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Glossary

‘Driver’ versus ‘Passenger’ models: contrasting hypothesis for the causes and

consequences of plant invasion. The ‘driver’ model predicts that invaded

communities are highly interactive, with native species being limited or

excluded by competition from the exotic dominants. The ‘passenger’ model

predicts that invaded communities are primarily structured by non-interactive

factors, such as environmental changes, which are less constraining on the

exotics and which, therefore, dominate.

Classical biological control (biocontrol): the planned introduction and release

of host-specific living natural enemies (such as parasites, pathogens and

predators) from the native range of the weed (or pest) to reduce vigor,

reproductive capacity, or density in the invaded range.

Ecosystem function: an intrinsic ecosystem characteristic related to the set of

conditions and processes whereby an ecosystem maintains its integrity;

includes processes such as decomposition, production, nutrient cycling, or

fluxes of nutrients and energy.

Enemy release hypothesis: states that the success of an invasive species in the

introduced range is due, in part, to their release from the negative effects of

coevolved natural enemies left behind in the native range.

Exotic (or introduced) species: is a non-indigenous organism that has been

introduced either accidentally or deliberately to a new location.

Invasive species: a species that does not naturally occur in a specific area and
Classical biological control (the introduction of exotic
natural enemies) is often advocated as a tool for mana-
ging invasive species. Here, we review the effectiveness
of biocontrol and explore the factors that determine
whether it is an appropriate response to the invasive
species problem. Although there have been some suc-
cesses, biocontrol is generally poorly evaluated and, in
many cases, its impact is unknown. In particular, there is
limited understanding of the nature of the invasive
species problem and no clear targets against which
‘success’ can be gauged. In addition, exotic natural
enemies could act as invasive species in their own right.
To improve the role of biocontrol in invasive species
management, we need a better ecological understand-
ing of the impacts of both the biocontrol agents and the
target invasive species.

Introduction
Invasive species (see Glossary) threaten native biodiver-
sity, agricultural productivity and ecosystem functioning,
with estimated annual impacts amounting to millions of
dollars [1]. Their global significance has prompted awealth
of research aimed at better understanding the processes of
invasion and what attributes of either the invasive organ-
ism or the environment lead to certain exotic species
dominating native communities (see Ref. [2] for a recent
overview). Although not without controversy (e.g. Refs
[3,4]), one mechanism that appears to be important in
determining invasion success is escape from natural ene-
mies [5–9]. If enemy release is important, re-establishing
the link between the invader and natural enemies from its
native range could provide an effective means of control.
This is the aim of classical biological control, which endea-
vors to introduce host-specific natural enemies from the
native range of the invader to reduce populations to levels
at which they no longer cause significant agricultural or
environmental damage [10–12]. As such, classical bio-
logical control represents an interesting situation of using
one or more exotic species to control another.

Although biological control can result in sustained con-
trol [13], its success is rarely evaluated objectively or
quantitatively [13]. Our aim here is to explore this issue
to askwhether biocontrol is effective in controlling invasive
species. We focus on biocontrol of invasive plants (weeds),
although many of the factors that we explore extend to
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other taxa such as insects or diseases. We begin with a
meta-analysis to evaluate the ‘effectiveness’ of exotic
natural enemies against environmental and agricultural
weeds (Box 1), using Australia as a case history (we
selected Australia because, along with the USA, it is at
the forefront of biological control research and represents
current best practice [10,14]). Having defined the state-of-
the-art, we examine in more detail what constitutes suc-
cessful control, to what extent natural enemies alone can
meet control objectives, and we highlight some of the
unexpected consequences of ineffective control. We con-
clude with recommendations for better practice to improve
the role of biocontrol in invasive species management.

How effective is biocontrol?
Classical biological control has been used for invasive
management in Australia for over 80 years. There have
been some major successes, with certain weeds all but
eliminated (e.g. control of Opuntia spp. [15]; Chondrilla
juncea [16] and Salvinia molesta [17]). However, complete
control (where the weed is no longer a significant problem)
appears to be the exception rather than the rule [14].
Additionally, many estimates of effectiveness are qualita-
tive, providing little detail about the level and extent of
control and few insights into the factors that determine its
success or failure [18].
whose introduction does or is likely to cause economic or environmental harm.

Weed: a plant growing where it is not wanted and which interferes with the

management objectives at a particular location.
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Box 1. Meta-analysis of biological control impact on

invasive weeds in Australia

We used meta-analyses to assess quantitatively the effect of

biocontrol on weeds in Australia (full details of the methodologies

are given in the Online Supplementary Information). Quantitative

data (appropriate for meta-analysis) were available for 130 biocon-

trol agents established against 39 weed species (representing 65%

of weeds and 30% of established agents). Separate meta-analyses

were used to assess the impact of biocontrol on a range of life-

history and community measurements (Figure I). Meta-analyses

were also used to investigate how weed type influenced the

effectiveness of biocontrol (see Online Supplementary Information).

The results from each study were converted to a common effect size

measure, in this case a correlation co-efficient (r). All meta-analyses

were conducted using MetaWin software random-effect models

(MetaWin 2.1, [81]). The risk of biased results owing to the ‘file-draw

problem’ was assessed by calculating fail-safe numbers (NR), which

indicate the number of non-significant, unpublished observations

that would need to be added to the meta-analysis to reject a

statistically significant result [81,82].

The analyses revealed biocontrol to have a significant impact on

six out of the seven selected measurements (Figure I). The number,

size or biomass of aboveground vegetative components declined in

response to attack by biological control agents, although these

impacts did not always lead to reductions in reproductive output at

the individual plant level (Figure I). The effect of biological control

agents on belowground parts was less than for aboveground

components, although fewer studies included these measurements

(Figure I). Biocontrol generally reduced target seedling and weed

densities; however, these population-scale measurements were

only covered by six and 19 (of 290) observations, respectively

(seedling NR = 2.5, weed density NR = 147). Only two studies

included plant community measurements (NR = 0.3) and both found

an increase in the abundance of other plant species with biocontrol,

although it is not clear if these were exotics or natives. Both seedling

density and plant community effect sizes are not reliable owing to

low fail-safe numbers.

Figure I. Effect of biocontrol on selected weed measurements. Data presented

are mean effect sizes (r) �95% CI, where r represents a correlation co-efficient

and effects are considered significant if the 95% CIs do not overlap zero.

Numbers in parentheses indicate the number of comparisons for each effect

size. Biocontrol had a significant negative effect on most weed parameters,

although low fail-safe numbers for seedling density and other plants indicate

that these results are not reliable.
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To evaluate effectiveness further, we present in Box 1 a
meta-analysis in which we determine the effect of exotic
natural enemies (including insects, pathogens and mites)
on a range of life-history parameters of 39 invasive
weeds in Australia. The analysis revealed that appropriate
quantitative data evaluating the effectiveness of biological
www.sciencedirect.com
control exist for 30% of biocontrol agents that have become
established and 65% of weed control programmes overall
(but see caveats in Box 1). Where data exist, 75% of
observations concentrate on evaluating the effect of a
biocontrol agent on individual plant growth and reproduc-
tive parameters, rather than on key population-level
measures, such as weed density. Given that reductions
in plant performance can have little effect on weed abun-
dance [19], such evaluations provide negligible information
about actual agent impact.

The impact of biological control on plant community
structure or function was also rarely evaluated, with only
two studies investigating vegetation changes in response
to biological control [20,21]. We also found no empirical
studies that linked biological control impacts with increas-
ing agricultural yields or replacement of the target weed by
desired native species. These last two results are particu-
larly striking and, although they could reflect a particular
lack of data for Australia, other analyses of biocontrol
elsewhere [19,22,23] suggest not; it appears we have little
quantitative information to assess realistically the overall
effectiveness of biological control. This is further con-
founded by a lack of appropriate benchmarks against
which success can be evaluated [18]. Given this, how
effective does an agent need to be to be successful? We
explore this question by considering some of the different
issues that apply to invasive species in agricultural
environments (where the drivers are often economic) com-
pared with natural environments (where the focus tends to
be on ecological metrics).

Control of invasives in agriculture
An effective biocontrol agent should suppress the target to
a level at which it no longer poses a significant problem.
But what constitutes an acceptably low level and what
impact does an agent need to have on the target population
to achieve this? Several population modelling studies have
explored these questions for particular invasive weed pro-
blems (e.g. Refs [24–28]). Here, we adopt amore conceptual
approach, taking into consideration some economic
perspectives that are relevant to invasive species that
impact on agricultural productivity.

In an agricultural context, an invasive plant (or weed) is
a problem when its density exceeds a certain threshold at
which control is economically justified. Figure 1a shows
illustrative impact-density functions representing two
classes of weed with contrasting economic thresholds. A
high economic threshold weed would include a weed such
as Paterson’s curse Echium plantagineum, which is a
problem in pastures because it is toxic to livestock. At
low densities, livestock can avoid it, so its impact is mini-
mal; however, at high densities, it is eaten, causing weight
loss and even death [29]. A low threshold weedwould apply
to something such as a seed contaminant of grain, such as
wild radish Raphanus raphanistrum [30]. Even a low level
of contamination could have a large impact on the value of
the commodity and ability to trade or export (Figure 1a). A
range of other relationships (such as a simple straight line,
where impact is proportional to density) can occur, but for
brevity we restrict ourselves to these two extremes.
Equally, although our focus is on weeds, equivalent linear
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and non-linear high and low threshold density–damage
relationships exist for pests and diseases [31–36].

These contrasting functions set different backgrounds
for measuring the ‘success’ of a biocontrol programme
(Figure 1b). That is, for a high threshold weed, there is
a large initial benefit in reducing its abundance, whereas,
for a low threshold weed, there is little benefit until abun-
dance is reduced substantially. If we now superimpose the
costs of biocontrol (Figure 1b), we can identify the point at
which there is a net benefit. For the high threshold weed,
net benefit accrues early and then gradually reduces to a
point where biocontrol is no longer cost effective. The
upshot of this is that even small reductions in weed abun-
dance of just 5%, for example, can yield a net benefit
(Figure 1b), yet with abundant weed populations remain-
ing, few biocontrol programmes would classify this as a
success. By contrast, given the initial insensitivity to
change with the low threshold weed, net benefit accrues
only after substantial reductions in weed abundance
(Figure 1b). As such, it is possible that reductions of even
80–90% could still be considered failures. This has two
important consequences. First, it identifies that invasive
species (whether plant, pest or pathogen) with low
economic or damage thresholds are likely to make difficult
targets for biocontrol. Second, although introduction of an
individual biocontrol species might be perceived as a fail-
ure, the action of several species together could enable the
net benefit threshold to be exceeded (Figure 1b) (although
this depends onwhether successive agents act additively or
synergistically, rather than in a substitutive or antagon-
istic manner).

There have been several cost–benefit studies of biocon-
trol (e.g. Refs [37–39]) and our current conceptual analysis
is not meant to provide an in-depth economic framework.
Rather our aim is to demonstrate how the nature of the
impact–weed-density function sets the context for defining
biocontrol success. Although this might seem obvious, it is
striking how few quantitative data are available on
the economic impact of weeds (an analysis of weeds in
Figure 1. The benefits of biocontrol for an agricultural weed. (a) The economic impa

threshold density is exceeded (green line; e.g. Paterson’s curse Echium plantagineum)

Raphanus raphanistrum). (b) For the high threshold weed (green line), a single biocontr

initial high level (impact of individual agents indicated by arrows below the x-axis) can d

is only a net benefit (red-shaded area) when weed abundance is reduced below a thr

abundance). The costs of biocontrol are represented by an increasing nonlinear functio

ever-decreasing levels. An ineffective biocontrol agent could still deliver the net benefit,

agents.
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Australia in 1998 revealed that, for 98% of cases, no
information was readily available for the cost of individual
weeds [40]; see also Box 1) and how rarely these are used
for prospective evaluations [39] to define a ‘bench mark’ for
gauging success of control. Such ‘benchmarks’ will not only
vary between weed species, but also between systems for
particular species. A recent study of velvetleaf Abutilon
theophrasti in soy beans, for example, identified that the
level of control necessary to prevent this weed increasing in
density was lower in a four-year crop rotation compared
with a two-year rotation system, owing, in part, to the
increased effectiveness of seed predators in the more
diverse rotation system [41].

Control of invasives in the natural environment
For species that invade natural environments, the con-
cerns tend to relate to impacts on biodiversity and associ-
ated ecosystem functioning. However, although the threat
of invasive species to natural biodiversity is considered
high, again there are few data available on the relationship
between weed abundance and impact [11,40,42]. Where
studies have been done, they tend to explore correlative
relationships rather than determine causality [42]. This
issue, at least in part, has led some to question the extent to
which invasive species are a direct cause of biodiversity
decline (e.g. ‘drivers’) or whether they are themselves
simply responding to other forms of ecosystem change
(e.g. ‘passengers’) [43].

Recently, a few studies have adopted manipulative
approaches, based on invasive species removal, to better
quantify impact and causality, and to distinguish between
these ‘driver versus passenger’ models [44,45]. These stu-
dies demonstrate mixed results. Hulme and Bremner [45]
showed an increase in species richness of up to 25% in
response to removal of Himalayan balsam Impatiens glan-
dulifera from riparian communities in north-east England;
a result consistent with the ‘driver’ model. By contrast,
MacDougall and Turkington [44] showed that, whereas
some native plants responded positively to the removal of
ct of individual weeds varies from those causing minimal impact until a certain

, to those with high initial impact even at low densities (red line; e.g. wild radish

ol agent that causes even a relatively small reduction in weed abundance from an

eliver a net benefit (green-shaded area). For the low threshold weed (red line), there

eshold, even if control is substantial (because weed impact is high, even at low

n to capture the probable escalating costs of reducing the abundance of a weed to

if it acts additively (as indicated by sequential arrows) or synergistically with other



Figure 2. The benefits of biocontrol for an environmental weed. (a) Impact of a weed on biodiversity can follow a saturating function (red line), can be more or less

proportional to abundance (blue line), or can exhibit a threshold effect with negligible impact until weed abundance is high (green line). These contrasting damage

functions can produce quantitatively different benefits for biodiversity for a given level of control (dotted lines). However, these functions assume a causal relationship

between weed abundance and biodiversity. If the weed is the ‘driver’ of biodiversity change [(b), solid line], then control will deliver a biodiversity benefit (example given for

the linear impact function); Alternatively, if the weed is a ‘passenger’ and biodiversity loss is due to some other environmental factor, even complete control might fail to

deliver a biodiversity benefit [(b), dashed line]. Moreover, even if there is a biodiversity benefit, the return of associated ecosystem services and function can be complex (c).

Function might return at a higher rate than biodiversity (upper line), at a slower rate (lower line), or can exhibit an idiosyncratic pattern (middle line), depending on the order

and rate at which functionally significant elements of biodiversity reassemble.
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two dominant exotic grasses (Poa pratensis and Dactylis
glomerata) in north American oak savannah, almost half
showed either no response or a decline in cover; a result at
least partly consistent with the ‘passenger’ model. More-
over, the study of Hulme and Bremner [45] revealed that
non-native species accounted formore than one-third of the
additional species found in removal plots. Such compensa-
tory response in the abundance of non-native species has
implications for whether conservation or biodiversity goals
are met, even where the weed is controlled. Indeed, a
common observation in the biocontrol of weeds is that
one weed is replaced by another [46], creating, in effect,
an ‘invasive species treadmill’.

The information above identifies several issues that
underlie the ‘effectiveness’ of biocontrol of environmental
weeds. Similar to the agricultural scenarios, we illus-
trate these with some conceptual models (Figure 2a–c).
First, the nature of the weed abundance–impact function
sets a proximate target for the level of control required to
deliver measurable success. Again, we can expect a range
of relationships, including saturating functions with
high initial impact at low population levels (e.g.
suggested impact of leafy spurge Euphorbia esula on
rangeland grasses in Canada [47]), impacts that increase
linearly with abundance (e.g. suggested impact of broom
Cytisus scoparius on native species richness in Australia
[48]) and non-linear threshold relationships with impact
accelerating after abundance exceeds a certain level (e.g.
suggested impact of Cape ivy Delairea odorata on native
plant species richness in California [49]). Given these
relationships, a specified reduction in weed abundance
would be expected to deliver quantitatively different
impacts on biodiversity (Figure 2a). However, if the weed
is a ‘passenger’ rather than a ‘driver’ of biodiversity
change, its control will not necessarily deliver any bio-
diversity benefit (Figure 2b). Furthermore, even if the
weed is the cause of initial biodiversity loss, it need not
follow that its removal will result in communities return-
ing to their initial states.

Regardless of the mechanism of biodiversity loss, if
native species are seed or dispersal limited, then their
www.sciencedirect.com
capacity to recolonize will be constrained [50]. In addition,
the presence of invasive species can change aspects of the
local and regional abiotic (e.g. nutrient cycling [51], soil
sedimentation [52], fire regime [53]) and biotic (e.g. soil
microbial community [54,55], trophic structure and food-
web interactions [56,57]) environments. Such invasion
legacies highlight the importance of not only understand-
ing the long-term effects of species invasions [57], but also
the consequences of removal [58] and processes of recovery
to ensure the restoration of structurally similar commu-
nities [11,45,59–61].

Finally, it is likely that, in many cases, the ultimate
goal of controlling an invasive species is to restore not
only biodiversity, but also the associated ecosystem func-
tions. Understanding the relationship between biodiver-
sity and ecosystem function is a major focus of
contemporary ecology (for a recent synthesis, see Ref.
[62]). Two insights that are particularly relevant are that
re-establishing structurally similar communities does
not necessarily ensure effective ecosystem function
[60,63], and that the order of species assembly can have
a marked impact on the pattern and rate of functional
recovery [62–65]. The governing process is the overlap
between ‘response’ and ‘effect’ groups [63,64,66]. That is,
if functionally significant species respond rapidly to
removal of the invader, then ecosystem services can
recover in advance of biodiversity, whereas if functional
species respond slowly, then even substantial recovery in
biodiversity will not necessarily result in restoration of
function (Figure 2c).

Ineffective biocontrol and non-target effects
An ongoing debate concerning invasive species and bio-
control relates to the potential for exotic natural enemies
to have negative impacts on non-target biodiversity (e.g.
Refs [67–70]). A recent contribution to this debate has
highlighted a potential link between impact (or lack
thereof) on the target, and impact on non-targets [71–
73]. The mechanism centers on the potential for even a
highly specific weed biocontrol agent to act as resource
subsidy, promoting indirect effects on non-target species.
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The impact or efficacy of the agent is important because
an effective agent will drive down the target population
and, if host specific, should track the food source and
exhibit a commensurate decrease in numbers. An inef-
fective agent, however, will not reduce its food source
and so could reach and maintain high population
densities. These superabundant biocontrol agents can
boost populations of predators or parasitoids, leading
to indirect effects via apparent competition (as suggested
for a tephritid fly released for biocontrol of bitou bush
Chrysanthemoides monilifera ssp. rotundata in Australia
[74]) and even cascading effects on reservoirs of
vertebrate diseases such as hantavirus (suggested for
two gall fly species introduced against spotted knapweed
Centaurea maculosa in the USA [73]). Host specificity
testing (now stringent in most biocontrol programmes)
will tend to minimize the direct environmental risk of
biocontrol introductions. However, this does not guaran-
tee against indirect impacts via ‘resource subsidy’ effects.
Such mechanisms identify a further need to better
understand and predict the efficacy of a biocontrol agent

Conclusion
To some extent, the success of using one invasive to control
another depends on the objectives of the programme and
how high the ‘the bar is set’. The focus of many biocontrol
programmes is to identify candidate agents, screen for host
range and, if suitable, release the agents into the new
environment. If the ‘bar is set’ at the level of release and
establishment, then biocontrol generally attains a high
level of proximate success. However, the ultimate measure
of success is a significant reduction in weed abundance,
with subsequent benefits for productivity or biodiversity
and associated services. Although it might seem harsh to
‘set the bar’ this high, few biocontrol programmes monitor
or quantify success at this level.

These assessments challenge us to place biocontrol (and
other control practices) in a more holistic framework for
invasive speciesmanagement, which draws onmechanistic
ecological insights to understand the cause of the initial
problem, quantify its impact and determine the full con-
sequences of control efforts [11]. In practical terms, this
means, for example, pre-release manipulative studies such
as invasive species removal [44,45]; enemy exclusion and/
or enemy addition studies to investigate the role of natural
enemies on plant performance and population regulation
[5,75]; common garden experiments with variable
resources to explore the interaction between resource
availability and enemy release [8,9]; re-seeding exper-
iments to examine the effect of recruitment limitation on
native species restoration [44,76]; and long-term quanti-
tative post release monitoring of biological control agents
[12,77–79].

There is also considerable potential for utilizing popu-
lation and climate modelling to inform selection of agents
and identify the best targets for control (e.g. Refs [24–
28,80]). Biocontrol programmes do not routinely include
such research and it has been argued that the benefits from
successful biocontrol exceed the costs of the failures [70];
however, given the pressing nature of invasive species
problems, the unique potential of biocontrol to deliver
www.sciencedirect.com
sustained control and the already considerable expense
and effort of introducing a novel agent (whether good or
bad), it would seem in the interests of biocontrol prac-
titioners, the agencies who support their activities and the
end beneficiaries, to better quantify the impact of biocon-
trol to answer our original question and ultimately
improve (cost)effectiveness.
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