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SUMMARY

In many microarray studies, a cluster defined on one dataset is sought in an independent dataset. If the
cluster is found in the new dataset, the cluster is said to be “reproducible” and may be biologically sig-
nificant. Classifying a new datum to a previously defined cluster can be seen as predicting which of the
previously defined clusters is most similar to the new datum. If the new data classified to a cluster are
similar, molecularly or clinically, to the data already present in the cluster, then the cluster is reproducible
and the corresponding prediction accuracy is high. Here, we take advantage of the connection between
reproducibility and prediction accuracy to develop a validation procedure for clusters found in datasets
independent of the one in which they were characterized. We define a cluster quality measure called
the “in-group proportion” (IGP) and introduce a general procedure for individually validating clusters.
Using simulations and real breast cancer datasets, the IGP is compared to four other popular cluster quality
measures (homogeneity score, separation score, silhouette width, and weighted average discrepant pairs
score). Moreover, simulations and the real breast cancer datasets are used to compare the four versions
of the validation procedure which all use the IGP, but differ in the way in which the null distributions
are generated. We find that the IGP is the best measure of prediction accuracy, and one version of the
validation procedure is the more widely applicable than the other three. An implementation of this al-
gorithm is in a package called “clusterRepro” available through The Comprehensive R Archive Network
(http://cran.r-project.org).
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1. INTRODUCTION

As the name suggests, cluster validation is concerned with “assessing the validity of classifications that
have been obtained from the application of clustering procedure” (Gordon, 1999). In general, cluster val-
idation procedures define a cluster quality measure (e.g. a measure of isolation or a measure of cohesion)
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and determine how likely given values of that measure are to occur under a null model of no structure.
Either graph theory or Monte Carlo simulations can be used to find the null distribution of the cluster
quality values.

Interest in cluster validation has been re-ignited by the need for gauging the significance of gene and
array clusters in microarray studies. The majority of the literature has centered on determining which
clustering procedure to use and on determining how many clusters are present in a microarray dataset
(Datta and Datta, 2003; Chen and others, 2002; Kerr and Churchill, 2001; Yeung and others, 2001;
Levine and Domany, 2001).

Although many of these papers used a cluster quality measure based on within-cluster and/or between-
cluster variance, three papers (Dudoit and Fridlyand, 2002; Dudoit and others, 2002; Tibshirani and
Walther, 2005) used prediction error to evaluate the quality of clusters. When the true classifications of
the test dataset were known, as in Dudoit and others (2002), the estimate of prediction error was the
proportion of correct classifications in the test dataset. When the true classifications are unknown, as in
Tibshirani and Walther (2005), cluster quality can be estimated by how well training centroids predict test
set co-memberships, i.e. pairs of observations classified to the same cluster. Instead of concentrating on
a single measure of prediction accuracy, Dudoit and Fridlyand (2002) compared a variety of indices to
measure the agreement between the training set partition and the test set partition.

Despite their differences, all three papers argued that the use of a measure of test set clusters defined
by a classifier made from the training data is the most appropriate approach to cluster validation when the
aim of analyzing the microarray data is to identify reproducible clusters of genes or arrays with similar
expression profiles. The genes or samples of a microarray dataset are partitioned into clusters and used
to build a classifier which is applied to new data. If the new data classified to a cluster are like the sam-
ples already present in the cluster (molecularly or clinically), then the cluster is validated because it is
reproducible and may be biologically significant.

In other words, a classifier built using previously defined clusters is used to predict which new data
have certain molecular or clinical characteristics in common with the other members of the cluster. A
cluster is validated if enough predictions are correct because accurate predictions mean the cluster is
present in the new data. Therefore, when the goal of a study is the identification of reproducible clusters,
validation is related to prediction accuracy which is defined to be the proportion of data whose predicted
classifications are identical to the true classifications.

This paper extends the idea of using prediction accuracy (or strength) from validating the number of
clusters or the choice of clustering method to validating individual clusters found in a new dataset. First,
a new cluster quality measure is proposed. The “in-group proportion” (IGP) is similar to the measure
of co-memberships in Tibshirani and Walther (2005). It is defined to be the proportion of observations
classified to a cluster whose nearest neighbor is also classified to the same cluster.

The IGP also resembles a cluster quality measure proposed by Bailey and Dubes in 1982. Their
“measure of cohesion” was defined for a random graph with m edges and n vertices: WC (m) = #{(a, b)|a,
b ∈ C, (a, b) ∈ Sm}, where Sm was the set of (a, b) edges in the graph. If C is made up of observations
in the same cluster and Sm is the set of edges that connect observations in C to their nearest neighbors,
then in certain situations WC is equal to the product of the IGP and the total number of observations in
the cluster (m). For example, consider three points on the real line: 0, 1, and 3

2 . If C = {0, 1}, Sm is as

defined above, and Euclidean distance is used, then WC (2) = 1 and the IGP is 1
2 = WC (2)

m .
In the subsequent sections, a more explicit description of the IGP and four other cluster quality mea-

sures are presented, after which a cluster validation procedure is proposed. Four different versions of the
cluster validation procedure are described. In all versions, the IGPs for all the clusters in a new dataset
identified by centroids built on a previous dataset are computed and then compared to an appropriate null
distribution to obtain p-values. The null distributions of IGPs, however, are generated differently in each
version of the cluster validation procedure. Finally, simulations and real datasets are used to compare the
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Are clusters found in one dataset present in another dataset? 11

IGP with four other cluster quality measures and to compare the four versions of the cluster validation
procedure.

2. METHODS

Before describing the cluster quality measures and validation procedure, some basic definitions must be
established. We let A be an m×n matrix of microarray data where m is the number of features (genes) and
n is the number of samples (arrays). We assume that a subset of the samples of A have been partitioned
into p groups (labeled 1, 2, . . . , p) and C is the m × p matrix of the centroids. The uth column of C is
made by averaging over the features (rows) of the samples in A classified to group u. If X is an m × q
matrix of microarray data independent of A, then all the samples (columns) of X can be classified to one
of the p groups or to a “below-cutoff group” using C and a cutoff (c). The function d(x, y) is defined
to be the Pearson’s (centered) correlation for vectors x and y and ClassX ( j) is the class label for sample
j of X :

ClassX ( j) =
{

0, if max 1�u�p d(X [, j], C[, u]) < c,

argmax 1�u�p d(X [, j], C[, u]), if max 1�u�p d(X [, j], C[, u]) � c.
(2.1)

Since d(x, y) is a measure of correlation not distance, 0 � d(x, y) � 1 and a d(x, y) near 1 means x and
y are close together. Thus, every sample of X is classified to the the group whose centroid with which it
most highly correlates. If the maximum correlation for a sample and any of the centroids is less than c, the
sample receives the class label 0. The below-cutoff group is composed of all the samples i of X for which
ClassX (i) = 0. A cluster quality measure is subsequently computed for each group to which at least one
array of X is classified.

2.1 The IGP

We propose a new cluster quality measure based on the idea of prediction accuracy. The IGP (Figure 1)
is defined to be the proportion of samples in a group whose nearest neighbors are also in the same group.
In other words, the IGP quantifies how often points near each other are predicted to belong to the same
group. Define j N = argmax k �= j d(X [, j], X [, k]) for each columnn of X , and let u be the class label for
all the samples whose ClassX = u, then

IGP(u, X) = #{j |ClassX ( j) = ClassX ( j N ) = u}
#{j |ClassX ( j) = u} . (2.2)

For the j th sample of X , j N is j’s nearest neighbor and so IGP(u, X) is the proportion of samples in class
u whose nearest neighbor is also in class u.

If a distance function is used instead of Pearson’s (centered) correlation coefficient, then the above
definitions still hold with min replacing max, argmin replacing argmax, � replacing �, and >
replacing <.

2.2 Other cluster quality measures

The IGP is not the only measure of cluster quality. Chen and others (2002) described several others.
Since Chen and others (2002) defined the “homogeneity score” (HS), separation score (SS), “silhouette
width” (SW), and “weighted average discrepant pairs” (WADP) for entire clusterings as opposed to
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Fig. 1. Using Euclidean distance, the IGP for the circles is 0.8 and that for the triangles is 0.6.

individual clusters, we slightly modified the scores to apply to an individual cluster. First, the HS is
defined to be the average correlation between a cluster’s centroid and the members of the cluster. If
Setu = {j |ClassX ( j) = u} and Nu is the number of elements in Setu , then the HS for cluster u is:
HSu = 1

Nu

∑
j∈Setu d(X [, j], C[, u]).

The SS for cluster u is the weighted average of the correlation between the uth cluster’s centroid and
every other centroid: SSu = 1∑

v �=u Nv

∑
v �=u Nvd(C[, v], C[, u]).

Next, we assume that j ∈ Setu and let a( j) be the average dissimilarity (or distance) between sample
j and the other samples in Setu and b( j) be the average dissimilarity (or distance) between sample j and
the samples not in Setu . The SW for cluster u is thus defined: SWu = 1

Nu

∑
j∈Setu

b( j)−a( j)
max{a( j),b( j)} .

Since Pearson’s (centered) correlation coefficient is a measure of similarity, 1 − |Pearson’s (centered)
correlation| was used as the measure of dissimilarity to compute the SWs and every time a measure of
distance was required. Therefore, for each member of a cluster u, the discrepancy between the average
value of 1 − |Pearson’s (centered) correlation| between that member and the other members of the cluster
and the average 1 − |Pearson’s (centered) correlation| between the member and the members outside of
the cluster is calculated and then divided by the maximum of those two quantities. The SW for cluster u
is the average of these quotients over all the members of cluster u.

Finally, the WADP score measures the consistency of a classifier when the samples are subject to
small perturbations. We generate an m × q matrix of Gaussian random variables: R = [ri, j ] where

ri, j
i id∼ N (0, σ 2

WADP) for 1 � i � m and 1 � j � q. R is added to X and the samples of X are
reclassified. For each cluster, we calculate the number of sample pairs that were in the same cluster in
the original classification, but not in the same cluster after reclassification. That quantity is divided by the
total number of sample pairs originally in the cluster. This process is repeated many times and the WADP
score for cluster u is the average of these ratios taken over the perturbations of X . The value of σ 2

WADP is
specified by the user and has a large impact on the WADP score. If σ 2

WADP is too small, the WADP score
is always 0; if σ 2

WADP is too large, the WADP score is close to 1. In this paper, σ 2
WADP was always chosen

to be large enough for the WADP scores to vary between groups.
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2.3 Null distribution generation

To validate the groups found in X , the IGPs of those groups are compared to a null distribution of IGPs.
Four different versions of the same procedure are used in this paper to generate null distributions of
IGPs. The basic null distribution generation procedure repeatedly generates an m × p centroid ma-
trix (C∗), computes Class∗

X in the way described above with C∗ replacing C , and calculates the IGPs
for the groups in Class∗

X . Each version of the null distribution generation procedure generates C∗ differ-
ently.

Version 1 permutes each row of C to get C∗.

Version 2 permutes the rows of A, hierarchically clusters the columns (average linkage), automatically
cuts the dendogram to make p groups, and averages over the rows of the arrays with the same
group labels to get C∗.

Version 3 transforms C to get C∗ (transformation described below).

Version 4 transforms A (transformation described below), hierarchically clusters the columns (average
linkage), automatically cuts the dendogram to make p groups, and averages over the rows of
the arrays with the same group labels to get C∗.

The first two versions assume independence of the genes in the centroids or raw data. As many mi-
croarray studies have demonstrated, however, genes are not completely independent. Therefore, the cen-
troids produced by Versions 1 and 2 may not be near the data. To remedy this problem, the third and fourth
versions permute the samples within the box aligned with their principal components. This transforma-
tion increases the chance that the centroids are near the data without being too similar to the actual data
or actual centroids which would bias the p-values towards 1.

1. Let W = U DV T be the singular value decomposition of W . (W can be either C or A.)
2. Define W ′ = W V .
3. Permute the columns of W ′ to obtain Z ′.
4. Let Z = Z ′V T .
5. Substitute Z for W .

The null distribution generation methods were designed to produce centroids that are placed randomly
in the data. As a consequence, the groups defined by the centroids most likely are not high-quality clusters.
Thus, the null distributions are composed of IGPs that come from groups of data that are not high-quality
clusters. Since a cluster of high-quality will have an IGP close to 1, the p-value of a group is the fraction
of the null distribution IGPs that are as close or closer to 1 than the group’s actual IGP. In other words, the
null hypothesis is that a group is not a high-quality cluster and it is rejected if the actual IGP of the group
is high enough (i.e. close enough to 1).

A group of data with a significant p-value is a high-quality cluster. In addition, that group of data
corresponds to a cluster in an independent dataset (the one in which the original centroids were formed).
Therefore, a significant p-value means a high-quality cluster (as opposed to a group of data near each
other) corresponding to the original cluster was found in an independent dataset. Hence, the cluster is
reproducible and thus validated.

Since the IGPs depend on the size of the group, IGP(u, X) is compared only to the IGPs from the
null distribution generation procedure that come from groups of the same size. When a cutoff is used,
the below-cutoff group is compared to the IGPs of all the below-cutoff groups obtained from the null
distribution procedure because the sizes of the generated below-cutoff groups so rarely match the size of
the actual below-cutoff group.

Nothing about the null distribution generation procedure is specific to the IGP. Therefore, the overall
cluster validation method and its four versions could be used with any of the cluster quality measures
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14 A. V. KAPP AND R. TIBSHIRANI

described in Section 2.2. In light of the results presented in Section 3.1, however, we only compared the
null distribution generation versions for the IGP.

3. SIMULATIONS

Results from five simulations are presented: two (Simulation 1 and Simulation 2) were done to com-
pare the five cluster quality measures described in Section 2.2 and two (Simulation 3, Simulation 4, and
Simulation 5) were done to compare the different versions of the null distribution generation procedure
described in Section 2.3. All the simulations used Pearson’s (centered) correlation coefficient and datasets
of 300 observations. The details and results of the simulations are described in Sections 3.1 and 3.2.

3.1 Comparison of cluster quality measures

The datasets for Simulation 1 and Simulation 2 were generated in the same fashion. First, a single vector

of length 500 was defined: P = (p1, p2, . . . , p500) such that pi
iid∼ N (0, 50). Then, the Su (u = 1, 2, 3, 4)

were defined to be random samples of size 50 drawn without replacement from the set {1, 2, . . . , 500}.
Using P and the Su’s, a 500 × 4 matrix (Q), which can be thought of as the matrix of true centroids, was
defined:

Q[i, u] =
{

pi + yi,u, if i ∈ Su,

pi , if i �∈ Su .
(3.1)

The yi,u were independent identically distributed N (0, σ 2
u ). To produce the data matrix of observations,

the variable Tj was defined to be a random sample of size 100 drawn without replacement from the set
{1, 2, . . . , 500} for j = 1, 2, . . . , 300. Thus, the data matrix (R) was defined:

R[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q[i, 1] + zi, j,1, if j � 50 and i ∈ Tj ,

Q[i, 1], if j � 50 and i �∈ Tj ,

Q[i, 2] + zi, j,2, if 51 � j � 100 and i ∈ Tj ,

Q[i, 2], if 51 � j � 100 and i �∈ Tj ,

Q[i, 3] + zi, j,3, if 101 � j � 200 and i ∈ Tj ,

Q[i, 3], if 101 � j � 200 and i �∈ Tj ,

Q[i, 4] + zi, j,4, if 201 � j � 300 and i ∈ Tj ,

Q[i, 4], if 201 � j � 300 and i �∈ Tj .

(3.2)

The zi, j,u were independent identically distributed N (0, η2
u).

R is like a matrix of microarray data where the 500 rows are genes (features) and the 300 columns
are arrays (samples). Each column of R was classified to one of four groups: columns 1–50 were the
first group, columns 51–100 were the second group, columns 101–200 were the third group, and columns
201–300 were the fourth group. The 500 × 4 matrix, Q, was found by averaging over the columns of
R which were generated from the same column of Q: Q[i, u] = 1

nu

∑bu
k=au

R[i, j], where n1 = n2 =
1
2 n3 = 1

2 n4 = 50, (a1, a2, a3, a4) = (1, 51, 101, 201), and (b1, b2, b3, b4) = (50, 100, 200, 300).
In Simulation 1, η2

u = 100 for all u, but σ 2
1 = σ 2

3 = 2σ 2
2 = 2σ 2

4 and σ 2
1 ∈ {2, 4, 6, . . . , 40}. In

Simulation 2, σ 2
u = 25 for all j , but η2

1 = η2
3 = 1

2η2
2 = 1

2η2
4 and η2

1 ∈ {10, 30, 50, . . . , 250}. In other
words, if Q is thought of as the centroid matrix, then in Simulation 1, as σ 2

1 increased the centroids moved
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further apart from one another, but the correlations between the data and the centroids remained constant.
Furthermore, in Simulation 2, as η2

1 increased the data moved further away from their centroids, but the
between-centroid correlations remained constant.

For each value of σ 2
1 in Simulation 1 and η2

1 in Simulation 2, 100 datasets (R) were generated in the
manner described above. For each of the datasets, the IGPs, HSs, SSs, SWs, and WADP scores (σWADP =
10) were computed using two different classifications. One was the true classification:

True classification of R[, j] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if j � 50,

2, if 51 � j � 100,

3, if 101 � j � 200,

4, if 201 � j � 300.

(3.3)

The other was the estimated classification: Estimated classification of R[, j] = argmax1�u�4 d(Q[, u],
R[, j]).

For both the true classifications and the estimated classifications, the average values for all five cluster
quality measures are presented in Figures 2 and 3.

A cluster is said to be “isolated” if the members of the cluster are very different from the members
of other clusters and a cluster is said to be “cohesive” if the members of the cluster are very similar to
each other (Gordon, 1999). In contrast, a measure of prediction accuracy needs to quantify how likely a
point classified to one cluster is to have been classified to another cluster because prediction accuracy is
the proportion of data whose predicted classifications are identical to the true classifications. If a cluster
is both isolated and cohesive, its members are unlikely to be classified to another cluster. Therefore, a
measure of prediction accuracy will be sensitive to both isolation and cohesion.

In the context of the above simulations, this implies an appropriate cluster quality measure should con-
sistently increase (or decrease) as σ 2

1 increased in Simulation 1 (causing the between-column correlation
of Q to decrease) and as η2

1 increased in Simulation 2 (causing the correlation between the columns of R
and their associated columns of Q to decrease). In Figure 2, the true classification curves of all the cluster
quality measures consistently increased or decreased with σ 2

1 : the IGP, HS, and SW increased while the
SS and WADP score decreased. Although the HS’s true classification curves increased, the scale of the
increase over the range of σ 2

1 was so small (0.78–0.79) that the HS was basically unchanged. In other
words, as the groups become more isolated, the HS was constant. Therefore, the HS is not an appropriate
measure of isolation.

In Figure 3, all the true classification curves for the IGP, HS, and WADP score decreased with the
increase in η2

1. In contrast, the true classification curves for the SS were constant and two of the SW true
classification curves changed direction, first decreasing and then increasing. Therefore, the SS and SW
are not appropriate measures of cohesion.

Based upon the true classification curves, only the IGP and WADP score were appropriate cluster
quality measures. The WADP score had two major drawbacks as a cluster quality measure, however.
First, the estimated WADP scores differed greatly from the true WADP scores in Figure 2 for σ 2

1 < 10.
Second, the WADP score required us to choose the value of σ 2

WADP. The true IGPs were different from
the estimated IGPs for σ 2

1 < 10, but the difference was not as great. In addition, the IGP did not require
values for parameters to be chosen before calculating the score. Thus, these simulations demonstrate that
the IGP was a better cluster quality measure than the HS, SS, SW, and WADP score.

These simulations also show a cluster’s IGP depended upon the cluster’s size, average correlation
between members, and average correlation between each member and the centroids. In Figure 2 IGP
graph, the two groups of 50 observations traced out similar IGP true classification curves (black and
green) that differed from those of the two groups of 100 observations (red and blue). In Figure 3 IGP
graph, however, all four groups traced out different IGP true classification curves.
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16 A. V. KAPP AND R. TIBSHIRANI

Fig. 2. These graphs show the results of Simulation 1. The horizontal axis on each graph is the value of σ 2
1 used to

generate each Q matrix. The vertical axis is the cluster quality measure. The lines trace out the average cluster quality
measure when the true classifications were used; the solid points are the average cluster quality measure values when
the estimated classifications were used. The averages from observations generated using σ 2

1 , σ 2
2 , σ 2

3 , and σ 2
4 are

circles (solid line), diamonds (dashed line), triangles (dotted line), and squares (dashed and dotted line), respectively.

Finally, the IGP of a cluster depended upon the composition of the entire population. When the third
and fourth groups were removed from Simulation 1 and Simulation 2, the IGPs for the first and second
groups increased when the clusters were not very cohesive or not very isolated (Figure 4). (In each of the
100 repetitions, the third and fourth columns of Q were removed, columns 101–300 were removed from
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Fig. 3. These graphs show the results of Simulation 2. The horizontal axis on each graph is the value of η2
1 used to

generate each data matrix (R) of 300 observations. The vertical axis is the cluster quality measure. The lines trace
out the cluster quality measure when the true classifications were used; the solid points are the average cluster quality
measure values when the estimated classifications were used. The averages for the observations generated using η2

1,

η2
2, η2

3, and η2
4 are circles (solid line), diamonds (dashed line), triangles (dotted line), and squares (dashed and dotted

line), respectively.
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18 A. V. KAPP AND R. TIBSHIRANI

Fig. 4. The IGP averages for the first and second groups in the absence of the third and fourth groups for Simulation
1 (left) and Simulation 2 (right). The lines trace out the average IGPs for the true classifications; the solid points are
the average IGPs for the estimated classifications. (Left) The IGP averages of observations generated by σ 2

1 and σ 2
2

are circles (solid line) and diamonds (dashed line), respectively. (Right) The IGP averages of observations generated
by η2

1 and η2
2 are circles (solid line) and diamonds (dashed line), respectively.

R, the true classifications for the first 50 columns of R were 1, and the true classifications for the second
50 columns of R were 2.) Therefore, the IGP of a cluster that is not very isolated or cohesive will decrease
in the presence of other clusters.

3.2 Comparison of null distribution generation versions

To apply the null distribution generation method proposed in Section 2.3, two independent datasets are
required. The first is the one in which the clusters are initially identified and upon which the centroids
are formed, and the second is the one whose columns are classified using these centroids. Hence, pairs of
independent R matrices were made repeatedly for Simulations 3–5 which compare the null distribution
generations versions. In Simulation 3, both R matrices were made identically to the R matrix in Simu-
lation 1. In Simulation 4, both R matrices were made identically to the R matrix in Simulation 2. In
Simulation 5, both R matrices were made like the R matrix in Simulation 1 with one important difference.
For u = 2, 4, not all Q[i, u] and Q[l, u] were independent. After the Q matrix was generated and before
the R matrix was generated, the following transformation was performed: Q[i, u] = Q[250 + i, u] for
1 � i � 250 and u = 2, 4.

In Simulations 3–5, the true classifications of both R matrices were the same. The true classifications
were used to make R from one R only by averaging over the rows of columns with the same classifications.
These centroids were then applied to the other R matrix that was not used to make the centroids.

Unlike Simulations 1 and 2, only 20 datasets were generated for each standard deviation value (either
σ 2

1 or η2
1). Although 20 times is not as many as one would like, it was large enough to see differences

between each of the null distribution generation methods and complete the simulations within a realistic
time frame.

In all three simulations, all four null distribution methods were applied and p-values were computed
as described in Section 2.3. Each null distribution of IGPs was made by generating 500 centroid matrices
(C∗). For each standard deviation value (either σ 2

1 or η2
1) and column of Q, the average and standard error

of the p-values of the 20 repetitions were computed. They are presented in Figures 5–7.
Version 3 and Version 4 consistently produced p-values while Version 2 did not produce any p-values

and Version 1 did not always produce p-values (the second and third panels in the first column of Figure 6).
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Fig. 5. The results of Simulation 3 are shown in these graphs. The horizontal axis of every graph is the value of σ 2
1

used to generate the elements of Q; the vertical axis of every graph is the p-value. The average p-values are plotted
with their corresponding standard error bars. Results from Version 1 are represented by solid lines; results from
Version 3, by dashed lines; and results from Version 4, by dotted and dashed lines. Results for data generated from
Q[i, 1] are in the first row; results for data generated from Q[i, 2] are in the second row; results for data generated
from Q[i, 3] are in the third row; and results for data generated from Q[i, 4] are in the fourth row (1 � i � 500).
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Fig. 6. The results of Simulation 4 are shown in these graphs. The horizontal axis of every graph is the value of η2
1 used

to generate the elements of R; the vertical axis of every graph is the p-value. The average p-values are plotted with
their corresponding standard error bars. Results from Version 1 are represented by solid lines; results from Version 3,
by dashed lines; and results from Version 4, by dotted and dashed lines. Results for data generated from Q[i, 1] are
in the first row; results for data generated from Q[i, 2] are in the second row; results for data generated from Q[i, 3]
are in the third row; and results for data generated from Q[i, 4] are in the fourth row (1 � i � 500).
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Fig. 7. The results of Simulation 5 are shown in these graphs. The horizontal axis of every graph is the value of σ 2
1

used to generate the elements of Q; the vertical axis of every graph is the p-value. The average p-values are plotted
with their corresponding standard error bars. Results from Version 1 are represented by solid lines; results from
Version 3, by dashed lines; and results from Version 4, by dotted and dashed lines. Results for data generated from
Q[i, 1] are in the first row; results for data generated from Q[i, 2] are in the second row; results for data generated
from Q[i, 3] are in the third row; and results for data generated from Q[i, 4] are in the fourth row (1 � i � 500).
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22 A. V. KAPP AND R. TIBSHIRANI

Version 2 did not produce any p-values because none of the groups induced by any C∗ was the same size as
any of the actual groups. This occurs when not all columns of C∗ are near the data, e.g. Class∗

V ( j) = u for
all j and a single u ∈ {1, 2, 3, 4}. Therefore, Version 3 and Version 4 (transform versions) were applicable
to more situations than Version 1 and Version 2 (no transform versions). Moreover, Version 3 and Version
4 produced very similar p-values. Finally, as expected, in all three null distribution generation versions,
more isolated (as σ 2

1 increased in Figures 5 and 7) or more cohesive (as η2
1 decreased in Figure 6) clusters

had lower p-values.
As in Simulation 1 IGP results (top panel of Figure 2), Simulation 3 p-values for data groups of

the same size were similar to each other, but different for data groups of a different size. The first and
second rows of Figure 5 are similar to each other but different from the third and fourth rows, and the
third and fourth rows of Figure 5 are similar to each other but different from the first and second rows.
Specifically, the groups of size 50 had higher p-values than the groups of size 100 over 0 < σ 2

1 < 10. This
difference in p-values between groups of different sizes corresponded to a difference between the IGPs of
the smaller groups and the larger groups (Figure 2, top graph). Furthermore, the dependence within the
elements of Q[i, 2] and Q[i, 4] for 1 � i � 500 had the most impact when the centroids were not isolated
(0 < σ 2

1 < 10). For σ � 10, the curves in Figure 7 greatly resembled those for Figure 5.
The results of Simulation 4 (Figure 6) were similar to the IGP results for Simulation 2 (Figure 3): the

curves for the four groups all differed. Even though the relationship between the groups’ IGP curves is not
the same as the relationship between the groups’ p-value curves, higher IGPs tend to correspond to lower
p-values. Therefore, if the third and fourth groups were absent from Simulations 3 and 4, the p-values of
the first and second groups would probably be lower over the regions where the first and second groups
are not very isolated or cohesive. When a group is not very isolated or cohesive, the presence of additional
groups will lower the p-value of the group.

In these simulations, both R matrices were identically generated which means the number of columns
of both R were the same (300 columns). In real situations, however, the sample sizes of two independent
datasets are not always the same. To determine the effect sample size had upon p-values a final simulation,
whose results are not shown, was conducted. Pairs of R matrices were generated where σ 2

i = 25 for all
i and η2

1 = 2η2
2 = η2

3 = 2η2
4 = 100. While the number of columns of the R matrix used to define the

centroids remained constant, the number of columns of R to which the centroids were applied varied. The
proportions the classes within the latter R matrix remained constant, however.

The number of columns of the second R ranged from 300 to 30. For all four groups and all three
null distribution generation versions, the p-values fluctuated over this range for number of columns of
R. Sometimes the p-values were lower for smaller sample sizes; sometimes the p-values were higher for
smaller sample sizes. Therefore, the relationship between sample size and p-values is not easily summa-
rized.

4. APPLICATION TO BREAST CANCER DATA

Although breast cancer is the most common form of cancer to affect women, men are also affected,
although in smaller numbers. Like other cancers, the seven stages of breast cancer are based upon the
development of the disease (National Cancer Institute, 2004). Stage 0 is the least severe stage and is
characterized by the appearance of non-invasive tumors in the breast. In contrast, Stage IV is the most
severe and this advanced stage is characterized by breast tumors which have spread to the underarm,
internal lymph nodes and beyond (Breastcancer.org, 2004).

In practice, breast cancer stages currently are based entirely upon clinical parameters. The invention
of microarrays, however, created the possibility of identifying subtypes using gene expression profiles
instead of tumor characteristics. Previous studies (Sørlie and others, 2001, 2003; Perou and others, 2000)
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Table 1. These are the summary statistics for the sample groups in the van’t Veer and others and West
and others datasets formed by classification using the Norway/Stanford centroids. The size of each
group, average Pearson’s (centered) correlation coefficients between the members of each group, and the
standard error of the Pearson’s (centered) correlation coefficients between the members of each group

both with and without the 0.1 cutoff are shown

Sample group van’t Veer and others (no cutoff) van’t Veer and others (0.1 cutoff)

Size Average Standard error Size Average Standard error

Normal-like 10 0.3967592 0.08673876 8 0.3964162 0.07539638
ERBB2+ 7 0.345514 0.1014053 5 0.3447617 0.09556526
Luminal A 38 0.2997569 0.121031 26 0.2907002 0.1272165
Luminal B 27 0.2972715 0.1013435 18 0.2900479 0.1024578
Basal 35 0.5966506 0.1105372 35 0.5966506 0.1105372

West and others (no cutoff) West and others (0.1 cutoff)

ERBB2+ 3 0.3068818 0.1285781 2 0.4453106 NA
Luminal A 20 0.2301113 0.1243890 18 0.2462426 0.1261459
Luminal B 8 0.3238005 0.128713 8 0.3238005 0.128713
Basal 18 0.3872948 0.1097535 18 0.3872948 0.1097535

have done just that. Sørlie and others (2003) analyzed 122 microarrays (115 of which were from malignant
breast cancer tissues, seven of which were from non-malignant tissues) and identified five subtypes: two
luminal-like (luminal A and luminal B), one ERBB2-overexpressing (ERBB2+), one basal-like (basal),
and one normal breast tissue-like (normal-like). The five subtypes were identified in a semi-supervised
way: the samples were hierarchically clustered on 534 “intrinsic” genes but the five groups are not iden-
tified by cutting the tree at a certain height or specifying the number of groups. As in Sørlie and others
(2003), we will refer to this dataset as the Norway/Stanford dataset. The Norway/Stanford data are avail-
able from the Stanford Microarray Database (http://genome-www.stanford.edu/MicroArray/). A link to
them is provided on the webpage: http://genome-www.stanford.edu/breast cancer/.

Each of the five subtypes was characterized by a centroid made by averaging the gene expression
values across all the samples belonging to a subtype. These centroids were then used to classify breast
cancer microarrays from independent datasets: van’t Veer and others (2002) (shared 461 of the 534 intrin-
sic genes) and West and others (2001) (shared 222 of the 534 intrinsic genes). The Pearson’s (centered)
correlation coefficient was computed for each sample and each centroid. The sample was classified to the
group whose centroid had the maximum correlation with the sample. In addition, a correlation cutoff of
0.1 was used, so samples which did not have a correlation of at least 0.1 with any of the centroids were
not classified to any subtype (labeled “below-cutoff”) (Table 1).

In Sections 4.1 and 4.2, we go a few steps further with the Norway/Stanford, van’t Veer and others and
West and others datasets. They are all used to compare the five cluster quality measures and to compare
the four cluster validation versions. In addition, these comparisons lead us to validate three of the five
subtypes.

4.1 Comparison of cluster quality measures

As in Sørlie and others (2003), the Norway/Stanford centroids were applied to the van’t Veer and others
and West and others datasets to classify the samples. After classifying all the samples in the van’t Veer
and others dataset (no cutoff was used), the five cluster quality measures were computed for each subtype
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24 A. V. KAPP AND R. TIBSHIRANI

Table 2. These are the values of the five cluster quality measures of groups defined by application of
Norway/Stanford centroids to van’t Veer and others and West and others datasets. The WADP score was
computed using 500 perturbation matrices whose entries are from a normal distribution (mean was 0 and

standard deviation was 1)

Dataset Norway/ IGP HS SS SW WADP
Stanford score
centroid (σWADP =

1, n = 500)

van’t Veer and Normal-like 0.3000000 0.1679855 −0.05489459 0.06801421 0.7398667
others ERBB2+ 0.4285714 0.1948864 −0.08013015 −0.07170683 0.7863810

Luminal A 0.6578947 0.1612159 −0.37187887 0.12308451 0.6734595
Luminal B 0.4814815 0.1510008 −0.10731030 0.05778799 0.7287350
Basal 0.9714286 0.5648812 −0.19752388 0.49865359 0.1508403

West and ERBB2+ 0.6666667 −0.06782225 −0.13109415 −0.31311813 0.248000000
others Luminal A 0.7500000 −0.14169784 −0.49751854 0.06339894 0.188600000

Luminal B 0.8750000 0.06045730 −0.03817666 0.03127546 0.410357143
Basal 1.0000000 0.07931599 −0.36440829 0.24752699 0.001555556

which contained at least one sample (σWADP = 1 and data perturbed 500 times). The procedure was
repeated for the West and others dataset. The results for both datasets are presented in Table 2.

For the IGP, HS, and SW, positive value is directly related to cluster quality. For the WADP score,
clusters whose scores are closer to zero are of higher quality. For the SS, clusters whose scores are closer
to −1 are of higher quality. Using this information to rank the subtypes from highest quality to lowest
quality, we saw that the SW and WADP score ranked the West and others groups in the same order. In
every other case, however, the subtypes were ranked differently by each of the cluster quality measures.
Nevertheless, in four of the five cases, the basal subtype had the best score. For the SS, the Luminal A
centroid is the most isolated, but the basal-like centroid is the second-most isolated. Therefore, while none
of the measures was equivalent, the cohesive and isolated basal-like cluster stood out when using any of
the five cluster quality measures, especially when the IGP, HS, SW, or WADP score was used.

4.2 Comparison of null distribution generation versions

All four versions of the null distribution generation procedure were applied to the van’t Veer and others
and West and others datasets twice, first without a cutoff and then with a cutoff of 0.1 (Tables 7–10). As
in Section 2, the group of samples for which ClassV ( j) = 0 was called the below-cutoff group.

In other words, the Norway/Stanford microarray data were A and the five centroids made from the
dataset comprised C . First, C was used to classify the samples of the van’t Veer and others dataset (n =
461 and q = 117), then C was used to classify the West and others dataset (n = 222 and q = 49). In both
cases, no cutoff was used (c = 0) and a 0.1 cutoff was used (c = 0.1).

The minimum number of permutations used to generate the null distributions was 2500; the maximum
was 250 000. The number of permutations was chosen so that at least 100 permutations would be used
to compose the null distributions for each group. (NB recall that the null distributions depend upon the
size of the group.) In only one case were fewer than 100 permutations used: the basal group when the
van’t Veer and others raw data were permuted (Version 2) with 0.1 cutoff. Out of 50 500 permutations, a
group of size 35 only occurred three times. At this rate, over one million permutations would have been
necessary to get 100 IGPs for groups of size 35.
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Table 3. Each entry is the number of samples classified to the row subtype and whose nearest neighbors
were classified to the column subtype. The right-hand most column is the proportion of samples in the row

subtype whose nearest neighbors were also classified to the same subtype

van’t Veer and others Nearest-neighbor classification IGPs
(no cutoff) Normal-like ERBB2+ Luminal A Luminal B Basal

Sample Normal-like 3 5 2 0 0 0.300
classification ERBB2+ 1 3 0 3 0 0.429

Luminal A 6 2 25 5 0 0.658
Luminal B 2 4 7 13 1 0.875

Basal 0 1 0 0 34 0.971

Table 4. Each entry is the number of samples assigned to the row group and whose nearest neighbors
were assigned to the column group. The right-hand most column is the proportion of samples in the row

subtype whose nearest neighbors were also classified to the same subtype

van’t Veer and Nearest-neighbor classification IGPs
others (0.1 cutoff) Normal- ERBB2+ Luminal A Luminal B Basal Below-

like cutoff

Sample Normal-like 2 0 1 0 0 5 0.250
classification ERBB2+ 0 1 0 3 0 1 0.200

Luminal A 2 0 18 1 0 5 0.692
Luminal B 1 2 0 6 1 8 0.333

Basal 0 1 0 0 34 0 0.971
Below-cutoff 3 0 0 1 0 21 0.840

When the Norway/Stanford centroids were applied to the van’t Veer and others and West and others
datasets both with and without a 0.1 cutoff, the basal-like subtype had the highest IGPs. In the West and
others dataset, no samples were classified to the normal breast tissue-like subtype. In the van’t Veer and
others dataset, this subtype had the lowest IGPs. The IGPs for the ERBB2+, luminal A, and luminal B
subtypes varied. For these three subtypes, however, at least one IGP was above 0.75.

The IGPs for the samples not classified to any group when a cutoff was used were 0 and 0.84 for the
West and others and van’t Veer and others datasets, respectively. More than 20 samples were not classified
in the van’t Veer and others dataset when the cutoff was used.

The groups were much more cohesive in the West and others dataset than in the van’t Veer and others
dataset. In the West and others dataset, the nearest neighbor of a sample classified to one subtype was
classified to only two subtypes if it was classified at all. In contrast, in the van’t Veer and others dataset,
the nearest neighbor could have been classified to any subtype. The one exception was the normal breast
tissue-like subtype. No normal breast tissue-like samples had a nearest neighbor classified to the basal-like
subtype. The reverse also held true (Tables 3–6).

In every case except for that in which the null distribution was generated by permuting the centroids
with a cutoff of 0.1, the estimated p-value for the basal-like subtype was less than 0.05. The estimated
p-values for the luminal B subtype were all below 0.05 in the West and others dataset. In addition, the
ERBB2+ subtype’s p-values were below 0.05 in every case using the West and others data and the cutoff.
When a cutoff was not used when the Norway/Stanford centroids were applied to the West and others
data, the ERBB2+ p-values were below 0.05 in two cases and below 0.10 in the other two cases. Only the
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Table 5. Each entry is the number of samples classified to the row subtype and whose nearest neighbors
were classified to the column subtype. The right-hand most column is the proportion of samples in the row

subtype whose nearest neighbors were also classified to the same subtype

West and others
(no cutoff)

Nearest-neighbor classification IGPs

Sample
classification

Normal-like ERBB2+ Luminal A Luminal B Basal

Normal-like 0 0 0 0 0 ∞
ERBB2+ 0 2 1 0 0 0.667
Luminal A 0 0 15 4 1 0.750
Luminal B 0 0 1 7 0 0.875
Basal 0 0 0 0 18 1.00

Table 6. Each entry is the number of samples assigned to the row group and whose nearest neighbors
were assigned to the column group. The right-hand most column is the proportion of samples in the row

subtype whose nearest neighbors were also classified to the same subtype

West and others
(0.1 cutoff)

Nearest-neighbor classification IGPs

Sample
classification

Normal ERBB2+ Luminal A Luminal B Basal Below
-like -cutoff

Normal-like 0 0 0 0 0 0 ∞
ERBB2+ 0 2 0 0 0 0 1.00
Luminal A 0 0 13 4 0 1 0.722
Luminal B 0 0 1 7 0 0 0.875
Basal 0 0 0 0 18 0 1.00
Below-cutoff 0 0 2 0 1 0 0

basal-like subtype was validated at the α = 0.05 level by any version of the null distribution generation
procedure applied to the van’t Veer and others data.

Although the estimated p-values varied widely across the datasets and across versions of the null
distribution generation procedure, three trends were evident. First, the p-values were higher when the
0.1 cutoff was used because the van’t Veer and others and West and others samples were not close to
the centroids. When compared to the null distributions made without a cutoff, the null distributions made
with the cutoff were skewed toward 1.0 (Figure 8). Second, the versions which applied the transformation
before permuting yielded smaller p-values than the versions that did not apply the transformation and just
permuted. Third, the p-values obtained from a centroid version were very similar to the p-values obtained
from the equivalent version using the raw data.

5. DISCUSSION

Although the IGP, HS, SS, SW, and WADP score all measure cluster quality, they are not equivalent.
In Simulation 1 (Figure 2), the average HS for the true classifications was unaffected by the change in
correlation between the columns of Q. Therefore, the HS does not capture any information about the
isolation of the centroids. On the other hand, the SS only captured information about the correlation
between centroids. In Simulation 2 (Figure 3), the average SS for the true classifications was unaffected
by the change in correlation between members of a groups and their centroids. In addition, in Simulation 2,
two of the SW true classification curves increased while two of the SW true classification curves decreased
between 50 < η2

1 < 250. Therefore, the HS, SS, and SW are poor choices for a cluster quality measure.
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Table 7. Estimated p-values for van’t Veer and others data by null distribution generation version
(no cutoff). The size of the null distribution is also given (n)

van’t Veer
and others
(no cutoff)

IGPs Version 1: per- Version 2: per- Version 3: trans- Version 4: trans-
mute centroids mute raw data form centroids form raw data

p-value n p-value n p-value n p-value n

Normal-like 0.300 0.3313 335 0.3860 329 0.3232 362 0.2779 367
ERBB2+ 0.429 0.1108 352 0.1534 365 0.0811 333 0.1095 338
Luminal A 0.658 0.3648 159 0.3519 108 0.2500 132 0.2340 141
Luminal B 0.481 0.5258 202 0.4684 190 0.3824 238 0.3333 207
Basal 0.971 0.0221 181 0.0070 142 0.0000 157 0.0000 155

Table 8. Estimated p-values for van’t Veer and others data by null distribution generation version
(0.1 cutoff). The size of the null distribution is also given (n)

van’t Veer
and others
(0.1 cutoff)

IGPs Version 1: per- Version 2: per- Version 3: trans- Version 4: trans-
mute centroids mute raw data form centroids form raw data

p-value n p-value n p-value n p-value n

Normal-like 0.250 0.6379 486 0.6804 1527 0.5151 13137 0.5029 3426
ERBB2+ 0.200 0.5196 766 0.5219 3545 0.4508 32089 0.4583 6118
Luminal A 0.692 0.7288 177 0.7843 102 0.3705 502 0.2776 425
Luminal B 0.333 0.9264 231 0.9010 293 0.7814 1830 0.7296 1028
Basal 0.971 0.4122 131 0.0000 3 0.0265 113 0.0099 203
Below-
cutoff 0.840 0.9638 4000 0.9844 50500 0.9137 250000 0.4680 25000

In both Simulation 1 and Simulation 2, the WADP score true classification curves differed greatly
from the estimated classification curves for some values of σ 2

1 or η2
1. This in addition to the requirement

that we choose a value for σWADP prevents the WADP score from being a good cluster quality measure.
Consequently, the IGP is the best choice for a cluster quality measure. First, the true classification

curves for all groups increased as σ 2
1 increased and η2

1 decreased. Second, the true classification curves are
close to the estimated classification curves. Third, the IGP did not require us to choose a parameter value.

Nevertheless, when all five cluster quality measures were applied to the breast cancer datasets, the
basal subtype was given the best score by four of the five measures (Table 2). In both datasets, the basal
subtype had the highest IGP, HS, and SW and had the lowest WADP score. The differences between these
four scores appeared when a cluster was not very cohesive or isolated. Thus, if all the clusters in the
datasets are of high quality, which of the four is used in the validation procedure may not matter.

Fig. 8. These are boxplots of the IGPs for eight different null distribution generation methods. Each version of the
null distribution generation procedure was twice applied (with and without cutoff) to both datasets for three different
group sizes (5, 10, and 20). Each even-numbered method and its odd-numbered neighbor to the left are identical
except that the even-numbered method uses the 0.1 cutoff and the odd-numbered method does not use a cutoff. All
the even-numbered plots are skewed toward 1.0 when compared to its left-hand neighbor. Null distribution generation
method labels: (1) permute centroids without cutoff, (2) permute centroids with 0.1 cutoff, (3) permute raw data
without cutoff, (4) permute raw data with 0.1 cutoff, (5) transform centroids without cutoff, (6) transform centroids
with 0.1 cutoff, (7) transform raw data without cutoff, and (8) transform raw data with 0.1 cutoff.
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Table 9. Estimated p-values for West and others data by null distribution generation version (no cutoff).
The size of the null distribution is also given (n)

van’t Veer
and others
(no cutoff)

IGPs Version 1: per- Version 2: per- Version 3: trans- Version 4: trans-
mute centroids mute raw data form centroids form raw data

p-value n p-value n p-value n p-value n

ERBB2+ 0.667 0.0670 806 0.0426 798 0.0435 620 0.0527 683
Luminal A 0.750 0.4185 227 0.2775 227 0.2020 203 0.2000 180
Luminal B 0.875 0.0058 685 0.0085 704 0.0047 852 0.0045 892
Basal 1.000 0.0162 309 0.0034 292 0.0000 276 0.0000 271

Table 10. Estimated p-values for West and others data by null distribution generation version (0.1 cutoff).
The size of the null distribution is also given (n)

van’t Veer
and others
(no cutoff)

IGPs Version 1: per- Version 2: per- Version 3: trans- Version 4: trans-
mute centroids mute raw data form centroids form raw data

p-value n p-value n p-value n p-value n

ERBB2+ 1.000 0.0181 1380 0.0105 17209 0.0317 19711 0.0202 3166
Luminal A 0.722 0.9191 136 0.6806 144 0.4259 108 0.4514 144
Luminal B 0.875 0.0240 458 0.0248 2297 0.0207 3000 0.0229 1003
Basal 1.000 0.1324 136 0.0139 144 0.0093 108 0.0278 144
Below-
cutoff 0.000 1.0000 2500 1.0000 25000 1.0000 25000 1.0000 5000

Since the quality of the clusters may not be known beforehand, the IGP was used to compare the four
versions of the null distribution generation procedure. Simulations 3–5 (Figures 5–7) showed when a null
distribution generation version produced p-values, they were lower for more isolated or more cohesive
clusters. In all three simulations, Version 2 did not yield any p-values and Version 1 tended to produce
more conservative p-values than Versions 3 and 4. Also, the p-values from Version 3 and Version 4 were
very similar. In addition, dependence between the rows of two of the columns of the centroid matrix (C)
had the most impact when the clusters were not isolated (0 < σ 2

1 < 10). When the rows of C were not
completely independent and the clusters were not isolated, the average p-value for a cluster was lower than
the average p-value for the same cluster when all the rows of C were independent, even for the columns
of C that were generated identically in Simulation 3 and Simulation 5. The difference in the p-values
between Simulation 3 and Simulation 5 was most dramatic for the clusters of larger size.

Similar conclusions were seen when the null distribution generation versions were compared using
real data (Tables 7–10). Not only were the p-values produced by Version 3 and Version 4 very similar for
the breast cancer data but also were the p-values produced by Version 1 and Version 2. In other words,
a p-value from a raw data version was close to the p-value from the corresponding centroid version.
Furthermore, as was seen when Version 1 and Version 3 p-values were compared in the simulations, a
p-value from a version that did not use a transformation was more conservative than the p-value from the
corresponding transformation version. Moreover, the p-values from the versions using a 0.1 cutoff were
more conservative than the versions not using a cutoff (Figure 8). Most likely, this is due to the IGP of
each group without a cutoff being as high or higher than the IGP of the group with the 0.1 cutoff in all
but one case (West and others ERBB2+). Based upon these results, a cutoff should not be used because it
may reduce the quality of a cluster when quality is measured by the IGP.
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Of the cluster quality measures considered, the IGP was the best at quantifying how likely a point was
to be assigned to a different cluster. Of the null distribution generation versions, Versions 3 and 4 most
reliably generated p-values. Although the two versions generated very similar p-values, Version 3 is supe-
rior to Version 4. Version 3 takes less time to implement, does not use raw data which may be unavailable,
and does not require the user to make a choice about which hierarchical clustering method to use.

Therefore, using the IGP with the transform centroids version of the null distribution generation pro-
cedure without a cutoff (Version 3, c = 0, and α = 0.05), Section 4 shows that only the ERBB2+1,
luminal B, and basal-like groups are reproducible and potentially biologically significant.

An implementation of null distribution generation Version 3 without a cutoff is available on-line
through CRAN (http://cran.r-project.org) in the clusterRepro package.

As this breast cancer application demonstrates, the cluster validation method proposed here has the
potential to be very useful. For a cluster found in datasets independent of the one in which it was defined,
we believe this method (using the IGP and null distribution generation Version 3 without a cutoff) reliabily
and efficiently gauges the significance of the cluster’s reproducibility.

ACKNOWLEDGMENTS

Robert Tibshirani was partially supported by National Science Foundation Grant DMS-9971405 and
National Institutes of Health Contract N01-HV-28183.

REFERENCES

BAILEY, T. A. AND DUBES, R. (1982). Cluster validity profiles. Pattern Recognition 15, 61–83.

BREASTCANCER.ORG. (2004). Stages of Breast Cancer. http://www.breastcancer.org/cmn sta idx.html.

CHEN, G., JARADAT, S. A., BANERJEE, N., TANAKA, T. S., KO, M. S. H. AND ZHANG, M. Q. (2002). Evaluation
and comparison of clustering algorithms in analyzing es cell gene expression data. Statistica Sinica 12, 241–62.

DATTA, S. AND DATTA, S. (2003). Comparisons and validation of statistical clustering techniques for microarray
gene expression data. Bioinformatics 19, 459–66.

DUDOIT, S. AND FRIDLYAND, J. (2002). A prediction-based resampling method for estimating the number of clus-
ters in a dataset. Genome Biology 3, research0036.1–21.

DUDOIT, S., FRIDLYAND, J. AND SPEED, T. P. (2002). Comparison of discrimination methods for the classification
of tumors using gene expression data. Journal of the American Statistical Association 97, 77–87.

GORDON, A. D. (1999). Classification. Boca Raton, FL: Chapman & Hall.

KERR, M. K. AND CHURCHILL, G. A. (2001). Bootstrapping cluster analysis: assessing the reliability of con-
clusions from microarray experiments. Proceedings of the National Academy of Sciences of the Unites States of
America 98, 8961–5.

LEVINE, E. AND DOMANY, E. (2001). Resampling method for unsupervised estimation of cluster validity. Neural
Computation 13, 2573–93.

NATIONAL CANCER INSTITUTE (2004). Staging: Questions and Answers. http://www.cancer.gov/cancertopics/
factsheet/Detection/staging.

PEROU, C. M., SØRLIE, T., EISEN, M. B., VAN DE RIJN, M., JEFFREY, S. S., REES, C. A., POLLACK, J. R.,
ROSS, D. T., JOHNSEN, H., AKSLEN, L. A. and others (2000). Molecular portraits of human breast tumours.
Nature 406, 747–52.

1ERBB2+ was validated on the West and others dataset and only two or three samples were classified to this subtype so this
result is somewhat suspect.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/1/9/251048 by guest on 16 August 2022

http://cran.r-project.org
http://www.breastcancer.org/cmn_sta_idx.html
http://www.cancer.gov/cancertopics/factsheet/Detection/staging
http://www.cancer.gov/cancertopics/factsheet/Detection/staging


Are clusters found in one dataset present in another dataset? 31

SØRLIE, T., PEROU, C. M., TIBSHIRANI, R., AAS, T., GEISLER, S., JOHNSEN, H., HASTIE, T., EISEN, M. B.,
VAN DE RIJN, M., JEFFREY, S. S. and others (2001). Gene expression patterns of breast carcinomas distinguish
tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States
of America 98, 10869–74.

SØRLIE, T., TIBSHIRANI, R., PARKER, J., HASTIE, T., MARRON, J. S., NOBEL, A., DENG, S., JOHNSEN, H.,
PESICH, R., GEISLER, S. and others (2003). Repeated observation of breast tumor subtypes in independent
gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America 100,
8418–23.

TIBSHIRANI, R. AND WALTHER, G. (2005). Cluster validation by prediction strength. Journal of Computational and
Graphical Statistics. 14, 511–28.

VAN’T VEER, L. J., DAI, H., VAN DE VIJVER, M. J., HE, Y. D., HART, A. A. M., MAO, M., PETERSE, H. L.,
VAN DER KOOY, K., MARTON, M. J., WITTEVEEN, A. T. and others (2002). Gene expression profiling predicts
clinical outcome of breast cancer. Nature 415, 530–6.

WEST, M., BLANCHETTE, C., DRESSMAN, H., HUANG, E., ISHIDA, S., SPANG, R., ZUZAN, H., OLSEN, JR,
J. A., MARKS, J. R. AND NEVINS, J. R. (2001). Predicting the clinical status of human breast cancer by using
gene expression profiles. Proceedings of the National Academy of Sciences of the United States of America 98,
11462–7.

YEUNG, K. Y., HAYNOR, D. R. AND RUZZO, W. L. (2001). Validating clustering for gene expression data. Bioin-
formatics 17, 309–18.

[Received July 28, 2005; revised February 28, 2006; accepted for publication March 8, 2006 ]

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/8/1/9/251048 by guest on 16 August 2022


