. 08	. 64	. 88	. 84
Average	. 09	.41	. 71	. 82	. 70
Difference	1.40	1.06	. 64	. 58	1.08
P	. 15	. 41	. 52	. 53	. 39

Section IV. Conclusions

In Sections I and $I I$ we specified and estimated a structaral model which allowed us to directly investigate the properties of shocks and their role in economic fluctuations. From this analysis we conclude that fluctuations are due, in roughly equal proportions to fiscal, money, demand, and supply shocks. We find substantial evidence against the small shock hypothesis. What emerges, however, is not an economy characterized by large shocks and aradual retari to equilibrinu, but rather an economy with minture of large and small shocks.

In Section III we investigated the influence of shocks on economic finctuations in an indirect way by examining stability of correlations between different economic variables across all of the post-war business cycles. Here we found that correlations were very unstable-that business cycles mere not at all alike. This, however, is not inconsistent with the small shock hypothesis, and provides only mild support in favor of the view that large specific events dominate the characteristics of individual cycles. These results cast doubt on the nsefulness of using "the business cycle" as reference frame in the analysis of economic time series.

Footnotes

1. This framework is only one of many which can generate fluctuations. Another one, which clearly underlies mach of the early NBER work on cycles is based on floor-ceiling dynamics, with mach smaller role for impalses. There are probably two reasons why the white noise impulselinear propagation framework is now widely used. It is convenient to use both analytically and empirically, becanse of its close relation to linear time series analysis. Statistical evidence Which world allow to choose between the different frameworks has been hard to come by.
2. In the standard dynamic simaltaneons equation model impulses arise from the exogenons variables and the noise in the system. In the model we employ we do not distinguish between endogenous and exogenons variables. The entire system is driven by the innovations (the one step ahead forecast errors) in the variables. A portion of what we call "innovations" would be explained by current movements of erogenons variables in large macroeconomic models. For example, we find large negative "supply" innovations in late 1974. In a large model these would be explained by oil import prices.
3. A supplement to the Journal of Monetary Economics was devoted to the analysis of the sources of impalses in different countries, using the Branner-Meltzer approach. Conclusions vary somemat across countries but "measures expressing an ananticipated or accelergting monetary impalse figure foremost" [Branner and Meltzer, p. 14, 1978].
4. A good example of the importance of the natore of the shocks for the rules versus discretion debate is given by the answers of Lacas and Solow to the question. "What should policy have been in 1973-1975?" in Fischer [1980].
5. We assume that the propagation mechanism is linear and time invariant. Violation of either of these assumptions wonld likely lead to estimated shocks whose distribations have tails thicker than the distribntion of the true shocks.
6. LAD or other robust M estimators, could also have been ased. In some circamstances OLS may be more efficient than the robust estimators becanse of the presence of lagged values.
7. Each equation in the vector antoregression included a constant and a linear time trend. When the vector autoregression was estimated without a time trend the estimated residuals, x, were essentially unchanged.
8. A more detailed specification of aggregate supply, recognizing the effects of the price of materials would be:

$$
\begin{aligned}
y=d_{1} p-d_{2}\left(p_{m}-p\right) & +\varepsilon^{y s} \\
p_{m}=d_{3} p+d_{4} y & +e^{p m}
\end{aligned}
$$

Where supply depend on the price of materials, p_{m} and the price level, and where in turn the nominal price of materials depends on the price level and the level of output. The two equations have, howerer, the same specification, and it is therefore impossible to identify separately the shocks to the price of materials and ± 0 supply, $\varepsilon^{p m}$ and $\varepsilon^{y s}$. Equation
(4) is therefore the solved-ont version of this two-equations system, and ε^{s} is a linear combination of these two shocks.
9. If money supply responds to interest rates directiy rather than to output and prices, e^{m} and e^{d} will both depend partly on money demand shocks and thas will be correlated. Our estimation method will then attribute as much of the variance as possible to e^{m} and incorporate the residnal in e^{d}.
10. A more precise statement is the following: Let X_{1} and X_{2} be indepen-
 or equal to 3. Then if Z is a linear combination of X_{1} and X_{2}, $K_{Z} \leq \max \left(K_{1}, K_{2}\right)$. We do not, however, assume independence but only zero correlation of the structural disturbances.
11. While the contemporaneous correlation betreen the levels of the shock is zero by construction, the same is not true of the squares of the shocks.

Adelman, I. and F. L. Adelman (1959), "The Dynamic Properties of the KleinGoldberger Model," Econometrica, Vol. 27. pp. 598-625.

Blanchard, O. J. (1983), "An Index of Fiscal Policy, mimeo, M.I.T.
Blanchard, O. J. (1984), "Debt, Deficits and Finite Horizons," mimeo, M.I.T.
Braner, Karl and Allan Meltzer (1978), The Problem of Inflation. CarnegieRochester Conference Series on Pablic Policy, Supplement to to Journal of Monetary Economics.

Burns, A. and W. C. Mitchell (1947), Measuring Business Cpcles, New York: NBER.
deLeeuw, F., T. M. Holloway, D. G. Johnson, D. S. McClain, and C. A. Waite (1980), "The High-Employment Badget: New Estimates, 1955-1980," Sarvey of Current Business, November, pp. 13-43.
deLeeum, F. and T. M. Holloway (1982), "The High Employment Badget: Revised Estimstes and Automatic Inflation Effects," Survey of Current Business, Apri1, pp. 21-33.

Engle, R. F. (1982), "Autoregresive Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Vol. 50. pp. 9871008.

Fischer, Stanley (1980), Rational Expectations and Economic Policy, Chicago: University of Cbicago Press.

Frisch, R. (1933), "Propagation Problems and Impalse Problems in Dynamic Economics," Economic Essays in Honor of Gustav Cassel, London: George Allen.

Hansen, A. F. (1951), Business Cycles and National Income, New York: Norton.
Hayashi, F. (1982), "The Permanent Income Fypothesis: Estimation and Testing by Instrumental Variables," Journal of Political Economy, October, pp. 895-916.

Krasker, W. A. and R. E. Welch (1982), "Efficient Bounded-Influence Regression Estimation," Journal of the American Statistical Association, Vol. 77. pp. 595-604.

Lucas, R. E. (1977), "Onderstanding Business Cycles," Carnegie-Rochester Series on Pablic Policy, Vol. 5, eds. Karl Branner and Allan Meltzer, pp. 7-29.

Slutsky, E. (1937), "The Summation of Random Causes as the Sources of Cyclic Processes," Econometrica, Vol. 5, pp. 105-146.

APPENDIX A

Table A1. Alternative Structural Estimates

Table A2
Decomposition of Eigth Quarter Forecast. Errors for GNP

Dat		GNP	Eg	Es	Em	Ed
50.	1	-9. 31	9. 53	1.72	-0. 17	-2.40
59	2	1.39	8.29	1.12	0.11	-0.43
50	3	1.99	-1.63	-9.30	0.16	3.81
59	4	2.56	-10.76	-2.15	0.01	5.46
51	1	2.44	0.41	-4.10	-9.27	6.41
¢1	2	2.5 ?	1.31	-3.59	-8. 39	5.19
51	3	3.65	2.97	-2.37	9.29	3.66
51	4	3.65	2.83	-2.86	9.48	1.88
52	1	1.33	1.39	-2.74	1.55	1.13
52	2	4.47	4.55	-1.99	2.82	-0.12
52	3	7.85	4.82	-1.62	2.97	-0.17
52	4	0.05	5.16	-6.27	3.14	0.81
53	1	9.93	4.65	1.51	2.70	1.12
53	2	6.31	3.47	0.44	1.46	0.94
53	3	2.31	2.85	-0.39	0.47	-0.12
5	4	1.19	3.959	6.5.\%	-9.85	-1.64
3.	1	-6.39	4.14	-0.9.56	-1.41	-2.56
34	2	-2.66	3.27	-9.66	-1.64	-3.62
84	3	-2.76	1.79	9.25	-1.53	-3.26
84	4	-8.75	1.17	15.75	-8.70	-1.96
35	1	D. 8.4	0.03	9.54	0.00	-0.14
53	2	9.83	-9.55	0.37	80.31	0.70
05	3	2.68	-17.64	8.75	0.55	1.42
53	4	1.12	-1.24	0.57	0.32	1.48
83	1	9.64	-2.81	1.62	-7.7.21	1.24
53	2	9.76	-1.60	1.44	-6.34	1.27
0	3	-6. 21	-1.26	9.47	- 0.59	1.18
6	4	9.70	-1.94	9.47	-9.70	2.104
97	1	0.85	-1.37	9.24	-0.69	2.67
47	2	0.74	-1.94	9.45	-5.80	2.13
47	3	9.25	-1.55	9.04	-10.70	2.45
87	4	-1.4.	-1.13	-9.13	-8.86	0.69
93	1	- 4.20	-9.8.86	-9.54	-1.44	-1.35
5	2	-4.43	-9.36	-6.55	-1.38	-1.69
53	3	-2.05	-9.57	- 0.25	-0.57	-1.46
50	4	-1.07	9.3%	-9.58	-0.0.11	-0.68
90	1	-9.78	-6.14	-1.97	0.30	0.13
53	2	0.69	8.98	-1.68	0.69	1.00
69	3	-1.94	9.29	-1.85	9.66	-0.13
63	4	-1.50	d. 42	-1.92	1.46	-1.54
C)	1	-1.6\%	-9.51	-4.92	9.71	-0.89
¢	?	-3.47	-1.96	-19.78	-0.67	-0.96
\%	3	-5.34	-2.23	-1.96	-1.69	-0.30
9	4	-6.69	-2.30	-1.14	-1.72	-1.44
c	1	-5.33	-1.93	-6.29	-1.65	-1.55
c)	2	-3.8)	-1.9!	-6.95	-9.92	- 0.93
\%	3	-4.19	-2.13	9.12	-9.88	-1.21
6	4	-1.95	-1.84	8.22	0.23	-0. 56
0 ?	1	- 0.19	-0.17	-9.59	9.54	0.13
68	2	-7.33	0.19	-6.99	0.38	0.17
Ge	3	-1.15	-9.11	-9.66	-9.29	-0.10
6	4	-2.39	9.93	-8.39	-1.02	$-\varnothing .56$
$8 ?$	1	-3.32	0.26	-1.36	-1.69	-0.62
53	2	-2.71	9.015	-8. 91	-1.42	-0. 43
6	3	-1.95	-0.03	-0.46	-1.20	-0. 26
[3	4	-1.92	-0.03	-0.97	-9.76	- $\varnothing .17$

Table 12
Continued

Date		GNP	Eg	Es	Em	E.d
0.4	1	-1.25	-9.70	-0. 21	-9.18	-01.15
$6 A$	2	-8.99	-8.38	9.01	-9.12	-6. 5.55
64	3	-9.76	-0.17	-0. 15	-6.197	-6.37
64	4	-1.01	-9.49	9.29	-8.05	-6. 76
65	1	9.34	-6. 31	0.25	0.41	-0.91
65	2	0.83	9.11	A. 27	8.49	0.04
05	3	1.16	0.22	9.34	9.05	0.55
65	4	2.55	9.21	1.11	-6. 23	1.51
65	1	2.97	-9.09	9.85	-9.17	2.38
66	2	2.06	-0.14	0.34	-1.16	2.92
65	3	2.43	9.61	0.71	-9.00	1.19
55	4	2.33	1.04	0.92	-73.71	1.88
67	1	2.22	1.44	1.28	-1.36	6.85
87	2	1.79	1.72	1.21	-1.83	9.74
67	3	1.32	1.21	1.99	-2.22	1.24
67	4	1.87	1.31	0.42	-1.77	1.19
69	1	1.43	1.47	0.15	-1.099	0.90
63	2	2.75	1.68	6.67	-9.39	0.98
63	3	3.001	1.48	9.69	0. 0.50	0.42
63	4	2.57	1.13	9.20	0.97	0.27
69	1	2.22	0.66	-6.19	1.51	0.14
69	2	1.39	0.36	-9.35	1.98	-0.608
69	3	9.8.	- 9.19	-0.44	1.82	-0.76
69	4	- 0.08	-0.79	-0.17	1.42	-1.35
70	1	-1.76	-1.23	9.96	0.99	-1. 52
79	2	-2.69	-1.83	-59.95	15.63	-1. AA
719	3	-1.89	-1.09	0.19	5.28	-1.26
70	4	-3.37	-1.32	B. 14	-6.39	-1.79
71	1	-1.64	-0.55	-9.91	0.94	-0.52
71	2	-1.16	-9.22	-9.24	0.26	-0.95
71	3	-0.94	-70.24	-0.15	1.38	-1.93
71	4	-0.8.8	0.93	-6.02	2.97	-2.92
72	1	0.08	-0.14	9.29	1.91	-1.98
72	2	0.28	-0.65	0.86	1.84	-1.78
72	3	0.57	-9.26	6.74	1.50	-1.48
72	4	1.45	-0.3n	1.53	1.05	- 0.83
73	1	3.28	-9.47	1.71	1.57	0.88
73	2	1.93	-1.09	1.75	1.89	0.14
73	3	2.06	-0.66	1.55	1.11	D. 018
73	4	2.19	-77. 38	1.35	1.158	5.14
74	1	0.96	0.097	1.93	8.16	-0. 23
74	2	-0.46	-0. 41	-0.18	9.44	-8. 31
74	3	-1.53	0.41	-1.95	-9.09	-9.81
74	4	-4.78	-a.63	-2.35	-9.51	-1.39
75	1	-6.75	0.13	-3.65	-0.30	-2.93
75	2	-5.90	0.84	-2.68	0.90	-3.87
75	3	-3.63	1.52	-2.63	9.688	-3.17
75	4	-3.41	0.84	-2.71	0.88	-2.43
76	1	-1.96	1.49	-2.14	-0.28	-1.02
76	2	-1.68	D.8.0	-1.14	-18.78	-0.56
76	3	-1.23	0.91	-9. 51	-1.19	- 0.44
76	4	-0.92	9.65	9.33	-1.37	-0.04
77	1	0.10	9.14	1.61	-2.01	0.36
77	2	-2.93	-1.64	9.90	-1.75	0.46
77	3	1.31	9.66	1.12	-1.21	0.74
77	4	1.20	$\varnothing .68$	1.07	-0.81	0.27

Table AZ
Continued

Date		GNP	Eg	Es	Em	Ed
78	1	1.72	1.16	0.81	- 0.49	0.23
78	2	3.65	1.77	9.20	-0.23	1.90
78	3	3.54	1.66	毋. 16	- 0.11	1.83
78	4	3.68	1.19	0.25	-5. 29	2.53
79	1	3.65	1.53	-8.01	-0. 41	2.54
79	2	2.47	0.73	Ф.00	-1.02	2.75
79	3	2.55	0.17	$\varnothing .04$	-0.61	2.95
79	4	2.19	8.26	0.52	-6. 28	1.60
8.9	1	1.83	0.29	0.10	-0.19	1.62
89	2	- 0.42	0.05	-8. 45	0.42	-0. 44
2 D	3	-8.53	0.94	-9. 53	-1.30	1.2 .6
8.	4	0.25	-0.09	-8. 65	-0.77	1.78
81	1	2.05	0.27	-0. 38	0.08	2.59
81	2	1. 60	0.36	-8.64	-1.95	2.32
81	3	0.47	-0. 21	-1.10	0.007	1.71
01	4	-1.68	-0.03	-1.51	-9.76	0.61
32	1	-3.39	-0.37	-1.04	-1.29	-8. 58
32	2	-2.69	-1.11	0.27	9.46	-2.30
82	3	-4.26	-1.50	9. 61	-0.69	-2.68
82	4	-4.47	-1.41	1.14	-1.40	-2.80

Appendix B. Construction of the fiscal index G.

The index is derived and discussed in Blanchard [1984]. Its empirical connterpart is derived and discussed in Blanchard [1983]. This is a short summary.

1. The theoretical index

The index measures the effect of fiscal policy on agregate demand at given interest rates. It is given by:

$$
\tilde{G}_{t} \equiv \lambda\left(B_{t}-\int_{t}^{\infty} T_{t, s} e^{-(r+p)(s-t)} d s\right)+Z_{t}
$$

where
Z_{t}, B_{t}, T_{t} are government spending, debt and taxes. $x_{t, s}$ denotes the anticipation, as of t of variable at times,

The first term measures the effect of fiscal policy on consmption. λ is the propensity to consume out of wealth. B_{t} is part of wealth and increases consumption. The present value of taxes, however, decreases human wealth and consumption; taxes are discounted at ate (r +p), higher than the interest rate r. The second term captures the direct effect of government spending.

The index can be rewritten as:

$$
\begin{aligned}
\tilde{\mathbf{G}}_{t} & =\left(Z_{t}-\lambda \int_{t}^{\infty} Z_{t, s} e^{-(r+p)(t-s)} d s\right) \\
& +\lambda\left(B_{t}-\int_{t}^{\infty}\left(T_{t, s}-Z_{t, s}\right) e^{-(r+p)(t-s)} d s\right)
\end{aligned}
$$

Table B1
Fiscal Index and its Components

Date		G	$\left(\mathrm{Z}-\mathrm{Z}^{*}\right) / \bar{Z}$	B / \bar{Z}	D/ $/ \bar{Z}$	$\mathrm{D}^{*} / \overline{\mathrm{Z}}$
47	1	9. 238	-0.0.03	7.783	-0.569	-0.533
47	2	9.225	-8.1018	7.521	-8.515	-07.527
47	3	0.230	-9.003	7.216	-9.396	-0.45
47	4	0.141	-0.0003	6.877	-5.5.33	-0.55k
48	1	9.165	-0.003	6.654	-61.466	-61.506
48	2	0.253	- 8.00 .03	6.472	-9.373	- 0.397
48	3	0.354	-03.003	6.257	-0.243	-0.275
48	4	0.408	-0.0002	6.219	- 0.186	-0.219
43	1	9.447	D0.002	5.212	-1.119	-9.191
49	2	0.561	9.012	6.201	-0.0319	-9.153
49	3	0.513	0.920	6.144	-8.0005	-6.145
49	4	0.485	96.524	6.099	-61.0067	-0.177
5.0	1	0.532	9.017	6.871	6.0.067	-0.056
59	2	0.347	10.0109	5.976	-83.285	-0.252
50.	3	0.218	9.0132	5.762	-81.474	-0. 0.332
58	4	D. 171	\% 1708	5.596	-6. 6.477	-9.367
51	1	8.156	-0.012	5.353	-6. 678	-0.352
51	2	0.313	-0.0106	5.258	-9.265	- 8.187
51	3	0.459	-3.0966	5.187	-6.111	-0.0811
51	4	0.466	- 0.1904	5.695	-0.0.056	-0.0.036
52	1	0.424	-0.0066	5.057	-81.093	-80.073
52	2	0.4 .490	-9.066	5.820	-1.014	-0.0066
52	3	0.551	-0.0196	4.951	0.0058	0.062
52	4	0.50 .5	-0.0603	4.872	-0.015	0.0834
53	1	0.535	-30.0009	4.334	9.0.60	0.074
53	2	D. 5.55	- 10.01099	4.9883	0.003	0.004
53	3	0.513	- 0.0609	4.763	9.022	0.0649
53	A	0.539	-0. 0162	4.757	0.129	0.048
54	1	0.5084	0.0099	4.674	0.1005	0.011
54	2	0.431	0.012	4.626	10.035	-0.01960
54	3	0.409	9.014	4.695	0.069	-65.08\%
54	4	0.361	0.1010	4.539	-0.0.045	-6.114
55	1	0.325	9.0178	4.462	-8.194	-0.134
55	2	0.276	D. 0.8183	4.394	-0.151	-0.170
55	3	0.265	0.0682	4.328	- 18.148	-0.1510
55	4	0.250	D.0日2	4.246	-6.177	-15.175
55	3	0.225		4.156	-19.175	-07.195
55	2	0.225	0.6102	4.667	-0.162	-6.188
55	3	0.210	0.001	3.969	-0.151	-0.190
55	4	0.194	0.001	3.834	-6.170	-8.2022
57	1	0.215	0.00708	3.793	- 81.139	-63.170
57	2	0.224	[0. 0.01010	3.730	-6.114	-8.158
57	3	9.214	6. 0101	3.64 .7	-13.114	-78.162
57	4	0.236	A. 0.083	3.621	-7.1759	-6.152
58	1	0.233	80.0122	3.586	8.0308	-0.119
58	2	0.298	0.035	3.556	8.8098	-0.139
58	3	0.361	0.0182	3.515	0.088	-0.1042
58	4	0.349	07.0723	3.431	0.058	-8.0107
59	1	0.253	0.016	3.434	-0.033	-6.115
59	2	0.2713	9.0810	3.391	-8.0992	-6.150
59	3	0.2208	0.011	3.360	-0.056	-9.142
59	4	0.211	0.013	3.317	-8.061	-9.148

```
        B - 6
            0}=\mp@subsup{\sum}{i=1}{4}\frac{T}{T
            T
    \eta\mp@subsup{T}{i}{\prime}\mp@subsup{Y}{i}{}
reported above for the compatations of 暗.,
    \eta}\mp@subsup{\eta}{i}{P
    We calculated ( }\mp@subsup{0}{2}{}\mathrm{ using elasticities and tax proportions for 1959, 1969,
1979. The results were very close. A plausible range for 昨 (depending on
```



```
text.
Our fiscal policy rale is therefore:
g=-.34y-1.1p + & g
```

Table Bl
Continued

nate		G	$(\mathrm{Z}-\mathrm{Z} \times) / \overline{\mathrm{Z}}$	B / \bar{Z}	D/ \bar{Z}	D^{*} / \bar{Z}
73	2	0.180	0.0105	1.836	-0.032	-0.0058
73	2	0.159	0.0194	1.871	-9.042	-0.028
73	3	9.127	0.0192	1.817	-0.065	-0.054
73	1	8.123	0.061	1.772	-6.060	-0.048
74	1	0.179	0.00]	1.751	-0.056	-0.0170
74	2	0.113	A. 3031	1.7007	-0.0.034	-0.0559
74	3	0.936	6.602	1.647	-15.044	-0.0889
74	4	0.106	8.065	1.6 .95	0.0083	-6.975
75	1	0.146	8.819	1.594	8.076	-0.0054
75	2	0.327	8. 8.193	1.599	8.242	0.112
75	3	0.226	0.033	1.625	8.132	0.007
75	4	0.213	4.0337	1.638	0.122	0.0000
73	$?$	9.239	4, 036	1.673	6.088	-0.017
76	2	0.175	[15.033	1.796	9.062	-0.0142
76	3	0.132	9.0.0.0	1.722	0.068	-.0.035
75	1	0.191	8.027	1.714	0.077	- 0.022
77	$?$	0.153	0.026	1.722	0.026	-0.056
77	2	0.1710	10.022	1.716	0.034	-0.032
77	3	0. 20.108	0.010	1.685	0.058	0.085
77	1	9.183	19.013	1.699	0.051	-0.0.08
73	$?$	4.175	19.014	1.699	0.037	-0.016
78	2	0.139	19.04508	1.687	-0.016	-0.043
78	3	17.124	89.0180	1.658	-0.023	-0.055
78	4	3.118	0.0003	1.644	-0.039	-0.057
79	1	0.1039	0.0.0] 7	1.624	-10.062	-0.084
73	2	0. 0.708	0.0105	1.593	-0.070	-0.101
79	3	0.991	97.005	1.559	-0.048	-0.074
79	4	9.103	10.0106	1.550	-0.030	-0.063
$8{ }^{3}$	1	D. 1.176	9.0106	1.548	-9.022	-0.060
89	2	0.117	9.913	1.518	0.019	-0.062
89	3	0.125	9.019	1.491	0.035	-0.058
80	4	0.110	D. 313	1.487	6.020	-0.071
81	3	0.1562	70.021	1.463	-0.039	-0.117
81	2	0.065	19.027	1.4300	-0.035	-0.124
31	3	9.078	D. 225	1.442	-0.019	-0.102
81	4	0.009	0.0208	1.434	0.024	-0.081
82	1	0.099	9.0928	1.446	0.041	-0.094
82	2	0.0099	8.035	1.458	0.043	-0.104
82	3	5.146	D0.0.036	1.449	8.094	-0.068
88	4	0.2054	0.051	1.502	0.157	-8.022

Table B1 Continued

Date		G	$\left(\mathrm{Z}-\mathrm{Z}^{*}\right) / \bar{Z}$	B / \bar{Z}	D／ \bar{Z}	$D * / \bar{Z}$
6.9	1	0．106	0.009	3.261	－ 0.171	－0．241
6.0	2	0.132	0.010	3.222	－0．126	－0．216
68	3	0.1510	0.012	3.176	－0．091	－0．198
6.0	4	0.16 .0	0.019	3.142	－0．059	－0．197
63	－	0.195	0.023	3.116	－0．0．021	－6．163
61	2	0.212	19.725	3.072	－0．012	－9．141
61	3	0.201	0.021	3.929	－77．0525	－60．142
6.	4	0.204	0.016	3.713	－ 0.0102	－8．127
62	1	0.241	0.012	2.976	－10．0107	－6．083
62	2	0.224	B．白11	2.954	－0．1025	－6．069
62	3	0.214	0.611	2.935	－0．037	－ 0.107
62	4	8.295	9．011	2.982	－9．030	$-\infty .110$
63	1	0.181	9.012	2.374	－0．0．0510	－0． 132
63	2	8.150	Q．011	2.357	－8．887	－6．159
63	3	8.162	0.0189	2.834	－0．081	－0．141
63	4	0.172	0．0179	2.794	－ 5.768	－0．126
64	1	0.200	9.9093	2.767	－0．0．0745	－0．985
64	2	0.246	0.0007	2.7406	－6． 0.611	－9．0847
64	3	0.196	19.1016	2.795	－13．649	－0．0686
54	4	9． 175	9．0．04	2.639	－6．063	－6．1034
65	1	0.142	D． 0.03	2.639	－61．107	－0．128
6.	2	9.149	6．0．02	2.695	－ib． 102	－0．115
65	3	0.212	W． 0 明的	2.575	－ 18.044	－0．0．046
65	4	0.227	－9． 20.61	2.537	－9．944	－02．022
65	1	8.292	－9．962	2.483	－6． 974	－0．0．037
66	2	8.134	－m． 102	2.436	－6．693	－61．015？
65	3	0.213	－97．983	2.399	－9．946	－6． 6129
65	4	0.227	－9．0104	2.361	－10．623	－9．091
67	1	0.263	－9．0933	2.332	0.022	\％ 9.035
67	2	9.263	－5．01094	2.310	0.627	18.91037
67	3	0.264	－0．004	2.274	10.1023	6.1942
57	4	0.259	－2．0103	2.279	0.019	0.0 .037
69	1	8.235	－6．0103	2.273	－0．005	0.013
53	2	9.257	－6． 0.905	2.277	6． 6.955	9.640
53	3	0.195	－6． 603	2.223	－11．0157	－6．01815
63	3	0.165	－19．0065	2.210	－6．1077	－6．614
63	1	0.100	－ 7.096	2.181	－9．144	－0．1．96
59	2	0.581	－3．0105	2.143	－8． 143	－0．113
69	3	0.104	－ 73.0195	2.059	－ 8.112	－95．093
69	$\stackrel{4}{4}$	0.095	－97．0195	2.1641	－6．10！	－0．106
78	1	is． 110	－ 7.195	2．031	－6．970	－6．094
79	$?$	9．154	－7．003	2．0．5 2	－ 5.904	－ 0.041
79	3	5．169	6．0．02	1.950	9.0083	－0．036
7.9	1	9.179	9.0196	1.95%	\％．032	－0．0．135
71	，	9.133	9．011	1.953	月．p2s	－0．025
7.	2	5． 210	5． 513	1.917	8． 65.	－6． 0.63
71	3	0.296	13．15 13	1.918	19.948	－15．007
71	A	0.201	7．1月14	1.930	\％． 0 ，${ }^{\text {a }}$	－ 6.115
72	1	0.166	\％．${ }^{1} 13$	1.944	－3．1306	-61.047
72	2	0.297	1． 1.12	1.923	12．025	
$7 ?$	$?$	9．164	9． 0.10	1.835	－10．017	－6．93
72	4	0.230	2． 0.157	1.869	D． 0140	0.608

This shows that fiscal policy affects aggegate demand through the deviation of spending from "normal" spending (first line), through the level of debt and the sequence of anticipated deficits, net of interest payments, $n_{t, s} \equiv\left(Z_{t, s}-T_{t, s}\right)$.

2. The empirical counterpart

We assume that at any time t, \quad and Z are anticipated to returnat rate ξ to their full employment values D^{*}, Z^{*} respectively. More precisely:

$$
\begin{aligned}
& d Z_{t, s} / d s=\xi\left(Z_{t}^{*}-Z_{t, s}\right) \\
& d D_{t, s} / d s=\xi\left(D_{t}^{*}-D_{t, s}\right)
\end{aligned}
$$

the index becomes:

$$
\begin{aligned}
\tilde{G}_{t} & =Z_{t}-\lambda\left(\frac{1}{r+p} Z_{t}^{*}+\frac{1}{r+p+\xi}\left(Z_{t}-Z_{t}^{*}\right)\right) \\
& +\lambda\left(B_{t}+\frac{1}{r+p} D_{t}^{*}+\frac{1}{r+p+\xi}\left(D_{t}-D_{t}\right)\right) .
\end{aligned}
$$

From the stady of aggregate consumption by Hayashi [1982], we choose $\lambda=$ $.08, p=.05, r=.03$. We choose $\xi=.30$ (all at annual rates). This gives:

$$
\tilde{G}_{t}=.79\left(Z_{t}-Z_{t}^{*}\right)+.08 B_{t}+.21 D_{t}+.79 D_{t}^{*}
$$

Let \bar{Z}_{t} be the exponentially fitted trend for government spending. The index used in the paper is $G_{t}=\bar{G}_{t} / \bar{Z}_{t}$. Time series for G_{t} and its com-

$$
B-3
$$

ponents $\left(Z_{t}-Z_{t}^{*}\right) / \bar{Z}_{t}, B_{t} / \bar{Z}_{t}, D_{t} / \bar{Z}_{t}, D_{t}^{*} / \bar{Z}_{t}$ are given in Table B1.
3. Construction of the fiscal feedback rule

Let $8, Z, z^{*}, d, d *, t, t$ be the unerpected components of $G,(Z / \bar{Z})$. $\left(Z^{*} / \bar{Z}\right),(D / \bar{Z}),(D / \bar{Z}),(T / \bar{Z})$ and $\left(T^{*} / \bar{Z}\right)$. They satisfy therefore:

$$
\mathrm{g}=.79(\mathrm{z}-\mathrm{z})+.08 \mathrm{~b}+.21 \mathrm{~d}+.79 \mathrm{~d} *
$$

Using $d=z-t, d *=z *-t * g i v e s:$

$$
g=z-(.21 t+.79 t)+.08 b
$$

Let y and p be, as in the text, the unexpected components of the logarithms of GNP and of the price level. Then

$$
\frac{d g}{d y}=\frac{d z}{d y}-.21 \frac{d t}{d y}
$$

as by definition $\frac{d t *}{d y}=0$ and by construction, B being beginning of quarter debt, $\frac{d b}{d y}=0$.

$$
\frac{d g}{d p}=\frac{d z}{d p}-.21 \frac{d t}{d p}-.79 \frac{d t *}{d p} \approx \frac{d z}{d p}-\frac{d t}{d p}
$$

as the effect of mexpected price movements on actual and full employment tares is approximately the same.

Let σ_{1}, σ_{2} be the elasticities of movements in government spending with respect to ane xpected movements in the level of outpot and in the price level respectively. Let θ_{1}, θ_{2} be similar elasticities for tazes. Then:
$\mathrm{dg}=\left(\sigma_{1}-.21 \theta_{1}\right) \mathrm{dy}$
$\mathrm{dg}=\left(\sigma_{2}-\theta_{2}\right) \mathrm{dp}$

Abstract

We assume that, within a quarter, there is no discretionary response of g to either y or p. The response depends only on institutional arrangements. We therefore nse the results of deLeetw et al. [1980] and deLeent and Holloway [1982] (hereafter dL80 and dL82) to constrict $\sigma_{1}, \sigma_{2}, \theta_{1}$, and θ_{2}. $\sigma_{1}:$

From Table 19 of dL80 a one percentage point increase in the unemployment rate increases spending in the first quarter by . 6% at an annal rate. From Okn's Law it is reasonable to assume that a 1% innovation in output reduces anemployment by ronghly . 1 percentage point in the first quarter. Pntting these together we have $\sigma_{1}=-.06$.
$\sigma_{2}:$

G is composed of (1) purchases of goods and services, (2) wage payments to government employees, and (3) transfer payments. There is iftie or no effect of unexpected inflation on nominal purchases within a quarter. Althongh parts of (2) and (3) are indexed, inderation is not contemporaneons. Nominal payments for some transfer programs (Medicare. Medicaid) increase with inflation. A plansible range for σ_{2} is -.8 to -1.0. We choose-. 9 for the compotations in the text.
$\theta_{1}:$

We considered fonr categories of taxes and income tax bases:
(1) Personal Income Tax
(2) Corporate Income Tax
(3) Indirect Business Taxes
(4) Social Security and Other Taxes
have

$$
\theta_{1}=\sum_{i=1}^{4} \frac{T_{1}}{T} \eta_{T_{i}} Y_{i} \eta_{Y_{i}}
$$

$\frac{T_{i}}{T} \quad$ is available in dL80, Table 6, for selected years.
$\eta_{Y_{i}} \quad$ is available in dL80. Table 8.
${ }^{\eta} \mathrm{T}_{1} \mathrm{Y}_{1}$ is available in dL80. Table 10.
${ }^{\eta} \mathrm{T}_{2} \mathrm{Y}_{2}$ is available in dL80, p. 38, column 1.
$\eta_{T_{3}} \mathrm{Y}_{3}$ is available in dL80, Table 15, and
$\eta_{T_{4}} \mathrm{Y}_{4}$ is available in dLR, Table 18.

We calculated θ_{1} using elasticities and tax proportions for 1959 and 1979.
The results were very close and yielded $\theta_{1}=1.4$.
$\theta_{2}:$

We considered the same four categories of tares. In the same way as before, we have

