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ABSTRACT

Learning-to-rank algorithms, which can automatically adapt
ranking functions in web search, require a large volume of
training data. A traditional way of generating training ex-
amples is to employ human experts to judge the relevance
of documents. Unfortunately, it is difficult, time-consuming
and costly. In this paper, we study the problem of exploit-
ing click-through data for learning web search rankings that
can be collected at much lower cost. We extract pairwise
relevance preferences from a large-scale aggregated click-
through dataset, compare these preferences with explicit hu-
man judgments, and use them as training examples to learn
ranking functions. We find click-through data are useful
and effective in learning ranking functions. A straightfor-
ward use of aggregated click-through data can outperform
human judgments. We demonstrate that the strategies are
only slightly affected by fraudulent clicks. We also reveal
that the pairs which are very reliable, e.g., the pairs consist-
ing of documents with large click frequency differences, are
not sufficient for learning.
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H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process, Relevance feedback

General Terms

Algorithms, Experimentation, Measurement, Performance

Keywords
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1. INTRODUCTION

Ranking function is one of the most important compo-
nents of a search engine. There may be hundreds of fea-
tures that can affect ranking accuracy in a search engine.
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It is usually difficult and even impractical to adapt a rank-
ing function manually. For this reason, automatically learn-
ing ranking functions using machine learning techniques has
been receiving much attention in recent years, and several
learning-to-rank algorithms have been proposed [11, 9, 4, 5,
20, 6].

To achieve a reasonable ranking, many machine learning
algorithms require a large volume of training data. A tra-
ditional way of generating training examples is to employ
human annotators to explicitly judge the relevance of doc-
uments. Unfortunately, using human judgments in learn-
ing web search rankings has several disadvantages. First, it
is expensive and time-consuming because it usually needs
thousands of training queries to learn a reasonable ranking.
Second, human judgments are given by annotators instead
of real-world users. Annotators may fail to guess what real-
world users are seeking for in some cases. Human judgments
made under such situations may be unreliable. Third, many
documents are hard to judge for a single annotator even
if the annotator is an expert. Human judgments for these
documents may be less reliable if subtle ratings are required.
A typical labeling strategy in learning to rank is to assign
a m-grade relevance rating to each document. To increase
the reliability of human judgments, a small value of n is
usually used (for example, 5). Under such settings, many
subtle differences between documents (for example, the dif-
ferences between the documents in same relevance levels)
are excluded and this may lose much useful information.

A promising solution to this problem is to automatically
extract training examples from implicit behavior of normal
users [12, 18, 13, 2, 1]. In contrast to human judgments,
such implicit feedback can be collected at a much lower cost,
and can reflect the judgments of a large number of real-
world users rather than a small number of selected annota-
tors who may have different knowledge background and con-
cept of relevance. In this paper, we focus on click-through
data, which represent typical and simple implicit feedback
logged by search engines. Click-through data contain the
queries submitted by users, followed by the URLs of docu-
ments clicked by users for these queries. A common doubt
about click-through data is that they may contain noise and
are less reliable than human judgments. Joachims et al.[13]
found that individual user clicks included bias and could
not be used as absolute relevance judgments directly. They
have made great efforts on extracting reliable relevance pref-
erences from individual queries [12, 13] and query chains [18,
13].

In this paper, we use click-through in another way. We



find that although some individual user clicks are unreliable,
the aggregation of a large number of user clicks provides a
valuable indicator of relevance preference. We do not try to
extract reliable relevance preferences from individual query
sessions. Instead, we aggregate large numbers of user clicks
for each query-document pair, and extract pairwise pref-
erences based on the aggregated click frequencies of docu-
ments. Simply stated, given a query, a pairwise training
example is generated if one document receives more clicks
than the other. We evaluate our methods using a large-scale
dataset comprised of 12,000 human labeled queries and 46-
day click-through logs.

Different from the common perspective that implicit click-
through data are less reliable, our experimental results show
that click-through data are very effective for learning. A
straightforward use of aggregated click frequencies can achie-
ve reasonable rankings, and can be even better than using
human judgments. We also reveal that click-through data
can be more reliable and informative than human judgments
since they include decisions of large numbers of real-world
users. We also show that the approach of using click-through
data for learning is not very sensitive to fraudulent clicks.
Another interesting thing we found in this paper is that reli-
able pairs, e.g., the pairs consisted of documents with larger
click frequency difference, are not sufficient for learning.

2. RELATED WORK

In recent years, learning to rank has been receiving much
attention in the information retrieval area. Several learning-
to-rank algorithms that use relative pairwise preferences ha-
ve been proposed and applied [11, 9, 4, 5, 20, 6]. For ex-
ample, Joachims et al.[11] applied the Ranking SVM algo-
rithm based on linear SVM to information retrieval. Cao et
al.[6] adapted the Ranking SVM to document retrieval by
modifying the Loss function. Burges et al.[4] developed the
RankNet algorithm, which used neural networks for learn-
ing the ranking functions. They then developed the Lamb-
daRank [5] for speeding up the RankNet training. Freund et
al.[9] proposed the RankBoost algorithm, which uses ideas
of Adaboost for learning ranking functions. Zheng et al.[20]
proposed a ranking algorithm Gbrank based on the regres-
sion method of using gradient boosting trees. In this paper,
we utilize the RankNet algorithm, and the details of the
algorithm are beyond the scope of this paper.

This paper focuses on the problem of extracting training
data for these learning-to-rank algorithms from implicit user
feedback. There has been much work on analyzing the re-
lationship between implicit feedback and user interests. A
comprehensive overview of studies of implicit measures can
be found in [14]. In this paper, we focus on web search sce-
narios. Joachims et al.[12, 18, 13] analyzed users’ decision
processes in web search using eye-tracking and compared im-
plicit feedback against manual relevance judgments. They
found that user behavior did depend on the quality of the
presented ranking and click-through data contained much
useful information that could be used for improving rank-
ing functions. They also found that click-through data con-
tained much noise and bias. Users’ decisions were affected
by “trust bias” and “quality of context bias,” and user clicks
could not be used as absolute relevance judgments directly.
For this reason, they made great efforts on extraction of
reliable relative preference [11, 17, 19, 13]. They explored
and evaluated several strategies to automatically generate
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relative relevance judgments for learning retrieval function
from individual user queries or query chains [12, 18, 13]. A
typical approach was to assume that a clicked result was
more relevant than an unclicked higher-ranked result (click
> non-click above). This strategy compensates for presenta-
tion bias by considering that users scan results from top to
bottom. However, as pointed out by Radlinski and Joachims
[19], preferences extracted by this strategy always oppose
the presented ordering. In particular, such relevance judg-
ments are all satisfied if the ranking is reversed, making the
preferences difficult to use as training data, especially when
the ranking is already reasonable. Furthermore, since pref-
erences are extracted from an individual query or a query
chain, they may be still noisy and biased due to user needs
diversity and query ambiguity. Radlinski and Joachims [19]
introduced the FairPairs method to modify the presentation
of search results to collect more reliable preferences. Because
the modification of search results may affect user satisfcation
(especially when the first and second result are swapped),
this method cannot be easily adopted in search engines. Dif-
ferent from above work, we do not extract preferences from
individual queries and query chains. We aggregate large
numbers of user clicks for each query-document pair, and
extract pairwise preferences based on the aggregated click
frequencies of documents.

Fox et al.[8] also explored the relationship between im-
plicit and explicit measures in web search. They developed
Bayesian models to correlate implicit measures and explicit
relevance judgments. Similar to Joachims et al.’s work [13],
their research was based on individual queries and search
sessions. The models were used to predict user satisfaction
but not to learn rankings. Furthermore, they considered a
wide range of user behaviors (e.g., dwelling time, scrolling
time, reformulation patterns) in addition to click-through
behavior. In this paper, we only focus on click-through data.

Part of our work is close to the research done by Agichtein,
Brill, and Dumais [2]. They found that the preferences ex-
tracted by the strategies proposed by Joachims et al.[13]
were still noisy. They proposed to use aggregated click fre-
quencies to filter out noisy clicks. Similar to our work, they
compared the preferences extracted from click-through data
with the preferences derived from human relevance judg-
ments. In this paper, we further evaluate the effectiveness
of these preferences by using them to learn ranking func-
tions. In [1], Agichtein, Brill, and Dumais explored several
approaches that incorporated implicit feedback features di-
rectly into the trained ranking function. Experimental re-
sults showed that using these additional user behavior fea-
tures could improve web search performance. Since implicit
user feedback was used as features, these approaches still
need human judgments. In this paper, training examples
can be extracted directly from click-through data and thus
no human labeled training data are needed.

Zheng et al.[20] also used preferences extracted from click-
through data for learning web search rankings. They used
the likelihood ratio test (LRT) to extract significant pairs
and applied the strategies proposed by Joachims et al.[13]
to extract preferences among the significant pairs. They
extracted only 20,948 preferences, a finding much smaller
than ours, and they did not compare their effectiveness with
human judgments. In this paper, we compared the learning
ability of human judgments and click-through data using a
large number of queries.



3. METHODOLOGY

Several learning-to-rank algorithms, including the RankNet
[4] and the Gbrank[20], can accept explicit pairwise train-
ing examples. Given a query g, assume that d; and d; are
two returned documents. rating(q, d;) and rating(q, d;) are
corresponding relevance judgments made by human experts.
Previous work [4, 20] usually uses the following strategy
to extract pairwise preferences from explicit n-grade human
judgments:

STRATEGY 1. (Label) If document d; is given a higher
relevance rating than dj, i.e., rating(q, d;) > rating(q,d;),
then a relevance preference rel(q,d;) >w rel(q,d;) is ex-
tracted for learning.

The main work of this paper is to extract training exam-
ples from implicit user feedback. As we described in Sec-
tion 2, Joachims et al.[13] have found that implicit feed-
back can be used as relative relevance judgments. In this
paper, we also interpret click-through data as relative rel-
evance judgments. Different from previous approaches, we
do not try to extract reliable preferences from individual
queries. We aggregate large numbers of user clicks for each
query-document pair, and extract pairwise preferences based
on the aggregated click frequencies of documents. Assume
that click(q,d;) and click(q,d;) are corresponding aggre-
gated click frequencies of documents d; and d;. We propose
to use the following strategy to generate relevance prefer-
ences from click-through data:

STRATEGY 2. (CT) Let cdif(q,di,d;) = click(q,d;) —
click(q,d;). cdif(q,ds,d;) is click frequency difference of
two documents d; and d; for query q. If cdif(q,d;,d;) > 0,
i.e., document d; is clicked more often than document dj, a
relevance preference example rel(q,d;) >ct rel(q,d;) is ex-
tracted for learning.

CT strategy is proposed based upon a simple notion: if
a document is favored by more users, it will be more rele-
vant. Certainly, preferences generated by this strategy may
include bias. The position of a result document actually in-
fluences users’ decisions and a highly-ranked result is likely
to be clicked more frequently than a result ranked lower. We
also don’t do any normalization or smoothing on the aggre-
gated click frequency, but as we will introduce in Section 6,
using the preferences generated by such a straightforward
strategy can achieve accurate rankings already. We will in-
vestigate new pair extraction strategies to extract prefer-
ences with higher reliability and coverage in future work.

To evaluate reliability and effectiveness of click-through
data, we conduct several experiments to compare them with
human judgments. These experiments are divided into two
phases. In the first phase, we analyze the correlation be-
tween human judgments and click-through data. We analyze
whether the preferences extracted from click-through are
concordant with those generated based upon human judg-
ments. Several previous works [13] have used the same way
to analyze the reliability of click-through data. We think
that this is not enough for evaluating the learning effective-
ness of click-through data. In the second phase, we further
use these preferences as training data to learn ranking func-
tions and evaluate the accuracy of generated rankings. If the
rankings are as good as or even better than those generated
based upon human judgments, we can conclude that these
preferences are effective for learning web search rankings.

Table 1: Basic statistics of dataset

Training | Validation Test

#Queries 10,000 1,000 1,000
#Documents 584,322 325,514 324,782
#Judged Documents | 313,316 28,820 29,788
#Clicked Documents | 71,170 6,301 6,880

4. DATA COLLECTION

We use a dataset from a commercial search engine which
comprises 12,000 randomly sampled queries and a certain
number of returned documents for the English/U.S. market.
On average, about 30 documents per query are manually
judged by human experts. A five-grade (0 to 4, bad match to
perfect match) rating is assigned for each judged document.
Unlabeled documents are given the rating 0.

We collect 46-day click-through logs from the search en-
gine for these queries (from July 9, 2006 to August 23, 2006).
Clicks for these queries are aggregated and a click frequency
is generated for each query-document pair. Click frequency
0 is assigned for the documents that are not clicked by users.

For each query-document pair, hundreds of features are
generated (most of them are similar to the features in the
TREC collection in LETOR [16]). These features will be
used for learning-to-rank documents in Section 6.

In brief, each record of the dataset is mainly comprised of
a query identity, a document identity, a human rating, a click
frequency, and hundreds of numeric features. The records
are then shuffled and split into three subsets: 10,000 queries
for training, 1,000 queries for validation, and 1,000 queries
for testing. Table 1 summarizes statistics of the dataset.
Please note that for validation/test queries, more documents
are used.

S. CORRELATION BETWEEN CLICKTH-
ROUGH AND HUMAN JUDGMENTS

In this section, we will analyze the correlation between
click-through data and human judgments. The Kendall tau
coeflicient [15] is usually used to measure the degree of cor-
relation between two rankings. In this paper, we select to
use the Kendall tau-b (73) because it uses a correction for
ties. 7 is a nonparametric measure of association based on
the number of concordances and discordances in paired ob-
servations. Given a query ¢ and two returned documents d;
and dji

e d; and d; are concordant if rating(q, d;) > rating(q, d;)
and click(q,d;) > click(q,d;), or if rating(q,d;) <
rating(q, d;) and click(q, d;) < click(q, d;).

e d; and d; are discordant if rating(q, d;) > rating(q, d;
and click(q,d;) < click(q,d;), or if rating(q,d;) <
rating(q, d;) and click(q, d;) > click(q, d;).

e d; and d; are tied if rating(q, d;) = rating(q, d;) and/or
click(q, d;) = click(q, d;).

The total number of pairs that can be constructed for a

query with n documents is N = n(n — 1)/2. N can be
decomposed into these five quantities:

N=P+Q+ Xo+ Yo+ (XY)o

P is the number of concordant pairs, @ is the number of
discordant pairs, X is the number of pairs tied only on the



Table 2: Overall correlation between click-through
data and human judgments (Kendall tau-b)

Training | Validation Test
BothClicked 0.201274 | 0.163600 | 0.194758
AtLeastOneClicked | 0.345716 | 0.300375 | 0.363094

human judgments, Y; is the number of pairs tied only on
the click frequencies, and (XY )o is the number of pairs tied
on both human judgments and click frequencies.

The 73 is calculated by the following formula:

7= PG (1)
V(P +Q+Xo)(P +Q+Yo)

The 7 has the range —1 < 7, < +1, with -1 standing
for 100% negative association, or perfect inversion, and +1
standing for 100% positive association, or perfect agreement.
A value of zero indicates the absence of association.

Average Kendall tau-b for a dataset is calculated by aver-
aging the Kendall tau-b values for all queries in the dataset.

5.1 Opverall Correlation

In this section, we analyze the correlation between the
preferences extracted based upon human judgments and tho-
se extracted based upon click frequencies. Please note that
unjudged documents are skipped in the experiments. Ta-
ble 2 shows experimental results. The first row in this table
shows that Kendall tau-b values computed based upon the
pairs in which both documents are clicked, and the second
row shows Kendall tau-b values computed based upon the
pairs in which at least one document is clicked (the other
one is either clicked or unclicked). The click frequency of
unclicked document is set to 0. Please note that the pairs in
which both documents are not clicked are skipped to avoid
too many ties. Experimental results show that human judg-
ments and click frequencies are only weakly correlated. The
Kendall tau-b correlation coefficient on training set is only
about 0.20 when considering only clicked documents. It
reaches about 0.35 when unclicked documents are included.

After comparing the two rows of Table 2, we find click-
through and human judgments correlate better when unclic-
ked documents are included. By observing the data, we find
most unclicked documents have lower ratings than clicked
documents. When using unclicked documents, more accor-
dant preferences are generated generally.

5.2 Click Frequency Differences

In the previous section, a preference is extracted simply
when two documents are clicked with different frequencies,
even if a document is clicked only one more time than the
other. We think that the preference may be more reliable
when click frequency difference is larger. We propose to
use the following strategy to extract only pairs with click
frequency being greater than n:

STRATEGY 3. (CT_Gn) A relevance preference example
rel(q,d;) >c¢ rel(q,d;) is extracted only if click frequency
difference of d; and d; is greater thann, i.e., cdif(q,d;,d;) >
n.

We plot correlation coefficients between preferences gen-
erated by Label and CT_Gn with different settings of n on
training set in Figure 1. Figure 1 shows that correlation
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ratio increases along with increase of n. It means that pref-
erences with larger click frequency difference correlate more
to human judgments indeed. For example, when selecting
only pairs with click frequency difference > 500, the Kendall
tau-b correlation coefficient is about 0.7. Please note corre-
lation ratio for CT_GO is larger than the overall correlation
given in Table 2. This is because the overall correlation
counts in document pairs in which click frequencies of two
documents are equal and human ratings are different (part
Y0 in Equation (1)), while CT_Go excludes these pairs.

0.8 - 4

Correlation (Kendall tau-b)

AtLeastOneClicked
BotthIickled --?é--

_—

0 1 1 1 1 1 1
Overall GO G50 G100 G150 G200 G250 G300 G350 G400 G450 G500
Click frequency difference

Figure 1: Correlation between human ratings and
click-through pairs with click frequency difference
>n (CT_Gn) on training set.

5.3 Click Entropy

In this section, we propose to use the click entropy [7] to
classify queries, and analyze the correlation between click-
through data and human judgments for queries with differ-
ent click entropies. The click entropy can be used as a simple
evidence to identify click diversity. Click entropy of a query
q is defined as Equation 2:

ClickEntropy(q) = Z —P(d|q)log, P(d|q)
deD(q)

(2)

Here Click Entropy(q) is the click entropy of query ¢. D(q)
is collection of documents clicked for query g. P(d|q) is the
percentage of clicks on document d among all clicks on q.

A query with a small click entropy value is more likely
to be a navigational [3] or clear query because users consis-
tently click a few results for this query. Examples of such
queries include “yahoo,” “myspace,” and “youtube.” A query
with a larger click entropy value is more likely to be an infor-
mational [3] or ambiguous query. Users tend to select multi-
ple documents to fulfill their information needs and different
users may have their own preferences for these queries. The
queries “photos,” “information retrieval,” and “jobs” are with
large click entropies.

To make the click entropy more reliable, we eliminate the
queries with total click times < 25. Figure 2 shows the cor-
relation between the human ratings and the click frequen-
cies for the left training queries with varied click entropies.
We proportionally divide the left 7,646 training queries into
four bins by their click entropies. Each bin contains about
1,911 queries. Bin-1 contains the queries with smallest click
entropies (0 to 1.71, average 1.03), and bin-4 contains the
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Figure 2: Correlation between human judgments
and click-through data with varied click entropies.

queries with largest click entropies (4.07 to 9.88, average
4.79).

Figure 2 shows that the pairs contained in the queries
with small click entropies correlate more to human judg-
ments. We give the following reasons. First, for navigational
and/or clear queries, there are usually only one or a few per-
fect documents. Users can easily judge which document is
the one they want to find. Second, compared with ambigu-
ous queries, current search engines can rank results better
on these queries. Clicks based upon such ranking are rela-
tively more reliable. Third, since queries are less ambiguous,
user clicks are more consistent. It is also easier for annota-
tors to judge the relevance of documents. All these factors
cause aggregated user clicks for these queries to correlate
more with human judgments. In contrast to this, informa-
tional and/or ambiguous queries are more difficult to judge,
both for real-world users and annotators. Furthermore, dif-
ferent users may have different preferences on these queries.
Annotators may find it difficult to understand real-world in-
formation needs on these queries and their judgments may
be biased and incorrect.

6. USING CLICK-THROUGH DATA TO LE-
ARN WEB SEARCH RANKINGS

In this section, we use the preferences extracted by pre-
vious strategies as training examples to learn ranking func-
tions. We employ the RankNet, a neural net tuning algo-
rithm which optimizes feature weights to best match explic-
itly provided pairwise preferences, to learn ranking func-
tions. Rank-Net has demonstrated excellent performance in
learning to rank. Specific training algorithms used by the
RankNet are beyond the scope of this paper. Detailed de-
scription can be found in [4].

We use a 2-layer implementation of the RankNet in our
experiments. For each experiment, RankNet is trained for
100 rounds. The best model is selected by testing all 100
models on the 1,000-query validation set, and is then used
to be tested on the test set.

6.1 Ranking Accuracy Evaluation Metrics

We use two different ranking evaluation methods in this
paper: NDCGQK based upon human ratings and Kendall
tau-b based upon click frequencies.

7

6.1.1 NDCG@K based upon human ratings

We first evaluate ranking accuracy by using a normal-
ized discounted cumulative gain measure (NDCG) [10] based
upon human judgments on test documents. For a given
query ¢q, the NDCG@K is computed as:

K .
Ny =M, (2r<]>

Jj=1

—1)/log(1 + j)

M, is a normalization constant calculated so that a perfect
ordering would obtain NDCG of 1; and each r(j) is a human
rating of the result returned at position j.

NDCG is well suited to web search evaluation, as it re-
wards relevant documents in the top-ranked results more
heavily than those ranked lower. We report NDCG@J5, i.e.,
K = 5. We also experiment with other settings of K, and
they show similar results with K = 5.

6.1.2 Kendall tau-b based upon click frequencies

We also use click-through data to evaluate ranking accu-
racy. For each test query, we sort the documents by their
click frequencies and get a rank list. This rank list is purely
based upon click frequencies so we call it click rank list.
Please note that the documents with same click frequencies
are given a same rank in the click rank list. We then use
Kendall tau-b introduced in Section 5 to measure the corre-
lation between the click rank list and the rank list generated
by the ranking function being evaluated.

6.2 Overall Performance

In this section, we investigate the performance of CT
strategy. Figure 3 shows the RankNet performance of CT
when using different numbers of unclicked documents. In
this figure, series CT_Un means using maximum n unclicked
documents, series CT_UAIl means using all unclicked doc-
uments, and CT_UO means using only clicked documents.
The click frequency of each unclicked document is set to 0.
This figure shows that using some unclicked documents can
help improve learning performance. In Section 5.1, we found
that pairs including unclicked documents correlate more to
human ratings. Including these pairs can improve the accu-
racy of training examples and thus can help achieve better
rankings. In the remaining part of this paper, we will use
all unlabeled documents for CT strategy.

For Label strategy, Burges et al.[4] have found that us-
ing some unlabeled documents can improve ranking perfor-
mance. We experiment with 10, 20, 30, 40, and all unlabeled
documents as extra examples of low relevance documents,
and we find that using 20 unlabeled documents gets approx-
imately optimal results. In the remaining part of this paper,
we will use 20 unlabeled documents for Label strategy.

To compare CT and Label, we experiment with differ-
ent sizes of training queries (from 100 to 10,000) and report
experimental results in Figure 4. This figure shows that
CT strategy outperforms Label strategy with varied sizes
of training set, both when being evaluated by human judg-
ments with NDCG metric, and when being evaluated by
click frequencies with Kendall tau-b metric. Please note that
all the improvements are significant (p<0.05). One consid-
eration is that there may be different numbers of preferences
for these two strategies. After counting the pairs generated
by each strategy, we find Label generates much more prefer-
ences/document pairs (about twice many) than CT. For ex-
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Figure 3: RankNet performance when using differ-
ent amounts of unclicked documents. CT_Un means
using up to n unclicked documents per query.

ample, Label generates about 9.5 millions preferences from
all 10,000 training queries, while CT generates only about 5
millions. The reason is that there are about 30 documents
judged by human experts, usually more than the number
of documents clicked by users. This result tells us that CT
strategy outperforms Label strategy, even if it generates less
training preferences than Label. This means that the pref-
erences generated from click-through data are more effective
than those extracted from human ratings.

In brief, the above experimental results demonstrate that
click-through data are very useful and effective in learning
ranking functions. A straightforward exploitation of same
amount of aggregated click-through data can achieve better
rankings than using human judgments. This conclusion de-
viates from some original notions that click-through cannot
be directly used for learning to rank. This is a promising
start point of using click-through data to learn Web search
rankings. Since click-through data can be collected with
much lower cost, we can utilize more click-through data.
We will investigate whether higher ranking accuracy will be
achieved if more click-through data are used in future work.

6.3 Click Frequency Difference

Section 5.2 showed that pairs with larger click frequency
differences correlate more to human judgments. Are these
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RankNet performance comparisions of
Label and CT

pairs more useful and more effective in learning ranking func-
tions? We will investigate this problem in this section.

We use preferences extracted from all 10,000 training quer-
ies by CT_Gn strategy to train the RankNet. Figure 5 re-
ports ranking accuracy when n is from 0 to 500 with an
increase step 50. Experimental results show that the larger
the n is, the worse the performance is. By counting the
numbers of pairs for these strategies, we find the number of
pairs decreases when click frequency increases, which may
cause a decrease in learning performance. For example,
CT_GO generates 4,890,820 pairs, while CT_G500 contains
only 252,753.

To reduce the impact of amount of training data and in-
vestigate how click frequency difference could affect learning
performance with same amount of training data, we propose
to generate equivalent numbers of pairs with varied click fre-
quency difference ranges. Specifically, we use the pairs with
click frequency difference between 10 and 25 (CT_10t025),
between 26 and 99 (CT_26t099), and greater or equal than
100 (CT_GE100) to train the RankNet separately. Figure 6
shows that these three strategies generate equivalent num-
bers of pairs.

We analyze the correlations between pairs generated by
these strategies and pairs generated based upon human judg-
ments. We show experimental results in Table 3. Please note
that we use all unclicked documents in these experiments.
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ferent pair selection strategies

Table 3: Correlation between human judgments and
click-through data under three different pair selec-
tion strategies

Training | Validation Test
CT_10To25 | 0.305743 | 0.270589 | 0.306940
CT_26T099 | 0.390308 | 0.361930 | 0.337831
CT_GE100 | 0.617736 | 0.628011 | 0.605718

Table 3 also demonstrates that correlation between these two
types of pairs is stronger when click frequency difference is
larger.

Figure 7 shows the RankNet performance when using the
three pair generation strategies. The results indicate that
when being trained using pairs with larger click frequency
differences, the RankNet does not generate better rankings.
CT_GE100 performs worst though it has highest correlation
with human judgments. Here we try to give a possible rea-
son. Although the preferences with larger click frequency
are more reliable, they are obvious and simple. They lack
enough information for learning more accurate weights of
features. The learner will be biased if using only such train-
ing examples and fails to rank documents in complex cases
(for example when relevance difference between two docu-
ments is not very significant). On the contrary, the pairs
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in which the two documents are slightly different may con-
tain much subtle and diverse information which are more
important for generating a stable learner.

6.4 Click Entropy

We train the RankNet using the preferences generated
from training queries with variant click entropies. Please
note that all validation and test queries are used in valida-
tion and test phase. We plot the NDCG values in Figure 8.
We plot the results of using all training queries and denote
this approach with “All”.

Let’s have a look at Label strategy first. We find when
using human label data, the RankNet performs better when
using queries in bin-2 and bin-3 than using queries in bin-1
and bin-4. For the queries with smallest click entropies (in
bin-1), pairs contained in these queries are obviously simple
on average. These simple training examples are less useful
for learning a robust ranking function. The ranking function
learned based upon only these pairs may be highly biased.
For the queries in bin-4, it may be because human judg-
ments for these queries are less reliable than queries with
small entropies. It is usually hard for an annotator or even
an expert to precisely decide which document is more rel-
evant than another for these queries. Rankings generated
base upon such training examples are generally less accu-
rate. Compared with bin-1 and bin-4, since bin-2 and bin-3
include both “easy” and “difficult” training examples, they
can achieve better ranking accuracy. Certainly, they still
performace worse than using all training queries.

Compared with Label, we find CT strategy is more ro-
bust. CT outperforms Label especially for queries in bin-1
and bin-4. Because click-through data include the decisions
of large numbers of real-world users, they can be more re-
liable than human judgments made by a small number of
annotators. Furthermore, since click-through data aggre-
gate diverse user selections, they can be more diverse and
informative than human judgments. Many subtle differences
between documents are included in miscellaneous user clicks
and these are very useful for learning.

6.5 Stability of Click-through-based Strategies

A potential concern of using click-through data for learn-
ing is that it may be easily affected by fraudulent clicks. To
evaluate the stability of our proposed strategies, we man-
ually generate some fraudulent clicks in training data and
analyze how ranking accuracy is affected.

We use all 10,000 training queries in this experiment. We
randomly “spam” several queries by generating some fraud-
ulent clicks for them. For each query to be spammed, we
randomly select one or more documents without clicks, and
update their click frequencies to 100,000,000 which is larger
than all real click frequencies. The spammed documents be-
come the “best” documents for this query in click-through
data. We experiment with spamming 1 to 5 documents per
query. Note that there are only 7 clicked documents per
query in training set on average and there may be some
spammed documents already.

Figure 9 demonstrates that ranking accuracy decreases
indeed when more documents are spammed, but the de-
crease is within a small range. When only a small number
of documents are spammed per query, ranking accuracy is
only slightly affected even if a large number of queries are
spammed. For example, when one document is spammed
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per query and half of training queries are spammed (5,000
queries), ranking accuracy only reduces 0.005 and is still
better than that achieved by Label strategy. If a large num-
ber of documents (for example, 5 documents) are spammed
per query and only a small number of queries are spammed
(for example, less than 1,500 queries), ranking accuracy is
still comparable with that achieved by Label strategy. This
means that click spam has only limited impact on our clickth-
rough-based methods.

In fact, since real-world queries are abundant and we only
use a small portion of them, it is really hard for spammers
to spam such large percents of queries and documents as
we experimented above. For this reason, our click-through-
based methods are stable and applicable in real-world use.

7. CONCLUSIONS

In this paper, we studied the problem of using aggre-
gated click-through log to learn web search rankings. We
used a large-scale dataset comprised of 12,000 human la-
beled queries and 46-day click-through logs. We showed that
click-through data weakly correlate to human judgments on
average. Despite this, we further revealed that click-through
data are useful and effective in learning web search rankings.
A straightforward use of aggregated click-through data can
achieve a better ranking than using human judgments. We
revealed that click-through data have inimitable advantages
to human judgments. First, they can be collected with much
lower cost, and their amount is virtually unlimited. Second,
they contain decisions of large numbers of real-world users,
so they can be more reliable than human judgments made
by a small number of annotators. For example, for infor-
mational or ambiguous queries, click-through data are more
reliable than explicit human judgments. Third, compared
with limited numbers of relevance levels in human ratings,
click-through data contain many subtle differences between
documents which are very useful for learning an accurate
and stable ranking. We also demonstrated that our strate-
gies are stable and are only slightly affected by fraudulent
clicks. These results tell us that using click-through data in
learning web search rankings are applicable.

Another interesting thing we revealed in this paper is that
the pairs which are very reliable, e.g., the pairs consist of
documents with large click frequency differences or the pairs
contained in queries with small click entropies, are not suffi-
cient for learning. The rankings generated based upon only
such pairs may be biased. This tells us that we should not
overemphasize reliability and ignore the coverage of train-
ing examples. This is an important conclusion we should
consider when adapting click-through data for learning.
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