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Abstract
Nearshore-structured habitats—including underwater grasses, mangroves, coral, and

other biogenic reefs, marshes, and complex abiotic substrates—have long been postu-

lated to function as important nurseries for juvenile fishes and invertebrates. Here, we

review the evolution of the “nursery habitat hypothesis” and use>11,000 comparisons

from 160 peer-reviewed studies to test whether and which structured habitats increase

juvenile density, growth, and survival. In general, almost all structured habitats signif-

icantly enhanced juvenile density—and in some cases growth and survival—relative

to unstructured habitats. Underwater grasses and mangroves also promoted juvenile

density and growth beyond what was observed in other structured habitats. These

conclusions were robust to variation among studies, although there were significant

differences with latitude and among some phyla. Our results confirm the basic nurs-

ery function of certain structured habitats, which lends further support to their con-

servation, restoration, and management at a time when our coastal environments are

becoming increasingly impacted. They also reveal a dearth of evidence from many

other systems (e.g., kelp forests) and for responses other than density. Although recent

studies have advocated for increasingly complex approaches to evaluating nurseries,

we recommend a renewed emphasis on more straightforward assessments of juvenile

growth, survival, reproduction, and recruitment.

K E Y W O R D S
coral reef, density, growth, juvenile, mangrove, marsh, seagrass, survival

1 INTRODUCTION

A defining feature of all shallow waters of coastal and estu-

arine regions throughout the world is the presence of one

or more structured habitats. These habitats range from foun-

dational autotrophs (seagrasses, mangroves, marshes, other

submersed vegetation—including tidal freshwater plants—

and macroalgae/kelps) to coral reefs and other animal-derived

structures (oysters, mussels, sponges) to abiotic substrates

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2019 The Authors. Conservation Letters published by Wiley Periodicals, Inc.

(rock crevices, shell hash, cobble). They are considered

“structured” because they have complex three-dimensional

shapes that protrude above the benthos compared to unstruc-

tured habitats, such as sand and mud, which provide only

a relatively flat, two-dimensional surface. Structured habi-

tats are economically and ecologically important to the

regions they occupy: they directly or indirectly provide a

variety of ecosystem services including carbon sequestra-

tion, shoreline protection, nutrient cycling, food products,
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disease prevention, and recreation (Barbier et al., 2011;

Costanza et al., 1997). Perhaps the most cited function of all is

as a nursery in which juveniles of numerous species of verte-

brates and invertebrates can grow and mature before migrating

elsewhere as adults.

The formal conceptualization of a nursery habitat was first

proposed by Beck et al. (2001) who clarified that a habitat

should be considered a nursery for juveniles if their density,

growth, survival, and/or movement to adult habitats is, on

average, greater than in other habitats. A series of quantitative

meta-analyses testing this new definition quickly followed for

seagrasses (Heck, Hays, & Orth, 2003), salt marshes (Minello,

Able, Weinstein, & Hays, 2003), and mangroves (Sheridan

& Hays 2003). These showed that juvenile density, growth,

and survival were indeed higher in structured habitats than

unstructured ones, particularly seagrasses. At the time, there

were few tests of recruitment to adult populations, but a con-

temporaneous review of juvenile dispersal potential suggested

that this process is highly variable, with juveniles moving

anywhere from 10−1 to 106 m to reach their adult habitats

(Gillanders, Able, Brown, Eggleston, & Sheridan, 2003).

More critically, the study by Gillanders et al. (2003) rein-

forced the idea that, while juvenile and adult habitats can

and often do overlap, nurseries should reflect only a subset

of potential adult habitats. In other words, a habitat cannot

be considered a nursery if a species utilizes it exclusively

throughout their entire life history: in this case, the "nursery"

would simply be known as its habitat (Beck et al., 2001).

With emerging information on the complex life history

strategies of certain species and the multiple interactions that

occur during their ontogenetic development to their adult

phase, it became clear that the original definition of Beck

et al. (2001) required additional nuance. Dahlgren et al. (2006)

argued that earlier work ignored habitats that may contribute

relatively fewer individuals to the adult population, but are

nonetheless critical to maintaining the population, particu-

larly in years of high variability in juvenile recruitment (Kraus

& Secor 2005). Dahlgren et al. (2006) thus proposed the

"effective juvenile habitat" (EJH), which recognizes the abso-

lute value of certain habitats regardless of their per unit

area contributions. A reply by Sheaves, Baker, and Johnston

(2006), however, cautioned that the EJH approach was also

too simplistic and, like Beck et al. (2001), did not consider the

effects of scale, complexity, connectivity, resource availabil-

ity, and other biotic and abiotic processes occurring within

and between habitats, and further did not address reproduc-

tive output other than total number of adult recruits. Fodrie,

Levin, and Lucas (2009) likewise stressed population growth

as a more representative metric of the nursery function of

certain habitats.

A penultimate review by Sheaves (2009) formalized the

idea that multiple habitats, with all their inherent processes,

tightly link to form the "coastal ecosystem mosaic," and this

mosaic more than any particular habitat is critical to main-

taining the overall nursery function of coastal areas. Multiple

habitats, he argued, are necessary to accommodate the varied

life histories of organisms, from larva to adult, as well as

food web dynamics, differing resources, and abiotic forcing,

all of which are central to the growth, survival, and eventual

recruitment of juveniles. This idea finally led to the marriage

of the principles of the nursery function to landscape ecology

to produce the concept of the “seascape nursery” (Boström,

Pittman, Simenstad, & Kneib, 2011; Litvin, Weinstein,

Sheaves, & Nagelkerken, 2018; Nagelkerken, Sheaves,

Baker, & Connolly, 2015). This modern view considers all

stages of the life history of an individual, including transient

settlement in formerly unrecognized habitats, ascribing

each to “hotspots” and establishing migration corridors that

connect juvenile and adult populations.

The evolution of this nursery habitat hypothesis, as origi-

nally defined by Beck et al. (2001), has occurred rapidly and

stimulated considerable reflection and refinement on what

constitutes a nursery. At the same time, researchers have been

empirically testing this hypothesis both in the field and labo-

ratory. Two synthetic analyses have updated the earlier suite

of quantitative reviews (Heck et al., 2003; Minello et al.,

2003; Sheridan & Hays 2003) to include more recent stud-

ies. First, Igulu et al. (2014) summarized 14 studies testing

the use of mangroves, seagrasses, and coral reefs by juve-

nile fishes, showing that while structured habitats supported

higher densities of fauna than coral reefs, abiotic properties

such as tidal amplitude and salinity played a much larger role

than habitat per se in defining juvenile properties. McDevitt-

Irwin, Iacarella, and Baum (2016) analyzed 51 papers focus-

ing only on seagrasses and showed that—like Heck et al.

(2003) before—seagrass habitat supported higher densities

and increased growth of juveniles relative to bare sediment

or other structured habitats. Moreover, these effects were

stronger in temperate than in subtropical regions, and more

important for invertebrates than for fishes.

Despite the considerable conceptual advances made to the

nursery habitat hypothesis over the past two decades—and

substantial effort by many state, federal and international

organizations to protect and restore many of these important

structured habitats in part on the basis of their nursery

function—most empirical tests have reported on the three

juvenile attributes originally proposed by Beck et al. (2001):

density, growth, and survival. With repeated calls for scaling-

up to seascape-level investigations, we find it valuable to first

assess the current body of evidence that has accumulated

since Beck et al. (2001) to see whether their original and

simpler definition has been satisfactorily addressed. To that

end, we conducted a search of the peer-reviewed literature

and identified 160 studies on the role of structured habitats

in promoting juvenile performance. We then applied formal

meta-analysis to provide the most comprehensive test of the
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nursery habitat hypothesis to date. Our goals were to assess

the strength of evidence for coastal habitats as nurseries

based on all available data, and to determine the degree

to which empirical tests have or have not kept up with the

evolution of the nursery concept in the past several decades.

2 METHODS

We adhered to the PRISMA standard for meta-analysis report-

ing (Moher et al., 2009). A flowchart of the evaluation process

and PRISMA checklist are available in the Supporting Infor-

mation. We performed a Google Scholar search on October 3,

2016, using the following search string:

(nurser* OR “habitat complex*” OR EJH OR
“effective juvenile habitat” OR “structural*
complex*”) AND (marine OR estuar* OR coast*
OR nearshore OR seascape OR seagrass* OR
SAV OR mangrove* OR marsh* OR saltmarsh*
OR wetland* OR reef* OR macroalga* OR kelp*
OR macrophyte* OR lagoon* OR brackish)
AND (juvenile* OR recruit* OR post-larva* OR
post-settle* OR sub-adult* OR young OR YOY
OR anadromous OR age-0 OR natal OR pup
OR fry OR fingerling OR smelt) AND (growth
OR surviv* OR recruit* OR densit* OR abun-
dance* OR product* OR movement OR connect*
OR emigrat* OR migrat*)

The initial search returned 2,607 abstracts from peer-

reviewed journals. We conducted an additional forward search

on Beck et al. (2001), which yielded 527 additional unique

abstracts. We also added 50 unique abstracts from two recent

reviews (McDevitt-Irwin et al., 2016; Nagelkerken, 2009;) for

a total of 3,184 abstracts.

To be included in our analysis, a study must have: (a) tested

the role of structure relative to an unstructured control or other

structured habitat (i.e., the study had to be comparative); (b)

identified at least one habitat as a potential "nursery"; (c) not

included artificial habitats (e.g., bulkheads, shipwrecks); (d)

explicitly stated that at least one of the organisms considered

were juveniles; and (e) reported a quantitative measure of per-

formance such as density, growth, etc. If both juvenile and

adults were censused, we chose only responses pertaining to

juveniles. If studies reported aggregate measures (e.g., total

community abundance) but did not discriminate among juve-

niles and adults, we excluded them from our analysis.

Assessment was conducted by two separate evaluators: if

both agreed, the study was retained for further consideration;

if both disagreed, the study was rejected; and if there was

no consensus, the study was reviewed in committee until a

decision was reached. Of the 3,184 initial abstracts, 2,900

were rejected for not meeting our initial criteria based on

content in the abstract. We then obtained copies of the 284

remaining references and conducted a second round of eval-

uation based on the content of the entire paper, of which 123

were deemed unsuitable (Table S1). Our final list for data

extraction included 160 references from the peer-reviewed

literature.

Means/sums/proportions, sample sizes, and standard devi-

ations (when reported) were extracted from text, figures, or

tables presented in the main text or Supporting Information.

For graphical presentations, we used the Measure Tool in

Adobe PDF Reader (Adobe Systems, Inc.) to estimate the data

points. We also collected metadata on the location, exper-

imental design, abiotic environment (e.g., salinity regime),

habitat type and their characteristics, response type and units,

and characteristics of the response organisms (e.g., taxonomy,

trophic group), when reported.

To analyze the response data, we used the log response

ratio, hereafter LRR (Hedges, Gurevitch, & Curtis, 1999). The

LRR is computed as follows:

𝐿𝑅𝑅 = ln

(
𝑋𝑇

𝑋𝐶

)
, (1)

where 𝑋𝑇 is the mean value of a response in one habitat

and 𝑋𝐶 is the mean of the same response in the comparison

habitat. These comparisons were only conducted within the

same species, in the same treatment, in the same study. Unlike

other estimates of effect size, the LRR does not require infor-

mation about the variance of the observations. As we encoun-

tered many situations in which variance was not reported or

was not estimable (e.g., survival, total density), the LRR is the

only meta-analytical metric that can harness the full power of

our dataset. However, to test the robustness of our conclusions

to our choice of metric, we computed several additional effect

sizes that do incorporate sampling variance into their calcu-

lations: Hedges’ d (Hedges & Olkin 1985) and bias-adjusted

LRRΔ and LRRΣ (Lajeunesse, 2015; see Supporting Informa-

tion).

We conducted two analyses of the raw data: in the first, we

focused only on structured versus unstructured habitats (e.g.,

submersed aquatic vegetation [SAV] vs. bare sand). In the sec-

ond, we compared structured against other structured habitats

(e.g., SAV vs. mangroves). In both cases, we computed the

mean 𝐿𝑅𝑅 for each response category (density, growth, and

survival) as the average of individual LRRs ± 1 standard error

of the mean. We also computed the inverse variance-weighted

and sample size weighted LRRs (when reported) to assess how

the precision of each study influenced our overall conclusions

(Hedges et al., 1999). Finally, we performed several tests of

bias and sensitivity (see Supporting Information).

We used a modeling approach to identify the important pre-

dictors of the structured versus unstructured LRRs. For each
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response category (density, growth, survival), we fit a general

linear mixed effects model using the nlme package (Pinheiro,

Bates, DebRoy, & Sarkar, 2017) in R version 3.5.0 (R Core

Team 2017) including the following fixed effects:

𝐿𝑅𝑅𝑖𝑗 ∼ 𝛼𝑖𝑗 + Habitat + Salinity Regime + Latitude

+Trophic Level + Lab or Field + 𝜀𝑖𝑗 , (2)

where 𝐿𝑅𝑅𝑖𝑗 is the ith observation in the jth study. We also

allowed the intercept 𝛼 to vary randomly by study j to account

for any variation arising from being within a particular study:

𝛼𝑗 ∼ 𝛼0 + 𝑏0𝑢𝑗 + 𝜂𝑗 . (3)

For the model of density LRRs, we included the additional

fixed effect of phylum, which could not be fit for the other

responses due to model convergence errors arising from lack

of representation in certain phyla. We obtained and plotted the

model-estimated partial means for each level of each covariate

using the effects package (Fox, 2003).

3 RESULTS

Our final dataset included 160 studies spanning the years

1986–2016 and 11,236 total comparisons for the final anal-

ysis. Studies were distributed among six continents but con-

centrated in North America and Europe (Figures 1A and S1).

Studies overwhelmingly reported on juvenile density (e.g.,

abundance, biomass, etc. per unit area), although a smaller

number reported on growth and survival (Figure 1B). No stud-

ies reporting on recruitment met our criteria for inclusion,

despite being one of the original response variables identi-

fied by Beck et al. (2001). Almost all studies reported on data

from an unstructured control, and most studies also included

SAV (including marine and freshwater grasses) as a structured

comparison (Figure 1C). Mangroves, coral reefs, marshes,

macroalgae (including both drift and turf), and other biogenic

reefs (including oysters, mussels, and sponges) were also rep-

resented, while abiotic habitats (such as rubble and shell) and

kelp forests (distinguished from macroalgae by the original

authors) reported the fewest tests (Figure 1C). Studies con-

sidered largely carnivores and omnivores, with a fewer num-

ber of studies considering exclusively herbivores or mixed

assemblages (Figure 1C). Taxonomically, ray-finned fishes

were overwhelmingly represented (85% of all measurements),

with fewer values reported for crustaceans (14%), gastropods

(1%), and sharks and rays (<1%).

Compared to unstructured habitats, juvenile density was

enhanced by the presence of SAV, mangroves, coral reefs,

other biogenic reefs, and rubble or shell hash, with macroal-

gae having no effect and kelp being slightly worse than the

unstructured habitat (Figure 2). SAV also enhanced growth

and survival, whereas most other structured habitats revealed

no significant effect (Figure 2). Exceptions included rubble,

shell, and rock, which significantly enhanced growth, and

macroalgae, and biogenic reefs, which additionally enhanced

survival (Figure 2). We note that the values for many habitats,

including biogenic reefs, kelps, and abiotic substrates, reflect

averages over only 3–10 independent studies, and thus should

be interpreted with caution relative to better represented habi-

tats such as SAV. Regardless of sample size, however, within-

study variance tended to be consistent and low across studies

(Figure S2).

When we repeated our analysis using Hedges’ d as our

effect size, we observed equivalent or stronger effects: all

habitats, for example, significantly enhanced juvenile den-

sity, and most enhanced growth and survival (Figure S3).

We note, however, that these averages were derived from the

54% of studies that reported sample variances, which may

explain deviations from the larger analysis (Figure 2). Simi-

larly, weighting the LRR by the inverse of the variance or sam-

ple size (Figures S4 and S5), and adjusting the LRR for addi-

tional sampling bias using the methods in Lajeunesse (2015;

Figures S6 and S7), revealed nearly identical trends to the

main analysis. Thus, for the studies reporting variances, there

appeared to be no systematic bias introduced by low precision

or low replication relative to the entire dataset.

Although SAV consistently and generally enhanced den-

sity, growth, and survival relative to an unstructured control,

it was generally inferior to mangroves (Figure 3). However,

SAV did enhance juvenile densities beyond those observed

in coral reef, marsh, and macroalgal habitats (Figure 3). In

turn, coral reefs also significantly increased juvenile density

relative to macroalgae. There was little difference among the

habitats in effects on growth or survival, except for coral reefs,

which had somewhat greater juvenile growth compared to

SAV, mangroves, or macroalgae (Figure 3). Due to low sample

sizes, comparisons to other structured habitats were omitted

(e.g., rubble, rock). Nearly identical trends were observed for

Hedges’ d and variants of the LRR (Figures S8–S10), with the

exception of macroalgae being slightly better than coral reefs

for juvenile density.

The modeling results revealed few significant predictors

for the LRR of structure versus no structure for any of the

response categories (Table 1). The major exception was habi-

tat, for which we have already described the major differences

(Figure 2). One of the few other significant predictors was

a positive relationship between latitude and juvenile density,

with a stronger effect of structured habitats at higher latitudes

(Figure 4). Similarly, there were slightly higher benefits

of structured habitats for arthropod invertebrates than for

vertebrates, primarily Actinopterygian fishes (Figure 5).

Otherwise, there was remarkable consistency in the expected
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F I G U R E 1 (a) Geographic distribution of 160 studies used in the final meta-analysis. (b) The number of studies reporting on each of the three

juvenile attributes (density, growth, and survival). (c) The number of studies reporting on different habitats, and the trophic composition within each

habitat

effect sizes by trophic level, salinity regime, and whether

studies were conducted in the laboratory or field (Table 1 and

Figure 5).

4 DISCUSSION

In our meta-analysis of 160 published articles, we found

substantial evidence for the role of structured habitats in

enhancing the density, growth, and survival of juvenile fishes

and invertebrates. There were, however, differences among

habitats in both magnitude of the effect size and degree of

support. SAV (including marine and freshwater grasses),

for example, had 3× more tests than the next most studied

habitat (Figure 1) . Consequently, studies incorporating SAV

yielded unequivocal support for the role of this habitat in

increasing all three responses variables relative to unstruc-

tured habitats (Figures 2 and S3–S7). When compared to

other structured habitats, SAV was superior to all habitats

other than mangroves (Figures 3 and S8–S10). Thus, based

on available evidence, SAV and mangroves appear to confer

the greatest nursery benefits, a result that is consistent with

several prior syntheses (Heck et al., 2003; Igulu et al., 2014;

McDevitt-Irwin et al., 2016).

The next most important structured habitat after SAV and

mangroves was coral reefs (Figures 2 and 3). Historically,

coral reefs have been ignored as potential nurseries: neither

the Beck et al. (2001) paper nor any of the early synthesis

efforts considered coral reefs, presumably because, for most

fishes, the reef also functions as the final adult habitat.

Yet, a handful of studies around the same time showed that

shallow coral reefs supported equivalent or higher juvenile
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F I G U R E 2 Log response ratios (LRRs) comparing each structured habitat (y-axis) to the unstructured control (e.g., bare sediment). Values are

grand means ±95% confidence intervals. Values >0 indicate a positive effect of structure on density, growth, or survival, and values <0 indicate a

negative effect of structure on those properties. The number of comparisons is given next to each point

T A B L E 1 Analysis of variance (ANOVA) results from general linear mixed effects models predicting the log response ratio of structured

versus unstructured habitats

Response Predictor Num. df Denom. df F-value p-Value
Density Intercept 1 1,863 58.951 <.001***

Density Structured habitat 8 1,863 16.717 <.001***

Density Salinity 2 1,863 0.686 .504

Density Latitude 1 1,863 8.059 .005**

Density Trophic level 2 1,863 0.791 .454

Density Phylum 2 1,863 3.392 .034*

Density Lab/field 1 1,863 0.111 .739

Growth Intercept 1 189 4.420 .037*

Growth Structured habitat 6 189 4.622 <.001***

Growth Salinity 1 189 1.986 .160

Growth Latitude 1 189 0.677 .412

Growth Trophic level 2 17 1.160 .337

Growth Lab/field 1 189 0.022 .883

Survival Intercept 1 241 24.166 <.001***

Survival Structured habitat 7 241 1.323 .240

Survival Salinity 2 28 0.049 .952

Survival Latitude 1 28 0.140 .711

Survival Trophic level 2 28 0.134 .875

Survival Lab/field 1 28 0.020 .888

Significant predictors are indicated with asterisks (*.05 > p ≥ .01;**.01 > p ≥ .001;***p < .001).

densities than other habitats such as SAV and mangroves

(Nagelkerken et al., 2000, 2002). Several later studies also

supported this assertion (Dorenbosch et al., 2004; Eggleston

et al., 2004; Kimirei et al., 2011), even showing that density

and growth was greater on coral reefs than in other structured

habitats (Grol et al., 2008; Tupper, 2007). Such studies

might otherwise be excluded under the definition of Beck

et al. (2001) due to reef also serving as the adult habitat,

except that many fishes appear to partition their use of

different subhabitats on the reef throughout their devel-

opment. For example, several common reef fishes utilize

the shallow back reef before migrating to the deeper fore

reef as adults (Adams & Ebersole 2002; Nagelkerken et al.,

2000).
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F I G U R E 3 Log response ratios comparing each structured habitat to another structured habitat. Values are means ±95% confidence intervals.

Values >0 indicate higher performance in the first habitat, while values <0 indicate higher performance in the second habitat. The number of

comparisons is given next to each point

F I G U R E 4 The model-estimated (expected) log response ratio as a function of latitude for each of the juvenile response categories. Estimates

are (partial) predicted fits ±95% confidence intervals and account for the other covariates in the model. The significant fits are given in solid lines,

while dashed lines reflect nonsignificant relationships (p > .05). Rug plots along the x-axis reflect the distribution of raw observations

This notion of "subhabitats" complicates the identification

of coral reefs as a nursery per se, as a fine understanding

of each species’ ontogenetic habitat requirements is required.

Indeed, many coral reef fishes have complex life cycles, such

as those in the families Haemulidae, Lutjanidae, and Ser-

ranidae, which utilize different habitats throughout their juve-

nile development (e.g., seagrass → mangroves → coral reef)

or even different subhabitats within those habitats (e.g., coral

or rubble embedded within seagrass beds; reviewed in Adams

et al., 2006). Similar life histories are also present in other sys-

tems such as the ontogenic shift of bay scallops from the sea-

grass canopy to the benthos at a certain size (Thayer & Stuart

1974). Although our data support the notion that coral reefs

can enhance juvenile densities, they were most often invoked
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F I G U R E 5 The model-estimated (expected) log response ratio as a function of various predictors for each of the juvenile response categories.

Estimates are (partial) predicted means ±95% confidence intervals and account for the other covariates in the model. The significant (p < .05)

covariates are filled in black. Sample sizes are given next to each point

as the "control" case to ensure that juvenile and adult densities

were not conflated. On the other hand, coral reefs are among

the most complex three-dimensional coastal habitats and thus

should not be treated in the same way as sand and mud. Con-

tinued exploration of when and how coral reefs function as

nurseries, with a particular focus on subhabitats, is a crucial

frontier, and may prove analogous to differences observed in

edge versus interior habitats (Boström, Jackson, & Simenstad,

2006).

Other coastal habitats, such as marshes, biogenic reefs,

and rubble and shell hash, also appear important in our

dataset, although they had many fewer tests than SAV or man-

groves (Figures 2 and 3). The trends, however, are promis-

ing: biogenic reefs and shell/rubble had the strongest effect

sizes relative to unstructured controls (Figures 2 and S3–

S7), but reduced sample sizes precluded testing them rela-

tive to other habitats. Oyster reefs in particular were high-

lighted by Beck et al. (2001) for needing further research,

and although it appears there has been some progress, many

more tests are required to generate evidence on par with

that of SAV beds. Macroalgae, which includes both upright

seaweeds and turf-forming algae, appeared no better than

bare substrate, perhaps owing to both high spatial and tem-

poral variance in habitat complexity afforded by their dif-

ferent forms (especially drift macroalgae) and the relatively

low sample size. In some cases, macroalgae also reflected

an undesirable or degraded state after eutrophication or cli-

mate shifts (Aburto-Oropeza, Sala, Paredes, Mendoza, &

Ballesteros, 2007; Wennhage, 2002; Wennhage & Pihl 1994),

or as an alternative habitat after the preferred habitat had been

severely reduced, such as SAV in Chesapeake Bay (Johnston

& Lipcius 2012).

Kelps, a subset of macroalgae, appeared to be the only

habitat that was worse for juveniles than even bare substrate

(Figure 2), although this inference is based on only four

studies in the Gulf of Maine (Lazzari, 2008, 2013; Lazzari &

Stone 2006; Lazzari, Sherman, & Kanwit, 2003). This result

may reflect region-specific patterns in foundational species

composition—these four studies consider only laminarian

kelps—but also a community-level perspective that obscured

responses by individual species. For example, the Atlantic

cod Gadus morhua tended to have higher densities in kelps

(Lazzari, 2013), but its signal was negated, on average, by

a diversity of other species. Thus, kelps provide a critical

reminder that species of particular commercial interest, such

as cod, may require a less community-oriented perspective

when evaluating their association with potential nurseries.

Although previous work has also demonstrated the benefits of

kelp for juvenile fishes (Anderson, 1994; Carr, 1989), these

studies were not comparative (often focusing on differing
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complexities within kelp habitat), and thus were not suitable

for inclusion in our analysis. Future efforts in kelp forests

should therefore adopt a comparative approach.

Beyond habitat differences, we found very little variation

in the effect size of structured versus unstructured habitat

as a function of trophic level, laboratory versus field stud-

ies, and salinity regime (Table 1). The two notable excep-

tions were effects of latitude and phyla on density, both of

which have been observed previously. The increasing effect of

structured habitats on juvenile density with increasing latitude

was most recently reported in the meta-analysis by McDevitt-

Irwin et al. (2016) in which they proposed the availability

of alternative nurseries in tropical regions could explain the

weaker effects of seagrass habitat. Removing SAV compar-

isons from the dataset yielded a nonsignificant effect of lati-

tude (p = .063), indicating that this trend in our analysis was

also driven primarily by SAV. An alternative but not mutu-

ally exclusive explanation might be the paradigm of decreas-

ing predation with increasing latitude (Schemske, Mittelbach,

Cornell, Sobel, & Roy, 2009), which leads to higher juvenile

survival and increased densities in temperate regions, as has

been shown recently in a global comparative seagrass experi-

ment (Reynolds et al., 2017).

Like McDevitt-Irwin et al. (2016) and Minello et al. (2003),

we also found a stronger effect of habitat on some inverte-

brates (arthropods) than vertebrates (Actinopterygian fishes).

They attributed these patterns to the greater availability of

food resources for invertebrates in seagrass habitats. Inver-

tebrates may also benefit from the vertical structure: higher

habitats leave benthic invertebrates less exposed to predators.

In our case, the simplest explanation may be mobility: inver-

tebrates are less mobile, especially as they transition to their

adult phase (Gillanders et al., 2003), and thus depend more on

structure to both hide from predators and provide food. In con-

trast, juvenile fishes can forage more broadly within a habitat

and move to other, more suitable habitats to avoid predation.

Invertebrates were also 6× less represented than vertebrates in

our dataset, which may have also contributed to the observed

difference between the two.

There are undoubtedly many other factors that mediate the

nursery function but could not be tested in our dataset. We

relied on the authors of the original publications to supply

information on such variables, but unfortunately these were

not consistently reported enough to support rigorous anal-

ysis (see Supporting Information). A recent meta-analysis

also suggested that abiotic conditions can greatly influence

the nursery function of coastal habitats (Igulu et al., 2014),

and other reviews of nurseries along the Northeast Pacific

(Hughes et al., 2014) and Northeast Atlantic coasts (Brown

et al., 2018) found that numerous human-induced stressors

can pose a risk to the nursery function (Toft et al., 2018). To

date, however, explicit examples of nursery impairment due

to anthropogenic or other environmental factors are rare and

should be considered as an important next step for nursery

research.

Our study has several implications for conservation and

management. First, of the 315 organisms identified to species

in our dataset, 230 are considered commercially fished or

farmed somewhere in the world according to Food and Agri-

culture Organization of the United Nations (http://www.fao.

org/fishery/collection/asfis/en): 215 fishes, 14 crustaceans

(mostly Penaeid shrimps), and 1 gastropod (the queen conch

Strombus gigas). Although many species were undoubtedly

targeted by the original authors specifically because they

are of interest to fisheries, this statistic underlies the key

role coastal systems play in supporting coastal economies.

For example, a recent global analysis revealed that the nurs-

ery value of seagrass meadows may account for one fifth

of the world's largest 25 fisheries (Unsworth, Nordlund,

& Cullen-Unsworth, 2018). Moreover, five species in our

dataset are considered "threatened" by the IUCN (http://www.

iucnredlist.org/), four are "endangered," and one is listed as

"critically endangered" (the European eel, Anguilla anguilla,

in Polte & Asmus 2006). Although such organisms are, by

definition, rare, their inclusion in 13 studies does suggest that

nursery habitats can sometimes serve as refuge for juveniles

of vulnerable marine species.

Second, our comparative analysis may provide justifica-

tion for the prioritization of resources toward certain habitats.

SAV, for example, provided the greatest benefit to unstruc-

tured controls (Figure 2), but was generally inferior to man-

groves in cases where only the two were compared (Figure 3).

Similarly, SAV conferred greater nursery benefits relative to

other temperate habitats, such as marshes and macroalgae,

which also happen to be regions where SAV loss is most

prominent (Waycott et al., 2009). Thus, maintenance of SAV

might be prioritized in temperate areas or in cases where frag-

mentation or conversion to unvegetated substrate is underway,

but less so in tropical regions where SAV and mangroves still

coexist.

Finally, despite its prominence in Beck et al. (2001), no

study in our 30-year dataset reported on measures of recruit-

ment in a systematic, comparative manner that allowed for

inclusion in our analysis. This result likely stems from the

historical difficulties in linking adult populations with their

juvenile origins, although new techniques—such as stable

isotopes (Herzka, 2005), otolith microchemistry (Gillanders,

2005; Gillanders & Kingsford 2000), and environmental or

eDNA—may provide some solutions. Yet, the concept of

the "nursery habitat" has accelerated to consider the interac-

tion between multiple habitats, the abiotic environment, and

human impacts in driving recruitment over increasingly larger

temporal and spatial scales (Litvin et al., 2018; Nagelkerken

et al., 2015; Sheaves, 2009).

Inarguably, the "seascape nursery" provides the most real-

istic perspective on the functioning of coastal nurseries.

http://www.fao.org/fishery/collection/asfis/en
http://www.fao.org/fishery/collection/asfis/en
http://www.iucnredlist.org/
http://www.iucnredlist.org/
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However, this reality can be sobering and potentially discour-

aging to managers, especially those in developing countries

where the funds to study and unravel multifaceted relation-

ships are limited or nonexistent. Even in the United States,

where resources are comparatively very high, a focus on the

complexity of the relationship between fish and habitat has

arguably not benefited management. The difficulty in manag-

ing for increasing realism may be best illustrated in the appli-

cation of the "Essential Fish Habitat" (EFH) policy. In theory,

the EFH concept aimed to clearly prioritize a few key places

and habitats. In practice, nearly everywhere was identified as

"essential" to some species at some time in their life history,

which is to say that there were few to no priority areas iden-

tified (Fluharty, 2013; Meissner, German, Aiken, & Wolter,

2000). In contrast, relatively simple characterizations of juve-

nile success captured in our analysis show a clear and consis-

tent hierarchy in the importance of different habitats for juve-

niles across a range of locations and taxa.

Although we far from discourage investigations of the mul-

tifaceted and complex function of coastal systems, the util-

ity of the original definition by Beck et al. (2001) lies in

its simplicity and generality, and the clarity that it provides

for prioritization of efforts by resources managers and con-

servation practitioners. The lack of tests in many habitats

for response variables such as growth and survival, no suit-

able tests of recruitment from any nursery habitat, and over-

whelming focus on vertebrate fishes indicate that there is

still considerable progress to be made at a fundamental level

before advancing to more realistic, and therefore more compli-

cated and challenging, investigations. Thus, we propose that,

where the resources exist to adopt a seascape-level perspec-

tive, researchers should strive to link these simple measures

of density, growth, and survival across space and time to new

estimates of adult recruitment, and further test how these rela-

tionships change under different scenarios of global change.

In places where resources are scarce or in underrepresented

habitats, the simpler approach advocated by Beck et al. (2001)

can establish a stronger foundation and, beyond that, relevant

information for managers. Given that almost all coastal habi-

tats are under threat from human activities, tests of the nursery

function—at any level—are critical in protecting this essen-

tial service. Our quantitative analysis is the next iteration in

empirically validating the most basic tenets of the nursery

habitat hypothesis, but there is still much more to be done

to reveal and confirm the nursery benefit provided by coastal

ecosystems.
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