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ABSTRACT: The Standardized Precipitation Evapotranspiration Index (SPEI) was computed based on the monthly

precipitation and air temperature values at 609 locations over China during the period 1951–2010.Various characteristics

of drought across China were examined including: long-term trends, percentage of area affected, intensity, duration, and

drought frequency. The results revealed that severe and extreme droughts have become more serious since late 1990s for all

of China (with dry area increasing by ∼3.72% per decade); and persistent multi-year severe droughts were more frequent

in North China, Northeast China, and western Northwest China; significant drying trends occurred over North China, the

southwest region of Northeast China, central and eastern regions of Northwest China, the central and southwestern parts of

Southwest China and southwestern and northeastern parts of western Northwest mainly due to a decrease in precipitation

coupled with a general increase in temperature. In addition, North China, the western Northwest China, and the Southwest

China had their longest drought durations during the 1990s and 2000s. Droughts also affected western Northwest, eastern

Northwest, North, and Northeast regions of China more frequently during the recent three decades. The results of this

article could provide certain references and triggers for establishing a drought early warning system in China.
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1. Introduction

Droughts are the world’s most damaging and pressing
natural disasters [Federal Emergency Management
Agency (FEMA), 1995; Keyantash and Dracup, 2002;
Svoboda et al., 2002; Romm, 2011], causing tens of
billions of dollars in global damages, and collectively
affecting more people than any other form of devastating
climate-related hazards (Wilhite, 2000). Widespread
drying has occurred over Africa, East and South Asia,
and other areas from 1950 to 2008, and most of this
drying is due to recent warming (Dai, 2011). According
to Dai (2011), the global percentage of dry areas has
increased by about 1.74% per decade from 1950 to
2008. Located in East Asia, China has also suffered
long-lasting and severe droughts during the second
half of twentieth century, which caused large economic
and societal losses (Zou et al., 2005; Xin et al., 2006;
Zhai et al., 2010a, 2010b; Stone, 2010; Lu et al., 2010;
Lu et al., 2011a, 2011b; Wang et al., 2011; Wu et al.,
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2011). Zou et al. (2005) calculated the Palmer Drought

Severity Index based on the monthly air temperature

and precipitation during 1951–2003 and discovered

significant increases of drought areas in North China,

with severe and prolonged dry periods dominating since

the late 1990s. The drought in 2000 damaged more

than 40 million hectares large area of crops in northern

China. The severe drought in 1997 over northern China

resulted in 226 d of zero flow in the Yellow River along

a 687 km stretch (Liu and Zhang, 2002; Xu, 2004;

Cong et al., 2009). Droughts also occurred frequently

in the Yangtze River basin in recent decades (Su et al.,

2008; Zhai et al., 2010a, 2010b). In 2006, the Yangtze

River basin runoff reached its lowest in the last 50 years

with no flood in the flood season (Dai et al., 2008;

Yu et al., 2012). During the summer of 2006, Sichuan

and Chongqin provinces (located in the upper reach of

the Yangtze River basin) were hit by their most severe

drought since 1891 (Hai et al., 2008). The average

air temperature of middle August in some regions

even reached 41–44.5◦C. The drought evaporated water

supplies and caused a shortage of drinking water for over

16 million people and 17 million livestock. It devastated

crops in more than 2.5 million hectares of farmland
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with 30% of these hectares producing no harvest at all,

which caused direct economic damages of US$3.5 bil-

lion (http://www.weather.com.cn/zt/kpzt/28353.shtml).

The once-in-a-century drought swept across southwest

China (including Yunnan, Guizhou, Guangxi, Sichuan,

and Chongqing) from summer 2009 to spring 2010.

It subjected over 16 million people and 11 million

livestock to water shortages, devastated crops across

more than 4 million hectares of farmland and made 25%

of them yield no harvest. Most rivers shrank to 30–80%

of their normal volume, and some dried up completely.

The Southwest drought consequently was also examined

by Huang et al. (2011), Zhang and Bai (2011), Liu

et al. (2011), and Lu et al. (2011a, 2011b). For instance,

Lu et al. (2011a, 2011b) found the severe drought in

SW China mainly contributed to much-less-than-normal

precipitation and much warmer-than-normal surface

temperature.

These overwhelming drought conditions have been a

big concern to both the Chinese government and general

public during recent decades. Many previous studies

have evaluated the dryness or wetness variations over

China using different drought indices (Wu et al., 2001;

Ma and Fu, 2003; Wang et al., 2003; Zou and Zhai,

2004; Zou et al., 2005; Xin et al., 2006; Zhai et al.,

2010a, 2010b; Lu et al., 2011a, 2011b; Wang et al.,

2011; Wu et al., 2011). According to Jones and Moberg

(2003), there has been a general temperature increase

(0.5–2 ◦C) during the last 150 years, and coupled climate

change models also predict a marked increase (4 ◦C)

during the twenty-first century (IPCC, 2007). Therefore,

drought indices including temperature data are preferable

for these types of applications. The Palmer Drought

Severity Index (PDSI) (Palmer, 1965) is one of the

most widely used drought indices over the world and

considers prior precipitation, moisture supply, runoff,

and evaporation demand (ET). The development of the

self-calibrated PDSI solved considerable deficiencies (i.e.

strong influence of calibration period, limitation in spatial

comparability, subjectivity in relating drought conditions

to the index values etc.) that the original PDSI had;

nevertheless, the main deficiency of the PDSI has not

been worked out. The PDSI has unspecified, built-in

time scale and autoregressive characteristics, whereby the

index values are influenced by the conditions even up

to 4 years in the past (Guttman, 1998). Another widely

accepted drought index is the Standardized Precipitation

Index (SPI) (McKee et al., 1993) due to its multi-scalar

characteristic and simplicity of calculation; however,

the SPI is based on precipitation only. The newly

developed Standardized Precipitation Evapotranspiration

Index (SPEI) (Vicente-Serrano et al., 2010) combines the

sensitivity of the PDSI to the changes in ET (caused by air

temperature fluctuations and trends) with the simplicity

of calculation, but also has the robustness of the multi-

temporal nature of the SPI. This study primarily attempts

to provide information of drought severity and frequency

over the whole nation, and representative regions within

China, based on the SPEI with updated data from 1951
to 2010.

2. Study area, data, and methods

2.1. Study area and data sources

The monthly precipitation (mm) and air temperature (◦C)
data during 1951–2010 from 752 meteorological stations
in China were collected from the National Climate Center
of the China Meteorological Administration (CMA). The
homogeneity and reliability of the monthly meteorologi-
cal data have been checked and firmly controlled by the
CMA before its release. Of these, 609 stations covering
most regions of China were selected for the study accord-
ing to data availability criteria, and stations with less
than 40 years data were rejected. For the purposes of this
study, China is divided into three parts: Northern China,
Southern China, and the Tibetan plateau. Northern China
consists of Northeast (NE), North (N), eastern Northwest
(ENW), and western Northwest China (WNW); Southern
China consists of Southwest (SW), East (E), and South
(S) China; the Tibetan plateau is marked by Tibet (see
Figure 1). It should also be noted that due to a shortage
of data in western Tibet, the time series can only repre-
sent the drought variations of eastern Tibet. The climate
of China varies significantly from region to region due
to its vast territory and complicated terrain (Zhai et al.,
2010a, 2010b). Dry climate generally dominates western
and northern parts of China, while semi-humid and humid
climate conditions primarily in the eastern part of China.
Since the greatest part of continental China is located
within the East Asian monsoon climate zone, where both
winter and summer monsoons are distinctly developed,
the monthly, annual and interannual variations in precip-
itation and air temperature are striking (Wu, et al., 2011).
For the Eastern part of China, semi-arid or semi-humid
climate dominates the northern parts of its territory with
annual precipitation ranging from 200 to 800 mm, while
the southern parts have a relatively wetter climate with
annual precipitation falling within 800–2000 mm (Zou
et al., 2005).

2.2. Calculation of the SPEI

The computation of the SPEI is as follows:

(1) Potential evapotranspiration calculation (Thornth-
waite, 1948):

PET = 16K

(

10T

I

)m

(1)

where T is the monthly mean temperature (◦C);
I is a heat index, which is calculated as the sum of
12 monthly index values; m is a coefficient depending on
I : m = 6.75 × 10− 7I 3 − 7.71 × 10− 5I 2 + 1.79 × 10− 2I +
0.492; and K is a correction coefficient computed as a
function of the latitude and month.
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Figure 1. Locations of different regions within China.

(2) Deficit or surplus accumulation of a climate water
balance at different time scales with a value for PET,
the difference between the precipitation P and PET
for the month i is calculated using:

Di = Pi − PETi (2)

The calculated D i values are aggregated at different
time scales, following the same procedure as that for the
SPI. The difference Dk

i ,j in a given month j and year i

depends on the chosen time scale k . For example, the
accumulated difference for 1 month in a particular year i

with a 12-month time scale is calculated using:

X k
i ,j =

12
∑

l=13−k+j

Di−1,l +
j

∑

l=1

Di ,l , if j < k and

X k
i ,j =

j
∑

l=j−k+1

Di ,j , if j ≥ k (3)

where D i ,l is the P − PET difference in the first month
of year i , in millimetres.

(3) Normalize the water balance into a log-logistic prob-
ability distribution to obtain the SPEI index series.

The log-logistic distribution was selected for standard-
izing the D series to obtain the SPEI. The probability
density function of log-logistic distributed variable is
expressed as:

f (x) =
β

α

(

x − γ

α

) [

1 +
(

x − γ

α

)]−2

(4)

where α, β, and γ are scale, shape, and origin parameters
respectively, for D values in the range (γ > D < ∞). The
three parameters of the Pearson III distribution can be
obtained following Singh et al. (1993).

Table 1. Categorization of dryness/wetness grade by the SPEI.

Categories SPEI values

Extremely dryness Less than −2
Severe dryness −1.99 to −1.5
Moderate dryness −1.49 to −1.0
Near normal −1.0 to 1.0
Moderate wettness 1.0 to 1.49
Severe wettness 1.50 to 1.99
Extremely wettness More than 2

Thus, the probability distribution function of the D

series is given by:

F (x) =

[

1 +
(

α

x − γ

)β
]−1

(5)

With F (x ) the SPEI can easily be obtained as the
standardized values of F (x ). Following the classical
approximation of Abramowitz and Stegun (1965):

SPEI = W −
C0 + C1W + C2W 2

1 + d1W + d2W 2 + d3W 3
(6)

where W =
√

−2 ln (P)forP ≤ 0.5 and P is the probabil-
ity of exceeding a determination D value, P = 1 − F (x ).
If P > 0.5, then P is replaced by 1 − P and the
sign of the resultant SPEI is reversed. The constants
are C 0 = 2.515517, C 1 = 0.802853, C 2 = 0.010328,
d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.
Table 1 is the Categorization of dryness/wetness grade
by the SPEI.

2.3. Trend analysis method

The trend tests applied in this study are the nonparametric
Mann–Kendall (MK) test, which is a rank-based proce-
dure suitable for detecting nonlinear trends (Mann, 1945;
Kendall, 1975).

 2013 Royal Meteorological Society Int. J. Climatol. 34: 545–558 (2014)
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(a)

(b)

Figure 2. Trend variations of annual precipitation and SPEI over China (a) annual precipitation and (b) annual SPEI.

The MK method, assumes that the time series is
x1, x2, x3, . . . , x N , on the condition that the original time
series was random and independent, and m i denotes the
cumulative total of samples so that x i > x j (1 ≤ j ≤ i ),
where N is the number of the sample.

The definition of the statistical parameter d k is as
follows:

dk =
k

∑

i

mi (2 ≤ k ≤ N ) (7)

The mean and variance of d k are defined as:

E [dk ] =
k (k − 1)

4
and

var [dk ] =
k (k − 1) (2k + 5)

72
2 ≤ k ≤ N (8)

Under the above assumption, the definition of the
statistic index Z k is calculated as:

Zk =
dk − E [dk ]
√

var [dk ]
(k = 1, 2, 3, . . . , N ) (9)

Z k follows the standard normal distribution. In a two-
sided test for trend, the null hypothesis is rejected at the
significance level of α if |Z |> Z 1 − α/2, where Z 1 − α/2 is
the critical value of the standard normal distribution with
a probability exceeding α/2. In this article, the signifi-
cance levels of α = 5%, 10% are discussed respectively.

2.4. Data processing

The SPEI was calculated for the 12-month (for drought
trends and drought area analysis) and 3-month (for
drought duration and drought frequency analysis) time
scales respectively by using monthly precipitation and
air temperature data from the period 1951–2010 at
609 station locations. The MK trend test was applied
for the existence of a possible tendency of annual dry
conditions (based on the computed SPEI). Trends in
annual precipitation and the relationship of trend vari-
ations between the annual SPEI and the annual precipi-
tation were investigated thereafter. Considering the spa-
tial variability of underlying conditions, the study area
was divided into grids by Inverse Distance Weighting
interpolation method with a chosen size of 0.5 square

 2013 Royal Meteorological Society Int. J. Climatol. 34: 545–558 (2014)
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(a)

(b)

Figure 3. Temporal variations of annual percentage areas in drought conditions over the whole of China. (a) Temporal variations of percent area

of China experiencing annual dry (SPEI < −1) and wet (SPEI > 1) conditions for 1951–2010. (b) Temporal variations of annual drought area

relative to 1981–2010 mean values.

degrees for the drought area analysis. Time series of

annual drought/wet percentage of area for all of China

(and various regions within) were calculated based on

the ratio of the number of grid points with SPEI < −1.0

to the related total number of grid points in China or

the regions. Relative values of annual drought percent-

age area to the 1981–2010 average with SPEI < −1.0,

SPEI < −1.5, and SPEI < −2.0, respectively, were also

carried out and compared for all of China. To analyse

the variations of the drought areas, the MK test and lin-

ear regression method were used to detect the changing

trend of the annual drought/wet percentage area at differ-

ent significance levels for the mainland China. Variations

of drought areas were also plotted and investigated by

different regions. In addition, the spatial and temporal

variations of drought duration, which is defined as the

longest period of consecutive months with SPEI < −1

over the period 1951–2010, were explored. Finally, based

on the computed frequency of 3-month SPEI values

falling in different ranges, frequency curves were plot-

ted for different sub-periods at different regions within

the whole of China and their changing patterns were

investigated.

3. Results and discussion

3.1. Variations of drought changing trend

The spatial distributions of the MK trend statistic of
annual precipitation and annual SPEI over China are
shown in Figure 2. The positive and negative trends,
which represent trends towards wetter and drier condi-
tions, respectively, were detected. From Figure 2(a) it can
be seen that the annual precipitation presented remarkable
spatial variations in patterns, i.e. a significant downward
trend (drying) dominates the east of China, whilst a sig-
nificant upward trend (wetting) is observed in western
China. For instance, significant downward trends (sig-
nificant at 5 and 10% confidence level, respectively) of
annual precipitation were found in the southwestern part
of NE, central part of the N, southeastern part of the
ENW, and central and southern parts of SW China (SW)
respectively; whereas significant upward trends (signif-
icant at 5 and 10% confidence level, respectively) of
annual precipitation were detected mainly in Xinjiang,
Qinhai, eastern Tibet, and some small areas in the South
and East China. The wetting trend is consistent with the
recent study by Wang et al. (2011) and Wu et al. (2011).

 2013 Royal Meteorological Society Int. J. Climatol. 34: 545–558 (2014)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Changes and linear trends in dry areas (SPEI < −1) during 1951–2010 over different regions of China (a) N, (b) WNW, (c) NE,

(d) ENW, (e) S, (f) SW, (g) E, and (h) Tibet.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Severe (SPEI < −1.5) and extremely (SPEI < −2.0) drought events during 1951–2010 (a) 1965, (b) 1978, (c) 1997, (d) 2001,

(e) 2003, (f) 2006, and (g) 2009.

 2013 Royal Meteorological Society Int. J. Climatol. 34: 545–558 (2014)
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Table 2. Drought area trends for China and different provinces.

Trends (SPEI <−1)

Regions Liaoning Hebei/Beijir Shanxi Sichuan Yunnan Inner Mongolia Xinjiang All China
MK values 2.83 2.7***/2.60** 2.65*** 2.19** 2.02** 4.55*** 2.99*** 3.92***
%/10 years 4.67 4.79/6.50 3.94 2.32 3.22 6.71 4.94 3.72
Drought years 7 8/8 7 2 4 8 9

Drought year is defined as the year with drought area more than 40%; *** and **are statistically significant at 1%, 5% confidence level

respectively.

On the basis of soil moisture obtained from hydrological

models they found wetting trends occurred over most of

Xinjiang, Qinhai, and eastern part of Tibet.

Similarly, Figure 2(b) shows significant trends towards

drier conditions (passing the 5 and 10% confidence level,

respectively) of the annual SPEI in N China (i.e. Hebei,

Shanxi, Shandong, and Mogonlia provinces), the south-

western part of NE China (i.e. Liaoning, Jilin, and Hei-

longjiang provinces), central and eastern of ENW China

(i.e. Shaanxi, Gansu, Qinhai, and Ningxia provinces),

central and southwestern parts of SW China (i.e. Sichuan

and Yunnan provinces), and the southwestern and north-

eastern reaches of WNW China (i.e. most part of Xinjiang

province). Significant trends towards wetter conditions

(passing the 5 and 10% confidence level, respectively)

were detected in eastern parts of the Tibetan plateau

along with some small areas in Xinjiang, Qinhai, and

Fujian provinces. Cook et al. (2010) investigated the cli-

matic change over the ‘Third Pole’ by utilizing long

tree-ring paleo-records, and concluded that the eastern

Tibetan plateau is becoming wetter mainly due to melting

of the Himalayas glaciers, which is likely being induced

by rapid global warming.

In general, the annual SPEI and the annual precipi-

tation both depicted the most significant drying areas,

which indicated that the drying trend is mainly attributed

to the significant reduction in precipitation. However,

variations in the pattern of the annual SPEI were notably

different from those of the annual precipitation. For

example, 244 stations showed significant drying trends

at the 90% confidence level for annual SPEI, with the

ratio to the total stations of ∼40%, while merely 82 sta-

tions showed the same trend for annual precipitation,

with the ratio of ∼13%. Only 11 stations had a sig-

nificant wetting trend at the 90% confidence level for

the annual SPEI, with the ratio to the total stations of

∼2%, whereas 53 stations showed a similar trend for

annual precipitation, with the ratio of ∼9%. The analy-

sis above suggests that although precipitation played an

important role in the drying trend, recent warming (as

represented by the temperature-based ET component of

the SPEI) has also increased atmospheric moisture lev-

els along with subsequent demand by evapotranspiration,

with both contributing to the overall drying. Hence, air

temperature must be taken into consideration in the con-

text of warming in order to assess the drying trend more

objectively.

3.2. Variations of drought/wet percentage area

Figure 3(a) shows the temporal variations of the percent
area of China experiencing annual dry (SPEI < −1) and
wet (SPEI > 1) conditions during 1951–2010. It can
be seen that relatively large dry areas occurred in the
middle of the 1950s, 1960s, late 1970s, early 1980s,
and very large dry areas in late 1990s until 2010. It
should be noted that the information from the early
1950s might not be as reliable due to limited availability
of meteorological stations/data during that time. For
all of China, the long-term increasing trend of dry
areas was relatively large (3.7%/10 years, computed from
linear regression) during the 60 years studied and was
statistically significant at the 99% confidence level. In
contrast to the drought areas, the temporal variations of
annual wet percentage areas showed a less remarkable
decreasing trend (−1.70%/10 years), but also statistically
significant at the 99% confidence level, i.e. the larger
the dry percentage area, the smaller the wet percentage
area with the lowest values occurring from late 1990s to
present.

Figure 3(b) shows the temporal variations of relative
values of annual drought area to the mean values during
1981–2010 for different levels of drought severity (with
SPEI classes of < −1.0, −1.5, and −2.0, respectively).
In general, drought areas with different severity had sim-
ilar patterns of variation with relatively large values of
drought area occurring in the early 1960s, late 1970s,
and late 1990s until present. The fluctuations of relative
values corresponds very well with the annual drought
percentage area (SPEI < −1.0) (Figure 3(a)), with the
most pronounced fluctuations in relative drought area
being depicted with SPEI < −2.0, and the least with
SPEI < −1.0 (Figure 3(b)). Before the late 1990s, the
relative values of SPEI < −2.0 were lower than those
with SPEI < −1.0 and SPEI < −1.5 in general except in
1963 and 1978 due to severe drought events; however,
the average relative values with SPEI < −2.0 became the
highest thereafter. Nevertheless, the relative values of
severe and extreme droughts even reached three to five
times the mean average of 1981–2010 in many years
since the late 1990s. This indicates that severe drought
areas, particularly extreme drought, have increased dra-
matically since the late 1990s.

Figure 4 also presented the changes and linear trends
in dry areas (SPEI < −1) during 1951–2010 over dif-
ferent regions of China. The most significant increasing
trend of dry area was found in N China with a rate

 2013 Royal Meteorological Society Int. J. Climatol. 34: 545–558 (2014)
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Figure 6. Spatial distribution of drought duration (number of months) over China during 1951–2010.

of 5.46%/10 years (Figure 4(a)). Widespread and large
droughts occurred frequently in 1997, 1999, 2000, 2001,
2005, 2006, 2007, and 2009 with the percentages areas
in drought condition of 47, 63, 53, 77, 46, 41, 41, and
48% respectively. It indicated that the successive severe
droughts began in recent two decades in N China. Strik-
ing drying trend also occurred in WNW China with a
rate of 4.90%/10 years (Figure 4(b)). Persistent multi-
year droughts dominated in last two decades in WNW
with percentage area over 40% in five consecutive years
in 2000s. The percentage area of drought condition even
reached almost 90% during 2008, and nearly 70% both in
1997 and 2006. Obvious increases of dry area were also
detected in NE China and ENW China, with a rate of
3.80% per decade and 3.96% per decade, respectively
(Figure 4(c) and (d)). Large drought area covered the
NE in 1982, 1999, 2000, 2001, and 2006 respectively,
with its most extensive drought in 2001 with nearly 80%
percentage drought area in the region. Weaker upward
trends were observed in S, SW, and E China, with a rate
of 2.51%/10 years, 2.19%/10 years, and 1.86 %/10 years,
respectively. Almost no remarkable upward trend was
found in Tibet.

To better investigate the spatial variations of severe
drought, the representative severe drought events dis-
cussed above are plotted in Figure 5. The 1965 drought
affected central N China, central ENW China, and the
northwest part of WNW China. The 1978 drought was
mostly contained within the eastern reaches of E China
while small drought area appeared over the southern
part of NE China and western parts of the WNW.
The 1997 drought was clearly divided into two centres,
one located over N China and the other over north-
ern Xinjiang province. Following on directly after the
droughts of 1999 and 2000, the 2001 drought was one
of the most severe droughts in terms of the drought
area, duration, and agricultural and economical losses.
The drought was mainly located to the north of the
Yangtze River, i.e. NE, N, the northern part of E, ENW,

and the southeastern part of WNW. In spring and sum-
mer of 2003, regions to the south of the Yangtze River
in China were hit by severe droughts, particularly in
Fujian and Zhejiang provinces (Wu, 2005; Xu, 2005)
(http://www.weather.com.cn/zt/kpzt/1244106.shtml). Du-
ring the summer and autumn 2006, the 1-in-100 year
Chuan (Sichuan)-Yu (Chongqin) drought was mainly
located in the upper reaches of the Yangtze River basin.
Some people attributed the severe drought to the con-
struction of the Three Gorges Dam (the largest dam on
the Yangtze River started operation since 2003); how-
ever, other factors, such as extensive land reclamation
and excessive pumping of groundwater are significant
contributors to the droughts (Lu et al., 2011a, 2011b).
The 2009/2010 Southwest China drought can be seen
in Figure 5. Yunnan province, which is in the subtrop-
ics, was hit the hardest and resembled a desert dur-
ing the drought among the Yunnan, Guizhou, Guangxi,
Sichuan, and Chongqing five provinces. The dried up
lakes revealed desiccated aquatic animals. It was reported
by the Yunnan Province Information Office that the
drought continued till 26 March and caused water short-
ages for 8.2 million people and 3.1 million hectares of
crops (Lu et al., 2011a, 2011b).

From Figure 5 it can be concluded that severe droughts
mostly occurred in N, NE, WNW, and SW. To better
examine the drought conditions in those regions, annual
drought percentage area in these main provinces were
further analysed (see Table 2). It can be seen that the
drought area of all the provinces showed significant
ascending trends and all passed the 95% confidence
level. In the meantime, secular trends of drought area
were very large over all the provinces. Drought years,
which were defined as years with drought percentage
area being more than 40% (Lu et al., 2010), showed
different variation patterns in different regions. Liaoning,
Heibei, Beijing, Tianjin, Shanxi, Inner Mongolia, and
Xinjiang provinces, which were located in N, NE China,
and WNW China respectively, had seven to nine drought
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Decadal spatial distributions of drought duration (number of months) over China (a) 1950s, (b) 1960s, (c) 1970s, (d) 1980s, (e) 1990s,

and (f) 2000s.

years, while Sichuan and Yunnan provinces, which were
situated in SW China had 2 and 4 years, respectively. This
revealed that multiple-year persistent severe droughts
(SPEI < −1.5) were more likely to occur in N, NE, and
WNW during 1951–2010.

3.3. Variations of drought duration

Variations of drought duration over China were also
studied in addition to drought percentage areas. Figure 6
presents the spatial distribution of drought duration
over China during 1951–2010. Drought duration here
was defined as the longest consecutive months with 3-
month SPEI < −1. It can be seen that droughts in N
China, WNW, SW China, small area in NE, and Fujian
province had their longest drought duration with more
than 10 months. The longest drought duration in SW

mainly occurred during the 2006 Chuan-Yu drought and
the 2009/2010 Southwest drought, while that in Fujian
was due to the 2003 severe drought in spring and summer
(see Figure 5). The decadal spatial distribution of drought
duration illustrated further that droughts in those area
were stricken by their longest drought duration mostly
in 1990s and 2000s (Figure 7).

3.4. Variations of drought frequency

Due to the atmosphere–ocean climate system shift-
Pacific Decadal Oscillation over the North Pacific Ocean
during the 1976/1977 winter season (Graham, 1994;
Miller et al., 1994; Mantua et al., 1997; IPCC, 2007; Li
et al., 2011), the variations of precipitation and air tem-
perature in China were also considerably affected (Zhou
and Huang, 2003). Thus, it is necessary to divide the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Drought frequency distributions for different regions within China (a) WNW, (b) ENW, (c) N, (d) NE, (e) E, (f) SW, (g) S, and (h)

Tibet.
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Figure 9. Spatial distributions of drought frequency between 1977–2010 and 1951–1976 over China, where drought frequency is defined as the

difference in the mean annual number of drought months with SPEI < −1 (1977–2010 minus 1951–1976).

whole study period into two sub-periods (i.e. 1951–1976
and 1977–2010, respectively) to explore the variation of
drought frequency patterns across China. In this study,
drought frequency was investigated for several different
regions (see Figure 8) and for China as a whole (see
Figure 9).

Figure 8 illustrates drought frequency variations within
separate regions for both sub-periods. In WNW China,
the drought frequency with an SPEI of < −1 increased
to 4.91% during 1977–2010 from 1.92% over the period
of 1951–1976, with the ratio to the value of 1.92%
being 2.56. In ENW China, the drought frequency
with an SPEI of < −1 also rose rapidly to 4.00% dur-
ing 1977–2010 from a value of only 0.32% over the
1951–1976 phase, with the ratio being 12.5. In N China,
the drought frequency increased significantly to 4.91%
over the 1977–2010 period from a value of 0.64% over
1951–1976, with the ratio being 7.67. In NE China, the
drought frequency increased to 6.88% during 1977–2010
from the 2.80% observed during 1951–1976, with the
ratio being 2.46. This demonstrates that droughts have hit
the regions of WNW, ENW, N, and NE China more fre-
quently during the past 30 years. The drought frequency
in E China remained almost the same over 1977–2010
and 1951–1976 periods with the values both of 4.18
%. However, in looking at the two frequency curves
of E China it can be seen that the percentage of dry
conditions increased while that of wet conditions were
generally reduced. In SW China, the drought frequency
with SPEI < −1 increased to 2.95% during 1977–2010
from 1.99 % over the period 1951–1976, with a ratio of
1.50, which might be explained mainly by the contribu-
tions of the large severe droughts in 2006, and 2009/2010.
In S China, drought frequency reached 4.95% over the
period of 1977–2010 up from 4.47% over the period
of 1951–1976, with the ratio being 1.11. That the fre-
quency curve of 1977–2010 was mostly above that of
1951–1976 shows that the percentage of dry conditions

decreased in the eastern Tibetan Plateau while that of
wet conditions increased, which indicates that the climate
in the eastern Tibetan Plateau is becoming wetter. The
reduced the drought frequency of eastern Tibet from 6.50
% over 1951–1976 period to 4.42% over 1977–2010
also demonstrated the same result. The decreased wet
percentage with SPEI > 1 with different extents over
different regions also demonstrates that the climate is
becoming less wet over all of China except for eastern
Tibet.

The analysis above reveals that drought occurrences
have become more frequent in WNW, ENW, N, and
NE regions over China during the recent three decades;
droughts in E, SW, and S regions also increased to a
lesser extent, but not significantly; the climate in the
eastern Tibetan Plateau is growing wetter.

Similar conclusions could also be obtained from
Figure 9. It can be found that increased drought months
occurred primarily in N, ENW, south and central parts
of WNW, and southwest part of NE and SW China. The
drought duration difference is small in most regions in
E and S China. However, drought months decreased in
some stations in WNW and eastern Tibet. This result is
corresponding with the analysis carried out by Zou et al.

(2005) based on PDSI.

4. Conclusions

This paper investigated the dryness/wetness variation
patterns over China based on the SPEI. The results can
be summarized as follows: (1) A significant upward
trend of dry conditions occurred in N China, southwest
parts of NE China, the central and east reaches of ENW
China, the central and southwest parts of SW China, and
southwest and northeast parts of WNW China; while
significant trends towards wetter conditions occurred
in eastern parts of the Tibetan plateau. (2) Comparison
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of the analysis of trends of annual precipitation and
SPEI suggest that these changes are associated with
changed in the temperature-based ET component. (3)
Severe and extreme drought areas have increased since
the late 1990s by ∼3.72% per decade. In addition,
persistent, multiple-year severe droughts have occurred
more frequently in N, NE, and WNW during the period
1951–2010. (4) N, WNW, and SW China had their
longest drought durations occurring mostly in the 1990s
and 2000s. (5) Drought occurrences have become much
more frequent in WNW, ENW, N, and NE regions over
China during the past 30 years and droughts in the E,
SW, and S regions also increased to a lesser degree.
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