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Are classes of deterministic integrands for
fractional Brownian motion on an interval
complete?
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Let By be a fractional Brownian motion with self-similarity parameter H € (0, 1) and a>0 be a
fixed real number. Consider the integral fg f(u)dBy(u), where f belongs to a class of non-random
integrands Ay ,. The integral will then be defined in the L*(Q) sense. One would like Ay, to be a
complete inner-product space. This corresponds to a desirable situation because then there is an
isometry between Ay, and the closure of the span generated by By(u), 0 < u < a. We show in this
work that, when H € (%, 1), the classes of integrands Ay, one usually considers are not complete
inner-product spaces even though they are often assumed in the literature to be complete. Thus, they
are isometric not to Sp{Bpg(u), 0 < u < a} but only to a proper subspace. Consequently, there are
(random) elements in that closure which cannot be represented by functions f in Ay ,. We also show,
in contrast to the case H € (%, 1) that there is a class of integrands for fractional Brownian motion By
with H € (0, %) on an interval [0, a] which is a complete inner-product space.

Keywords: completeness; fractional Brownian motion; fractional integrals and derivatives; inner-
product spaces; integration in the L? sense

1. Introduction

A fractional Brownian motion (FBM) By = {By(u)},cg with self-similarity parameter
H € (0, 1) is a zero-mean Gaussian process which has stationary increments and is self-
similar with index H, that is, for any ¢ >0,

{Bu(cu)}ucr g{CHBH(M)}ue[R,

where £ stands for equality in the sense of finite-dimensional distributions. For notational
simplicity we will use another parametrization of FBM. Let

_ 1
K—H—E,

so that the range H € (0, 1) now corresponds to the range x € (f%, %). We will denote the
FBM By = {Bu(u)},er in terms of the parameter k as B* = {B“(u)},cr. We will also
assume that the FBM B* is standard, i.e. E(B*(1))> = 1. By using stationarity of the
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increments and the self-similarity with index x —1—% of a standard FBM B¥, it is easy to see
that the covariance function of B* is given by

[(u, v) = EB*(u) B*(v) = H{|u[**" + 0" — |u — v}, u, v €R. (1.1)

When x =0, the FBM B* = B® is the usual Brownian motion which has independent
increments. If x # 0, the increments of the FBM B* are no longer independent: they are
positively correlated if x € (0, %), and negatively correlated if k € (—%, 0). Moreover, when
K € (0, %), the dependence at large time lags is so strong that the series » ;. ,I"(1, k)
diverges. In this case, one says that the FBM B" exhibits long-range dependence. (For more
information on FBM see, for example, Samorodnitsky and Tagqu 1994).

In this work we deal with questions related to the L*(Q)-integration of deterministic
functions with respect to the FBM B* when « € (—%, %). To define such integrals, one
typically starts with an inner-product space (C, (-, -)-) of functions on a region of integration
R (say, R =R or [0, a] with a>0) such that (1), 1{0,5)s = EB*(s)B“(¢) for all s, t € R.
Let 5pr(B¥) be the closure in L?>(Q) of all posible linear combinations of the increments of
FBM on R. If the map 1o, — B*(f) extends to the isometry between this class of functions
7  and the space Spr(B"), then the resulting isometry map is called the integral in the
L*(Q) sense with respect to FBM of functions from C.

The extension step is usually taken for granted (i.e. not proved). So, for example, when
K € (0, %) and the region of integration R is [0, a] with a >0, Carmona et al. (1999) and
Kleptsyna et al. (1999b) defined the class of integrands for FBM

Af = { f : [0, a] — R such that r[s—x(ztu'c Fu) ()P ds < oo}, (1.2)
0

where /%_ is a fractional integral operator defined in Section 2 below (see (2.1)). Another
class of integrands, considered by Duncan et al. (2000), Kleptsyna et al. (1999a) and Norros
et al. (1999), is given by

IAlS = {f : [0, a] — R such that J J lf)]| f) [|lu—v* ' dudv< oo}. (1.3)
0Jo
The classes of integrands AY and |A[), are assumed to be inner-product spaces with the inner
products

(f, Qnr = 2+ D j ST L)) g(u))(s)ds (1.4)

- I - 2x)sin 7k ),

T(p) = J;fo e v~ ldp, p>0, is the gamma function) and
a ra
(f. D = K2k + 1>L Lf(u)g(v)lu — 0P dudy, (1.5)

respectively. (For details on the construction of classes of integrands A" and |A|], see Section
4 below.) All the authors claimed that both A% and |A|}, are isometric to the Gaussian space
8P0,a)(B*). Since $pjo,4(B¥) is a complete inner-product space, both AY and |A[, necessarily
have to be complete inner-product spaces as well. We will show in this work that, when
K € (0, %), neither the space of functions A% nor the space of functions |A|; is a complete
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inner-product space. Thus, they cannot be isometric to Spjo 4 (B") itself: in fact, they are
isometric only to proper linear subspaces of Spyo,,j(B*). Consequently, there are (random)
elements in 5pjg 4(B*) which cannot be represented by functions f belonging to either A’ or
AL

One area of applications of integrals with respect to FBM, where completeness of classes
of integrands is relevant, involves prediction problems. Consider, for example, the problem
of predicting the value of an FBM at some future time #>0 given its past from time 0 to
time a (with a<t), or in mathematical terms, of computing the conditional expectation
X = E(B*(#)|B“(s), s € [0, a]). It is well known that X & §pjo(B*). One would expect that
X = foa fdB*. But, when x>0, in view of the above-mentioned incompleteness results,
there may be no f belonging to A% or |A[); such that X = [ / dB*. In fact, such an f exists
as is shown in Section 7 below, where the prediction problem for FBM is discussed.

Although a>0 is assumed to be a real number, our results are also valid in the case
a = oo. (The space of integrands |A|’, with a = oo is considered in Duncan et al. 2000 and
Norros et al. 1999). As shown in Section 6 below, when «x € (0, 1) incompleteness of
classes of integrands in the case a = oo can in principle be deduced from that of classes of
integrands in the case a > 0.

The results described above are in the same spirit as those of Pipiras and Tagqu (2000),
where the integration is over R. The R set-up, however, is quite different from that of [0, a]
considered here. When x € (0, %), an R-analogue of the space of integrands Al is the inner-
product space

AF = {f : R +— R such that J [T )P ds < oo} (1.6)
R
with the inner product
T 1)?
(fs @a = ("—Z)J (5 ) g)(s)ds, (1.7)
ci(k)* )

where (I f)(s) = (T(x))™" [r fu)(u — s)’f[] du, s € R, is a fractional integral on R and
c1(x) is some constant which depends on x. As shown in Theorem 3.2 of Pipiras and Taqqu
(2000), the inner-product space A" is not complete. We do not know whether one can use
this to conclude immediately that A’ is incomplete. We shall provide a proof that relies
indirectly on the incompleteness of A*. Obtaining results concerning integration over [0, a]
or [0, co) is important in practice (most of the papers quoted above consider integration over
this range).

Suppose now that the parameter k belongs to the range (—3, 0). (This range corresponds
to H € (0, %) or no long-range dependence.) It is natural to ask whether there is a class of
integrands for the FBM B* with x € (f%, 0) on an interval [0, a] which is a complete inner-
product space. It turns out that such a class of integrands exists. It is an inner-product space

AS = {f: 3¢ € L*[0, a] such that f(u) = u (I " s"p(s)(u)}, (1.8)

with the inner product
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2 1 a i . .
(f, e = —Cr T 1) js—zhu",uhf(u))(s)(f'tu“g(u))(s)ds (19)

I'(1 — 2x)sinmk ),

nkQxk+1) (¢
= 7 (8)Pe(5)ds, 1.10
T(1 — 2x)sin 7t J0¢f () (5)ds (1.10)
where ¢y, ¢, € L*[0, a] are associated with the functions f'and g, respectively, by definition
(1.8), and 7%_ with x € (—— 0) are fractional derivatives of order —x. (The fractional
derivatives [/ "7 with 6( , 0) are defined in Section 2 below. They satisfy the property

a

I 1.%¢p = ¢ for any ¢ € L [O al and x € (—— 0), which explains the equality of (1.9) and
(1.10).) For the construction of the class of integrands A, with x € (—— 0) and for the proof
of its completeness, see Section 4 below.

This work is organized as follows. In Section 2 we provide a quick review of fractional
integrals and derivatives that are used in this work. Then, in Section 3, we represent FBM
on an interval in terms of these fractional integrals and derivatives. We use this repre-
sentation in Section 4 to construct the classes of integrands A with x € (-1, 1) and |A[}
with k € (0, 2) We also show, in Section 4, that A, is a Complete inner-product space when
K€ (—%, 0) and, in Section 5, that A% and |A[), are not complete inner-product spaces when
K € (0, %). In section 6 we deal with the case a = co. We consider the prediction problem
for FBM in Section 7. Finally, in Section 8 we prove some of the results of Section 4.

2. Fractional integrals and derivatives

An exhaustive source on fractional integrals and derivatives is the book by Samko et al.
(1993). For the reader’s convenience, we provide below definitions of those fractional
operators that are used throughout this paper and also list a number of their properties.

Consider the interval [0, a] and let s € [0, a]. An integral over [0, s] is called left-sided
and one over [s, a] is called right-sided. The right-sided fractional integral of order a >0
on an interval [0, a] of a function f € L'[0, a] is defined by

(I f)s) = J Fu)(u— )¢ du = —J fu)(u—5)* " du, s€(0,a) (2.1)

[(a) [(a)

(see Samko et al. 1993, p. 33). The right-sided fractional derivative of order 0 <a <1 on an
interval [0, a] of a function ¢ is defined by

(DL 90 =~ g | #O = 0 s we©.a) )
(see Samko et al. 1993, p. 35). If 0<a <1 and
) = T, sEOa), 3)
then
) = DL, ue© 4

(see Samko et al. 1993, pp. 29-31). Hence, D§_ can be viewed as an inverse of 79_.
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(Heuristically, performing the differentiation over u in (2.2) yields (2.1) with D¢_ =1_%)
For this reason, we will often denote the fractional derivative D¢_ with a € (0, 1) by
;% and also use the notation 7% for the identity operator, that is, /% f = f. One can also
show that, for any f € L'[0, a],

(D15 f)s) = f(s), s € (0, a) (2.5)
(see Samko et al. 1993, p. 24).

3. Representation of fractional Brownian motion on an interval

The following proposition relates FBM and the fractional integral and derivative operators
on an interval introduced in Section 2. It will be used in Section 4 to construct classes of
integrands for FBM on an interval [0, a].

Proposition 3.1. Let a>0 and B* be a standard FBM with parameter k € (—%, %). Then

{B“(t)}te[o,a]i{al(K)Jos—"(IKu"l[o,t)(u))(s)dBO(s)} , (3.1

t€[0,a]
where

L ke + 1) i+ 1)
B(x, 1 —2x)  T'(1 — 2k)sin mtk

and B(p, q) = fol(l — )P i dv = T(p)[(q)/T(p + q), p, >0, is the beta function.

o1(k)* =

(3.2)

Proof. Suppose  first that x € (0,3). It follows from (1.1) that d&T"(u,v)=
k(2K + 1)|u — v|**"' dudv and hence that, for any ¢, t, € R,

I'“(t1, ) = k(2K + I)J J L0, (@) 1[0, 1) ()|t — U\z"_l dudv. (3.3)
RIR

By making the change of variables s = (#v)z/(min(u, v)z + |u — v|) below, one can show
that, for x € (0, 4) and u, v € [0, ],
(uv)*

|u — U‘2K71 = mJOS72K(U - S)iil(u — S)j»il ds. (34)

Then, for t, t, € [0, a], we obtain from (3.3), (3.4) and definition (2.1) that

(1) k(2 + I)J“

T ) =50 1T 3

(575 50, ()55 10,1 ()(5))ds.
0
Hence, the process on the right-hand side of (3.1) has the same covariance structure as a
standard FBM. Since it is also Gaussian and has zero mean, it is a standard FBM.
The case k € (—4, 0) is more delicate. Observe first that, for x € (=1, 1),
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t

I+ x)s ™ (I} _u" 1, n(w)(s) = S7K§J u(u—s)}y du (3.5)
S Jo

- KS-KJ’uK—l(u — ) du— (é)x(t — 9. (3.6)

Indeed, by changing, in the relation below, the order of integration and performing integration
by parts, we obtain that, for any v € [0, a],

tpt ) t ) t . u ) t;c(t_U)KJrl
KJ J u* (u—s) duds — J t"(t—s)} ds = KJ duu™™ J (u—s)ds ————
vJs v 12 12 K + 1
t ) tl(?(t _ U)K+1
_ k—1 _ K+1 _
_;c+1L” (= 0" du K+ 1
t
= —J u*(u — )’ du. (3.7)

The equality of (3.5) and (3.6) then follows by taking the derivative of both sides in (3.7).

The idea now is to view (3.5) or (3.6) as the definition of the left-hand side of (3.5) for x
complex, || <1 Let 1, 1, € [0, a] be fixed and x € C be such that || <1. Then one can
verify (see Appendix) that the function

f)y=o0 1(K)2J0872"(1 a— " 10, () 5" 110,1,)(w))(s)ds

is analytic on {x : k| <1}. On the other hand, the function
g(K) _ F"(tl, IZ) _ %{|t1‘2k+l + |l‘2‘2K+] _ |12 _ t1|2x+1}

is also analytic on {x : |«| <%} Since the analytic functions f and g coincide for real
K € (0, %), standard results of complex analysis (see, for example, Conway 1995, p. 79) imply
that they have to coincide on {x : [x| <1}. In particular, f(x) = g(x) for real x € (-3, 0).
But this means that the Gaussian zero-mean process on the right-hand side of (3.1) has the
same covariance structure as a standard FBM for k € (f%, 0) as well. Hence, it is a standard
FBM. O

Remark 3.1. The representation of FBM with the kernel function on the right-hand side of
(3.5) is also given in Kleptsyna et al. (1999b). The representation with the kernel function in
(3.6) can be found in Norros ef al. (1999). Using again an analyticity argument, one can also

show that, for x € (—%, %) and s, t € [0, a],

t
(e + Ds™ (L _u"1po,n(w))(s) = (t — 9) 2F (—K, K, k+1,1— —>,
S

where ,F is the so-called Gauss hypergeometric function. For more details on ,F|, see
Decreusefond and Ustiinel (1999).
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Remark 3.2. Heuristically, the equality of (3.5) and (3.6) can be obtained as follows. If d,_
denotes the delta function at a point ¢ — s, we obtain that

d (! d [
o JOuK(u — ) du = ajo 0+ 9) V1< p< i~ (v)d

= k| @4 9 0 g g @0 | @k 90 )0
0 0

t
—1 -
= KJ u" (u—s)y du — (¢t — ).

s

4. Integrands for fractional Brownian motion on an interval

Let {B*(1)}uc[o,a) be a standard FBM with parameter « € (—%, %). Let &, denote the set of all
elementary (step) functions on an interval [0, a], that is, functions of the following type:

J@ =" [l 0@, fi € R, €10, al. (4.1)
k=1

For an elementary function f € & in (4.1), define the integral with respect to the FBM B" in
a natural way by

Ty = J:f(u)dB"(U) = kzn;fk(B”(Ukﬂ) — B*(wy)). (4.2)
It follows by Proposition 3.1 that, for f € &,
I5/) %0 1(K)J:S7"(1 5" f(u)(s)dB (s) (4.3)
and hence that, for all f, g € &,
EZ (/)T =0 1(K)2£:572“(1 a- " S u* g(w))(s)ds. (4.4)

The following theorem will be used to extend the map Z% on & to functions from A when
K € (0, §).

Theorem 4.1. For x € (0, %), the class of functions A}, defined by (1.2), is a linear space
with the inner product (1.4). Moreover, the set of elementary functions & is dense in the
space Al.

We prove Theorem 4.1 in Section 8. Now let k € (0, %). By Theorem 4.1, since the set of
elementary functions & is dense in the space A, one can extend the map Z%:
& > SPjo,q)(B©) to the map Z¥ : A} — 5ppo,q(B*) in a classical way so that relation (4.4)
continues to hold for functions f, g € Al. Since the extended map Z¥ is linear and
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preserves inner products, one can say that A, is isometric to a linear subspace of
5p[o,a)(B*). The question is whether this linear subspace of spyg ,(B*) is the space 5pyo,q(B*)
itself. It is clear that Al is isometric to $pq(B*) itself if and only if Al is a complete
inner-product space. We will show in Section 5 that Al is not a complete inner-product
space. Hence, it is not isometric to Spjgq(B"*) itself. It is isometric to a proper linear
subspace of 5pyo 4j(B*) only.

Let us now show that |A[}, given by (1.3), is a linear subspace of the class of integrands
AL. Suppose that the function f is such that |f]| € AY so that " € Al as well. Then, as in
the proof of Proposition 3.1, by the Fubini’s theorem we obtain

Jas—”[(z'f,uh‘f(m)(s)]z ds = Mrrf(u)f(v)lu — o dudv,  (43)
0J0

0 [(x)?
which shows that |A]’, C A%. A linear space |Al}, becomes an inner-product space if the inner
product on [Al; is defined by (f, &)arx = (f> &ax for f, g € |A[}. It follows by (1.4) and
(4.5) that

o1(k)*B(k, 1 — 2k) J“J“

(/s s == Fp S @)= v dudp. (4.6)

0

Observe, however, that the constant in (4.6) equals x(2x + 1) because (ljor), Ljo,))Al =
I'“(t1, ) = k(2K + l)foa foa 110,y () 1[0, )(0)|u — v[** T dudv for #, t, € [0, a] by relation
(3.3). In other words, the inner product on |Al’ equals (1.5) as well.

Remark 4.1. An R-analogue of the space of integrands |Al} is the class of functions

A" = {f : R — R such that J J |f(w)|| f() ||u— v dudu<oo}, 4.7
RJIR

for k € (0, %) (see Pipiras and Taqqu 2000). It is also an inner-product space with the inner
product

(fs @A = k(2K + 1)JRJR () g()|u — v|* ! dudv. (4.8)

Moreover, as shown in Pipiras and Taqqu (2000), |A|* is a strict subspace of the class of
integrands A*, given by (1.6), and the inner products (1.7) and (4.8) coincide when f, g
belong to the smaller class |Al*.

Remark 4.2. For i € (0, %), the following useful inclusions hold:
[0, a] € L¥**1[0, a] C |A]X C A", (4.9)

The first inclusion in (4.9) is obvious since 2/2x + 1 <2 for x > 0. According to Proposition
4.2 in Pipiras and Taqqu (2000), we have ||f1[|aj < cic|lf]| 22011, for some ¢, >0 and all
f € L***(R). This implies the second inclusion in (4.9), since

1A lap = 1 Toalliayr < ecllfloallprci@ = cll £l 2oeoa-
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Let us also observe that the inclusion L?[0, a] C |A[ is easy to verify directly. Indeed, by
using the inequality 2|f(u)| |f(v)| < |f(w)|* + |f(v)|* and symmetry below, we obtain

2K

|| [ ettt o=t augo = [ | ol o audo <%= [ rp
(4.10)

Suppose now that k € (f%, 0). Set f(u) =u"(I_ “s"¢p(s))(u) for some function ¢ €
L?[0, a]. It is well defined for ¢ € L*[0, a] because the function s*¢(s) is in L'[0, a] for
K> —% by the Holder’s inequality. Property (2.5) then implies

s Gou" fw)(s) = (D Lutu (B2 p(2)(w)(s) = p(s)

and hence that
jas*‘[(m_u"f(u))(s)f ds = r¢(s)2 ds < .
0 0

Based on this observation and relations (4.3) and (4.4), it is natural to introduce the class of
functions A’ given by (1.8). The following result is analogous to Theorem 4.1 and deals with
the case k € (—3, 0).

Theorem 4.2. For k € (—%, 0) the class of functions AL, defined by (1.8), is a linear space
with the inner product (1.9) or (1.10). Moreover, the set of elementary functions &, is dense
in the space A,

We prove Theorem 4.2 in Section 8. By Theorem 4.2, since the set of elementary
functions & is dense in Al, one can extend the map I% : & + Sppo(B*) to the map
I8 AY — 8pp,q(B¥) so that it is linear and preserves inner products.

The space A’ can be viewed as a class of integrands for FBM on an interval [0, a]. It is
also isometric to a linear subspace of 5py 4j(B*). Is this linear subspace the space spjo 4(B")
itself? Or, equivalently, is the space of functions A} a complete inner-product space? The
answer is an obvious yes. Indeed, suppose that {f,},=1 is a Cauchy sequence in A’. Then
the sequence of functions ¢;,, associated with the functions f, by definition (1.8), is
Cauchy in L?[0, a]. Since the space L?[0, a] is complete, there is a function ¢ € L*[0, a]
such that ¢, — ¢ in L2[0, a]. If f(u) = u™"(I;*s"¢(s))(u), then f,, — f in Al since

a—

@, — ¢ in I2[0, a]. This shows the completeness of A

Remark 4.3. An R-analogue of the space of integrands Al with k € (—%, 0) is the class of
functions

A* = {f: 3¢, € [*(R) such that f = "¢,} 4.11)

(see Pipiras and Taqqu 2000). The class A* is an inner-product space with the inner product
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T 2
(f: e = R [ DD s @12)
1) Jr
T2
= TR J[quf ()P (s)ds, (4.13)

where D”%, k € (—%, 0), is the so-called Marchaud fractional derivative of order —x which
has the property D71 *¢p = ¢ for k € (—%, 0) and ¢ € L*(R). Observe that, when x €
(—%, 0), both the space A* and the space A’ are built up by exploiting the same idea.

Remark 4.4. We emphasize again that the inner-product space A’ is complete if k € (—%, 0),
and incomplete if x € (0, %). The proof in Section 5 below and the proof of completeness
preceding Remark 4.3 show that this difference in completeness is a consequence of the
following two facts:

(a) If k € (—3, 0), then the equation
s (L u" f)(s) = s7(Z JJu" f(w)(s) = ¢(s) (4.14)
has a solution f(u) = u="(I *s*¢(s))(u) for every ¢ € L*[0, al.
(b) When « € (0, %), however, there are functions ¢ € L?[0, a] for which the equation
s (UG u" f(w)(s) = P(s) (4.15)

is not solvable. The idea here is that, since /¥_ is the integral operator, the left-hand side of
(4.15) must satisfy some smoothness conditions (for example, one can take its weighted
fractional derivative (D’_s*)) whereas such smoothness conditions need not hold for a
general ¢ € L*[0, a.

1

S. Incompleteness of classes of integrands when 0 <k <j;

The goal of this section is to show that neither the space |A|], nor the space Al is a complete
inner-product space when « € (0, %). We will give a proof by first providing an equivalent
criterion for the completeness and then showing that it does not hold. We begin with a
number of lemmas which will be required. The parameter « is in the range (0, %) throughout.

LemmaS5.1. Let 0 < c<b=<a and k € (0, %) Then there is a function f.) such that
ST _u” fo p())(8) = i p)(S), foral 0 <s<a. (5.1)

Proof. Heuristically, by solving equation (5.1), we obtain that
Sen) =u"(1 . Es" e () (w) = u™"(D_s"11c.p)(5))(10). (5.2)

To show that this function indeed satisfies (5.1), we may assume by linearity that ¢ = 0. We
may also show (5.1) for s < b only, since for s = b it is obvious (both sides are zero). As in
(3.5) and (3.6) (see also Remark 3.2 for heuristics), we have that
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b
—TI'(A — w)(DL_s" 1 p($))(u) = KJ SN s —u)y ™ ds — b(b — 7)

u

Then, for s <<b,
—T(1 — )L(k)s (I E_u u™"(DE_z1[c.5)(2)(w))(s)

a b
= s’“J {KJ 2Nz —u)y ™ dz — b(b — u)f}(u — ) du

N u

b z b
= s*KxJ dzz*HJ (z—u) ™ (u—s)"du— s”‘b’cj (b—u)*(u—s)"du

N s

s

b
=B(l — K, k) <;cs-“J 2 ldz — s"%“) =-T(1 - ©I(k),
since Lz(z —u)(u — s)*'du = B(1 — x, k) = ['(1 — ¥)['(x). This shows (5.1). O

The proof of the following lemma is similar to that of Lemma 5.6 in Pipiras and Taqqu
(2000). We include it for the reader’s convenience.

Lemma 5.2. Let x € (0, %). The inner-product space Al is complete if and only if, for every
¢ € L*[0, a, there is a function f, € AL such that

SR _u” fe(u))(s) = ¢(s) almost everywhere ds. (5.3)

Proof. Suppose that the inner-product space A¥ is complete and let ¢ € L?[0, a]. There is a
sequence of elementary functions ¢, such that ¢, — ¢ in L*[0, a]. By Lemma 5.1, we can
express the elementary functions ¢, as ¢, = s “(I*_u"f,(u))(s), for some f, € A’. Since
the sequence {¢,},=1 is Cauchy in L?[0, a], the sequence {f,},=1 is Cauchy in AL.
Then the completeness of Al implies that there is f €AY such that ¢, =
STRUE_u® f(w))(s) — s (I 5_u*f(u))(s) in L*[0, a]. Since ¢, — ¢ in L*[0, a] as well,
relation (5.3) holds with fj = f.

Conversely, suppose that (5.3) holds and let {f,},=1 be a Cauchy sequence in A”. Then
the sequence ¢ ,(s) = s “(I*_u"f,(u))(s) is Cauchy in L?[0, a]. Since L*[0, a] is complete,
there is a ¢ € L?[0, a] such that ¢, — ¢ in L?[0, a]. By the assumption, there is an
f» € A¥a such that (5.3) holds. Since ¢, — ¢ in L*[0, a] implies f, — f in AL, the space
A} is complete. O

Lemma 5.3. Let k € (0, %). There are continuous functions v on [0, a] such that the equation
(I5_2)(s) =y(s) a.e. ds on [0, a] (5.4)

has no solution in g € L'[0, a.

Proof. The proof of the lemma is by contradiction. Suppose that (5.4) has a solution gy €
L'[0, a] for any v € L?[0, a]. By (2.4),
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1 d ¢ .
gy(u) = —majuw(s)(s —u),"ds, ue (0, a

(see also Samko et al. 1993, Section 2.1). Since gy,(u) is expressed as a derivative, the
function

a
Uy = | po)s — 0 ds = | w0l ouegsitds e 0. a
0 R
is differentiable almost everywhere on (0, a). However, as shown in Lemma 5.7 of Pipiras
and Taqqu (2000), there are functions ¥ € L*[0, a] such that U, is not differentiable on a set

of positive Lebesgue measure. For example, when a = 1 (otherwise, use appropriate scaling),
for the function 1 we can take the real or imaginary part of

o0
Py =coy b e, (5.5)
n=1

where b>1, 0< p<k and ¢y = (I'(1 — k))~' e ™1=9/2Indeed, for v € (0, 1), we have

1-v 0 ) ) 0 l-v )
Uw*(l)) _ COJO S;K Z p—rn elb Selb vl ds = o E b—r" J €lb SS;IC ds elb v
=1

n=1 n 0

= ¢ Z I |:J elb SS;K dsj| elb v co Z I |:J elb SS:LIC de| elb v
n=1 0 n=1 1-v
=: y1(0) + »2(v).

As indicated in Pipiras and Taqqu (2000), the idea then is to show that the function y; is not
differentiable on [0, 1] and that the function y, is differentiable on [0, %]. By making a
change of variables b"s = z in y;, we obtain that

00
Ny =3 by
n=1

Since h~(P~**tDp = p*~7 > 1, the function y, is a particular case of the well-known Weier-
strass function whose real and imaginary parts are nowhere differentiable functions. One can
show that the function y, is differentiable on [0, 1] by using standard results from real
analysis (for details, see Pipiras and Taqqu 2000). Finally, since the function (5.5) is
continuous, we obtain the result. O

By combining the previous lemmas, we obtain:
Theorem 5.1. Let « € (0, 1). The inner-product spaces Al and |A|), are not complete.

Proof. For the inner-product space Al this theorem follows from Lemmas 5.2 and 5.3.
Indeed, by Lemma 5.3, there is a continuous function 1 such that equation (5.4) has no
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solution in g. Then the function ¢(s) = s *(s) is in L?[0, a], since x <1, and equation (5.3)
has no solution in f. Thus, by Lemma 5.2, the inner-product space Al is not complete.
We now turn to the inner-product space |Al}. Since AY is not complete and the set of
elementary (step) functions £¢ is dense in A’, there is a Cauchy sequence {f,},=1 C £
which does not converge in Aj. Since £ C |A[; and (g, W) = (g, Max, for g, h € &7,
the sequence {f,},=1 C £ is also Cauchy in |A[}. If |A|] is complete, there is an f € |A[]
such that f, — f in |A[;. But then f, — f in AY as well because |Al; C ALY and
(& M = (g h)as, for g, h € |A|%. Since this is a contradiction, we obtain that the inner-
product space |Al} is not complete. O

6. The case of the positive half-axis

As mentioned in Section 1, the results on incompleteness of classes of integrands are also
valid when a = oo and € (0, %). When « € (0, %), by using the scheme described in Section
4, one can construct the following two classes of integrands on [0, co):

AL = {f : [0, c0) — R such that JOO[S”"(I’iLth(u))(s)]2 ds < oo},
0

where (1% ¢)(s) = L))" [ p(u)(u — s)f1 du, s> 0, is a fractional integral of order x; and

AL, = {f : [0, 00) — R such that J J |f ()| | £ ()| |u — v dudv<oo}.
0 Jo

As in the case a >0, the classes of integrands A’ and |A|S are inner-product spaces with

the inner products

| s o gsias

(/- 8% = R~ 29simmm

0

and

(f+ @nag, =+ || "rwe@lu - o dudo,
o Jo
respectively. We also have that |A|5, C A% and that the corresponding inner products are
equal for functions f, g belonging to the smaller class |Al’,.

Corollary 6.1. Let « € (0, 3). The inner-product spaces A%, and |Al%, are not complete.

Proof. We will show by contradiction that the inner-product space A’ is not complete.
Suppose that A% is complete. By Theorem 5.1, the inner-product space Al is not complete.
Hence, there is a Cauchy sequence g, of functions in A’ such that it does not converge.
Since (1* f1jo.a)(s) = (I_f)(s)1[0.q)(s), for any f € L'[0, a] and s>0, the sequence of
functions g, 1[04 is also Cauchy in A’ . The completeness of A’ then implies that there is a
function g € A such that g,1j0 — g in AL, that is, (7 u"* g,(u)1[0,4(1))(s) converges
to sT*(I“ u*g(u))(s) in the L?>(R) sense. Since (" u” gu(u)lo,q(u))(s) = 0, for s>a, we
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obtain that (/™ u"g(u))(s) =0, for s> a, as well. By Lemma 6.1 below, g(u) =0 a.e. for
u>a, that is, g(u) = g(u)ljo,,(u) a.e. for u>0. Since

L [s~5(T_u¥(ga(u) — g(u))(s) ds = jo s " (gn() oy (0) — g1 )P ds

= JO [s (I S (ga () 10,01 (1) — g))($)]* ds — 0,

as n — 00, g, — g in Al,, which is a contradiction. Hence, the inner-product space A% is
not complete.

The inner-product space |A|S, is not complete either, by arguments similar to those in the
proof of Theorem 5.1. U

Lemma 6.1. Let k € (0, %), a>0 be fixed and g € AL . If, for s>a (I u*g(u))(s) =0 a..
ds, then, for u>a g(u) =0 a.e. du.

Proof. Let ¢ 5(s) = (T(1 — 1)) '((s — )7 — (s — b);¥), s € R, be a function with a <c<b
and observe that it vanishes for s < c¢. Now define the operator /7 by

1

50 = s | =9 ds ser,

Heuristically, by changing the order of integration below, we obtain that

0= J (1% " () () Pes(s)ds = %j {J ¥ g(u)(ut — ) du}wc,b(s)ds

:ﬁj u”g(u)“ Yep(s)(s — u)“ds}du :J u® g(u)(I 4 c.p)(u)du (6.1)

and

0= | " gt 6.2)

a

since, by Lemma 6.2 below, the function . has the property /9.5 = l(cr. One way to
prove relation (6.2) is to justify the change in the order of integration in (6.1) and show that

| et el = o5 " duds <oc.

a a

This can be done for almost every b. As in the proof of Lemma 5.4 in Pipiras and Taqqu
(2000), by using the relation |9 s| = Pcp — 29 cpl(ho0), We oObtain that
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@) sl 91 ds

< (I [9es D)

= (I ep) W) = 201 L bl (p,00) (1)

= (I ep)W) = 20159 b1 (b,00)) (@)L (b,00) (1)

= (I ep)W) = 2019 e p) () (,00) (1) + 21 L ep 1 e,5)) (W) ] (b,00) (1)

= Lep7() = 2 Liep1 (1)1 (p,00) (1)

b
+ 2(C()(1 — K))*IJ (s — o) (u — )" ds Lp o) (1)

c

b
< e+ 2001 =)' [ (5= 0 du— o

c

= 1(6,17](”) + ci(b — c)l”c(u _ b)i—l.

It is then enough to verify that

J |[u" g(u)|1(c.p(u)du < oo (6.3)

a

and
J |u* g(u)|(u — b)Y du < 0. (6.4)
a
Since g € A, implies that (/™ u"*g(u))(s) is well defined a.e. for s> g, that is,

for s> a, J |u* g(u)|(u — s) " du< oo ae. ds, (6.5)
equality (6.3) follows for any a <c<<b (we implicitly assume that integration is in the
Lebesgue sense everywhere). If b is such that (6.5) holds, then we immediately obtain (6.4)
and hence relation (6.2) is valid. However, if (6.5) does not hold for b, it holds for some b,
such that b, — b. Then (6.2) with b follows directly by letting » — oo in

{o.¢]
0= J u® g(u)1(cp,(u)du.

Finally, by approximating the set {u :a<u<n}N{u: u“g(u)>0} by unions of dis-
joint intervals and letting n — oo, it follows from (6.2) that u*g(u) <0 a.e. du for u>a
and, by symmetry, that u*g(u) = 0 a.e. for u>a. Hence, u“g(u) =0 a.e. du for u>a or
g(u) =0 ae. du for u>a. ]

Lemma 6.2. Let ¢ <b be real numbers and k € (0, 1). Then the function
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Pep(s) = (T = k) (s = )" = (s = b))
satisfies the equation

(I ep)W) = 1iepy(u), ueR.
Proof. By the definition of /% (see the proof above), we have to verify that, for u € R,
Ji(u) = J ((s— o) — (s —b)")u—s)"ds
R

=T = ©) e p(u) =: Jo(u).
If u<c, then Jy(u) = Jo(u) = 0. If u> ¢, we use the following identity, valid for > 0:

t 1
J U—K(t _ U);c—l dv = t—k‘+1<—l+lJ S—;c(l _ S)K—l ds = B(K, 1— K)

0 0
') — )
=——" “—T@IrJd - ).
Tt 1—r) (01 —x)

If c<u =< b, then
Ji(u) = J (s— o) (u—s)""ds = J v —c—v)do =TI —«),

c 0

which is also J(u). In the case when b <u, we show in a similar way that

u

Ji(u) = J (s— o) (u—s)ds — L(s — ) (u— )" ds = 0 = Jp(u).
O

Remark 6.1. The result of Lemma 6.2 should not be surprising because of the relation

WYep = 1 1(cp), Where the k-fractional derivative operator /", defined as

» 1odyp .
(O S)s) = maj_wf(u)(s —u); du, s €R,
is the inverse of /' (there exist other definitions for an inverse of /% — see, for example,
Section 5 in Samko et al. 1993).

7. Prediction of fractional Brownian motion

The prediction problem for FBM is to find an explicit expression for the conditional
expectation X = E(B*(#)| B*(s), s € [0, a]) with some fixed 0 < a < ¢. As already indicated in
the Introduction, we have X € Spyq(B8*) and therefore we expect X = foa f(uwydB*(u) for
some function f. When k € (—%, 0), since the class of integrands Al in (1.8) is complete, we
know that the function f exists and belongs to AY. When « € (0, %), however, since the class
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A} in (1.2) is not complete, we may only hope that there is such a function f which belongs
to AL

In thls section, we will show that the above function f exists not only for k € (—— 0) but
also for x € (0,3). We will also determine this function explicitely by first providing its
heuristic derivation which uses fractional integration ideas and then verifying rigorously that
the function obtained is indeed the right one. When x € (0, %), the prediction formula was
obtained by Gripenberg and Norros (1996). Our approach is different from that of Grip-
enberg and Norros, where fractional integration is not used, and it also covers the case
K € (-1, 0).

The prediction formula for FBM can be heuristically derived as follows. We shall
repeatedly use the (heuristic) fractional integration ‘rule’ I*If = [**F for a, B € R, where
I* is some fractional integral or derivative operator. For s € [0, ], set

B(s) = Jou_“(l 2" 110,5)(2)(w)d B* (u). (7.1)

Since V(I u (w1 *z"1[0.5(2))) (V) = 1105 (), B® is the usual Brownian motion. By
using the fractional mtegratlon by parts formula fo Q) C_y)(s)ds = fO(I ¢)(s)1/)(s)ds
with (7§, $)(s) = T(a)~ f P(u)(s — u) "du, we can write (7.1) as B° (s) fo 110,5/(2)
(1, +u”‘B’C(u))(z)dz where B denotes the ‘derivative’ of B, or

B°(s) = s*(1 g Fu " B*(u))(s).

By applying the operator u*/{, s to both sides of the last expression, integrating over [0, s]
and applying the fractional integration by parts formula again, we obtain

B (s) = Jou_"'(l’;fz"l[o,s)(z))(u)dBo(u). (7.2)

Since B° and B* can be defined through each other as in (7.1) and (7.2), we obtain
0 {B*(s), s € [0, a]} = 6{B°s), s € [0, a]} up to sets of measure zero, where o{B"(s),
s € [0, a]} is the o-algebra generated by the random variables B*(s), s € [0, a]. Then, since
BY is the usual Brownian motion,

E(B*(1)|B*(s), s € [0, a])zE(J; TRIY_Z"110,9(2))(w)d B (u)| B (s), s € [0, a])

= | e s,

By writing 1jo,s = 1j0,a) + 1{4,5 and then using (7.2), we obtain
BB (OIB(9), 5 € [0, al) = @) + | w01 2140y (DB
We wish to rewrite this last integral as an integral with respect to FBM. Since, heuristically,

u (I 2"l n(@) ) = u " T5_(U0™"1 [ K(I"_z"114,5(2))(v))(u) and since, for an integrable
function £, [)' f(u)dB*(u) = [} u ™ (1%_2z* f(2))(u)dB°(u), we expect that
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a

E(B*(1)|B"(s), s € [0, a]) = B*(a) + JO u (1 512" 1 a,0(2)(w)d B* (u).

These computations suggest the following prediction formula for FBM:

Theorem 7.1. Let 0<a<t, K € (—%, %) and B* be an FBM. Then

E(B*(1)| B(s), s € [0, a]) = B*(a) + r‘l’t(a, u)dB*(u), (7.3)
0
where, for u € (0, a)
W(a, u) = u (I ;51521 (0.0(2) () (7.4)
_ smnmc (o u)_KL z (ZZ:MG) dz. (7.5)

Proof. Let us first verify that the right-hand sides of (7.4) and (7.5) are equal when
K € (0, %). Observe that, by (2.1), for v € (0, a),

1 (! .
(2"l a,n(2)(W) = %J 2z — vy dz (7.6)
and hence, by (2.2),
1 d a rt
(I 252" g, n(2))(u) = — T — 9T () du LLZK(Z —0) Az (w—wydv (7.7)

: d t a
_ s ”"—J dz ZKJ dv (z — vy (- u) ",
du "

T a

since I'(1 — k)['(k) = mt/sinmtk. By making the change of variables v = u + (z — u)s and
then taking d/du inside the integral, we obtain

) : d t (a—u)/(z—u) )
| ds (1 — 95
T du 0

a

: t _K(m _ g \K
_ Smﬂ“’c (a— u)*'fj Ay, (7.8)

. Z—1U
When « € (—%, 0), the right-hand sides of (7.4) and (7.5) are still equal. To see this,

observe first that (7.6) with I'(x) = T'(1 4 )/« still holds for v € (0, a), since z # v in the
range of integration. Then (7.7) becomes (see (2.1))

U2 (D)) = m J J Fe—0Tidz -0 d

K sin Ttk

= Jl dzz"'r dv z—v) v —uy ™

T a u
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It is now easy to see that

a a —K K
KJ (z— 0y Y0 —w " do= ij (z— o)\ — )y dp = — G W EZ A"
" du J, zZ—u
where the derivative can be computed as in the case k € (0, %). This yields relation (7.8) in
the case x € (—1, 0) as well.

To verify that the integral in (7.3) is well defined for x € (—%, 0), it is enough to check,
by (1.8), that the function s (/" _z1[,,(2))(s) belongs to L*[0, a]. The same condition
needs to be verified in the case x € (0, %) by (1.2) and (2.5). In both cases this can be
deduced from (7.6). Finally, to prove (7.3), it is enough to verify that, for all s € [0, a],

EB“(s)(B*(f) — B*(a)) = EB"(s)JaII’,(a, u)dB" (u).
0

This follows from (1.4) and (1.9) by using expression (7.4) for W;(a, u). l

8. Proofs of Theorem 4.1 and Theorem 4.2

We prove Theorem 4.1 and Theorem 4.2 together. Let « € (—1, 3). To show that the maps

(1.4) and (1.9) (or (1.10)) define inner products on linear spaces Al, given by (1.2) and (1.8)
respectively, we check the least obvious condition. If (f, f)ar =0 and x € (0, %), then
(I5_u"f(u))(s) =0 ae. s € [0, a]. It follows by Lemma 2.5 in Samko et al. (1993, p. 40)
that " f(u) = 0 a.e. u € [0, a] and hence that f(u) =0 a.e. u € [0, a]. If (f, f)ax =0 and
K € (—%, 0), then ¢;(s) =0 ae. s€[0,a], where ¢, € L?[0, a] is associated with the
function f by definition (1.8). It then follows that f(x) =0 a.e. u € [0, a] as well.

Let us show that the set of elementary functions & is dense in A} when x € (f%, %).
Assume without loss of generality that a>1. Since any function ¢ € L?[0, a] can be
approximated in L?[0, @] by functions s> 7 bxlcpan(s) = s> bi(Ljo.a,(s) —
Io,co(s) with by € R and 0<c¢ <dy<a, k=1,...,n, it is enough to show, for
example, that there is a sequence of elementary functions f, € § C Al such that

(i) := Ls—zm[o,l)(s) — (I5_u" f(u))(s)|* ds — 0, n— 0. (8.1)

Since 1jo,1y(s) = (I5_u"f(u))(s) with f(u) = u"(I 101 () = TA — 1) 'u™(1 — u)7",
the convergence (8.1) for some elementary functions f, follows from the following lemma.

Lemma 8.1. Let k € (=, 3), {B*(t)}ueqo,1) be a standard FBM and
S@) = u™ (1)) = (01— ©) " u™ (1 — u)* for u € [0, 1]

Then the integral J"OI f(u)dB(u) is the limit in the L*(Q) sense of the integrals

l K 1 SIAN AN o 1+1 o !
[y =55 () (1-3) (= (57) - (5)
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where, for u € [0, 1],

n—2 / —K I —K
Su(u) = r(l _K) (Z) < ) _IL(M) ra _K)Zf( > [T[,IT—,])(“)

=2

Remark 8.1. The integral jol f(uw)dB*(u) in Lemma 8.1 is of particular interest because, if
Siu) = u (I F1po,n)w) = CA — k) 'u™(t —u)7", t,uec[0,a], then by (43) (and
Theorems 4.1 and 4.2)

tht(u)dB”(u) 4 o2 (K)Jlsz"' dB’(s), t €0, al.
0 0

The process on the left-hand side is known as the fundamental martingale (see Norros et al.
1999).

Proof. 1t is enough to prove the convergence (8.1) with a = 1. If k € (0, %), by using relation
(4.5) and estimate (4.10), we obtain that

1
i) < JO LS @) — fu@DSPds = S — fullagoy — O

as n — oo.

The case k € (—— 0) is more delicate. We will show that 4,(x) — 0 as well, by applying
the dominated convergence theorem. Let [, = [//n for I, n € N. As in (3.5) and (3.6), we
obtain

n—2

L1 — )01+ 1) u fu(@)(s) = T +5) Y L5 = L) Y1, 11, (@)(s)
=2

1 n—-2
——xj FR(L = 1) Ly, oy ()t — )% du
§ ]=2

n—2
F 3L = L) DS+ 1) — 9 — Bl — 9
1=2
=: g1 (s) + gals).

The summation by parts formula 27;22 ai(biy — b)) = —Z;’;zz bi(a; — a;_) +
an,_2b,_1 — a b, implies that
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n—2
gu() == Il — )51, A = L) = (= 1), (1 = (1= 1),) ™)
=2
+(n—=2),"(1 = (n=2)n) (n=1)((n = Dy — )5 = 1,71 = 1,)7*23,(2, — 5)
n—2 n—2
==Y B = 5 = (=10 = L) =) I — )5 = DR = L)
1=2 1=2

—(I=U=D))+ (=2, "0 = (=2, "(n=D,((n =1y — 9

— 1,5 = 1,)7"2520 — 9

= €3(9) + £,(5) + &) + £,5).
(Recall that [, stands for //n.) In order to establish (8.1), we will show that, for k € (—%, 0),

1
J s’z"|gf7(s)|2 ds — 0, n— oo, (8.2)
0

L1 = T+ ) F_u"f()(5) = £3(5) = &,(5) + &2(8) + &5(5) + £5(5)
— T — )L+ )5 u* f(w)(s) = T(1 — ©)T(1 + 1)1 (s) ae. s €[0, 1], (8.3)
and
suplgy(9)| < &), 1=j=4 (8.4)
where

1
J 57 /()] ds < oo, 1<j=<4. (8.5)
0

Then, by the dominated convergence theorem, we will have the required convergence
hy(k) — 0 for k € (f%, 0) as n — oo.
The convergence (8.2) follows, since

1 2/n 2 2K ) 1
J s g ()P ds < cJ 572 (— - s) ds = C;J Z(1 = 2™ dz — 0,
0 0

n 0
as n — oo. Let us show (8.4) and (8.5) with j = 1. We have

1 n—2
g = 1| D2 L8 = (0 D) ey = 9 d

S =2

1 1
< clj u (1 —u) ™ u" N — s)} du = CIJ w1 — ) — $) du =: 2'(s),

s s

where the constant ¢; depends on x only. It is enough to check the convergence of the
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integral in (8.5) around s = 0 only. Since k¥ <0, observe that, as s is close to 0, the function
g!'(s) is bounded (up to a constant) by

o0

1 1/s
J u Nu— ) du = s"J v lv—1)rdv < cs’CJ v Tdy < £ .
1

s 1 |K|

It then follows that the integral in (8.5) with j = 1 converges around s = 0. For functions g2,
by using the inequality |1,* — (I — 1);*| < |k|(I — 1), /n, we have

n—2

C —K— —Kl

|5 < el Y Bl = )50 = 1), = 1)
1=2

n—2 1

<c) (1, (=91 =+ D)™
=2

1
< CzJ u N — Y —w)y " du =: 2(s),
0

where the constant ¢, depends on x only. Relation (8.5) with j =2 follows as in the case
j =1 since the functions g and g, are equal up to a constant. As for the functions gi, one
can similarly show that

1 1
|gi(s)| < 03J (u— )7 (1 — u)y " du = C3J (1 — z)”"’1 du = c;3B(1 + k, —K) =: g3(s)
0 0
and
1 1
J s @ () ds = 3B(1 + K, —K)ZJ s ds < 0.
0 0

The proof of (8.4) and (8.5) with j = 4 is obvious. Finally, to show the convergence (8.3),
observe that

lim (D1 = ©)T(1+ 1) fu()(s) = g3(5))

= 1im (g,(9) + £3(5) + £,(5) + £,(5)

1 1
= —KJ u"(u — S)ﬁu”71(1 —u) "du+ KJ u"(u — s)ilf"*l(l —u) " du
0 0

1 1
_ KJ ul(f(u _ s)#u_"(l _ M)—K—l du+0= _KJ (u — S):_(l _ u)—tc—] du
0 0

= —xB(x + 1, —x)1o,1(s) = T'(1 — ©)['(1 + x)110,1)(s), a.e. s € [0, 1].
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Appendix
In the proof of Proposition 3.1, we used the fact that the function

Sw)y=o0 1(K)2J:S_2K(1 U110,y ) _ 1" Lo, ,0(u))(s)ds,

where 1, 1, € [0, a], is analytic for complex |k <%. The analyticity of f can be verified
directly as follows. By (3.6), the function f equals
1

f(k) = @1 + K))zal(ic)zrsz"{icj u* Nu — )% du — (1) — s)ﬁ}
0

N

[5)
X {KJ u(u — $)Y du — t5(t2 — s)ﬁ}ds,
where 0(x)? is defined by (3.2). Since (I'(1 + x)) 20 (x)* is analytic on |k| <1, it is enough
to show that the function

a 1 ty
J s_z"'{lcj uNu — $)% du — t(t — s)ﬁ} {KJ u*(u — $)Y du — t5(t2 — s)i}ds

0 K s

a 151 t a a1
= KZJ S’ZKJ uu — sy duJ u*u — s)} duds — KJ S’Z’CJ u (- $)Y duty(ty — s)% ds
0 s s 0 K

a %) a
— KJ s_z"'J u N — $)Y duti(ty — ) ds + KJ s_z"t'f(tl — ) t5(ty — 5) ds
0 s 0

=1 12 f1() — K f2() — K f3(K) + fa(Kc)

is analytic on [x| <1, or, equivalently, that the functions f1(x), f>(x), f3(x) and f4(x) are
analytic on |k <%. Assume without loss of generality that #; < #, and consider the function
fa() = [ exInsat=06=9 gy first. For h € C, h # 0, we have that

t

a0 )= £30) = | fute sy,

0
where

hlns2 t(t—s)t(tr—s) _ 1

falie, by 5) = & Ins~2t(t1—s)ta(t2—s) ©

h
Observe now that, for u>0 and & = hy + 1hy,
eihlnu_l ehllnueihzlnu_l . hllnu_l eihzlnu_l
_ i _ ihy Inu i + i
h hy +ihy hy +1ihy hy +ihy

and hence that ||~ !|e”™* — 1| < 2|Inulel” " “ < 2[Inu|e™¥!, if || <e. This implies that
|h|71|ehln sT2h(h—s)(t—s) 1| = 2|lns’2t1(t| _ S)tz(lz _ S)| ee|1n s’ztl(tlfx)tz(tzfs)h

for |h| <e. Choose ¢ >0 so that [, s~2%52 ds < oo. Since
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1
JO S72ic1 tllq(t] _ S)il fgl(tz _ S)’j_1|1nS72t1(11 _ S)tz(tz _ S)| ee|]n5 2t (t—s)t(h—s)| ds < 00,

where K is the real part of k and |x| < %, we obtain from the dominated convergence theorem
that

Ja(c + ) — fa(x) _
h

d : . =24 K 4 K -
d—f4(;c) = lim J STl — $)Lt5(t, —5)\ Ins 2t(t1 — $)ta(ty — s)ds
K h—0 0

and hence that the function f4 is analytic on |k <%.
. - -2 .
For the function f3(x) = Jm exIns72n(t—s) Ltz ubexinu=9) qy ds, write

0
_ P hlns~2t(t—s) _ 1 [t
f3+ By ﬁ®:J}mwmﬂﬁj;;igirf%HMWﬂmm
h 0 h K
t hl -
+ Jll e In s*zrl(rl—s)J 2u71 e~ In u(uﬂ)& duds
0 s h

and use the arguments above to conclude that

41 )

ST — ) Ins T2 (ty — S)J N u — s) duds

s

fi0 = |

0

1Al 5]
+ J sz”t’f(tl — s)KJ u N — ) Inu(u — s)duds
0 s
and hence that the function f3 is analytic on |x| <%. The proof that the functions f> and f
are analytic on |x| <% is similar.
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