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Abstract

Autonomous vehicles use sensing and communication technologies to navigate

safely and efficiently with little or no input from the driver. These driverless

technologies will create an unprecedented revolution in how people move, and

policymakers will need appropriate tools to plan for and analyze the large impacts

of novel navigation systems. In this paper we derive semiparametric estimates of

the willingness to pay for automation. We use data from a nationwide online panel

of 1,260 individuals who answered a vehicle-purchase discrete choice experiment

focused on energy efficiency and autonomous features. Several models were estimated

with the choice microdata, including a conditional logit with deterministic consumer

heterogeneity, a parametric random parameter logit, and a semiparametric random

parameter logit. We draw three key results from our analysis. First, we find

that the average household is willing to pay a significant amount for automation:

about $3,500 for partial automation and $4,900 for full automation. Second, we

estimate substantial heterogeneity in preferences for automation, where a significant

share of the sample is willing to pay above $10,000 for full automation technology

while many are not willing to pay any positive amount for the technology. Third,

our semiparametric random parameter logit estimates suggest that the demand for

automation is split approximately evenly between high, modest and no demand,

highlighting the importance of modeling flexible preferences for emerging vehicle

technology.
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1 Introduction

Personal mobility is about to experience an unprecedented revolution motivated

by technological change in the automotive industry (National Highway Traffic

Safety Administration, 2013; Fagnant and Kockelman, 2014). The introduction of

automated vehicles –in which at least some (and potentially all) control functions

occur without direct input from the driver– will completely change how people move.

The adoption of automated navigation systems has the potential to dramatically

reduce traffic congestion and accidents, while creating substantial improvements in

the overall trip experience as well as providing enhanced accessibility opportunities

to people with reduced mobility (Fagnant and Kockelman, 2015).

Automated vehicles use sensing and communication technologies to navigate

safely and efficiently with little or no human input. Automated navigation technology

comprises any combination of (1) self-driving navigation systems informed by on-

board sensors (autonomous vehicles) vehicle-to-vehicle (V2V) and (2) vehicle-to-

infrastructure (V2I) communication systems that inform navigation and collision

avoidance applications (connected vehicles). The National Highway Traffic Safety

Administration (NHTSA) has suggested five levels of automated navigation: level

0 (no automation), where the driver is in complete control of safety-critical

functions; level 1 (function-specific automation), where the driver cedes limited

control of certain functions to the vehicle especially in crash-imminent situations

(adaptive cruise control, electronic stability control ESC, automatic braking); level

2 (combined-function automation), which enables hands-off-wheel and foot-off-pedal

operations, but the driver is expected to be available at all times to resume control of

the vehicle (adaptive cruise control and lane centering); level 3 (limited self-driving

or conditional automation), where the vehicle potentially controls all safety functions

under certain traffic and environmental conditions, but some conditions require

transition to driver control; and level 4 (driverless or full self-driving automation),

where the vehicle controls all safety functions and monitors conditions for the whole

trip.1

1A six level categorization is proposed by the Society of Automotive Engineers, which further

distinguishes levels within NHTSA level 4.
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Imminent commercialization of automated cars is best exemplified by the recent

announcement (October 2016) that all new Tesla vehicles will have full self-driving

hardware.2 Several semi-autonomous features are already available in the automotive

market, mostly in the form of in-vehicle crash avoidance upgrades with preventive

warnings or limited automated control of safety functions, such as braking when

danger is detected. Self-parking assist systems are another example of a more

advanced upgrade that is currently available in select makes and models. These

entry-level automation packages are possible as a result of vehicles being equipped

with radar, cameras, and other sensors. Even though technology is still evolving, full

automation is possible with the current stage of development. The Google car and

its more than 2 million miles of driverless driving is the most publicized effort.3

The literature on vehicle-to-vehicle, vehicle-to-infrastructure, and control systems

for safe navigation is extensive. Regulation, insurance, and liability are other areas

where there is strong debate. However, little attention has been devoted to the

analysis of automated vehicles as marketable products. Consumer acceptance is

critical to forecast adoption rates, especially if one considers that there may be

strong barriers to entry (potential high costs, concerns that technology may fail).

Our work contributes to two strands of literature on the demand for new

technology. The first area is the recent development in understanding the demand,

penetration, and policy implications of autonomous vehicle technology. Several

recent studies attempt to understand how consumer preferences for attributes such

as safety, travel time, and performance shape the demand for driverless cars.

Kyriakidis et al. (2015) conducted an international public opinion questionnaire of

5,000 respondents from 109 countries. Responses were diverse: 22 percent of the

respondents did not want to pay any additional price for a fully automated navigation

system, whereas 5 percent indicated they would be willing to pay more than $30,000.

Payre et al. (2014) conducted a similar survey of 421 French drivers with questions

eliciting the acceptance of fully automated driving. Among those surveyed, 68.1

percent accepted fully automated driving unconditionally, with higher acceptance

2Source: https://www.tesla.com/blog/all-tesla-cars-being-produced-now-have-

full-self-driving-hardware
3Source: https://www.google.com/selfdrivingcar/faq/
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conditional on the type of driving, including usage of highway driving, in the presence

of traffic congestion, and for automated parking. Similar results were obtained in

a survey of Berkeley, California, residents conducted by Howard and Dai (2013).

Individuals in this survey were most attracted to the potential safety, parking, and

multi-tasking benefits. Schoettle and Sivak (2014) conducted a much larger and

more internationally based survey of residents from China, India, Japan, the United

States, the United Kingdom, and Australia. The authors found that respondents

expressed high levels of concern about riding in self-driving vehicles, with the most

pressing issues involving those related to equipment or system failure. While most

expressed a desire to own an autonomous vehicle, many respondents stated that they

were unwilling to pay extra for the technology.

A paper related to our own is that by Bansal et al. (2016), which estimates

willingness to pay for different levels of automation. They find that for their sample

of 347 residents of Austin, Texas, willingness to pay (WTP) for full automation

is $7,253, which is substantially higher than our own estimate. The authors also

estimate WTP for partial automation of $3,300, which is similar to our estimate.

Our demand estimates contribute to the assessment of the social costs and benefits

of autonomous vehicles. Fagnant and Kockelman (2015) estimate the external net

benefits from autonomous vehicle penetration. They find that the social net benefits

including crash savings, travel time reduction from less congestion, fuel efficiency

savings, and parking benefits total between $2,000 and $4,000 per vehicle. These

estimates, however, greatly depend on how the presence of autonomous vehicles will

impact both vehicle ownership and utilization. For example if autonomous vehicles

make owning a vehicle more desirable, then the stock and use of vehicles may increase,

reducing the external net benefits.

We designed a web-based survey with a discrete choice experiment to determine

early-market empirical estimates of the structural parameters that characterize

current preferences for autonomous and semi-autonomous electric vehicles. The

discrete choice experiment contained as experimental attributes three levels of

automation: no automation, some or partial automation (“automated crash

avoidance”), and full automation (“Google car”). Automation was allowed for

alternative powertrains (hybrid electric, plug-in hybrid and full battery electric).

4
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Based on the results from this experiment, we estimate WTP for automation. Our

estimates of WTP for privately owned autonomous vehicles take a first step to

understanding the demand for this technology, which is critical for understanding

how aggregate demand for vehicles and vehicle miles traveled will respond to the

technology over time.4

In addition to the discrete choice experiment of vehicle purchase, the survey

also contained an experiment to elucidate the subjective discount rate of potential

vehicle buyers. Expanding on the work of Newell and Siikamäki (2013), we used

the individual-level experimental discount rate to determine the present value of fuel

costs for each alternative.

To derive flexible estimates of the heterogeneity distribution of the willingness to

pay for automation, we implemented the maximum simulated likelihood estimator

of a logit-based model with discrete continuous heterogeneity distributions, in

which the parameters (mean and standard deviation) of continuous heterogeneity

distributions have associated discrete, unknown probabilities. The approach adopted

to unobserved preference heterogeneity in this paper thus takes into consideration

a mixed-mixed logit model (Bujosa et al., 2010; Greene and Hensher, 2013; Keane

and Wasi, 2013), where the random willingness-to-pay parameters are distributed

according to a Gaussian mixture. The weights of the Gaussian mixture can

include individual-specific covariates that allow us to identify clusters with differing

willingness to pay for automation. The estimator was implemented with analytical

expressions of the score for computation efficiency.

Methodologically, we highlight the importance of allowing for flexible distribu-

tions of preferences for vehicle attributes such as automation by comparing estimates

from a standard mixed logit specification with a more flexible mixed-mixed logit spec-

ification. We find richer heterogeneity estimates with the more flexible specification,

4We do not explore demand for autonomous commercial vehicles or for autonomous public

transportation. Initial work in this area includes a study by Greenblatt and Saxena (2015)

which simulates the greenhouse gas impact of autonomous vehicle taxis and finds that they can

dramatically reduce greenhouse gas emissions relative to conventional taxis. A promising area of

future research involves incorporating our survey and econometric methods for eliciting WTP to

determine how households tradeoff cost savings, travel time, safety, and other desirable attributes

with alternative travel modes with and without a human driver.
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where demand for automation appears evenly split between high, modest and no

demand.

The remainder of the paper is organized as follows. In section 2, we present a

series of discrete choice models that we use to estimate how consumers value personal

vehicle automation. In section 3, we discuss the survey data and provide summary

statistics of the sample. We then present the empirical models and estimation results

in section 4 and draw conclusions based on our results in section 5.

2 Structural Vehicle Choice Models

The purchase of an automated vehicle can be modeled as the consumer choice to

adopt high technology, durable goods. The use of discrete choice models to analyze

vehicle purchases in general dates back to the earliest econometric applications of

the principle of random utility maximization. Within this literature, great interest in

modeling the adoption of battery electric vehicles has emerged in the last five years

(for literature reviews, see Rezvani et al., 2015; Al-Alawi and Bradley, 2013).

Because the transition to energy efficiency in personal transportation is

characterized by the trade-off between higher purchase prices and lower operating

costs, a specific avenue of research has been taking into account time preferences to

represent how consumers discount future savings. Seminal work on the problem of

estimating individual discount rates with discrete choice models includes Hausman

(1979), Lave and Train (1979), and the technical reports cited in Train (1985).

In addition, recent literature reviews are provided by Frederick et al. (2002) and

Cameron and Gerdes (2005). Expanding on Jaffe and Stavins (1994), several

resource and energy economists have added to the debate about the energy paradox

(Newell and Siikamäki, 2013; Allcott and Greenstone, 2012; Ansar and Sparks, 2009;

Van Soest and Bulte, 2001; DeCanio, 1998; Hassett and Metcalf, 1993). As reviewed

in Wang and Daziano (2015), there are two approaches to introducing discount rates

in discrete choice models: endogenous discounting, in which discount rate estimates

are derived from the marginal rate of substitution between price and operating cost,

and exogenous discounting, in which the discount rate is assumed as known.

Working with exogenous discount rates has been proposed in the energy

economics literature to avoid confounding effects in the determination of discount

6
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rate estimates coming from market failures (Allcott and Wozny, 2014; Newell and

Siikamäki, 2013). Exogenous discounting takes as known the discount rate of

individual i, making it straightforward to calculate the present value of future costs

of product j, PVFCij. Moving future cash flows to the present allows the researcher

to use a static discrete choice specification. If in addition to monetary attributes,

vehicle design attributes xij are considered (such as power, drivetrain, refueling time,

and driving range), then the conditional indirect utility for individual i choosing

alternative j can be specified as

Uij = x′ijωx,i − αipriceij − γPVFC,iPVFCij + εij. (1)

Equation (1) represents our benchmark specification and is formulated in preference

space. ωx,i is the change in utility from marginal improvements in the (nonmonetary)

vehicle design attributes that are captured in the vector xij, αi is the marginal utility

of income, and γPVFC,i is the change in utility from a marginal change in the present

value of fuel costs. For a rational consumer γPVFC,i = αi, since both priceij and

PVFCij are monetary attributes at the time of purchase. If γPVFC,i < αi, then there

is evidence for myopic consumption (as consumers weigh more than saving one dollar

in purchase price than the same dollar in discounted future costs), and γPVFC,i > αi

reveals that consumers overvalue fuel costs. In our benchmark specification, we

assume that the idiosyncratic error term εij is i.i.d. distributed Type 1 extreme

value, so that predicted probabilities take on the conditional logit form.

In this paper, in addition to standard assumptions of unobserved heterogeneity

in the parameters (such as normally and lognormally distributed parameters),

we consider a semi-parametric discrete-continous mixture for the heterogeneity

distributions. In fact, we adopt and implement the idea of the mixed-mixed logit

model (MM-MNL) that represents heterogenous preferences as a weighted average

of normals (Bujosa et al., 2010; Greene and Hensher, 2013; Keane and Wasi, 2013).5

If θ′i = (αi, γPVFC,i,ω
′
x,i) represents the full vector of parameters of interest,

the heterogeneity distribution assumption is the following Gaussian mixture with

Q components: θi ∼ N (θq,Σq) with probability wiq for q ∈ {1, . . . , Q} or fΘ(θi) =

5Any continuous distribution can be approximated by a discrete mixture of normal distributions

(Train, 2008).

7
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Q∑
q=1

wiqfq(θi), where fΘ is the density function of the heterogeneity distribution of the

parameters of interest and fq(θi) is the multivariate normal density with parameters

θq and Σq. The weights of the mixture wiq can be interpreted as class assignment

probabilities, and can be constant or a function of covariates. In particular, the

weights can be specified as a function wiq = wiq(zi|δ), where zi is a vector of

individual-specific characteristics and δ is a vector of parameters. As in latent class

discrete choice models, a possibility is to assume a logit-type specification for the

mixture weights:

wiq =
exp(z′iδq)
Q∑
q=1

exp(z′iδq)

, (2)

where the vector component-specific (or class-specific) parameter vector is normalized

for identification. For example, normalizing δ1 = 0 ensures that the parameters for

the rest of the components are identified.

Assume that we observe T choices made by individual i. We denote the choice

made by individual i by yijt = 1 if individual i chose alternative j in choice occasion

t and yijt = 0 otherwise. Furthermore, assume that εijt is i.i.d. type 1 extreme value

for t ∈ {1, . . . , T} , the MM-MNL probability of the sequence of choices is given by:

Pi =

Q∑
q=1

wiq(δ)

∫ 
T∏
t=1

J∏
j=1

 exp
(
x′ijωx,i − αipriceij − γPVFC,iPVFCij

)
∑J
j=1 exp

(
x′ijωx,i − αipriceij − γPVFC,iPVFCij

)
yijt fq(θi)dθi. (3)

As in a mixed logit model, the above probability can be approximated using Monte
Carlo integration:

P̃i =
1

R

Q∑
q=1

wiq(δ)

R∑
r=1


T∏
t=1

J∏
j=1

 exp
(
x′ijω

′(r)
x,i,q − α

(r)
i,q priceij − γ

(r)
PVFC,i,qPVFCij

)
∑J
j=1 exp

(
x′ijω

′(r)
x,i,q − α

(r)
i,q priceij − γ

(r)
PVFC,i,qPVFCij

)
yijt , (4)

where (α
(r)
i,q , γ

(r)
PVFC,i,q,ω

′(r)
x,i,q) represents random draw r ∈ {1, . . . , R} from the normal

density fq(θi|θq,Σq).

Finally, using the Monte Carlo approximation of the probability of the sequence

of choices by individual i, it is possible to find the maximum simulated likelihood

estimator by maximizing the following simulated likelihood:

˜̀(θQ, δQ,ΣQ; y|X,Z,price,PVFC) =
N∏
i=1

P̃i, (5)

8
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where θQ = (θ1, . . . ,θQ), δQ = (δ2, . . . , δQ) (if the first component is normalized),

and ΣQ = (Σ1, . . . ,ΣQ).

3 Vehicle Choice Data

3.1 The survey

To support design of the survey, we first conducted two focus groups where new

vehicle preferences and attitudes toward automated cars were discussed by randomly

selected potential car buyers.6 15 participants in Upstate New York (aged 18-62)

and 12 participants in New York City (aged 18-55) discussed benefits and eventual

dangers of automation. All participants had a driving license, and in the case of

Upstate New York, all commuted by car daily. Only 4 of the participants in New

York City drove a car daily, whereas 6 drove a car occasionally. Diverse income

levels were represented, but the median household income was around $50,000 in

both groups. There were 9 males in the Upstate New York group, and 8 in the New

York City group.

Among the benefits, participants mentioned fewer traffic jams, increased mobility

independence, and easier and quicker parking. Another benefit of automation that

was discussed was the possibility of multitasking and increased productivity. One

of the most relevant features that people look for in a new car is safety (Koppel

et al., 2008; Daziano, 2012). Participants of the focus groups confirmed that safety

is a major concern. However, their perceptions about driverless cars and safety were

divided. Some participants agreed that automation has great potential to reduce

accidents, but a majority also said that unfortunately systems fail. Concerns about

lighter vehicles being more dangerous also were raised. The qualitative information

that was collected in the focus groups was used to design an attitudinal module of

the survey, which supplements the data that were collected using the discrete choice

experiment.

3.2 The data

We used the Qualtrics online platform to collect the survey data. We surveyed

a sample of individuals who provided valid responses for personal characteristics

questions and all of the vehicle choice experiments. Qualtrics is a private market

research company that offers online surveying software as well as management of

6Recruitment of participants was facilitated by the Cornell Survey Research Institute.

9
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online panels of respondents that match specific requirements.7 We collected several

waves of responses among adults with a driving license between September 12, 2014,

and October 2, 2014, for a total of 1,260 individuals.8

Table 1 reports demographic statistics for respondents in our sample. The sample

is broadly representative of the U.S. population. Mean and median household

incomes are $61,226 and $55,000, respectively, which are close to reported estimates

from the 2013 American Community Survey;9 the sample’s fraction of married adults

well represents the estimates of the U.S. marriage rate of around 50 percent; the

unemployment rate of 5.79 percent among our sample respondents is close to the most

recently reported national unemployment rate for September 2014 of 5.9 percent.10

The sample appears to only slightly over-represent white respondents and slightly

under-represent minorities; the U.S. Census reports that 77.7 percent of U.S. citizens

are white, while our sample includes 85 percent.11 Our sample is slightly more

educated relative to the average for U.S. citizens; 38 percent of respondents state

that they have earned at least a bachelor’s degree, while only about 30 percent

of U.S. citizens have done so. These small differences can be explained by the

screening process of our survey. Two screening questions, whether the respondent

has a driver’s license and whether the respondent has access to a household vehicle,

likely disproportionately discourage minorities and less educated individuals from

taking our survey. Fortunately, however, this effect appears to be quite mild as

suggested by the descriptive statistics of our sample.

Table 2 reports statistics for the vehicle holdings data in our sample. These data

represent vehicles that are driven most often among all vehicles held by respondent

households. We merge survey responses on the model year, make, model and trim of

the vehicle with trim-level characteristics data from Ward’s Automotive.12 Vehicle

7More information in this platform is available at https://www.qualtrics.com/
8Out of the sample of 1,260, 549 responses were collected between September 12 and September

15, 214 were collected between September 19 and September 23, and the remaining responses were

collected between September 29 and October 2.
9These estimates are available at http://www.census.gov/content/dam/Census/library/

publications/2014/acs/acsbr13-02.pdf.
10See http://data.bls.gov/timeseries/LNS14000000.
11See http://quickfacts.census.gov/qfd/states/00000.html.
12The Ward’s Automotive data include detailed characteristics of vehicles identified by model

year, make, model, series, body style, fuel type, and drive type. Data for vehicles with model years

1996-2014 were purchased from WardsAuto.com.

10
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age and annual vehicle miles traveled (VMT) are based on two questions in our

survey.

The average age among all vehicles is seven years, which is about two years

younger than the average age of all autos held by households in 2008.13 This seems

reasonable considering that the reported vehicle holding in our survey is conditional

on being the vehicle that is driven most often and not simply a random vehicle chosen

from the full set of household vehicle holdings.14 For the same reason, annual VMT

is slightly over 15, 000 miles, which is close to the average reported VMT of new

cars and light trucks.15 The selection is also a reason why the average vehicle fuel

economy in our sample is remarkably high.16 Average fuel economy of automobiles

sold in 2007–the average model year of vehicles in our sample–was around 20 miles

per gallon. Households in our sample, however, likely optimize their fleet utilization

choices by driving their relatively fuel efficient vehicles more than their relatively fuel

inefficient vehicles. Therefore, the vehicles that respondents report are more likely

to have high fuel economy.

Patterns in vehicle characteristics across the different styles are in line with

expectations. Fuel efficiency measured in miles per gallon is higher for smaller cars

including coupés, sedans, and wagons and lower for larger, more powerful autos

including trucks and SUVs. Trucks are older than the average vehicle by about

three years, which is also in line with data from the 2009 National Household

Transportation Survey.17 Trucks are generally driven more per year and over the

entire vehicle lifetime than cars, which is consistent with the reported travel data

from our survey.18

13This is based on the 2009 National Household Transportation Survey, Summary of Travel

Trends: http://nhts.ornl.gov/2009/pub/stt.pdf
14It is well documented that vehicles with more annual miles traveled are generally newer. See

Lu (2006), http://www-nrd.nhtsa.dot.gov/Pubs/809952.pdf, for more details.
15Lu (2006) documents that the average VMT for new cars is 14,231, which falls to 12,325

by age seven; the average VMT for new trucks is 16,085, which falls to 12,356 by year 10. See

http://www-nrd.nhtsa.dot.gov/Pubs/809952.pdf.
16In fact, it is close to the average record high 24.9 miles per gallon fuel economy of new 2013

model year vehicles. See http://www.umich.edu/~umtriswt/EDI_sales-weighted-mpg.html.
17See http://nhts.ornl.gov/2009/pub/stt.pdf..
18For more details, see Lu (2006), http://www-nrd.nhtsa.dot.gov/Pubs/809952.pdf.
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3.3 Design of the choice experiment

The discrete choice experiment that we designed is based on a labeled experiment

with quasi-customized alternative attributes. The alternatives are constructed

according to general new vehicle preferences, including stated price thresholds. The

experiment attributes include purchase price, fuel cost expenses, driving range,

recharging time, and levels of hybridization and automation. Levels are described

in Table 3. Note that purchase price in the experiment was customized to the

threshold stated by the respondent (validated according to household income) when

asked about the willingness to spend in buying a new vehicle.

For automation we considered an aggregation of the technology NHTSA levels

in three groups: no automation (base), some automation (“automated crash

avoidance”), and full automation (“Google car”). The decision to aggregate the

automation levels was based on that technical attributes are not necessarily the

same as consumer-level attributes, that two markets aggregating the automated

levels into semi- and full automation have already been identified (Grush et al.,

2016), and that participants in the two focus groups agreed in a straightforward

understanding of these two automation levels. Additionally, examples for each level

(e.g., “automated crash avoidance” for some automation), and the connected icon to

graphically represent automation in the discrete choice experiment were discussed in

the focus groups. An example of the image that participants saw during one choice

situation appears in Figure 1.

Attribute levels were combined into specific choice situations according to a

Bayesian D-efficient design (Bliemer and Rose, 2010), with priors taken from a pre-

test of the survey (with sample size N=100).

3.4 Elicited subjective discounting

As reviewed in Wang and Daziano (2015), laboratory and field time preferences

experiments have been used in experimental economics to elucidate subjective

discount rates. Expanding on the work of Newell and Siikamäki (2013), who

implemented and used the Multiple Price List (MPL) method of Coller and Williams

(1999) to analyze consumers’ response to energy efficiency labels on water heaters,

in our survey we implemented a modified version of the MPL method. MPL is

organized as a series of binary choices between an immediate and a delayed reward,

in which increasing exogenous discount rates are used to determine the values of the

12
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rewards (cf. Kirby et al., 1999). In our survey, only one binary choice was shown to

participants at a time, with scenarios being displayed at an increasing interest rate.

Assuming transitivity in intertemporal preferences, the experiment ended as soon as

the respondent accepted the delayed reward, and the associated discount rate at the

accepted delayed reward was set as the individual’s subjective discount rate. Further

details about the survey implementation of the MPL method (such as avoidance of

immediacy bias) are discussed in Wang and Daziano (2015) with data from a pretest.

The elicited subjective discount rate resulting from the MPL experiment has a

mean of 12.18 percent, standard deviation of 12.86 percent, and a median of 10

percent. Both the median and mean are higher than market interest rates for the

automotive market, but are lower than some subjective discount rates that have been

found using the endogenous discounting approach. Newell and Siikamäki (2013) in

their experiment found a mean of 19 percent, standard deviation of 23 percent, and

median of 11 percent.

As in Newell and Siikamäki (2013), we combine discrete choice models with the

elicited intertemporal preferences, by calculating the expected present value of future

costs as

PVFCij = E

[
Li∑
l=1

operating costij
(1 + ρi)l

]
, (6)

where Li is the total ownership time stated in the survey by individual i, ρi is the

elicited subjective discount rate, and E is the expectation operator.19

19Our measure of the present value of fuel costs does not consider lifetime fuel costs since we

do not survey whether respondents perceive fuel costs beyond their ownership period. If survey

respondents value these costs beyond their ownership period–for example, if they expect to sell their

vehicle and when they sell, they expect that fuel costs are capitalized in used vehicle prices – then

our measure of fuel costs will be an underestimate of the respondents’ expectations. This will lead

us to overestimate WTP of the present value of fuel costs. We expect this bias to be small since a

large majority of fuel costs are incurred during the initial years of ownership. Furthermore, no prior

papers directly examined whether households value post-ownership fuel costs when purchasing a

new vehicle, although indirect evidence indicates that used vehicle markets do capitalize these costs

(Allcott and Wozny, 2014; Busse et al., 2013; Sallee et al., 2016).

13
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4 Model Specification, Estimation, and Inference

4.1 Base models

In Table 4 we report estimates for our benchmark conditional logit model with fixed

coefficients defined in Equation (1). We provide three separate versions of the model,

with each version having a different method of defining fuel costs. In the first two

versions, we replace the present value of fuel costs with alternative measures of

fuel cost. The first version allows fuel cost to enter as a monthly cost, which is

based on the respondent’s expected amount of monthly driving and the cost per mile

attribute.20 The second version is only the cost per mile as a simple attribute. The

third version includes the expected present value of fuel costs (PVFC) as a function

of the respondent’s elicited discount rate, expected length of ownership, expected

amount of driving during ownership and the cost per mile attribute. We note that to

avoid convergence issues in the search for the maximum likelihood estimate, different

tables may scale the attributes differently. The actual scale for each attribute is

discussed in the notes under each table.

In each model, the coefficients on the vehicle attributes are estimated to have the

expected sign. We report these coefficients in the first panel of Table 4. Respondents

dislike higher purchase prices, higher operating costs, and longer charging times

and like longer ranges and both levels of automation. Purchase price sensitivity

has a point estimate ranging from −0.77 to −0.772 and enters significantly at the

5 percent confidence level in each model. All three forms of operating costs enter

significantly and with the expected negative sign. Preference parameters for both

forms of automation are statistically significant at the 5 percent confidence level,

where both forms are preferred over no automation and where full automation is

preferred over partial automation.

To convert the preference parameters into dollar terms, we compute willingness

to pay for an additional unit of each attribute by dividing the marginal utility of

each attribute by the marginal utility of purchase price. Respondents are willing to

pay about $34 in a higher purchase price to reduce the monthly operating cost by

$1. This willingness to pay approximately represents a three-year payback window,

which is consistent with recent survey evidence on the consumer valuation of fuel

20We model expected monthly driving as exogenous to the choice made by each respondent.

This is consistent with assumptions made in Allcott and Wozny (2014).
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costs (Greene et al., 2013).21

Respondents are willing to pay slightly more than $3,500 for partial levels of

automation and about $4,900 for full automation. Are these estimates plausible?

The estimate of willingness to pay for partial automation appears close to the

reported price for Tesla’s autopilot system available for $3,000, which was announced

a couple of weeks after the survey data were collected. The cost of downloading this

system has since been increased to $3,500.22 This autopilot system is closer to our

partial automation option as it involves software that helps avoid collisions from the

front or sides or from leaving the road. The only fully autonomous package that

appears close to market is an add-on package called Cruise RP-1, which is a driving

program capable of full automation on certain highways. The current price tag for

this program is $10,000.23

4.2 WTP models using parametric and semi-parametric

heterogeneity distributions

The base models were extended to mixed logit specifications in preference space.

Table 5 presents the results of a mixed logit model where key parameters are normally

distributed, where we interact key parameters with respondent characteristics,

and where some parameters are normally distributed and others are log-normally

distributed. For the model with respondent characteristics interactions, interactions

of sociodemographics with the levels of automation were considered to determine

potential deterministic preference variations.24 To compute WTP for automation

and other variables, we estimate a fixed parameter for vehicle purchase price then

divide the preference parameters by the purchase price parameter.

21The empirical literature on how consumers value fuel cost savings is mixed and varies widely

depending on method, time span, and unit of analysis (Greene, 2010). Several recent studies in

the economics literature that leverage variation in gasoline prices, however, suggest that consumers

fully value or only slightly undervalue fuel cost savings in new vehicle markets and only moderately

undervalue these savings in used vehicle markets (Allcott and Wozny, 2014; Busse et al., 2013;

Sallee et al., 2016).
22Source: https://electrek.co/2016/08/24/tesla-quietly-increases-price-

autopilot-new-hardware/
23Source: https://www.wired.com/2014/06/cruise-self-driving-car-startup/
24Interactions between respondent characteristics and vehicle attributes represent how prefer-

ences for vehicle attributes vary according to respondent characteristics, e.g., high income house-

holds may prefer electric vehicles more than low income households.
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In the column labeled MIXL-N, we estimate normally distributed coefficients for

the natural log of range, charging time, and the two levels of automation. The

parameter estimates with (µ) next to them represent estimates of the mean of each

coefficient, while the parameter estimates with (σ) next to them represent estimates

of the standard deviation of each coefficient. Each coefficient has the expected sign,

as respondents dislike higher prices, higher fuel costs and greater charging times

while they like longer ranges and automation. The implied WTP for both levels of

automation are large and significant. Both, however, are substantially smaller than

the estimates from our fixed coefficient logit models in Table 4. Furthermore, the

mean WTP for the first level of automation, $1,453, exceeds the mean WTP for

the second level of automation, $990, which is unexpected and runs contrary to our

benchmark model results.

In the column labeled MIXL-N-OH, we present results of the same model but

with respondent interaction terms. We interact the two levels of automation with

several respondent characteristics: whether the respondent has heard of the Google

car, whether the respondent is male, the number of years of experience driving, and

geographic region.25 The implied WTP estimates for this model seem more plausible.

For some subsets of households, however, the implied WTP is much higher than the

average estimates from the models in Table 4. For example, we estimate that wealthy

female respondents living in the Midwest with little driving experience that have

heard of the Google car are willing to pay in excess of $20,000 for full automation

technology. This seems plausible given the degree of differentiation among household

preferences.

In the next two columns labeled MIXL-LN-I and MIXL-LN-II, we present models

for results where we assume the coefficients for both levels of automation are log-

normally distributed. We report the implied mean of these distributions. Our

estimates indicate that respondents are willing to pay about $1,000 for either level of

automation. Note that all of the models with parametric heterogeneity fit the choice

data better than the conditional logit specifications, as indicated by comparing the

log likelihood values for the models. The log likelihood values for the parametric

heterogeneity models range from -10,699 to -10,277, which are significantly higher

than the values for the conditional logit specifications, which range from -12,466 to

-12,415.

25Urban/suburban/rural interactions were tested, but no significant differences were found.
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We summarize the estimates for willingness to pay for automation from the

parametric heterogeneity models in Figure 2. The left and right panels in Figure 2

show the distribution of willingness to pay for the first and second levels of

automation, respectively. We can see from both panels that the heterogeneity in

WTP is large, even for the log normal specifications. These estimates are at odds

with our fixed coefficient model estimates and are likely driven by model fit. This

motivates the use of more flexible methods for estimating heterogeneous preferences

for automation, which we explore next with estimates from semi-parametric discrete-

continuous mixture models.

Table 6 presents the results of mixed-mixed multinomial logit specifications with

three classes. For the column labeled Class 1, class assignment is set as base, whereas

for Classes 2 and 3, class assignment is a function of socioeconomic covariates. For

example, the respondent stating that he or she has heard of the Google car increases

the likelihood that the respondent has preferences represented by Class 2 or Class 3,

as inferred by the positive coefficient for the Google car covariate for these classes.

Class 1 includes slightly less than a third of the sample at 29 percent and Class 3

includes slightly more than a third at 38 percent.

As expected, each class dislikes higher prices and fuel costs and likes longer driving

range. The classes, however, have extremely different preferences for automation.

Class 1 respondents have a mean estimate for WTP for automation that is not

statistically different from zero. These respondents vary widely in their WTP for

both types of automation, with each having a standard deviation higher than $10,000.

This class is likely composed of households that are not aware of driverless car

technology or are skeptical of the technology, as these households are less likely

to have heard of the Google car and own fewer vehicles. Hence many households in

this group are not willing to pay a positive amount for the technology.26

Class 2 respondents are, on average, willing to pay a substantial amount for

automation. These respondents are willing to pay an average of $2,784 and $6,580 for

partial and full automation, respectively. These values are in the range of the values

from our benchmark estimates appearing in Table 4. This group of respondents

appears to be eager to purchase automation technology once it becomes affordable.

Their preferences are driven by knowledge of the Google car, driving long distances,

26The variation in WTP could be caused by the design and presentation of the choice

experiments. We thank a referee for suggesting this possibility.
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vehicle ownership, and higher education. It is important to note that the standard

deviation for full automation for Class 2 is statistically significant and is $15,526,

which is more than twice as large as the point estimate for the mean. This implies

that some respondents in this group remain skeptical of the technology and are

not willing to pay anything for it. On the other hand, the large standard deviation

implies that some respondents are willing to pay large sums of money–on the order of

$10,000–for full automation. Households in the United States that share preferences

with these respondents will likely be the first to adopt fully autonomous vehicles

when they become commercially available.

Class 3 respondents appear to have moderate desire for automation and represent

a middle group between Classes 1 and 2. This group, which includes the largest

number of respondents, is willing to pay $1,187 and $1,422 for partial and full

automation, values that are substantially less than mean WTP for Class 2 and are less

than the mean WTP for both groups of automation from our benchmark models.

This group appears to be composed of individuals who have heard of the Google

car and that have driving experience. Class 3 individuals are also more likely to

be married and prefer driving. The price of automation must drop dramatically

before this group completely adopts the technology. Similarly to individuals in

Classes 1 and 2, individuals in Class 3 vary considerably in their preferences for

automation, as the standard deviation estimates for both types are large and

statistically significant. This result solidifies the notion that because automation

is a relatively new technology, preferences for the technology will vary widely until

it becomes more mainstream and consumers gain experience with it. Based on log

likelihood values, the mixed-mixed logit model appears to have the best fit of the

data among all of the types of models considered, with a log likelihood of -9,075.5.

We plot the implied distributions of WTP for both levels of automation

in Figure 3. Similar to our results from models with parametric hetergeneity,

these distributions illustrate that households vary considerably in their desire

for autonomous features. Furthermore, these distributions appear more intuitive

than those from the parametric heterogeneity estimates. The mean estimates

of each distribution have the following intuitive appeal. The average Class 1

household dislikes automation and especially dislike full automation; the average

Class 2 household is willing to pay a high premium for automation, especially full

automation; the average Class 3 household is willing to pay a modest amount for

either type of automation. These results, which are not obvious from the models
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with parametric heterogeneity, suggest a fairly even segmentation of the demand for

automation, where about one-third of the population highly desires the technology,

one-third has mild interest, and one-third does not want the technology.

5 Conclusions
We have taken an initial attempt to quantify how households currently perceive

and value automated vehicle technologies. Our work has combined current discrete

choice experimental methodologies with recent developments in the discrete choice

literature to quantify how much households are willing to pay for multiple levels of

automation. One strength of our approach is that we are able to have full control

over attributes of alternatives faced by consumers, which allows us to identify how

consumers value attributes not yet fully available in the new vehicle market, namely

multiple levels of automation. Currently, only a few vehicles offer any form of

automation, and the types of automation are not observed in standard datasets of

vehicle attributes.27 This makes a revealed preference approach to identifying how

consumers value automation impossible until this attribute becomes more widely

available in the market for new vehicles and observable to researchers.

We estimate that the average household is willing to pay a significant amount

for automation: $3,500 for partial automation and $4,900 for full automation. Our

estimate for WTP for full automation differs from the estimate found in Bansal et al.

(2016). Differences in WTP estimates stem from two differences in methodology.

First, Bansal et al. estimate preferences for an unrepresentative sample of the

U.S. population, while our sample is representative along many observed household

demographics. Second, Bansal et al.’s empirical model is based on a stated preference

experiment that does not include an option for selecting a vehicle with conventional

(non-autonomous) technology. In sharp contrast, in our choice experiments, many of

the cases include at least one option that has no automation technology. We believe

that this feature of our experiments is crucial to elicit how respondents trade off

other attributes that differ between alternatives with and without automation.

We also find that households vary widely in their valuation of the technology.

Some are not willing to pay anything for either type. Others that are more

knowledgeable about current abilities of automation are willing to pay a great

27For example, in the Ward’s Automotive vehicle characteristics data, we do not observe

automation features.
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deal for full automation; we estimate that a significant fraction of households are

willing to pay above $10,000 for full automation. In our semiparametric random

parameter logit specifications, we estimate that the demand for automation is

split approximately evenly between high, modest and no demand, highlighting the

importance of modeling flexible preferences for emerging vehicle technology. This

variation may stem from a large difference in understanding of the technology, given

that various forms of automation are relatively new vehicle attributes. Alternatively,

the variation may be a product of the design of our choice experiments. In future

work, we plan to alter the design of the experiments–by offering more alternatives

to choose from, offering more levels of automation, or presenting precise forms of

automation – to test this hypothesis.

A weakness of our approach, which is common to all discrete choice experiments,

is that respondents in our study are making hypothetical choices that may not

perfectly correspond to the choices they would make when purchasing a vehicle.

Nevertheless, given the plausible magnitudes of the estimates of WTP for automation

that we have found, we believe that the discrete choice experiment approach adopted

here provides useful information to policymakers for better understanding and

predicting the market penetration of this technology.

We suggest proceeding in this area of research with caution, given our estimates

and the highly diverse preferences for automation as evidenced by the extremely

large standard deviations of the random parameters. However, we expect to see less

extreme heterogeneity as automated technology matures in the market, knowledge

of the technology spreads, and consumers learn about its benefits and costs.
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A Tables

Table 1: Sample Demographic Statistics

Variable Mean (S.D.)

Household size 2.717 (1.32)

Age of respondent 47.565 (13.55)

Number of children 1.41 (1.36)

Household income (2014$) 61,226 (42,135)

Years respondent has held license 25.409 (9.98)

Number of household members with license 1.914 (0.74)

Number of vehicles held by household 1.592 (0.79)

Respondent daily one-way commute (miles) 13.903 (12.72)

Respondent characteristics Percentage

Male 50.49

Female 49.51

Married 54.49

Widowed 2.94

Divorced 13.70

Single 21.45

Living with partner 7.42

White 85.24

Black 8.32

Hispanic 7.18

Asian 2.934

High school diploma 98.613

Some college experience 76.84

Bachelor’s degree 38.25

Master’s or professional degree 12.40

Full-time (≥ 30 hours per week) job 66.40

Part-time job 8.64

Homemaker 7.83

Student 0.90

Retired 10.44

Unemployed but actively looking for work 5.79

Household income ≤ $30, 000 22.43

Household income > $30, 000 and ≤ $60, 000 34.01

Household income > $60, 000 and ≤ $90, 000 23.82

Household income > $90, 000 19.74

Note: The white, black, Hispanic and Asian percentages sum to more

than 100 percent because some of the respondents have multicultural

backgrounds.
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Table 2: Vehicle Holdings Statistics

Variable Coupe Convertible Sedan Wagon Hatchback CUV Truck SUV Van Average

Age 5.93 8.14 6.57 6.13 7.71 4.43 10.36 8.32 6.77 7.00

(4.46) (3.28) (4.82) (4.39) (4.95) (3.48) (4.74) (4.41) (3.49) (4.76)

Miles per gallon 26.98 23.95 27.89 26.68 29.82 23.68 19.77 18.76 20.97 24.99

(4.19) (2.69) (5.71) (3.92) (4.64) (2.67) (2.56) (2.40) (1.16) (5.69)

Weight (lb.) 3,044.3 3,505.7 3,184.0 3,080.6 2,759.8 3,644.9 3,900.8 4,257.5 4,223.4 3,456.6

(441.8) (762.6) (458.2) (310.3) (459.6) (523.0) (647.2) (690.9) (309.2) (682.3)

Horsepower 185.74 195.36 171.88 159.80 146.91 196.87 193.33 224.46 219.74 186.56

(72.37) (80.12) (50.40) (32.58) (58.77) (48.67) (52.53) (53.96) (40.98) (57.75)

Torque (lb.-ft.) 182.99 219.14 177.99 163.87 157.02 202.62 230.66 250.53 232.39 197.82

(72.74) (128.39) (56.27) (41.50) (65.27) (63.28) (59.06) (59.66) (32.32) (66.68)

Footprint (sq. in.) 7,455.7 7,181.9 7,644.6 7,117.1 7,004.1 7,814.7 9,041.3 8,365.3 9,064.5 7,906.5

(508.7) (696.5) (615.5) (505.0) (565.8) (675.0) (1356.5) (1005.2) (389.0) (959.6)

Real MSRP (2014$) 31,336 58,654 26,197 24,446 21,396 27,695 23,869 33,715 29,634 27,980

(36,990) (98,073) (11,810) (8,788) (9,656) (7,203) (5,024) (8,026) (4,328) (19,616)

Annual VMT 14,225 13,571 15,018 16,167 14,031 14,846 16,828 16,884 16,908 15,236

(10,994) (15,542) (12,738) (10,516) (14,371) (11,490) (15,144) (13,787) (13,546) (12,869)

Holdings share (%) 13.23 1.17 40.79 1.26 4.10 12.23 11.06 11.39 4.77 100

Notes: We assign trim-level miles per gallon, weight, horsepower, torque, footprint and Real MSRP based on vehicle

characteristics from Ward’s Automotive and inflation rates from the Bureau of Labor Statistics. Vehicle age and annual VMT

are based on two questions in our survey. With-in group standard deviation of each variable are reported in parentheses below

the mean. Real MSRP is the Manufacturer’s suggested retail price of a brand new version of the vehicle, adjusted for inflation.

Since the vehicles held are of different model years, we convert all prices to 2014 dollars using historical inflation rates. Annual

VMT stands for annual vehicle miles traveled. Vehicle footprint is defined as the product of a vehicle’s wheelbase and its width,

which is approximately equal to the rectangular area between a vehicle’s tires. The characteristics weight, torque, and footprint

are measured in pounds, pounds per foot, and square inches, respectively.
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Table 3: Attributes and Attribute Levels for the Vehicle Choice Experiment

Attribute Levels

Cost to drive 100 miles [$] HEV: 7.0, 8.8

PHEV: 5.5, 6.5

BEV: 3.2, 4.0

GAS: 15.2, 15.8

Purchase price [$] HEV: 125%, 170% of referencea

PHEV: 145%, 185% of reference

BEV: 130%, 200% of reference

GAS: 100%, 110% of reference

Electric driving range [miles] PHEV: 15, 40

BEV: 80, 150

Recharging time [hours] PHEV: 2, 4

BEV: 1.5, 8

Autopilot package No automation, some automation, full automation

Notes: The four alternatives available for the respondent to choose include a hybrid electric vehicle (HEV), a plug-in

hybrid electric vehicle (PHEV), a battery electric vehicle (BEV), and a gasoline vehicle (GAS). See Figure 1 for an

image of what respondents saw when making the vehicle choice. The reference purchase price is calculated from

purchase price thresholds stated by the respondents.
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Table 4: Conditional Logit Models

Montly cost Cost per mile PVFC

Est. SE Est. SE Est. SE

Parameter estimates

Price -0.076 0.004 -0.076 0.004 -0.076 0.004

ASC BEV -0.851 0.098 -1.303 0.242 -0.602 0.096

ASC HEV -0.068 0.053 -0.393 0.166 0.106 0.051

ASC PHEV -0.126 0.143 -0.427 0.201 0.022 0.142

Ocost -0.004 0.000

Cost -0.079 0.021

PVFC -0.242 0.049

log(range) 0.073 0.048 0.107 0.052 0.048 0.048

Charging time -0.002 0.009 -0.001 0.009 -0.003 0.009

Automation 1 0.267 0.034 0.267 0.034 0.266 0.034

Automation 2 0.372 0.033 0.372 0.034 0.371 0.033

Implied willingness to pay

Ocost -$48.17 5.209

Cost -$10.34 2.820

PVFC -$0.32 0.067

log(range) $ 9.72 6.549 $14.01 6.993 $6.29 6.392

Charging time -$31.58 116.409 -$7.49 115.664 -$43.95 114.980

Automation 1 $3,538.00 502.423 $3,498.31 494.890 $3,486.71 495.980

Automation 2 $4,916.76 541.311 $4,863.83 533.248 $4,850.39 532.820

LL -12,415 -12,466 -12,461

AIC 24,847 24,950 24,939

BIC 24,912 25,015 25,004

McFadden’s ρ2(0) 0.087 0.083 0.084

McFadden’s ρ2(ASC) 0.033 0.029 0.030

Notes: Price is in thousands of dollars, operating cost (Ocost) is in dollars, cost is in

cents, PVFC is in ten thousands of dollars, log(range) is the natural log of miles of

range, charging time is in hours, and automation 1 and automation 2 are dummies for

partial and full automation. The standard errors of the point estimates for WTPs are

obtained using delta method. WTP of log(Range) corresponds to the marginal WTP

for a baseline driving range of 100 miles. AIC is computed as −2LL+ 2×K, and BIC

as −2LL + log(NT/J) ∗K, where K is the number of parameters. Bold estimates are

statistically significant at 5%.
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Table 5: Models with Parametric Heterogeneity

MIXL-N MIXL-N-OH MIXL-LN-I MIXL-LN-II

Est. SE WTP % > 0 Est. SE WTP % > 0 Est. SE WTP % > 0 Est. SE WTP % > 0

Price -0.111 0.005 -0.111 0.005 -0.091 0.005 -0.073 0.004

ASC BEV 0.846 0.133 0.855 0.133 0.435 0.123 0.877 0.100

ASC HEV 0.385 0.065 0.403 0.065 -0.069 0.057 -0.403 0.056

ASC PHEV 1.767 0.207 1.773 0.207 1.302 0.193 2.408 0.110

PVFC -0.243 0.068 -$0.22 -0.230 0.068 -$0.21 -0.292 0.062 -$0.32 -0.346 0.063 -$ 0.47

log(Range) (µ) 0.783 0.072 $70.57 77% 0.778 0.072 $69.96 77% 0.760 0.068 $ 83.07 79% 2.907 0.140 $ 34.51 53%

Charging time (µ) -0.210 0.018 -$1,893.52 28% -0.213 0.018 -$1,917.68 28% -0.182 0.016 -$1,986.86 28% -0.117 0.015 -$1,606.24 33%

Automation 1 (µ) 0.161 0.047 $1,453.14 55% 0.063 0.144 $6,322.84 0.543 0.037 $956.32 0.537 0.037 $1,022.89

Automation 2 (µ) 0.110 0.052 $989.75 52% 0.209 0.148 $10,188.95 0.830 0.034 $ 935.06 0.912 0.039 $1,046.15

log(range) (σ) 1.058 0.031 $9,532.37 1.043 0.030 $9,372.10 0.941 0.028 7.053 0.822

Charging time (σ) 0.354 0.015 $3,184.50 0.358 0.015 $3,214.68 0.313 0.014 0.264 0.014

Automation 1 (σ) 1.360 0.071 $12,251.70 1.339 0.071 $12,039.98 0.681 0.058 0.696 0.060

Automation 2 (σ) 1.792 0.069 $16,144.62 1.761 0.069 $ 15,827.21 1.908 0.281 2.305 0.400

Autom1×Google car? 0.245 0.086 $2,206.05

Autom1×Male -0.212 0.079 -$1,903.14

Autom1×log(income) 0.165 0.055 $1,483.92

Autom1×years driving/10 -0.138 0.038 -$1,241.47

Autom1×West 0.429 0.111 $ 3,852.15

Autom1×Midwest 0.481 0.101 $ 4,320.95

Autom1×Northeast 0.108 0.105 $972.40

Autom2×Google Car? 0.464 0.087 $4,167.07

Autom2×Male -0.164 0.081 -$1,476.46

Autom2×Log(Income) 0.225 0.054 $2,023.78

Autom2×Years Driving/10 -0.230 0.040 -$2,069.72

Autom2×West 0.205 0.115 $1,838.86

Autom2×Midwest 0.258 0.102 $2,322.13

Autom2×Northeast -0.184 0.109 -$1,651.46

LL -10,277 -10,242 -10,583 -10,610

AIC 20,579 20,538 21,192 21,245

BIC 20,673 20,733 21,286 21,339

McFadden’s ρ2(0) 0.244 0.247 0.222 0.220

McFadden’s ρ2(ASC) 0.200 0.202 0.176 0.174

Notes: Price is in thousand of dollars, PVFC in ten thousand of dollars, log(range) is the natural log of miles of range, and charging time is in hours. All models were

estimated holding price, PVFC and ASCs fixed. MIXL-N model assumes all the parameters as normally distributed. MIXL-N-OH model assumes all the parameters as

normally distributed and Automation 1 and 2 normally distributed with observed heterogeneity. MIXL-LN-I model assumes log(range) and charging time as normally

distributed, whereas Automation 1 and 2 as log-normally distributed. MIXL-LN-II assumes charging time as normally distributed, whereas log(range) Automation 1 and 2

as log-normally distributed. The mean and SD of log normally distributed parameters represent the point estimates of µ and σ, where βi ∼ LN(µ, σ). The standard errors

of the point estimates for log-normally distributed parameters are obtained using delta method. WTP of log(range) corresponds to the marginal WTP for a baseline driving

range of 100 miles. WTP of log-normally distributed parameter evaluated at the median. 500 Halton draws for each individual were used to simulate the probability. AIC is

computed as −2LL + 2×K, and BIC as −2LL + log(NT/J) ∗K, where K is the number of parameters. Bold estimates are statistically significant at 5%.

29



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Table 6: Models with No Parametric Heterogeneity

Class 1 Class 2 Class 3

Est. SE WTP % > 0 Est. SE WTP % > 0 Est. SE WTP % > 0

A: Mean and standard deviations

Price -0.119 0.018 -0.043 0.005 -0.227 0.012

ASC BEV -2.328 0.580 1.796 0.157 -0.624 0.260

ASC HEV -2.663 0.204 1.151 0.117 2.788 0.160

ASC PHEV -2.320 0.973 2.256 0.221 1.422 0.392

PVFC -0.747 0.126 -$0.63 -0.344 0.153 -$0.80 -0.168 0.137 -$0.07

log(Range) 0.685 0.339 $57.56 0.039 0.067 $9.13 0.022 0.137 $0.99

Automation 1 (µ) -0.072 0.325 -$607.49 48% 0.119 0.051 $2,784.15 100% 0.269 0.082 $1,186.76 67%

Automation 2 (µ) -0.506 0.347 -$4,248.05 38% 0.281 0.053 $6,580.23 66% 0.322 0.083 $1,422.42 59%

Automation 1 (σ) 1.231 0.300 $10,342.25 0.022 1.462 $508.26 0.609 0.144 $2,686.01

Automation 2 (σ) 1.612 0.276 $13,541.52 0.663 0.088 $15,526.13 1.469 0.103 $6,484.70

B: Variables for class assignment

Constant -0.193 0.288 -1.559 0.270

Days 80 miles 0.128 0.026 0.080 0.025

Own a car? 0.596 0.156 0.192 0.133

No. of vehicles 0.211 0.065 0.133 0.064

Google car? 0.794 0.067 0.407 0.068

Age/ 10 -0.041 0.045 0.187 0.045

Male 0.106 0.064 -0.293 0.063

Married 0.123 0.065 0.333 0.063

No. of children 0.120 0.024 0.041 0.022

Comp. college 0.212 0.075 -0.034 0.070

High school -0.429 0.084 -0.615 0.080

Single family -0.227 0.118 -0.091 0.126

Apartment -0.783 0.148 0.269 0.146

Own a house -0.040 0.079 0.012 0.079

Years driving / 10 -0.398 0.059 -0.450 0.062

Accident -0.168 0.059 0.215 0.058

Prefer driving 0.299 0.069 0.451 0.066

Fulltime -0.163 0.088 0.124 0.083

Part time -0.232 0.123 0.069 0.117

Homemaker -0.515 0.129 -0.759 0.129

White -0.130 0.083 0.325 0.090

Conservative -0.415 0.068 0.154 0.066

Liberal -0.056 0.078 0.370 0.078

West 0.462 0.088 0.320 0.084

Midwest 0.480 0.080 0.474 0.074

Northeast 0.302 0.080 -0.162 0.079

Urban 0.163 0.062 -0.181 0.060

Log(income) -0.013 0.046 0.196 0.049

Shares for classes 29% 33% 38%

LL -9,075.5

AIC 18,323

BIC 18,941

McFadden’s ρ2(0) 0.333

McFadden’s ρ2(ASC) 0.293

Notes: Price is in thousands of dollars, PVFC in ten thousands of dollars, log(range) is the natural log of miles of range, and charging

time is in hours. WTP of log(range) corresponds to the marginal WTP for a baseline driving range of 100 miles. 500 Halton draws

for each individual were used to simulate the probability. AIC is computed as −2LL+ 2×K, and BIC as −2LL+ log(NT/J) ∗K,

where K is the number of parameters. Bold estimates are statistically significant at 5%.
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B Figures

Figure 1: Sample of a Choice Situation Presented to Respondents
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Figure 2: Willigness to Pay Distribution for MIXL Models
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Notes: The horizontal axis measures WTP in thousands of dollars. Observed

heterogeneity is evaluated at mean of variables.
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Figure 3: Willigness to Pay Distribution for MM-MNL Model
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Notes: The horizontal axis measures WTP in thousands of dollars. Observed

heterogeneity is evaluated at mean of variables.
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