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a b s t r a c t 

Multivariate GARCH models have been designed as an extension of their univariate counterparts. Such a 

view is appealing from a modeling perspective but imposes correlation dynamics that are similar to time- 

varying volatility. In this paper, we argue that correlations are quite different in nature. We demonstrate 

that the highly unstable and erratic behavior that is typically observed for the correlation among financial 

assets is to a large extent a statistical artifact. We provide evidence that spurious correlation dynamics 

occur in response to financial events that are sufficiently large to cause a structural break in the time- 

series of correlations. A measure for the autocovariance structure of conditional correlations allows us to 

formally demonstrate that the volatility and the persistence of daily correlations are not primarily driven 

by financial news but by the level of the underlying true correlation. Our results indicate that a rolling- 

window sample correlation is often a better choice for empirical applications in finance. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Multivariate GARCH models have been designed as extensions 

of their univariate counterparts. Engle et al. (1984) present an early 

version as “a bivariate generalization of Engle’s ARCH model”. This 

view is conceptually appealing and has found widespread use in 

practice. In this paper, we argue that the nature of dynamic corre- 

lations is very different from that of conditional volatilities. While 

important economic and financial news such as economic activity, 

interest rate changes, and oil prices affect the volatility of finan- 

cial assets, the relevance and impact of this news is often similar 

across firms. As a consequence, volatility is constantly exposed to 

news and therefore time-varying by nature but correlation changes 

are only observable after major economic events. For instance, cor- 
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Conditional Correlation”. We would like to thank an anonymous reviewer, Carol 

Alexander (the editor), Chris Brooks, Daniel Buncic, Matthias Fengler, Massimo 

Guidolin, Michael Massmann, Jan Mutl, Adrian Pagan, David Rapach, and the par- 

ticipants of the SEPS Seminar at the University of St.Gallen for valuable comments 

and suggestions. 
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relations substantially increased for many financial assets following 

the burst of the Dot-com bubble in 2001 or the default of Lehman 

Brothers in September 2008 ( Ofek and Richardson, 2003; Wied 

et al., 2012 ) but correlations are generally insensitive to changes in 

macroeconomic variables such as interest rates or inflation ( King 

et al., 1994; Karolyi and Stulz, 1996 ). We demonstrate how cur- 

rent conditional correlation models tend to impose purely artificial 

dynamics on estimated conditional correlations and show why in 

empirical applications the estimated parameters governing the dy- 

namics are often statistically significant despite the fact that un- 

derlying correlations are constant. 

The correlation matrix is the input to many applications in fi- 

nance and several recent studies seem to believe in the importance 

of time-varying correlations. For instance, Moskowitz (2003) em- 

phasizes the significance of dynamic conditional correlations 

during recessions and periods of financial distress. Similarly, 

Adrian and Brunnermeier (2016) argue that MGARCH models are 

important for capturing the dynamic evolution of systemic risk. 

DeMiguel et al. (2009) claim that allowing for time-varying mo- 

ments could increase the performance of optimal asset allocation. 

The notion of constant correlations therefore has important impli- 

cations for financial modeling and practice. Under a constant corre- 

lation matrix, international asset portfolios may not have the same 

http://dx.doi.org/10.1016/j.jbankfin.2017.07.003 
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Fig. 1. Daily conditional correlations between S&P 500 and NASDAQ returns. 

This figure shows daily DCC correlations between the S&P500 Composite index and the NASDAQ Composite index from 01/01/1990 to 12/31/2014 (6532 obs.). Fluctuations in 

time-varying correlations are generally high and can change substantially over time. During the period from January 1990 to March 20 0 0 the volatility of daily correlations 

was 0.077 (122% on an annualized basis) but decreased in the following period (March 20 0 0 to December 2014) to 0.042 (66% annualized). 

degree of diversification than comparable portfolios based on dy- 

namic correlations, portfolio optimization could generate different 

weights, and risk measures may indicate different levels of risk. 

The aim of our research is not to dismiss dynamic correlation mod- 

eling altogether, but to provide a critical perspective on popular 

models that are routinely used to generate estimates of dynamic 

asset correlations. 

The analysis in this paper is based on Engle’s (2002) Dynamic 

Conditional Correlation (DCC) model. The main advantage of the 

DCC approach is its parsimonious specification which simplifies in- 

terpretation and allows even large asset portfolios to be estimated 

within seconds. Over the last years, the DCC model has therefore 

become well-established in both research and practice. 1 In Ap- 

pendix A of the Online Appendix, we show that our results also 

hold for other popular MGARCH models, which tend to generate 

very similar dynamics. 2 To illustrate its behavior, consider the con- 

ditional correlations between the daily returns of the S&P 500 and 

the NASDAQ index from 1990 to 2014 shown in Fig. 1 . Two char- 

acteristics that are typical for conditional correlations generated by 

MGARCH models stand out. First, conditional correlations undergo 

large swings over a short period of time. In the 1990s, correlations 

frequently moved within a wide range between 0.52 in July 1993 

and 0.94 in November 1997. In the literature, this observation has 

been sometimes interpreted as evidence that the underlying cor- 

1 For instance, the DCC model has been used in value-at-risk estimation 

( Pérignon and Smith, 2010 ), the analysis of asset class comovements ( You and 

Daigler, 2010; Heaney and Sriananthakumar, 2012 ), the implementation of hedg- 

ing strategies ( Chang et al., 2011 ), and the examination of correlation responses to 

announcement effects ( Brenner et al., 2009 ), among others. 
2 Only models that have become accepted in practice and can be applied with 

reasonable effort and speed are part of our robustness section. This includes 

MGARCH models with autoregressive covariances such as the corrected DCC model 

of Aielli (2013) , the diagonal VECH model of Bollerslev et al. (1988) , or the diagonal 

BEKK model of Engle and Kroner (1995) . It excludes more complex MGARCH speci- 

fication such as the regime-switching model of Pelletier (2006) . For a classification 

of MGARCH models we refer the reader to Bauwens et al. (2006) . 

relation structure is a highly volatile process (e.g., Pukthuanthong 

and Roll, 2011; Sadorsky, 2012 ). Second, the fluctuation in con- 

ditional correlations often changes over time. In Fig. 1 , correla- 

tions are highly volatile during the 1990s but enter a more tran- 

quil period in 20 0 0. During this time, the daily volatility of cor- 

relations dropped approximately by half. In this paper, we show 

that the large fluctuations during the 1990s and the small fluc- 

tuations during the 20 0 0s have no fundamental economic cause 

but are purely artificial results generated by the DCC model. In 

the following, the discussion and the empirical results of our pa- 

per are based on typical bivariate correlations. Simulation results 

in Pakel et al. (2014) suggest that in the multivariate case, correla- 

tions become constant as the number of assets increases. 3 

We demonstrate that the volatility of estimated conditional cor- 

relations ˆ ρ is a negative function of the underlying true correla- 

tion level ρ: The fluctuations in conditional correlations ˆ ρ are large 

when the correlation level ρ is close to zero and small when ρ ap- 

proaches ±1. 4 In Fig. 1 , this causes the volatility to decrease dras- 

tically as conditional correlations reach values of 0.9 and beyond. 

In fact, we argue that for financial assets, underlying true corre- 

lations ρ are generally constant and that the fluctuations gener- 

ated by autoregressive-type multivariate GARCH models are spuri- 

ous. They are caused by infrequent economic disruptions that shift 

the level of correlations. We recognize that correlations can and do 

change from time to time. For instance, Longin and Solnik (1995), 

Bera and Kim (2002) , and Forbes and Rigobon (2002) show that 

correlations among financial assets increase during economic crises 

and times of financial distress. However, our claim is that these 

3 We thank an anonymous reviewer for pointing this out. 
4 In the following, we assume that there exists a true but unobserved correlation 

ρ . From a statistical viewpoint, our empirical estimates ˆ ρ are only meaningful if 

there is a true but unobserved correlation ρ . From an economic perspective, there 

should be a true correlation coefficient that reflects the way common economic 

factors lead to comovement between any two financial assets. 
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Fig. 2. Are daily conditional correlations between S&P 500 and NASDAQ returns constant? 

This figure shows the decomposition of daily dynamic correlations into constant correlations that are separated by level shifts. The level shifts are detected by the correlation 

breakpoint test proposed by Wied et al. (2012) . The identified breaks are associated with significant disruptions in financial markets such as the burst of the Dot-com bubble 

in March 20 0 0 or the failure of Lehman Brothers in September 2008. 

level shifts are a very different type of dynamics than the daily 

autoregressive fluctuations that are suggested by MGARCH models. 

To substantiate our claim, we test for breaks in the otherwise 

constant correlation structure using a recent correlation change- 

point detection algorithm developed by Galeano and Wied (2014) . 

This algorithm is a repeated application of the change-point test 

developed by Wied et al. (2012) and is able to identify level shifts 

that are associated with important financial or economic events. 

We illustrate this point in Fig. 2 , where we repeat the daily DCC 

correlations from the previous graph but superimpose the con- 

stant correlations including their level shifts. The algorithm of 

Galeano and Wied (2014) suggests that the underlying true cor- 

relation was initially constant during the five year period from 

1990 to 1994. The change-point tests indicate a shift in the corre- 

lation structure in December 1994 which corresponds to the Mex- 

ican peso crisis. More correlation breaks followed: the Asian cri- 

sis in 1997, the burst of the Dot-com bubble which had its climax 

in March 20 0 0, and the default of Lehman Brothers in September 

2008. The detection algorithm finds no evidence for additional cor- 

relation changes within each subsample. We therefore claim that 

much unlike conditional volatility , the true underlying correlations 

ρ are likely to be constant. 5 

We can extend this example to other assets. Fig. 3 shows the 

estimated breaks for the correlation between the S&P 500 and 

crude oil returns. Two correlation breaks are identified. The first 

occurs in October 1995 and is fairly small (0.058 in absolute 

terms). Although it cannot be said with certainty, it is likely that 

5 The assumption that daily correlations lie exactly on a straight line between 

breakpoints may be too strong. For instance, daily trading noise and price fluctua- 

tions in S&P500 and NASDAQ stocks is likely to generate small changes in the cor- 

relation structure even between breakpoints. However, the Wied et al. (2012) test 

indicates that those changes are not statistically significant and unlikely to reflect 

economically relevant changes. Our main arguments in this paper do not depend 

on the straight line assumption and have the same importance when we allow for 

correlation noise between breaks. 

this break is associated with the Iraq disarmament crisis that in- 

volved a series of small events that started in 1995 and escalated 

in a cruise missile strike that was launched by the U.S. military 

forces against Iraq air defense targets in September 1996. Since 

the United States was directly involved in Iraq and the events 

changed in perception about future Iraq oil production, it is likely 

to have affected both, the S&P 500 and crude oil prices. The sec- 

ond break is much larger in size (an increase of 0.396) and has 

recently attracted considerable attention in the empirical literature 

on commodity markets (e.g. Cheng and Xiong, 2014; Adams and 

Glück, 2015 ). At the center of this literature is the comovement 

between commodities and the stock market that emerged after the 

bankruptcy of Lehman Brothers. This phenomenon is known as the 

financialization of commodity markets and has been shown to be 

responsible for the size and the persistency of the observed co- 

movement ( Henderson et al., 2015 ). 

As a third and last example, Fig. 4 shows the correlations be- 

tween the S&P 500 and Italian government bonds. There are two 

important events that caused a shift in the level of correlation 

between these two assets. The first break occurs in 20 0 0 shortly 

after the introduction of the euro. The euro led to a compres- 

sion of bond spreads in Italy and other countries in the euro area 

periphery which could have reduced the correlation between the 

S&P 500 and Italian government bonds ( Hale and Obstfeld, 2016 ). 

The second break occurs in 2010 during the sovereign debt cri- 

sis when the debt-to-GDP ratio of several European countries in- 

creased rapidly. For instance, the debt-to-GDP ratio in Italy in- 

creased by almost 20% between 2007 and 2011 ( Lane, 2012 ). In the 

following years, the yields on Italian government bonds increased 

to reflect higher risk premia from a deteriorating Italian economy 

and a higher probability of default ( Mody and Sandri, 2012 ). At the 

same time, the U.S. stock market recovered from the 20 07–20 09 fi- 

nancial crisis. As a result, the returns on both, U.S. stocks and Ital- 

ian government bonds entered a period of positive growth, causing 

an upward shift in correlations. 
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Fig. 3. Structural breaks in daily correlations between S&P 500 and crude oil returns. 

This figure shows two breaks that increased the correlation between U.S. stocks and crude oil returns. The first occurs in the mid-1990s and is associated with the U.S. 

military involvement in Iraq. The second break coincides with the bankruptcy of Lehman Brothers and marks a strong increase in the comovement between commodities 

and the stock market. In the empirical literature, this second break is often interpreted as the beginning of a new era of financialization in which the correlation between 

stocks and commodities are shifted to a permanently higher level. 

Fig. 4. Structural breaks in daily correlations between S&P 500 and Italian government bonds. 

This figure shows two correlation breaks that are associated with the euro. The first break occurs after the introduction of the euro in 1999 and is associated with a 

compression of bond yields in southern European countries. The second break refers to the sovereign debt crisis when the debt levels of European periphery countries 

increased. 

Our claim that the correlations between financial assets tend to 

be constant is in line with a number of empirical findings. Tse and 

Tsui (1999) investigate a number of tests aimed at detecting time- 

varying correlations through linear dependence in cross products 

of standardized residuals. They demonstrate that the tests correctly 

indicate model misspecification when a MGARCH model with con- 

stant conditional correlations ( Bollerslev, 1990 ) is fitted to the data 

but the true DGP is a MGARCH model with dynamic conditional 

correlations. However, when applied to empirical data, most stud- 

ies fail to detect linear dependence ( Bollerslev, 1990; Tang, 1995; 

Tse, 20 0 0 ). Further evidence is provided by Tse (20 0 0) who derives 

a Lagrange Multiplier test for constant conditional correlations. He 

finds this test to have high empirical power if the true DGP is a 

BEKK or a DCC-type model. Nevertheless, for several assets he fails 
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to reject the null of constant conditional correlations. 6 A recent 

line of literature has proposed MGARCH model extensions that are 

capable of accommodating breaks between different levels of cor- 

relation. For instance, Silvennoinen and Teräsvirta (2009) propose a 

double smooth transition conditional correlation (DSTCC) model in 

which the correlations change smoothly between states of constant 

correlations. The Threshold Conditional Correlation model (TCC) of 

Aslanidis and Martinez (2016) models abrupt regime changes but 

has the advantage that it is easier to estimate, even for large num- 

bers of assets. From the empirical evidence produced in this paper, 

we expect these types of models to gain in importance over the 

next years. 

Given the substantial differences between the volatile DCC cor- 

relations in the previous examples and the constant correlations 

that we claim describes the true underlying correlation structure, 

an important question is why the DCC parameters that govern the 

estimated correlation dynamics are often found to be statistically 

significant in empirical studies. Our empirical results show that 

statistical significance is much less important than expected. Al- 

though statistical significance decreases when we control for cor- 

relation breaks, the main difference in correlation dynamics is 

caused by a change in the size of parameter estimates. These size 

changes have important consequences for correlation dynamics 

because the interaction between correlation parameters is highly 

nonlinear. As a consequence, even small deviations from typical es- 

timates can generate correlations that are either constant or fluc- 

tuate randomly at low volatility around a constant value. 

A final issue that is important when analyzing corre- 

lations is the impact of non-normal return distributions. 

Embrechts et al. (1999) show that fat-tailed marginal and joint 

distributions can reduce the attainable range of correlations. While 

this range is generally between −1 and + 1, extreme outliers 

and skewness can push this range towards zero. If the bivariate 

distribution of standardized returns changes over time to vary- 

ing degrees of non-normality, the underlying and empirically 

determined correlations may change as well. This change could 

be problematic because it can generate a situation in which the 

true return co-dependence is high but correlations are low. We 

investigate this phenomenon and its consequences in more detail 

in Appendix F of this paper. 7 Our conclusion is that although 

deviations from non-normality are a salient feature of financial 

asset returns, the observed deviations may not be sufficiently large 

to have major distorting effects on our empirical results. 

The remainder of this paper is structured as follows. In the next 

section, we show for several asset classes that correlation breaks 

among daily returns are a common phenomenon. In Section 3 , 

we take a closer look at the impact of breaks on parameter esti- 

mates. When breaks are controlled for, parameter estimates often 

lie outside the narrow band that produces meaningful correlation 

dynamics. A theoretical explanation for the results in our paper is 

explored in Section 4 . We derive an expression for the variance 

and autocovariance of DCC correlations when the true underlying 

correlations are constant. We show that this expression can be de- 

composed into a general term that is common to all parametric 

correlation estimators, and a model-specific term which adopts the 

unique characteristics of the underlying correlation specification. 

This allows us to demonstrate how DCC parameters cause artificial 

6 In contrast, comparable studies on the behavior of univariate GARCH mod- 

els find that GARCH volatility adequately models the true data generating process 

( Bollerslev et al., 1992 ). Overall, the body of empirical literature over the last two 

decades lends support to the notion that extending the GARCH framework from 

volatilities to correlations is not as straightforward as previously thought. 
7 The supplementary internet appendix for this paper is available at http: 

//www.sbf.unisg.ch/en/lehrstuehle/lehrstuhl _ fuess/homepage _ fuess/publikationen+ 

roland+fuess . 

correlation dynamics. In Section 5 , we show under which circum- 

stances the historical rolling window sample correlation is prefer- 

able to a DCC model. Section 6 summarizes our main results and 

gives our conclusions. 

2. Correlation breaks in daily asset returns 

In this paper, we argue that correlations are constant over time, 

but that financial shocks lead to breaks that shift the level of cor- 

relations. This section describes the empirical evidence concern- 

ing breaks in the correlation structure of financial assets. Over a 

15-year period from 20 0 0 to 2014, the majority of financial assets 

in our sample experience shocks that significantly shift the level 

of daily correlations. The presence of such correlation breaks has 

implications for the estimation of conditional correlation models. 

The existing literature on univariate volatility models shows that 

breaks in the volatility dynamics introduce a bias in the estima- 

tion which results in inaccurate volatility forecasts ( Hamilton and 

Susmel, 1994; Hillebrand, 2005; Rapach and Strauss, 2008 ). How- 

ever, the findings concerning volatility breaks cannot be simply ex- 

tended to correlations. We show that correlation dynamics are ex- 

posed to model specific factors that are absent in univariate mod- 

els of volatility. 

2.1. The dynamic conditional correlation (DCC) model 

Throughout this paper, our emphasis is on Engle’s (2002) pop- 

ular mean-reverting Dynamic Conditional Correlation (DCC) model. 

The MGARCH family has grown considerably over the last years 

and a number of more complex models are better at dealing 

with structural breaks in correlations. For instance, Mittnik and 

Paolella (20 0 0) propose a weighted maximum likelihood proce- 

dure that places less weight on observations in the more dis- 

tant past. Pelletier (2006) introduces a regime-switching MGARCH 

model that allows for correlations that are constant within a 

regime but are different across regimes. The variable govern- 

ing the changes from one regime to another is a latent unob- 

served factor. In contrast, the model proposed by Silvennoinen and 

Teräsvirta (2009) can identify up to two regime switching vari- 

ables and allows for smooth transitions between breaks. How- 

ever, the additional flexibility of these more advanced models often 

comes at the cost of highly sensitive parameter estimates and ex- 

tensive modeling and forecasting implementation. In this context, 

the recently proposed Threshold Conditional Correlation model of 

Aslanidis and Martinez (2016) is promising as it is relatively easy 

to estimate even for a large number of assets. The results in this 

paper advocate the use of models that are both practical for large 

portfolios while at the same time allow for shifts in correlations. 

We hope that our results can help to promote the kind of models 

proposed by Aslanidis and Martinez (2016) . 

For the purpose of our paper, however, we focus on the DCC 

model which currently enjoys high popularity due to its parsimo- 

nious specification and direct interpretation which is analogous to 

parameters of univariate GARCH models. In other words, we recog- 

nize the contribution of the more recent regime switching correla- 

tion models but point out that so far they play only a minor role 

in most empirical settings. For the main arguments in our paper, 

which are about the dynamic correlations as they are used today, 

the simple canonical specifications are more relevant. Finally, DCC 

models generate conditional correlation dynamics which are simi- 

lar to more complex MGARCH specifications such as BEKK ( Engle, 

2002; Engle and Colacito, 2006; Caporin and McAleer, 2012 ) or the 

corrected DCC of Aielli (2013) . We therefore expect our results to 

hold also for other members of the MGARCH family. 

For our analysis, we abstract from conditional mean effects, i.e. 

we assume that conditional means are constant. This assumption 

http://www.sbf.unisg.ch/en/lehrstuehle/lehrstuhl_fuess/homepage_fuess/publikationen+roland+fuess
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has no serious implications for daily data ( Fleming et al., 2001 ) 

and is common in the literature ( West and Cho, 1995 ). Further- 

more, and for the sake of simplicity, we only consider the bivari- 

ate case. This restriction does not affect our results as DCC model 

parameters have the same impact on each component of the con- 

ditional correlation matrix. Hence, all our results apply to higher 

dimensions as well. The bivariate DCC model uses the specification 

ρt = f ( q t ) = 
q 12 ,t √ 

q 11 ,t · q 22 ,t 
, (1) 

where the elements of q t = ( q 11 ,t , q 22 ,t , q 12 ,t ) are functions of the 

standardized residuals {( e 1, k , e 2, k ) 
′ : k < t }. The residuals e i, t are 

obtained as the GARCH residuals from the return equation r i,t = 

σi,t e i,t and are typically associated with financial shocks or news 

( Engle and Ng, 1993 ). The q t are estimated using the expression: 

ˆ q i, j,t = 
1 − a − b 

1 − b 
ϑ i, j + a 

∑ ∞ 

s =1 
b s −1 e i,t−s e j,t−s 

= ( 1 − a − b ) ϑ i, j + a e i,t−1 e j,t−1 + b ̂  q i, j,t−1 (2) 

with a > 0, b > 0, and a + b < 1 . Intuitively, q 11, t and q 22, t can be 

regarded as auxiliary estimates of E( e 2 1 ,t | F t−1 ) and E( e 2 2 ,t | F t−1 ) , 

respectively, where F t−1 denotes the information set available at 

time t −1. Similarly, q 12, t is an auxiliary estimate of E( e 1 ,t e 2 ,t | F t−1 ) . 

In line with this interpretation, Eq. (1) simply states rescaling in 

such a way that ˆ ρt satisfies −1 ≤ ˆ ρt ≤ 1 . If the unconditional cor- 

relation between e i, t and e j, t is the same for all t , then a natural 

choice for the constant ϑi, j is E ( e i, t e j, t ). Although this definition of 

the constant does not assure that E( ̂  ρt ) = E( e i,t e j,t ) , most empirical 

applications are based on this specification. For this reason and be- 

cause setting ϑ i, j = E( e i,t e j,t ) considerably simplifies the analysis, 

we hence refrain from adjustments suggested in Aielli (2013) and 

refer to Caporin and McAleer (2008) for a detailed discussion. The 

parameter a models the sensitivity of q t to the arrival of news e i, t . 

If a is close to zero, correlations dynamics are insensitive to shocks 

and approximate a straight line. The parameter a therefore plays 

a special role in our paper and is labeled “news parameter”. In 

contrast, the parameter b measures the persistence in correlations 

and is referred to as the “decay parameter”. A low b value gener- 

ates correlations that fluctuate randomly at low volatility around a 

straight line. 8 

2.2. A correlation breakpoint test 

To identify and locate change points in the correlation structure 

of financial assets we implement a simple and effective algorithm 

proposed by Galeano and Wied (2014) and Wied et al. (2012) . 

Similar to recent correlation regime switching models (e.g., 

Silvennoinen and Teräsvirta, 2009; Aslanidis and Martinez, 2016 ) 

the methodology does not require possible break dates to be spec- 

ified in advance but uses an algorithm for sequential breakpoint 

detection. 9 This algorithm involves the following steps: Consider a 

sample of T observations of the return vector ( r 1, t , r 2, t ) 
′ . Let ρt de- 

note the true but unknown unconditional correlation between r 1, t 
and r 2, t at time t . The algorithm tests the null hypothesis of con- 

stant correlations against the alternative hypothesis of a change- 

point t c , i.e. 

H 0 : ρt = ρ for all t ∈ { 1 , ..., T } (3) 

8 An alternative measure of persistence that is sometimes used in the univariate 

GARCH literature is the sum of a and b ( Hillebrand, 2005 ). Although the effective- 

ness of b depends on a reasonable value for a (somewhere between 0.02 and 0.06) 

the actual persistence is governed by the size of b . We therefore rely on b as a 

measure of persistence throughout the paper. 
9 An alternative correlation break point methodology is the test proposed by 

Andreou and Ghysels (20 02, 20 03 ). The results in our paper do not change signif- 

icantly under this alternative test. To conserve space, we do not report the results 

here but instead focus on the test of Wied et al. (2012) . 

versus 

H 1 : ∃ t c ∈ { 1 , ..., T − 1 } such that ρt c 	 = ρt c +1 . (4) 

The procedure is based on the model-free fluctuation-type test 

(“WKD test” henceforth) originally proposed by Wied et al. (2012) . 

The test statistic is defined as 

Q T := ˆ D max 
2 ≤t≤T 

t 
√ 
T 
| ̂  ρt − ˆ ρT | , (5) 

where ˆ ρt is the sample correlation over the period 1 to t . The pur- 

pose of the scalar coefficient ˆ D is to rescale the volatility of ˆ ρt 

which tends to be higher at the beginning of the sample when 

only a few observations are available. The coefficient ˆ D is described 

in more detail in Appendix B of the Online Appendix. Under the 

null hypothesis and several reasonable moment and dependency 

restrictions, the test statistic Q T is asymptotically Kolmogorov dis- 

tributed ( Wied et al., 2012 , Theorem 1). 10 If Q T stays below the up- 

per critical value the null hypothesis of constant correlation cannot 

be rejected and the algorithm stops. Otherwise, H 0 is rejected and 

the correlation sample contains at least one change-point t c . The 

estimator for the single change-point is defined as 

t c = arg max 
t 

ˆ D 
t 

√ 
T 
| ̂  ρt − ˆ ρT | . (6) 

To identify further change-points, the sample is split into 

the two subsamples [1 , ..., ̂  t c ] and [ ̂ t c + 1 , ..., T ] . These subsam- 

ples are then both tested individually. This procedure is re- 

peated until no further change-points are detected. Galeano and 

Wied (2014) demonstrate that the presence of multiple change- 

points can affect the test’s efficiency in identifying the true number 

of change points. The last step of the algorithm therefore consists 

of a refining process in which the vector of the n detected change- 

points τ = [ ̂ t c 1 , ..., ̂  t 
c 
n ] , sorted in ascending date order ˆ t 

c 
1 ≤ ... ≤ ˆ t c n , is 

verified in subsamples containing only a single change point. For 

the implementation of the refining process we define the first ob- 

servation of the sample as ˆ t c 0 = 0 , the last observation as ˆ t c 
n +1 = 

T , and form the subsamples [ ̂ t c 
i −1 

+ 1 , ..., ̂  t c 
i +1 

] for i = 1 , ..., n . Each 

subsample starts at the first observation following the previous 

change-point ˆ t c 
i −1 

, includes change point ˆ t c 
i 
, but ends just before 

the next change-point ˆ t c 
i +1 

. These subsamples are tested individu- 

ally. If the null hypothesis is not rejected the change-point con- 

tained in the subsample is removed from τ . 
We give a brief example to illustrate the test procedure. We 

test for a break in the daily correlation between the returns of 

the FTSE100 index and the returns of the Dutch AEX index. If 

we test the full sample from 01/03/20 0 0 to 11/28/2014 we de- 

tect one significant change-point at 01/17/2008. In the next step, 

we split the data in the two subsamples [01/03/20 0 0–1/17/20 08] 

and [01/18/2008–11/28/2014]. We test the two subsamples in- 

dividually and find another change-point in the first subsample 

at 08/31/2001. The test statistic in the second subsample is in- 

significant. The presence of the second change-point interferes 

with the test statistic for the first change-point that was de- 

tected using the entire sample. The last step therefore involves a 

refining process in which we test the subsamples [01/03/20 0 0–

01/17/2008] and [09/01/2001–11/28/2014]. The test statistics for 

both subsamples remains significant and confirms the presence 

of both change-points: τ = [08/31/2001, 01/17/2008]. Galeano and 

Wied (2014) demonstrate that this procedure detects the correct 

number of correlation change-points. 

We apply the WKD test to the daily returns of 40 assets over 

the period 01/03/20 0 0 to 12/31/2014 (3914 obs.). Our data covers 

10 See assumptions A .1–A .5 in Wied et al. (2012) . In particular, it is assumed that 

{( r 1, t , r 2, t ) 
′ } is near-epoch dependent. For an extensive discussion see Davidson 

(1994 , Ch. 17). 
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Fig. 5. Correlation breaks: descriptive statistics. 

This figure shows the distribution of correlation breaks over time (Panel A), the frequency of breaks (Panel B), and the average change in correlations following a break 

(Panel C). Breaks are estimated over 40 assets including stocks, bonds, commodities, and currencies for a total of (40 ×39)/2 = 780 correlation pairs. The WKD test detects 

775 breaks in daily correlations over the period 20 0 0 to 2014. 

the asset classes stocks, bonds, commodities, and currencies. Each 

asset class is represented by 10 major indices or currency pairs. 

Appendix C in the Online Appendix lists the constituents in detail. 

We obtain 1 / 2 · n ( n − 1 ) = 780 correlation time series to be tested 

for breaks. Panel A in Fig. 5 shows the distribution of breaks over 

time. Intuitively, correlation breaks should cluster around dates 

that are associated with important financial shocks. Panel A in- 

dicates that this is in fact the case. The two events that appear 

to have influenced correlations most are the failure of two Bear 

Stearns funds in July 2007 and the bankruptcy of Lehman Brothers 

in September 2008. If we look at the table of correlation breaks 

in Panel B we see that 420 return pairs, or more than half of the 

assets in our data experienced exactly one correlation break. More 

than two correlation breaks is much less common. In 26% of cases, 

the WKD test did not identify a significant change in correlations. 11 

Finally, Panel C shows how correlations change after a break. Since 

small changes are likely to be statistically insignificant the distri- 

11 This appears to be particularly the case for assets that had very low correlations 

to begin with. 

bution shows a distinct bimodal shape. Financial crises tend to in- 

crease the comovement among assets which can explain the higher 

positive mode. In fact, the majority, or 61% of correlation changes 

are positive. The largest negative drop in average correlations is 

−0.68. The largest positive jump is as high as 0.58. The average 

positive or negative correlation change is around 0.18. From our 

findings in Fig. 5 we conclude that correlation breaks in financial 

assets is a common phenomenon and that the change in corre- 

lations following a break is often large. In the following section, 

we investigate the consequences of breaks on DCC parameter esti- 

mates which govern the dynamics of conditional correlations. 

3. The impact of correlation breaks on DCC parameter 

estimates 

Over the 15 year period from 20 0 0 to 2014, the majority of fi- 

nancial assets experienced at least one correlation break. If corre- 

lation breaks are a prevalent characteristic of financial assets, the 

question is how this affects the parameters that govern the corre- 

lation dynamics. To answer this question, we use the n = 40 as- 

sets from the previous section and obtain 1 / 2 · n ( n − 1 ) = 780 cor- 
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relation time series. First, we collect the DCC parameter estimates 

over the full sample from 03/01/20 0 0 to 12/31/2014 (3914 obs.). In 

a second step, we re-estimate the parameters running the model 

over the subsamples between correlations breaks. 12 We obtain 780 

DCC parameter pairs for the full samples and 1596 parameter pairs 

for the subsamples. In the following, the full sample estimates 

serve as our control group while the subsample estimates are our 

treatment group. To allow for a direct comparison between the two 

groups we need to ensure that the full sample correlations contain 

at least one correlation break. In addition, we exclude correlations 

that are already constant in full samples. This occurred in a num- 

ber of cases in which the news parameter was close to zero. 13 We 

discuss this important situation in more detail in Section 4 . Finally, 

we remove subsamples that contain less than 500 observations to 

ensure that our results are not driven by small sample windows. 

Our final sample consists of 355 full sample correlations and 802 

subsample correlations. 

Panel A of Fig. 6 shows the descriptive statistics of DCC parame- 

ters and compares full samples to subsamples. We find an average 

value for the news parameter a of 0.021 and for the decay param- 

eter b of 0.97 which are in line with findings from other studies. 

For instance, Engle and Sheppard (2001) investigate the daily re- 

turns of the DJIA index and report 0.01 and 0.96 for a and b , re- 

spectively. Engle and Colacito (2006) investigate the daily returns 

of the S&P 500 and the 10-year U.S. bond futures contract and re- 

port 0.022 and 0.973 for a and b . Measured at the 95% confidence 

level, our parameter estimates are statistically significant in 91% of 

all cases. 

When we compare these numbers to the estimates found in 

subsamples the average coefficients appear to be quite similar. 

The average news parameter is close to the full sample estimate 

while the decay parameter estimate is somewhat lower. This ob- 

servation is in line with Rapach and Strauss (2008) and Hillebrand 

(2005) who find that the persistence parameter β for univariate 

GARCH models decreases after accounting for structural breaks in 

volatility. The main change in subsamples parameters, however, 

does not take place in the average estimate but in its distribu- 

tion. For instance, subsample estimates for the news parameter 

now range between 0 and 0.244 while estimate for the decay pa- 

rameter range between 0 and 0.997. Panel B of Fig. 6 illustrates 

the impact of correlation breaks on the parameter distribution for 

different asset classes in our sample. The distribution of news pa- 

rameters shows a number of positive outliers, in particular in cases 

when the correlations are measured among stocks, bonds, or be- 

tween mixed assets types. This finding is even stronger when we 

look at the change in distribution of the decay parameter. A sig- 

nificant part of the distribution now covers parameters below 0.5 

which leads to a low persistence in the correlation dynamics. To 

conclude, estimating DCC models in subsamples that contain no 

breaks has subtle but important consequences for DCC parameter 

estimates. However, it is unclear how the changes in DCC param- 

eters affect correlation dynamics. We will explore this issue in the 

following section. 

4. The impact of correlation breaks on correlation dynamics 

In this section, we show how breaks in the correlation structure 

of financial assets affect the dynamics of correlation estimators. 

We derive an expression for the autocovariance function of con- 

ditional correlations. This expression shows how the autocovari- 

ances can be separated into a general variance part and a model 

12 We exclude five observations before and after the break to remove possible 

transition effects that occur around the break date. 
13 We impose the parameter restrictions 0.01 < a < 0.06 and 0.8 < b < 0.99 which 

will generate a typical dynamic correlation behavior. 

part which explicitly depends on the parameterization of the cor- 

relation process. In this context, we compare the results from the 

DCC model to two simple correlation estimators that are popular in 

practice: the fixed parameter exponentially weighted moving aver- 

age (EWMA) estimator and the historical sample correlation esti- 

mated in a rolling window. 14 In a number of cases, these simple 

alternatives will perform better than a MGARCH-type correlation 

estimator. 

4.1. Dynamic correlation estimators 

Our first estimator is the rolling window (RW) sample correlation . 

The (historical) sample correlation of asset returns is a simple and 

popular estimator in applied finance. However, it is not just an ad 

hoc way to measure dynamic correlations. As shown in Foster and 

Nelson (1996) there are several DGPs for which an appropriately 

specified rolling window estimator is optimal. We follow the litera- 

ture and use this estimator as a benchmark to be tested against the 

performance of more sophisticated MGARCH models ( Engle, 2002 ). 

Again, we can facilitate comparison among estimators by express- 

ing the RW correlation in terms of ˆ q i, j,t , which in the case of the 

rolling window estimator is a function of n equally weighted ob- 

servations ranging from t − n to t − 1 : 

ˆ q i, j,t = n −1 
n ∑ 

s =1 

e i,t−s e j,t−s . (7) 

Our second correlation estimator is the fixed parameter Expo- 

nentially Weighted Moving Average (EWMA) estimator. The imple- 

mentation of this estimator is just slightly more elaborate than a 

rolling window correlation. The dynamics generated by the EWMA 

model are very similar to MGARCH models but the parameters are 

given rather than being estimated. 15 RiskMetrics suggests model- 

ing the dynamics in the daily asset return covariance using a per- 

sistence parameter λ = 0 . 94 ( Longerstaey and More, 1995 ). The re- 

sponse to shocks is measured by the remaining ( 1 − λ) = 0 . 06 

ˆ q i, j,t = ( 1 − λ) 
∑ ∞ 

s =1 
λs −1 e i,t−s e j,t−s = (1 − λ) e i,t−1 e j,t−1 + λ ˆ q i, j,t−1 . 

(8) 

The importance of the standardized shocks from both assets 

e i,t−s e j,t−s decreases exponentially, thereby emphasizing the infor- 

mation provided by current observations relative to past observa- 

tions. For the analysis in our paper, the EWMA model is useful in 

two ways. First, the effort of implementing the EWMA estimator 

is somewhere between a rolling window estimator and the more 

sophisticated MGARCH models. Second, since the persistence pa- 

rameter λ and the shock sensitivity 1 − λ sum up to one, the re- 

sulting correlations are non-stationary, so that shocks can gener- 

ate permanent level shifts in dynamic correlations ( Engle, 2002 ). 

This feature is important since economic disruptions are reflected 

in many financial time series. Although the EWMA model suffers 

from similar shortcomings as the DCC model, it should in principle 

be particularly suited for this purpose. 

Our last estimator is the Dynamic Conditional Correlations (DCC) 

estimator that was already presented in Section 2.1 . Because of 

the constant in the function of q ij, t , Engle’s (2002) mean-reverting 

DCC specification can be considered as an extension of the EWMA 

model. For the sake of completeness, we repeat the expression for 

14 The EWMA estimator uses fixed parameters proposed by the RiskMetrics 

group and is therefore sometimes called the “RiskMetrics model” ( Rapach and 

Strauss, 2008 ). 
15 When the parameters are estimated the EWMA becomes the Integrated Dy- 

namic Conditional Correlations (IDCC) estimator ( Engle 2002 ). 
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Fig. 6. DCC parameters in full samples and subsamples. 

This figure compares the behavior of DCC parameters in full samples and subsamples. The full sample consists of correlations that experience at least one break from 20 0 0 

to 2014 (74% of our sample) and have DCC parameters within typical ranges: 0.01 < a < 0.06 and 0.8 < b < 0.99 (62% of our sample or 355 correlation series). The parameters 

in both samples are based on the same asset pairs to allow a direct comparison. 

ˆ q i, j,t here: 

ˆ q i, j,t = 
1 − a − b 

1 − b 
ϑ i, j + a 

∑ ∞ 

s =1 
b s −1 e i,t−s e j,t−s 

= ( 1 − a − b ) ϑ i, j + a e i,t−1 e j,t−1 + b ̂  q i, j,t−1 . (9) 

We will now investigate how changes in the correlation param- 

eters govern the dynamics of correlation estimators. 

4.2. Anatomy of conditional correlation dynamics 

In this section, we show that the volatile pattern that is typi- 

cally observed when applying conditional correlation measures is 

to a large extent artificial. We demonstrate that correlation dy- 

namics depend on the specification of the correlation model. The 

impact of the model in turn is amplified by the level of the un- 

derlying correlation structure. The volatility of the estimated dy- 

namic correlation ˆ ρt is highest when the true underlying corre- 

lation ρ is zero and diminishes as ρ approaches ±1. The key 

finding is that estimated correlations contain a fluctuation com- 

ponent that is unrelated to the correlation parameters. In the fol- 

lowing we will formally demonstrate this effect. We start by con- 

sidering a DGP that produces constant correlations. In terms of q t 
as in Eq. (8) above we define: ρt = f ( q t ) = q 12 ,t / 

√ 
q 11 ,t q 22 ,t , where 

q t = ( 1 , 1 , ρ) . Since the true correlation is constant, it follows that 

ρ = E( e 1 ,t e 2 ,t | F t−1 ) = E( e 1 ,t e 2 ,t ) and the variance and all autoco- 

variances of conditional correlations are zero. 

To focus on the correlation effect, we assume that we have a 

correctly specified model for the conditional return volatility, so 
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that the standardized residuals e t are homoscedastic and normally 

distributed: 

( e 1 ,t e 2 ,t ) 
′ ∼ i.i.d.N 

((
0 
0 

)
, 

(
1 ρ
ρ 1 

))
. (10) 

In the following, we will simplify the analysis and use the 

first-order Taylor expansion of f ( ̂  q t ) around E( q t ) = ϕ = ( 1 , 1 , ρ) 

to approximate Cov ( ̂  ρt , ˆ ρt−s ) . A Monte Carlo simulation in Ap- 

pendix D of the Online Appendix shows that a reasonable choice 

of model parameters approximates the exact analytical expression 

for Cov ( ̂  ρt , ˆ ρt−s ) quite well. 16 The Taylor series expansion of ˆ ρ∗
t can 

be expressed as 

ˆ ρ∗
t = f ( ϕ ) + 

∂ f ( ϕ ) 

∂ fϕ ′ 
(
ˆ q t − ϕ 

)
. (11) 

We will therefore approximate Cov ( ̂  ρt , ˆ ρt−s ) by 

C ov 
(
ˆ ρ∗
t , ˆ ρ∗

t−s 

)
= 

∂ f ( ϕ ) 

∂ fϕ ′ 
C ov 

(
ˆ q t , ̂  q t−s 

)∂ f ( ϕ ) 

∂ fϕ 
. (12) 

Proposition 1. Let {( e 1, t , e 2, t ) 
′ } be a bivariate i.i.d. pro- 

cess as defined in ( 10 ) with | ρ| < 1 and s ≥0 , and define 

� = 2 

( 
1 ρ2 ρ
ρ2 1 ρ

ρ ρ 1 
2 ( 1 + ρ2 ) 

) 

. 

If ˆ q t follows the definition in ( 9 ) then 

(i) Cov ( ̂  q t , ̂  q t−s ) = γ DCC ( a, b, s ) �, where γ DCC ( a, b, s ) = 
b s a 2 

1 −b 2 
. 

If ˆ q t follows the definition in ( 8 ) then 

(ii) Cov ( ̂  q t , ̂  q t−s ) = γ EW MA ( λ, s ) �, where γ EW MA ( λ, s ) = 
λs ( 1 −λ) 2 

1 −λ2 . 

If ˆ q t follows the definition in ( 7 ) then 

(iii) Cov ( ̂  q t , ̂  q t−s ) = γ RW ( n, s ) �, where γ RW ( n, s ) = 
n −s 
n 2 

for s < n 

and γ RW ( n, s ) = 0 for s ≥n. 

Proposition 1 implies that Cov ( ̂  ρ∗
t , ˆ ρ∗

t−s ) contains a true uncon- 

ditional correlation component ∂ f (ϕ) 
∂ fϕ ′ �

∂ f (ϕ) 
∂ fϕ 

, and a model-specific 

multiplier γ DCC , γ EWMA , and γ RW . It is important to note that �

is unrelated to any model parameters. Fluctuations over time are 

therefore an inherent part of correlation dynamics (see also the 

proof of Proposition 1 in Appendix E of the Online Appendix). 

Proposition 1 allows us to express Cov ( ̂  ρ∗
t , ˆ ρ∗

t−s ) in a single 

number. Let κ(ρ) = ( 1 − ρ2 ) 2 . For the case that ˆ q t follows the DCC 

model we obtain 

Cov 
(
ˆ ρ∗
t , ˆ ρ∗

t−s 

)
= γ DCC ( a, b, s ) κ( ρ) . 

For the case that ˆ q t follows the EWMA model we obtain 

Cov 
(
ˆ ρ∗
t , ˆ ρ∗

t−s 

)
= γ EWMA ( λ, s ) κ( ρ) . 

Finally, for the case that ˆ q t follows the RW model we obtain 

Cov 
(
ˆ ρ∗
t , ˆ ρ∗

t−s 

)
= γ RW ( n, s ) κ( ρ) . 

For the discussion of correlation dynamics we focus on these 

expressions of Cov ( ̂  ρ∗
t , ˆ ρ∗

t−s ) . 

4.3. The impact on correlation dynamics 

We have demonstrated that Cov ( ̂  ρ∗
t , ˆ ρ∗

t−s ) has a model- 

independent component κ( ρ) that is fully determined by the size 

of the true underlying correlation ρ , and a model multiplier γ . In 

other words, a dynamic correlation estimator ˆ ρt generates spuri- 

ous dynamics even when the true underlying correlation ρ is con- 

stant. 17 With | ρ| < 1 and γ > 0, setting the lag s to zero results 

16 For further examples, see Kwan (2008) and the references therein. The inter- 

net appendix for this paper is available at http://www.sbf.unisg.ch/en/lehrstuehle/ 

lehrstuhl _ fuess/homepage _ fuess/publikationen+roland+fuess . 
17 Technically, ˆ ρt will be zero if γ = 0 . We can ignore this situation since this 

describes the trivial case when all parameters driving the correlation dynamics are 

zero. Note that a positive rolling window multiplier requires s < n . 

in the variance of ˆ ρ∗
t : Cov ( ̂  ρ∗

t , ˆ ρ∗
t ) = V ar( ̂  ρ∗

t ) > 0 . The definition 

of κ(ρ) = ( 1 − ρ2 ) 2 shows that, as long as returns are not per- 

fectly correlated, κ( ρ) is always positive and has a global maxi- 

mum at ρ = 0 . As a consequence, the estimated correlation ˆ ρt con- 

tains daily fluctuations even when the true correlation does not. In 

addition, ˆ ρt depends on lagged values when Cov ( ̂  ρ∗
t , ˆ ρ∗

t−s ) is signif- 

icantly positive for lags s > 0. A high persistence can give the pat- 

tern in ˆ ρt a spurious dynamic behavior that some researchers have 

interpreted as cycles (e.g., Cai et al., 2009; Pukthuanthong and Roll, 

2011 ). 18 

Given the correlation parameters ( a and b in the DCC model, λ
in the EWMA model, and n in the rolling window model) the re- 

lationship between the volatility of the correlation estimate σ ˆ ρ ≈√ 
V ar( ̂  ρ∗

t ) = 
√ 

γ κ(ρ) and the level of the true underlying corre- 

lation ρ is described by an inverse parabolic relationship. A high 

correlation level such as ±0.95 generates stable correlation dy- 

namics irrespective of the underlying model specification. If the 

level of correlation decreases from 0.95 to 0.50 the volatility of ˆ ρt 

increases by a factor of 6. If the underlying correlation decreases 

further to 0, the volatility of ˆ ρt increases by another 33%. Again, 

this increase in volatility occurs for all model specifications and 

parameter choices. In empirical applications, the pronounced fluc- 

tuations in correlation dynamics are often interpreted as the result 

of incoming financial news ( Christiansen, 20 0 0; Cappiello et al., 

2006 ). A simple and more likely explanation is that assets share 

a low level of correlation. We can test whether this relationship 

can also be found in empirical data. To obtain an estimate of the 

volatility in the correlation measure, ˆ σ ˆ ρ , we estimate dynamic cor- 

relations ˆ ρt for our 40 assets and take the sample standard devi- 

ation. We can obtain a measure of ρ by taking the average over 

the time series of ˆ ρ . 19 Panel A of Fig. 7 plots ˆ σ ˆ ρ on the y -axis 

against the level of correlation on the x -axis. The solid line shows 

the theoretical relationship of ˆ σ ˆ ρ as derived in the previous section 

emphasizing that ˆ σ ˆ ρ is an inverse parabolic function of ρ . For in- 

stance, ˆ σ ˆ ρ in the DCC model is generated by ˆ σ ˆ ρ = 

√ 

γ DCC · κ(ρ) = √ 

0 . 03 2 / ( 1 − 0 . 96 2 ) · ( 1 − ρ2 ) 
2 
, where we have used typical DCC 

parameters (0.03 for the news parameter and 0.96 for the decay 

parameter). The hump-shaped relationship is shown in the left 

graph of Panel A. For comparison, the dashed line with 95% confi- 

dence bands shows an estimated nonparametric relationship based 

on the actual data. The empirical relationship matches the theoret- 

ical one, lending support to the notion that dynamic correlations 

are likely to be more imprecise when the underlying correlation is 

close to zero. 20 The EWMA model in the right graph of Panel A ver- 

ifies this observation. Although we lack data for extreme negative 

correlations, we find strong evidence that the relationship holds 

for large positive correlations. An increasing variation in the obser- 

vations around ρ = 0 suggests that the link between ˆ σ ˆ ρ and ρ is 

less clear when assets are uncorrelated. 

18 We note several similarities between our findings and those on rolling windows 

and ARMA-type processes provided elsewhere (e.g., Lütkepohl, 2006 ). However, ex- 

cept for some simulation results reported in Aielli (2013) , we are not aware of any 

paper considering the autocovariance structure of conditional correlations. 
19 The presence of correlation breaks is likely to change the model multiplier γ . 

To separate this effect from the hump shaped function of the model-independent 

component κ( ρ), we base our dynamic correlation estimates on subsamples. 
20 For the empirical implementation, we had to assume that the average correla- 

tion generated by the DCC model is a good approximation of the underlying true 

correlation level ρ . Embrechts et al. (1999) show that the attainable range of ρ is 

reduced when the bivariate distribution of returns deviates strongly from normal- 

ity. This can also affect the estimated form of the hump-shaped relationship. In Ap- 

pendix F of the Online Appendix, we show that the relationship looks very similar 

when estimated with the distribution free Kendall’s τ . This suggests that although 

deviations from non-normality are common, they are unlikely to have strong dis- 

torting effects on our results. 

http://www.sbf.unisg.ch/en/lehrstuehle/lehrstuhl_fuess/homepage_fuess/publikationen+roland+fuess
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Fig. 7. The parabolic relationship between the level and volatility of dynamic correlations. 

This figure shows how typical estimators of dynamic correlations, ˆ ρ , are influenced by the levels of the true but unobserved correlation ρ . Panel A compares the theoretical 

behavior, indicated by the inverse parabolic relationship (solid line) with the actual behavior found in the data (dashed line). The theoretical relationship for the DCC model 

is based on a news parameter of 0.03 and a decay parameter of 0.96. The theoretical relationship for the EWMA model is based on λ = 0 . 94 and 1 − λ = 0 . 06 . The data 

consists of various correlation pairs from common indices representing stocks, bonds, commodities, and currencies. The points in the left graph show the means and standard 

deviations of 404 DCC correlations from this group of assets. The right graph shows the estimates of the EWMA correlations and consists of 1613 observations. The lower 

number of observations for the DCC model results from excluding correlations with news parameter estimates of less than 0.02 and decay parameter estimates of less 

than 0.8. Panel B gives an example of the relationship in a controlled simulated environment and shows the case for univariate volatility models. The left graph shows the 

simulated relationship between variation and level of ρ when the true underlying ρ is constant over time. The right graph shows that the pronounced relationship between 

the level and volatility of ρ is unique to dynamic correlation models and does not extend to univariate GARCH models. 

The theoretical relationship is derived under our assumption 

that true correlations within subsamples are constant. To illustrate 

how the observed relationship would behave in a perfectly con- 

stant environment, we simulate daily DCC correlations under the 

restriction that the true underlying errors ( e 1, t , e 2, t ) 
′ remain un- 

changed over time. This situation is shown in the left graph of 

Panel B. By construction, the theoretical curve now perfectly fits 

the point cloud. We note some interesting similarities between the 

humped shaped relationship derived under the controlled simula- 

tion with the one observed in the actual data. First, the general 

form, with high fluctuations in ρ when assets are uncorrelated 

and decreasing volatility as ρ approaches ±1, are clearly visible 

in the actual financial data. Second, the uncertainty concerning ˆ σ ˆ ρ

is highest for uncorrelated assets. We interpret these similarities 

as an additional indicator that correlations in financial data are 
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Fig. 8. Estimates of news parameter and decay parameter are different in subsamples. 

This figure shows the distribution of the news and decay parameter in full samples and subsamples. When parameter estimates move outside a narrow range they generate 

correlations that show little variation over time. For instance, a low news parameter generates near constant correlations. A low decay parameter generates correlations that 

fluctuate at low volatility around a constant value. 

likely to be constant when structural breaks in correlations are ac- 

counted for. 21 

Our findings concerning the volatility in ˆ ρt do not extend to 

univariate GARCH models. We can repeat our analysis based on 

univariate GARCH volatility ˆ σt instead of ˆ ρt . To collect observa- 

tions on the level and volatility of ˆ σ , we apply a volatility break- 

point test and measure the average sample volatility ˆ σ̄ and the 

volatility of the GARCH volatility ˆ σ ˆ σ within subsamples. For de- 

tecting volatility breaks, we apply the test developed in Inclán and 

Tiao (1994) . 22 The right graph in Panel B shows that the relation- 

ship for ˆ σ appears linear and is strictly positive: higher levels of 

σ are associated with higher fluctuations in ˆ σ . Hence, our findings 

concerning the behavior of correlations differ from previous results 

for univariate volatility models (e.g., Rapach and Strauss, 2008 ). 

The humped shape function described by κ( ρ) is a general re- 

sult. However, it cannot show how breaks in the correlation struc- 

ture transmit to DCC parameter values and ultimately affect the 

21 Of course, some differences are to be expected given that in practice, underlying 

correlations are not perfectly constant and are subject to differences DCC parame- 

ters and sample size. 
22 Rapach and Strauss (2008) propose an adjusted Inclán-Tiao test that is more 

effective in the presence of GARCH effects. For our purpose, the adjustment is of 

minor importance since our primary goal is to collect data on the level and volatil- 

ity of ˆ σ , and not to detect the correct breakpoint date. 

volatility of ˆ ρ . The link between correlation breaks and ˆ σ ˆ ρ is estab- 

lished through the model multiplier γ : correlation breaks distort 

correlation parameter estimates which in turn directly determine 

γ . In Section 3 we found only small average changes in estimates 

of the news parameter and the decay parameter. Comparing full 

samples and subsamples, the average decay parameter decreased 

from 0.970 to 0.836, and the average news parameter actually in- 

creased slightly from 0.021 to 0.027. At first glance, none of these 

changes appear to be particularly large. However, we will show in 

the following that even small parameter changes can have a sub- 

stantial impact on ˆ σ ˆ ρ if they move outside a narrow range. In the 

extreme case when the news and decay parameter estimates are 

close to zero, the generated correlations ˆ ρt are constant. We find 

this to be the case in a number of subsamples. To compare DCC 

parameter estimates in full samples from those obtained in sub- 

samples we proceed in two steps. We first concentrate on the full 

sample and select asset correlations from which typical estimates 

of news and decay parameter values can be obtained. As before, 

the full samples contain daily data from 01/03/20 0 0 to 12/31/2014 

(3914 obs.). We then take the same assets but re-estimate the 

DCC parameters over the subsamples, where we follow our pre- 

vious approach and define subsamples to lie on both sides of a 

correlation break point. Panel A in Fig. 8 shows pairs of news and 

decay parameter estimates. The full sample estimates in the left 

graph were selected to be within a range of 0.01 < a < 0.06 and 
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0.8 < b < 0.99. Only parameter combinations that lie within this 

range generate typical dynamic correlation. The range is indicated 

by a green background to highlight that the area of allowed pa- 

rameters is small relative to the theoretically possible parameter 

space. The right graph shows the distribution of DCC estimates 

when re-estimated over subsamples. The estimates are based on 

the same asset pairs that were used in the full sample analy- 

sis and are therefore directly comparable. We exclude subsamples 

with less than 500 observations to remove small sample effects on 

the parameters. A large fraction of the parameter estimates now lie 

outside the range of typical parameter values. A number of decay 

parameter values are smaller than 0.5 and some are even zero. 

In Panel B of Fig. 8 we illustrate how parameter estimates out- 

side the normal range impact the correlation dynamics. The left 

graph shows a generated correlation when the news parameter is 

close to zero. As expected, the generated correlations are constant. 

The right graph shows the situation when the news parameter 

takes on a typical value but the decay parameter is 0.5. The gener- 

ated correlation is quasi constant with small fluctuations around a 

straight line. We can summarize our findings concerning parame- 

ter changes as follows: The typical dynamic pattern of ˆ ρt that has 

become a stylized fact for many financial assets requires that both, 

the news and the decay parameter lie within a narrow range. 23 Pa- 

rameter values outside this range lead to correlations that lack typ- 

ical dynamics. When estimated over subsamples that do not con- 

tain a break, many of the correlations turned out to be constant. 

Our findings suggest that many correlation dynamics are spurious 

and disappear once correlation breaks are controlled for. 

It is instructive to investigate how the dynamics in ˆ ρt respond 

to the interaction of the news and the decay parameter. We show 

that this interaction is strongly nonlinear so that seemingly small 

changes in model parameters can have significant effects. In par- 

ticular, the observed decrease in the decay parameter from 0.970 

in full samples to 0.836 in subsamples has important implications 

for the dynamics of ˆ ρt . Panel A of Fig. 9 shows the location of 

full sample and subsample DCC parameters on the V ar( ̂  ρ∗
t ) surface. 

The surface shows a distinct upward slope for high news and decay 

parameter values. The full sample estimates with news parame- 

ter a = 0.021, decay parameter b = 0.970, and hence a + b = 0 . 991 

constitute one such combination that generate large fluctuations 

in V ar( ̂  ρ∗
t ) . For the full sample, we find V ar( ̂  ρ∗

t ) to be 0.004. The 

upward slope illustrates the “narrow band” that we mentioned be- 

fore. On the other hand, V ar( ̂  ρ∗
t ) quickly converges towards zero 

if one DCC parameter decreases just slightly. The location of the 

subsample DCC parameters shows a marginally higher news pa- 

rameter value of 0.027 that is more than compensated by a signifi- 

cantly lower decay parameter value of 0.836. The sum of both DCC 

parameters is 0.863 and therefore significantly below one. The lo- 

cation on the surface indicates that these values produce much less 

volatile estimate of ˆ ρt . In fact, our estimate for V ar( ̂  ρ∗
t ) in subsam- 

ples is just 0.001, a quarter of its full sample size. This supports the 

notion that DCC correlations are constant in subsamples. From the 

findings in Panel A, we conclude that due to the nonlinear interac- 

tion of DCC parameters, even small deviation can have important 

implications for the variation in ˆ ρt . 

Panel B of Fig. 9 shows how the findings concerning the vari- 

ance of ˆ ρt also extend to the autocovariance and therefore the dy- 

namics of ˆ ρt . To highlight the impact of the decay parameter on 

various autocovariance lags s , the value for the news parameter is 

fixed at 0.02. The shape of the autocovariance surface shows that 

ˆ ρt has very short or no memory for most parameter combinations. 

Significant dynamics only emerge for decay parameter values that 

are large, so that the sum of a and b are close to one. Again, the 

23 The results also hold in the case of the EWMA model for various λ. 

Fig. 9. The nonlinear impact of DCC parameters on Var( ̂  ρ) . 

This figure shows that the news and decay parameter values need to lie within a 

narrow area in order to produce meaningful dynamics in ˆ ρ . The parameter esti- 

mates found in subsamples are not sufficiently large to have either significant fluc- 

tuations or noticeable autocovariance. 

average parameter location in full samples is sufficiently close to 

one to produce the distinct dynamics that are typical for correla- 

tion estimates of many financial time series. In contrast, average 

subsample DCC parameters produce correlations with little serial 

correlation. The findings in Panels A and B indicate that when con- 

trolling for breaks, dynamic conditional correlation estimates show 

little variations and no significant dynamics. The implication is that 

the nature of correlations is constant. 

5. Volatility ratios 

Like variances, correlations are unobserved and need to be es- 

timated. The absence of a true observed correlation complicates 

model comparison in empirical applications. Engle and Colacito 

(2006) propose a method that allows for an effective compari- 

son of correlation models within the portfolio setting. The idea is 

to use portfolio variance as a measure of the effectiveness of a 

dynamic correlation model where lower variance indicates a bet- 

ter correlation model. Consider the standard portfolio optimization 

problem 

min 
w i,t 

w 
′ 
i,t i,t H i,t w i,t s.t. w 

′ 
i,t µ = µ0 , (13) 
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Fig. 10. DCC model performance in asset portfolios. 

This figure shows the relative performance of asset portfolios based on different dynamic covariance matrix estimators. Panel A shows how break and non-breaks samples 

with equal size are selected. Panel B shows that the DCC model performs less well in samples containing a correlation break. Panel C shows that when correlation breaks 

are large, a simple rolling window estimator is the best choice. 

where H i, t is the conditional covariance matrix of model i at 

time t, µ is the vector of portfolio weights and µ0 > 0 is the re- 

quired target return. Campbell et al. (1997) show that the solu- 

tion and therefore the optimal portfolio weights can be estimated 

by w i,t = ( H 
−1 
i,t 

µ) / ( µ′ H 
−1 
i,t 

µ) µ0 . The volatility of the portfolio re- 

turn w ′ i, t r t can then be obtained as ˆ σi,t = 
√ 
w ′ i,t H i,t w i,t . An effi- 

ciently estimated dynamic covariance matrix H i, t will be reflected 

in a low portfloio volatility ˆ σi,t . A comparison of covariance matrix 

estimators based on this approach has been applied for instance 

in DeMiguel et al. (2009) but was entirely based on constant mo- 

ments. 

To compare portfolio volatilites Engle and Colacito (2006) form 

volatility ratios VR i, t . In the ideal case, where the true covariance 

matrix �t is known, the volatility ratio would be 

V R i,t = 

√ 
w ′ i,t i,t H i,t w i,t √ 

w ∗t �i,t w ∗t 

. (14) 

By construction, the volatility ratio in Eq. (14) is larger than one 

and shows an excess portfolio volatility that is based on the esti- 

mate H i, t rather than the true correlation matrix �t . The extent to 

which VR i, t exceeds one indicates the inefficiency of the dynamic 

covariance estimator. Since true correlations are unobservable in 

practice, Engle and Colacito (2006) consider a version of VR i, t that 

is based on the different model specifications for H i, t : 

̂ V R i,t = 
ˆ σi,t 

min 
(
ˆ σ1 ,t , . . . , ˆ σn,t 

) . (15) 

We follow this approach and consider the n = 3 correlation 

models DCC, RW, and EWMA. To evaluate the performance of our 

three models in terms of portfolio variance we use the same 40 

asset data set that was employed in previous sections. Our focus 

is on the model performance in samples that contain breaks and 

more stable situations that do not contain any breaks. One poten- 

tial issue is the different sam ple size that can influence estimation 
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results. For instance, a larger non-break sample could appear to 

produce smaller portfolio volatilities because the large number of 

observations leads to more precise model parameters. To circum- 

vent this problem we select break and non-break samples of equal 

size. To illustrate this issue further, Panel A of Fig. 10 shows the 

sample selection process for the correlation between the stock in- 

dices of Italy (MIB) and the Netherlands (AEX). For this sample, we 

detect a correlation breakpoint at observation 198, another at ob- 

servation 430, and a third at observation 2814. The third observa- 

tion is a suitable break partition and we select a 10 0 0 observation 

window from observation 2314 to 3314 with the breakpoint in the 

center of that window. The data prior to the break window contain 

sufficient observations to select another 10 0 0 non-break observa- 

tion window for comparison. We analyze all other asset pairs in 

this way and collect 429 break and non-break partitions of size 

10 0 0. 

The portfolio variance is not only a function of the estimated 

covariance matrix but also depends on the expected return vec- 

tor µ that enters the optimization as an input. Although the vari- 

ance does not appear to respond very strongly to this assumption, 

we follow Engle and Colacito (2006) and compute volatility ratios 

over a range of expected returns. Panel B of Fig. 10 shows the per- 

centage of cases in which the smallest portfolio variance is gen- 

erated by the DCC model and hence has a volatility ratio of one. 

Among the three correlation models, the DCC model performs well 

in situations that do not contain a structural break producing the 

lowest portfolio variance in 60% to 80% of all cases. In samples 

that contain a correlation break, the DCC parameters are biased 

and the portfolio performance decreases. Still, the overall perfor- 

mance of the DCC is quite remarkable compared to its competitors. 

However, the break samples that form the basis for the results in 

Panel B only test for the presence of a statistically significant break 

whereas the DCC parameters are likely to respond also to the size 

of the break. In Panel C of Fig. 10 , we look at model performance 

conditioning on the size of the break indicated on the x -axis of the 

graph. For economically small correlation breaks up 0.4 the DCC 

model produces lower portfolio variances than the rolling window 

or the EWMA model. However, the performance of the DCC model 

deteriorates quickly as the break size increases. For instance, for 

small breaks of less than 0.1, DCC is the best model in 65% of all 

cases. For larger breaks between 0.4 and 0.5, the DCC is the best 

choice in 33% of all cases. For large correlation breaks of more than 

0.5, the distorting effect on the DCC correlation is so strong that 

the simple rolling window estimator leads to better portfolio per- 

formance. Multivariate GARCH models like DCC are often praised 

for their dynamic flexibility to accommodate changes in the re- 

turn pattern. Our results indicate that in the presence of correla- 

tion breaks a rolling window estimator may perform better despite 

its simplicity. 

6. Conclusion 

In this paper, we provide empirical evidence that daily corre- 

lation dynamics among financial assets are spurious. The typical 

correlation dynamics that can be observed in the data are a direct 

consequence of correlation breaks that occur in response to finan- 

cial and economic shocks. The presence of breaks affects the cor- 

relation news parameter a and the decay parameter b . The news 

parameter, which measures the response to shocks, and the decay 

parameter, which measures the persistence of correlations, inter- 

act in a nonlinear way to generate the correlation dynamics that 

we usually observe for financial assets. Once these breaks are con- 

trolled for, the parameters driving the correlation dynamics change 

in important ways. A number of parameters are now close to zero 

and generate constant correlations. The average estimate of the de- 

cay parameter which is upward biased in the presence of correla- 

tion breaks decreases in subsamples. The sum of a and b which 

is usually found to be close to one is therefore lower. These subtle 

changes remove the parameters from an area of influence that gen- 

erate typical correlation dynamics. The variance and autocovari- 

ance estimates are now lower, indicating that correlation estimates 

fluctuate at low volatility around a straight line. The true nature of 

correlations is therefore likely to be constant. The implication for 

empirical correlation estimates is that the path generated by mul- 

tivariate GARCH correlations should be interpreted with caution. A 

portfolio spanning the main asset classes is shown to respond to 

the way correlations are estimated. A significant break in the cor- 

relation structure can distort DCC correlations and lead to a higher 

portfolio variance. We show that investors can resort to simple so- 

lutions such as a rolling window estimator when updating their 

portfolio weights. 

In summary, our results provide a rationale for the often con- 

troversial discussion of the value added of dynamic conditional 

correlation models. A number of dynamic correlation models have 

formed the basis for a significant amount of important research 

and we do not propose to reject these models entirely. However, 

academics and practitioner should be aware of the practical limi- 

tations of these models that arise in many finance applications. 

Supplementary materials 

Supplementary material associated with this article can be 

found, in the online version, at doi:10.1016/j.jbankfin.2017.07.003 . 
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