
 

 

 

 

Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es  

Esta es la versión de autor del artículo publicado en: 
This is an author produced version of a paper published in: 

 
 

Psychological Methods 21.1 (2016): 93–111 
 

DOI:   http://dx.doi.org/10.1037/met0000064 

Copyright:  © American Psychological Association, 2015 

 
El acceso a la versión del editor puede requerir la suscripción del recurso 

Access to the published version may require subscription 
 

https://repositorio.uam.es/
http://dx.doi.org/10.1037/met0000064
http://www.tandfonline.com/page/terms-and-conditions


Running head: ESTIMATION OF THE NUMBER OF FACTORS 
	

1	

 

  

 

Are Fit Indices Really Fit to Estimate the Number of Factors with Categorical Variables? Some 

Cautionary Findings Via Monte Carlo Simulation  

Luis Eduardo Garrido
1
   Francisco José Abad

2
   Vicente Ponsoda

2 

1
Universidad Iberoamericana en República Dominicana 

2
Universidad Autónoma de Madrid 

 

 

 

Author Note 

Luis E. Garrido, Decanato de Investigación Académica, Universidad Iberoamericana en 

República Dominicana. 

Francisco J. Abad, Facultad de Psicología, Universidad Autónoma de Madrid. 

Vicente Ponsoda, Facultad de Psicología, Universidad Autónoma de Madrid. 

Francisco Abad was supported by Grant PSI2013-44300-P (Ministerio de Economía y 

Competitividad, Spain). 

Vicente Ponsoda was supported by Grant PSI2012-33343 (Ministerio de Economía y 

Competitividad, Spain). 

Correspondence concerning this article should be addressed to Luis Eduardo Garrido, 

Decanato de Investigación Académica, Universidad Iberoamericana, Ave. Francia No. 129, 

Gazcue, Santo Domingo, Dominican Republic. Contact: l.garrido@prof.unibe.edu.do 



Running head: ESTIMATION OF THE NUMBER OF FACTORS 
	

2	

Abstract 1	

An early step in the process of construct validation consists in establishing the fit of an 2	

unrestricted “exploratory” factorial model for a pre-specified number of common factors. For this 3	

initial unrestricted model, researchers have often recommended and used fit indices to estimate 4	

the number of factors to retain. Despite the logical appeal of this approach, little is known about 5	

the actual accuracy of fit indices in the estimation of data dimensionality. The present study 6	

aimed to reduce this gap by systematically evaluating the performance of four commonly used fit 7	

indices –CFI, TLI, RMSEA, and SRMR– in the estimation of the number of factors with 8	

categorical variables, and comparing it with what is arguably the current golden rule, Horn’s 9	

parallel analysis. The results indicate that CFI and TLI provide nearly identical estimations and 10	

are the most accurate fit indices, followed at a step below by RMSEA, and then by SRMR, which 11	

gives notably poor dimensionality estimates. Difficulties in establishing optimal cutoff values for 12	

the fit indices and the general superiority of parallel analysis, however, suggest that applied 13	

researchers are better served by complementing their theoretical considerations regarding 14	

dimensionality with the estimates provided by the latter method.  15	

Keywords: fit indices, number of factors, categorical variables, exploratory factor analysis, 16	

exploratory structural equation modeling, parallel analysis 17	
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¿Are Fit Indices Really Fit to Estimate the Number of Factors to Retain? Some Cautionary 24	

Findings Via Monte Carlo Simulation with Categorical Variables 25	

Methodologists and applied researchers have recommended and used fit indices with 26	

increased frequency in recent years to estimate the number of factors to retain within the context 27	

of unrestricted factor analysis (e.g., Asparouhov & Muthén, 2009; Campbell-Sills, Liverant, & 28	

Brown, 2004; Ferrando & Lorenzo-Seva, 2000; Sanne, Torsheim, Heiervang, & Stormark, 2009; 29	

Tepper & Hoyle, 1996). This approach is advantageous because while assessing the fit of factor 30	

models researchers have access to important model diagnostic information, such as the presence 31	

of correlated residuals among factor indicators, which can be taken into consideration when 32	

making the dimensionality decision. In contrast, the classic retention methods that have been 33	

widely used or recommended in the factor analysis literature, such as the eigenvalue-greater-than-34	

one rule (Kaiser, 1960), the minimum average partial method (Velicer, 1976), and Horn’s parallel 35	

analysis (Horn, 1965), are based on principal component analysis, where such diagnostic 36	

information is not available. Furthermore, using fit indices to estimate the number of factors 37	

reduces the need for ad-hoc model manipulation in the more advanced stages of testing, such as 38	

the evaluation of a restricted “confirmatory” model or a full-blown structural equations “SEM” 39	

model, due to a poorly conceived unrestricted factor structure (Mulaik & Millsap, 2000; Patil, 40	

Singh, Mishra, & Donovan, 2008). 41	

Despite the logical appeal of using fit indices to estimate the number of underlying factors, 42	

little is known about their actual accuracy in this area of research (Frazier & Youngstrom, 2007; 43	

Yang & Xia, 2014). This situation is disconcerting, as the critical dimensionality decision is 44	

oftentimes being made without any prior information regarding the level of performance that can 45	

be expected from the different fit indices. Moreover, there is also limited knowledge regarding 46	

the behavior of fit indices with categorical variables (Barendse, Oort, & Timmerman, 2015; 47	
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Beauducel & Herzberg, 2006), which are typically encountered in the social and behavioral 48	

sciences (Flora & Curran, 2004). This is also troublesome, as the measures of association, 49	

estimation methods, and fit functions that are recommended for the factor analysis of categorical 50	

variables are different than those for continuous variables (Savalei & Rhemtulla, 2013), and may 51	

impact their performance differentially (Nye & Drasgow, 2011).  52	

As a result of the aforementioned issues in the literature, our motivating goal was to 53	

investigate the accuracy of fit indices in the estimation of the number of factors with ordered-54	

categorical variables. In this regard, we aimed to systematically assess the performance of four 55	

commonly used fit indices –CFI, TLI, RMSEA, and SRMR– under a wide range of factorial 56	

models and sample conditions. There are, however, important issues regarding the use and 57	

interpretation of fit indices that must be taken into consideration first. To this end, the rest of this 58	

section will be organized according to the following areas of relevance: (1) EFA/ESEM vs. CFA 59	

to estimate the number of factors; (2) Categorical variable estimators; (3) Evaluation of model fit 60	

with fit indices; (4) Performance of fit indices with CFA and SEM models; and (5) Accuracy of 61	

fit indices in the estimation of the number of factors. 62	

EFA/ESEM vs. CFA to Estimate the Number of Factors 63	

The literature regarding when and how to use EFA-CFA appears to have strong roots in 64	

some historical limitations of the EFA procedure. For example, Floyd and Widaman (1995) 65	

remarked that CFA departed markedly from EFA in that it relied “on a different set of standards 66	

for evaluating the adequacy of factor solutions” (p. 293). Furthermore, Myers (2013) observed 67	

that typical implementations of the EFA procedure in software have been limited by the “absence 68	

of standard errors for parameter estimates, restrictions on the ability to incorporate a priori 69	

content knowledge into the measurement model, an inability to fully test factorial invariance, and 70	

an inability to simultaneously estimate the measurement model within a fuller structural model” 71	
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(p. 712). Because of these historical limitations, CFA has been preferred over EFA in some cases 72	

where there wasn’t sufficient a priori measurement theory to warrant a confirmatory approach 73	

(Myers, 2013; Patil et al., 2008).  74	

Recent advances in factor analysis have, however, eliminated the above-mentioned 75	

shortcomings of the EFA procedure. In this line, the development of exploratory structural 76	

equation modeling (ESEM; Asparouhov & Muthén, 2009; Marsh et al., 2009) has provided 77	

researchers with a flexible factor modeling technique that offers the same fit information 78	

available in CFA and can be incorporated into broader model testing, such as full SEM models, 79	

multiple group EFA with measurement and structural invariance testing, longitudinal EFA with 80	

across-time invariance testing, EFA with covariates and direct effects, and EFA with correlated 81	

residuals (Asparouhov & Muthén, 2009). As a result, the choice between EFA/ESEM and CFA 82	

is, presently, one that need only be made on the basis of the hypotheses that are to be tested. 83	

In order to better understand the similarities and differences between EFA/ESEM and CFA, 84	

it may be useful to frame the discussion in terms of the types of models that can be fitted by each 85	

technique. In EFA/ESEM, the observed variables are fitted to an unrestricted factor model, where 86	

the indicators are allowed to load freely on all the factors that are to be extracted. In addition, an 87	

unrestricted solution does not restrict the factor space, allowing for multiple factor solutions to be 88	

obtained by an arbitrary rotation or transformation of the estimated factor solution, with each 89	

solution yielding the same fit (Ferrando & Lorenzo-Seva, 2000). Because no restrictions are 90	

imposed on the factor structure, EFA/ESEM essentially tests whether a specified number of 91	

common factors are able to account for the covariation among the observed variables (Tepper & 92	

Hoyle, 1996).  93	

In CFA, on the other hand, a restricted factor model is fitted to the data, where specific 94	

relationships are posited between factors and indicators, between different factors and between 95	
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different indicators. Therefore, assuming that the distributional assumptions are met, CFA 96	

constitutes a test of dimensionality and the plausibility of the restrictions imposed through the 97	

specified model. It then follows that a CFA may not fit the data because the number of 98	

hypothesized factors is inappropriate, the relations among variables and factors are not correctly 99	

specified or both (Ferrando & Lorenzo-Seva, 2000). And because these model hypotheses are 100	

tested simultaneously, the researcher cannot determine which (if not both) might be the cause of a 101	

bad-fitting model, thus making CFA an unsuitable framework to estimate the number of factors 102	

to retain. Based on this logic, it is concluded that unrestricted factor analysis in the form of 103	

EFA/ESEM is the most appropriate modeling technique to estimate the underlying 104	

dimensionality of a set of observed variables.  105	

Categorical Variable Estimators 106	

Normal theory estimators, such as maximum likelihood (ML) and generalized least squares 107	

(GLS), are generally used for model estimation with continuous variables because of their 108	

desirable asymptotic properties (Lei, 2009). However, these estimators assume that the observed 109	

variables follow a multivariate normal distribution, an assumption that is violated when the 110	

observed variables are of categorical nature. Moreover, if categorical variables are treated as if 111	

they are continuous by employing ML or GLS, distorted parameters estimations, standard errors, 112	

and χ! statistics can be obtained (Beauducel & Herzberg, 2006; Morata-Ramírez & Holgado-113	

Tello, 2013).  114	

Two strategies that take into account the categorical nature of the observed variables have 115	

been proposed to estimate the factor analysis model (Jöreskog & Moustaki, 2001): the underlying 116	

response variable approach (URV) and the response function or item response theory approach 117	

(IRT). Because the URV approach is the one generally used in factor analysis, it will constitute 118	

the focus of this study. Nevertheless, for those interested in the details regarding its relationship 119	
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to Samejima’s (1969) graded response IRT model, see Forero, Maydeu-Olivares and Gallardo-120	

Pujol (2009) and Takane and de Leeuw (1987). 121	

Within the URV approach, the observed categorical variables are considered to be 122	

manifestations of underlying normally distributed continuous variables that are partially observed 123	

through their categorical counterparts (Olsson, 1979). An observed categorical variable x! with 124	

m! ordered response categories is linked to its respective underlying continuous response variable 125	

x!
∗ via a threshold relationship: 126	

 x! = c! ⟺ τ
!!!!

!!
< x!

∗
< τ

!!

!!   (5) 

where τ
!!

!!  is the c!th threshold of variable x! and −∞ = τ
!

!!
< τ

!

!!
< ⋯ < τ

!!!!

!!
< τ

!!

!!
=127	

+∞. That is, an individual will choose response alternative c! when his latent response value x!
∗ is 128	

between thresholds τ!!!! and τ!!. In addition, for a set of ! observed variables, the factors are 129	

connected to the latent response variables !∗ through the standard factor analytic model: 130	

 !
∗
= !"+ !  (6) 

where ! is a ! x 1 vector of factors, ! is a ! x ! matrix of factor loadings, and ! is an ! x 1 vector 131	

of measurement errors.  132	

This formulation of the common factor model assumes that the factors ! and the 133	

measurement errors ! are both normally distributed, that the factors and measurement errors are 134	

uncorrelated, that the means of the factors and measurement errors are zero, and that the 135	

measurement errors are mutually uncorrelated.  136	

The URV factor model is generally estimated in three stages: First, the thresholds are 137	

estimated separately for each variable by ML. Second, polychoric correlations (ρ; Olsson, 1979) 138	

are estimated independently for each pair of categorical variables, also using ML. Third, the 139	
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parameters of the factor model are estimated by using the thresholds and polychoric correlations 140	

estimated in the previous two stages and minimizing the least squares function:  141	

 ! = (!− ! ! )′!(!− ! ! )  (7) 

where ! is the sample polychoric correlation matrix, ! !  is the model-implied polychoric 142	

correlation matrix for the estimated ! trait parameters, and ! is a positive definite weight matrix 143	

(Forero et al., 2009).  144	

The categorical variable estimation methods differ in their weight matrix !. In the case of 145	

the unweighted least squares (ULS) estimator, ! is an identity matrix (Muthén, 1978), thereby 146	

making ! a simple sum of squared model residuals (!− ! ! )!. For the weighted least squares 147	

(WLS) estimator, on the other hand, ! is the inverse of the asymptotic variance-covariance 148	

matrix of polychoric correlations (Muthén, 1978). The dimension of this square matrix ! is 149	

!(! − 1)/2, which can only be efficiently estimated with very large sample sizes (Yang-150	

Wallentin, Jöreskog, & Luo, 2010). As a means to partially sort out this difficulty, the diagonally 151	

weighted least squares (DWLS) estimator uses as ! a weight matrix that only contains the 152	

diagonal elements of the asymptotic variance-covariance matrix of polychoric correlations 153	

(Rhemtulla, Brosseau-Liard, & Savalei, 2012). This estimator is also referred to as robust WLS 154	

or weighted least squares with mean and variance-adjusted standard errors (WLSMV). Both ULS 155	

and DWLS require the full weight matrix to compute the standard errors and the χ! test, which is 156	

mean and variance adjusted in the WLSMV case. These robust adjustments are necessary 157	

because ULS and DWLS are less efficient than WLS as a consequence of not using the full 158	

weight matrix (Rhemtulla et al., 2012; Yang-Walentin et al., 2010). 159	

According to the factor analytic literature, the robust DWLS and ULS estimators perform 160	

well in the estimation of CFA and SEM models with categorical variables across a wide range of 161	
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sample sizes and data characteristics (Flora & Curran, 2004; Forero et al., 2009; Lei, 2009; 162	

Nestler, 2013; Yang-Walentin et al., 2010). In addition, it appears that DWLS generally 163	

outperforms ULS in convergence rates (Forero et al., 2009), but ULS slightly outperforms DWLS 164	

in estimation accuracy (Forero et al., 2009; Savalei & Rhemtulla, 2013; Yang-Walentin et al., 165	

2010). On the other hand, neither estimator is appropriate when the data characteristics are 166	

especially adverse, such as the intersection of small samples, few response categories, and highly 167	

skewed categorical variables (Forero et al., 2009; Savalei & Rhemtulla, 2013). In contrast to the 168	

DWLS and ULS estimators, the full WLS estimator is of limited usefulness because it tends to 169	

produce inflated χ! model fit statistics and negatively biased standard error estimates with 170	

categorical data that is typically found in applied research settings (Flora & Curran, 2004; Yang-171	

Walentin et al., 2010). This estimator is therefore only recommended for very large sample sizes 172	

and small models (Flora & Curran, 2004).  173	

Evaluation of Model Fit with Fit Indices 174	

Numerous fit indices have been proposed in the factor-analytic literature as measures of the 175	

degree of fit of factor models (Hu & Bentler, 1999). These descriptive indices are generally 176	

favored against the statistical chi-square test of exact fit because psychometric models are known 177	

a priori to be false to some degree, and therefore will always be rejected with large enough 178	

samples (Browne & Cudeck, 1992; Yu, 2002). Some of the most commonly used fit indices are 179	

the Root Mean Square Error of Approximation (RMSEA), the Comparative Fit Index (CFI), the 180	

Tucker-Lewis index (TLI), and the Standardized Root Mean Square Residual (SRMR). These fit 181	

indices, which will be the focus of the current study, have performed relatively well in previous 182	

confirmatory factor analysis (CFA) and SEM Monte Carlo studies (e.g., Hu & Bentler, 1999; 183	

Sharma, Mukherjee, Kumar, & Dillon, 2005; Yu, 2002), and are highly popular in applied 184	

research (e.g., Campbell-Sills et al., 2004; Sanne et al., 2009). 185	
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RMSEA Index 186	

 RMSEA = max
λ!

df! ! − 1
, 0  

 

 (1) 

 

where λ! is the noncentrality parameter of the specified model, df! are the degrees of freedom 187	

of the specified model, and ! is the sample size. The noncentrality parameter λ! is computed as 188	

χ!
!
− df!, where χ!

!  is the chi-square statistic that tests the equivalence of the population 189	

covariance matrix of observed variables and the model-implied covariance matrix
1
. 190	

The RMSEA index is a measure of absolute fit that assesses the discrepancy due to 191	

approximation in the population, estimated as λ!/(N− 1), and corrected for model complexity 192	

through the division by the degrees of freedom, df!. This index is intended to recover the model 193	

that maximizes verisimilitude (a model’s proximity to the objective truth in the population) 194	

(Preacher, Zhang, Kim & Wells, 2013). In addition, RMSEA is a function of χ! and can be 195	

considered as a measure of misfit detectability that depends not only on the type/size of misfit, 196	

but also on the data characteristics and the accuracy of measurements (Browne, McCallum, Kim, 197	

Andersen, & Glaser, 2002). The RMSEA index is bounded below by zero, with lower values 198	

indicating a better fit to the data or less error of approximation. The CFA/SEM literature suggests 199	

that RMSEA values less than .08 and .05 are indicative of reasonable and close fit to the data, 200	

respectively (Browne & Cudeck, 1992; Chen, Curran, Bollen, Kirby, & Paxton, 2008; Marsh, 201	

Hau, & Wen, 2004; Yu, 2002). 202	

CFI and TLI Indices 203	

																																																													
1
 Note that with categorical variables a robust χ

2
 statistic is used to compute the fit indices. In the case of the Mplus 

software, the robust χ
2
 statistic is mean- and variance-adjusted. For more information see the Mplus Technical 

Appendices (Muthén, 1998-2004).  
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 CFI = 1−
max (λ!, 0)

max (λ!, λ!, 0)
 

  

(2) 

 

 

TLI = 1−

λ!

df!

λ!

df!

= 1−
λ!

λ!

df!

df!
  (3) 

 

where λ! and df! are the noncentrality parameter and degrees of freedom of the baseline model, 204	

respectively. 205	

The CFI and TLI indices are measures of incremental fit that assess the degree to which the 206	

specified model is superior to an alternative “baseline” model in reproducing the observed 207	

covariance matrix. The baseline model is usually a null model in which all the observed variables 208	

are uncorrelated (Hu & Bentler, 1999). The CFI index has boundaries of 0 and 1, with higher 209	

values indicating greater gains in fit in comparison to the baseline model. Likewise, the TLI 210	

index generally ranges from 0 to 1, but, as the index is not normed, it can sometimes obtain 211	

values that fall outside of this range. The TLI index differs from the CFI index in that it informs 212	

of the relative reduction in misfit per degree of freedom, an additional adjustment that takes into 213	

account model parsimony (Mahler, 2011). In addition, the values of TLI are always lower than 214	

those of CFI because the term that is subtracted from 1 in the formula is multiplied by df!/df!, 215	

which is always greater than one (Kenny & McCoach, 2003). On the other hand, the values of 216	

CFI and TLI tend to become more similar as the number of observed variables, !, increases, 217	

because as ! increases the ratio of df!/df! tends toward unity. According to the CFA/SEM 218	

literature, CFI and TLI values greater than .90 and .95 can be considered to reflect acceptable and 219	

excellent fit to the data (Hu & Bentler, 1999; Marsh et al., 2004; Yu, 2002). 220	

SRMR Index 221	
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SRMR =

s!"

s!! s!!

−
σ!"

σ!! σ!!

!

!

!!!
!

!!!

!(! + 1)/2
 

 

(4) 

 

where s!" is the observed covariance, σ!" is the model-implied covariance, s!! and s!! are the 222	

observed standard deviations, σ!! and σ!! are the model-implied standard deviations, and ! is the 223	

number of observed variables. In the case of categorical variable estimators, the covariances in 224	

the formula are substituted by the polychoric correlations and the standard deviations are replaced 225	

by their standardized value of unity. 226	

The SRMR index is a measure of absolute fit that computes the standardized difference 227	

between the observed and model-implied covariance/correlation matrices. This index has a lower 228	

bound of zero, with smaller values indicating a better fit or less residual error. Because SRMR 229	

evaluates raw sample misfit and does not take into account the sample variability of the residuals, 230	

its values depend on the sample size and the characteristics of the model being estimated (Hu & 231	

Bentler, 1998). Values of SRMR lower than .08 have been found to suggest a good fit to the data 232	

(Hu & Bentler, 1999). 233	

Performance of Fit Indices with CFA and SEM Models 234	

Although this study is concerned with the accuracy of fit indices in the assessment of data 235	

dimensionality with unrestricted factor models, most of what is known about their empirical 236	

properties has come from CFA and SEM studies. Because this information could aid in 237	

understanding and anticipating how fit indices might perform in the estimation of the number of 238	

factors to retain with EFA/ESEM models, we will briefly summarize next the major findings 239	

from this literature.  240	
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The size of the factor loadings has been found to strongly impact the power of fit indices to 241	

detect model misfit (Browne et al., 2002; Heene, Hilbert, Draxler, Ziegler, & Bühner, 2011; 242	

Mahler, 2011; Savalei, 2012). The fit indices that appear to be most affected by this variable are 243	

RMSEA and SRMR, sometimes indicating a close fit to the data for models that have gross 244	

misspecifications when the factor loadings are low, and other times suggesting a poor fit to the 245	

data for models that have only minor misspecifications when the factor loadings are high 246	

(Browne et al., 2002; Heene et al., 2011; Mahler, 2011; Saris, Satorra, & van der Veld, 2009; 247	

Savalei, 2012). In contrast to the behavior of RMSEA and SRMR, the CFI and TLI indices tend 248	

to exhibit poorer fit for models that have lower factor loadings (Heene et al., 2011; Mahler, 2011; 249	

Sharma et al., 2005). Part of the reason for this behavior of CFI and TLI appears to be that lower 250	

factor loadings entail lower covariances between the observed variables, which reduce the 251	

distance between the specified model and the baseline null model.  252	

Sample size has also been shown to have a considerable impact on the performance of fit 253	

indices (Chen et al., 2008; Hu & Bentler, 1998, 1999; Nye & Drasgow, 2011; Yu, 2002), and its 254	

effects appear to interact with the number of manifest variables (Kenny & McCoach, 2003; 255	

Marsh, Hau, Balla, & Grayson, 1998; Sharma et al., 2005). The effects of sample size on the 256	

performance of fit indices are partly due to the behavior of the χ! statistic, which has a tendency 257	

to overestimate its theoretically expected values with small samples, leading, in turn, to overly 258	

high rejection rates (Curran et al., 2002; Marsh et al., 1998). Moreover, this upward bias in the χ! 259	

statistic can remain considerable even in larger samples, if the size of the model to be estimated is 260	

also large (Herzog, Boomsma, & Reinecke, 2007). This problem is further exacerbated with 261	

categorical variables that have few response options and high levels of skewness (Forero et al., 262	

2009; Savalei & Rhemtulla, 2013). The incremental fit indices, even though they compare against 263	
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a baseline model, are also affected because this upward bias in the χ! statistic is less pronounced 264	

for misspecified models, such as the baseline null model used in their computation (Curran et al., 265	

2002). SRMR, although not χ! based, is even more dependent on the size of the sample, with fit 266	

values that decrease markedly with increasing sample sizes as a result of more precise 267	

estimations of the population covariances/correlations (Nye & Drasgow, 2011; Yu, 2002).  268	

Accuracy of Fit Indices in the Estimation of the Number of Factors 269	

There is limited information available regarding the accuracy of fit indices in the estimation 270	

of the number of factors. We are aware of only three studies that have systematically evaluated 271	

their performance with unrestricted factor models: Preacher et al. (2013) with continuous 272	

variables, Barendse et al. (2015) with continuous and categorical variables, and Yang and Xia 273	

(2014) with categorical variables. The major findings from this literature are summarized below. 274	

First, RMSEA seems to select the number of major factors in the population more often 275	

when the sample sizes are larger, the factor loadings are higher, the factor structures are less 276	

complex, there are more response options, the factor correlations are smaller, or there are more 277	

variables per factor (Barendse et al., 2015; Preacher et al., 2013; Yang & Xia, 2014). With 278	

conventional cutoff values of .05 or .06, this index will tend to underfactor with 2-point scales or 279	

factor correlations of .50 (Yang & Xia, 2014), but may overfactor with small samples of 100 to 280	

200 observations (Barendse et al., 2015; Preacher et al., 2013).  281	

Second, the SRMR-based dimensionality decisions appear to be affected similarly to those 282	

of RMSEA by the levels of factor loadings, number of response options, and complexity of the 283	

factor structures (Barendse et al., 2015). However, SRMR has displayed the undesirable property 284	

of becoming less accurate with larger samples, where it appears to systematically select fewer 285	

major factors than those present in the population. These results may be attributed to the lower 286	
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SRMR values that are obtained in these conditions as a consequence of more precise correlation 287	

estimates (Barendse et al., 2015).  288	

Third, little is known about the accuracy of incremental fit indices such as CFI and TLI. 289	

Only Yang and Xia (2014) evaluated an incremental fit index, CFI, and they reported that it 290	

performed similarly to or not as well as RMSEA and did not provide any further results for it.  291	

Fourth, the WLSMV estimator seems to lead to more accurate estimations with categorical 292	

variables. When compared to other estimators, such as ML of covariances, ML of polychoric 293	

correlations, robust ML, and WLS of polychoric correlations, the WLSMV categorical variable 294	

estimator had the highest convergence rates and led to the best dimensionality estimates from 295	

various fit indices (Barendse et al., 2015).  296	

Fifth, not much is known about the accuracy of fit indices in comparison to Horn’s parallel 297	

analysis (PA; Horn, 1965). The PA method, which posits that factors should be retained as long 298	

as their eigenvalues are greater than the corresponding ones from samples of random variables 299	

that are uncorrelated at the population level, is arguably the most accurate retention method 300	

available at the moment (Henson & Roberts, 2006). Even though Yang and Xia (2014) included 301	

PA in their study, they used different criteria to evaluate its accuracy and those of the fit indices 302	

(mean values for the fit indices vs. percentage of selected models for PA), making any 303	

comparisons difficult to undertake. 304	

Goals of the Current Study 305	

Although previous studies with fit indices have provided valuable information regarding 306	

their performance in the estimation of the number of factors to retain, they contain several 307	

limitations that make it difficult to generalize their findings. For example, Preacher et al. (2013) 308	

and Yang and Xia (2014) only simulated variables with population loadings of .70 or greater, 309	

values that are notably high and which may not be representative of most research situations. 310	
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Also, the available studies have evaluated only a limited number of conditions (32 to 72), which 311	

means that relevant independent variables have either not been manipulated (e.g., the number of 312	

major factors was kept constant at 3 in both Barendse et al. and Yang and Xia) or have contained 313	

too few levels (e.g., only samples of 200 or 1,000 observations were evaluated in Barendse et al. 314	

and only variables with 2 or 4 response options were simulated in Yang and Xia). Further, only 315	

Barendse et al. (2015) evaluated the impact of choosing different cutoff values, and as Marsh et 316	

al. (2009) pointed out, the optimal cutoff values in EFA/ESEM may be different from those 317	

established in CFA, where the number of estimated parameters is usually much smaller. Thus, the 318	

main goal of this study was to address some of these limitations in the factor analytic literature by 319	

carrying out an in-depth analysis of the accuracy of four frequently used and recommended fit 320	

indices –CFI, TLI, RMSEA, and SRMR– in the estimation of the number of factors with 321	

categorical variables.  322	

At the moment we are not aware of studies that have compared these four fit indices 323	

directly in the dimensionality assessment of the same data, a necessary step in order to determine 324	

their relative accuracy. In addition, whereas previous studies analyzed only a relatively small 325	

number of conditions, and in some cases only with continuous variables, this study considered a 326	

more comprehensive set of factors and factor levels, which produced a total 2,268 categorical 327	

variable conditions that enabled a deeper evaluation of these fit indices. Also, the fit indices were 328	

examined in this study across a larger than usual range of cutoff values in order to better 329	

understand their performance. Finally, the accuracy of the fit indices was assessed with the 330	

underlying continuous variables (prior to categorization) so as to establish a baseline for their 331	

accuracy with the categorical variables, and their estimations were compared against those of 332	

Horn’s parallel analysis so as to better ascertain their practical usefulness.  333	

Method 334	



FIT INDICES TO ESTIMATE THE NUMBER OF FACTORS 
 

	

17	

Study Design 335	

Monte Carlo methods were employed to systematically assess the accuracy of the retention 336	

methods. In accordance with numerous simulation studies in the factor analytic literature (e.g., 337	

Forero et al., 2009; Nestler, 2013; Velicer, Eaton, & Fava, 2000), the simulation procedure 338	

involved the generation of factor models that had a simple structure design at the population 339	

level, with factor indicators only loading on one factor, variables possessing homogeneous 340	

properties (e.g., same factor loading, absolute skewness, response categories, and factor 341	

correlations), and without minor factors. Although this strategy does not take into consideration 342	

model error at the population level, or the empirical variability in the properties of the observed 343	

and latent variables, it allows for valuable insight to be gained by utilizing models that have 344	

known and unambiguous dimensionalities at the population level and by isolating the impact of 345	

precise values of the manipulated variables.  346	

The factorial design included the manipulation of four “structure” factors –factor loading, 347	

number of variables per factor, number of factors, and factor correlation– and three “sample” 348	

factors –sample size, number of response categories, and skewness– for a total of seven 349	

independent variables. Altogether, these seven variables have been shown to affect the 350	

performance of factor retention methods with categorical variables (Barendse et al., 2015; 351	

Garrido, Abad, & Ponsoda, 2011, 2013; Timmerman & Lorenzo-Seva, 2011; Yang & Xia, 2014).  352	

The levels for the independent variables were chosen so that they were representative of the 353	

range of values that are encountered in applied settings. In each case, an attempt was made to 354	

include a small/weak, medium/moderate, and large/strong level. A brief description of the 355	

rationale that was followed in the selection of the factor levels is presented next.  356	

Factor loading (FLOAD): with levels of .40, .55, and .70, which can be considered as low, 357	

medium, and high, respectively (Cho, Li, & Bandalos, 2009). Similar factor loadings have also 358	
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been generated in previous factor analytic studies with categorical variables (e.g., Forero et al., 359	

2009; Nestler, 2013; Savalei & Rhemtulla, 2013).  360	

Variables per factor (VARFAC): with levels of 4, 8, and 12, which include a value that is 361	

just over the minimum of 3 that is required for identification, another that denotes a moderately 362	

strong factor, and one for a highly overidentified factor (Velicer et al., 2000; Widaman, 1993). 363	

Number of factors (FAC): with levels of 1, 2, and 4, which include the unidimensional 364	

condition as well as common number of traits for modern behavioral inventories (Henson & 365	

Roberts, 2006).  366	

Factor correlation (FCORR): with levels of .00, .30, and .50, which include the orthogonal 367	

condition, plus moderate and strong correlation levels (Cohen, 1988). 368	

Sample size (N): with levels of 100, 300, and 1,000, which may be considered as small, 369	

medium, and large, respectively, for the factor analysis of categorical variables (Forero et al., 370	

2009; Muthén & Kaplan, 1985; Savalei & Rhemtulla, 2013).  371	

Number of response categories (RESCAT): with levels of 2, 3, 4, 5, and continuous, which 372	

include all the possible numbers of response options below 6, where the results for categorical 373	

and continuous variable estimators tend to become highly similar (Rhemtulla et al., 2012).  374	

Skewness (SKEW): with levels of 0, ±1, and ±2, which include the symmetrical condition 375	

as well as values that can be regarded as a meaningful departure from normality and a high level 376	

of skewness (Meyers, Gamst, & Guarino, 2006, p. 50; Muthén & Kaplan, 1985). The smaller 377	

levels of skewness are more typical of attitude tests and personality inventories, while larger 378	

levels of oppositely skewed categorical variables can be found on aptitude tests, where the items 379	

are designed to have difficulty levels that range from very easy to very difficult (Geranpayeh & 380	

Taylor, 2013, p.249; Rhemtulla et al., 2012). 381	
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Because some levels of the independent variables cannot cross with others (e.g., there are 382	

no factor correlations for the 1-factor condition), the 2,457 factor combinations derived from the 383	

factorial design are better broken up into these four completely crossed conditions:  384	

(1) The continuous unidimensional conditions: with a 3 x 3 x 1 x 3 (FLOAD x VARFAC x 385	

FAC x N) factorial design, totaling 27 conditions. 386	

(2) The continuous multidimensional conditions: with a 3 x 3 x 2 x 3 x 3 (FLOAD x 387	

VARFAC x FAC x FCORR x N) factorial design, totaling 162 conditions. 388	

(3) The categorical unidimensional conditions: with a 3 x 3 x 1 x 3 x 3 x 4 (FLOAD x 389	

VARFAC x FAC x N x SKEW x RESCAT) factorial design, totaling 324 conditions.  390	

(4) The categorical multidimensional conditions: with a 3 x 3 x 2 x 3 x 3 x 3 x 4 (FLOAD 391	

x VARFAC x FAC x FCORR x N x SKEW x RESCAT) factorial design, totaling 1,944 392	

conditions.  393	

Data Generation 394	

For each of the 2,457 simulated conditions, 100 sample data matrices were generated 395	

according to the following common factor model procedure: first, the reproduced population 396	

correlation matrix (with communalities in the diagonal) was computed as: 397	

 !! = !"!! (8) 

where !! is the reproduced population correlation matrix, ! is the population factor loading 398	

matrix, and ! is the population factor correlation matrix.  399	

The population correlation matrix !! was then obtained by inserting unities in the diagonal 400	

of !!, thereby raising the matrix to full rank. The next step was performing a Cholesky 401	

decomposition of !!, such that: 402	

 !! = !
!
! (9) 
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where ! is an upper triangular matrix. 403	

The sample matrix of continuous variables ! was subsequently computed as: 404	

 ! = !" (10) 

where ! is a matrix of random standard normal deviates with rows equal to the sample size and 405	

columns equal to the number of variables.  406	

The sample matrix of categorical variables was obtained by applying a set of thresholds to 407	

! according to the specified levels response categories and skewness. The thresholds (τ) for the 408	

symmetric conditions were computed by partitioning the continuum from z = -3 to z = 3 at equal 409	

intervals. Thresholds for the asymmetric conditions were created so that as the skewness level 410	

increased, the observations were “piled up” in one of the extreme categories (see Garrido et al., 411	

2011; Muthén & Kaplan, 1985). In addition, half of the variables of each factor were categorized 412	

with the same positive skewness and the other half with the same negative skewness. All 413	

threshold values used for this study are included in the Appendix. 414	

All the sample data matrices were generated under the MATLAB programming 415	

environment (version R2010a; The MathWorks, Inc., 1984-2010). These sample matrices were 416	

subsequently inputted into the Mplus program (version 6.11; Muthén & Muthén, 1998-2010), 417	

where the factor models were estimated and the fit values obtained. In order to obtain the fit 418	

values of the factor models, the normally distributed continuous variables were factorized using 419	

the ML estimator over Pearson correlations. In the case of the categorical variables, the WLSMV 420	

estimator over polychoric correlations was employed. The WLSMV estimator was selected as it 421	

has been shown to perform well with categorical data, and because among the categorical 422	

variable estimators, it is the most common method of analysis among practitioners (Savalei & 423	

Rhemtulla, 2013). As far as the PA method, it was programmed directly into MATLAB with 424	
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code developed by the authors. In all cases, the polychoric correlations were computed using the 425	

maximum likelihood two-stage algorithms provided by Olsson (1979).  426	

Estimation of the Number of Factors 427	

The procedure used to estimate the number of factors with fit indices consisted of fitting 428	

sequential unrestricted factor models to the sample data. The process started by fitting a 1-factor 429	

model and comparing its fit to the pre-specified cutoff value of the fit index; if the model fit 430	

acceptably, the index suggested a 1-factor solution, if not, the number of factors was sequentially 431	

increased by 1 until a model with an acceptable fit was obtained. If no fit information was 432	

available due to non-convergence or lack of degrees of freedom, the extraction procedure was 433	

stopped and the number of factors was fixed at the last estimated value. For example, if a 1-factor 434	

model obtained an inadequate fit to the data but the subsequent 2-factor solution did not 435	

converge, the number of factors was fixed at 2. In other words, a factor model was not accepted if 436	

its level of fit did not reach the pre-specified cutoff value of the fit index, even if the subsequent 437	

model could not be tested. For each fit index considered in this study, 20 cutoff values were 438	

evaluated. In the case of CFI and TLI, 19 cutoff values were examined from .05 to .95 in 439	

increments of .05, while the 20
th

 cutoff value was .99. Regarding RMSEA and SRMR, the 20 440	

cutoff values went from .20 to .01 in decrements of .01.  441	

The estimation of the number of factors with PA, on the other hand, was carried out by 442	

comparing the eigenvalues from the sample matrices with underlying factors to those obtained 443	

from sample matrices of random variables that were uncorrelated at the population-level, but that 444	

otherwise had the same sample characteristics as the former (i.e., sample size, number of 445	

variables, skewness, and response categories). Additionally, the procedure was computed in 446	

accordance to the recommendations and simulation procedures described in Garrido et al. (2013), 447	
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which included factorizing the full matrices of polychoric correlations and computing the mean 448	

eigenvalues from 100 sample matrices of independent variates.  449	

Accuracy Criteria 450	

The accuracy of the fit indices was evaluated according to three complementary criteria: the 451	

proportion of correct estimates (PC), the mean bias error (MBE), and the mean absolute error 452	

(MAE). The formulas for these criterion variables are presented in Equations 11-13:  453	

 PC =
C

N!

,    for   C =
1  if  θ = θ 

0  if  θ ≠ θ 
 (11) 

 MBE =
(θ− θ)

N!

 (12) 

 MAE =
|θ− θ|

N!

 (13) 

where N! is the number of sample data matrices generated for each condition (100), θ is the 454	

estimated number of factors, and θ is the population number of factors.  455	

The PC criterion has boundaries of 0 and 1, with 0 indicating a total lack of accuracy and 1 456	

reflecting perfect accuracy. In contrast, a 0 on the MBE criterion shows a complete lack of bias, 457	

with negative and positive values indicating underfactoring and overfactoring, respectively. It is 458	

important to note that MBE cannot be used alone as a measure of method precision, because 459	

errors of under- and overfactoring can compensate each other (something that cannot happen with 460	

the PC or MAE criterion), creating a false illusion of accuracy. In terms of the MAE criterion, 461	

higher values signal larger absolute deviations from the population number of factors, while a 462	

value of 0 indicates perfect accuracy.  463	

Results 464	

Convergence Rates 465	
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The convergence rates given in this section indicate the proportion of cases that produced 466	

fit statistics for the final model estimated in the sequential factor extraction process. That is, it 467	

indicates the proportion of cases where the criterion cutoff value(s) was satisfied. Non-468	

convergence was coded, on the other hand, when the iterative estimation process failed to 469	

converge (using the Mplus default values) before the criterion cutoff value(s) had been satisfied, 470	

or when there were zero or negative degrees of freedom for a factor model that was to be tested.  471	

With conventional cutoff value criteria (CFI > .95; TLI > .95; RMSEA < .05; SRMR < 472	

.08), the convergence rates for CFI, TLI, RMSEA, and SRMR, were 94.9%, 92.9%, 96.5%, and 473	

92.6%, respectively. On the other hand, with the most stringent cutoff values evaluated for CFI 474	

(.99), TLI (.99), RMSEA (.01), and SRMR (.01), the convergence were 90.3%, 88.6%, 87.1%, 475	

and 15.4%, respectively. The substantial drop in the SRMR convergence rate suggests that it was 476	

very difficult to achieve a sample SRMR of .01 under the sample sizes that were considered 477	

(remember that the population SRMR was .00 for all structures). In contrast, the dimensionality 478	

estimates suggested by PA lead to an especially high convergence rate of 99.3%. It is important 479	

to note that of the non-converged models, .6% specified fewer factors than those in the 480	

population, 1.7% had the same number of factors, and 97.7% attempted to extract more factors. 481	

Thus, as in Barendse et al. (2015), overfactoring appears to have been the main reason for non-482	

convergence in this study.  483	

Agreement Between the Dimensionality Estimates 484	

Lin’s concordance correlation coefficient (Cc; Lin, 1989) was used to assess the level of 485	

agreement between the numbers of factors estimated by the retention methods. The Cc is a 486	

measure of absolute agreement for continuous variables that ranges from -1 to 1, with 1 487	

indicating perfect agreement, -1 perfect disagreement, and 0 no agreement. In the specific case 488	

where two variables have the same means and standard deviations, Cc will be equal to Pearson’s 489	
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correlation coefficient; in all other instances, Cc will be lower in absolute value. The values of Cc 490	

were interpreted as follows: Cc < .20 was considered as poor agreement; .20 ≤ Cc < .40 fair; .40 491	

≤ Cc < .60 moderate; .60 ≤ Cc < .80 good; and .80 ≤ Cc ≤ 1.00 very good.  492	

The levels of agreement for the categorical variables across cutoff values (cv) and methods 493	

are shown in Figure 1. In addition, Figure 1 includes the levels of agreement with the numbers of 494	

factors simulated at the population level. The commentary of these results will be organized in 495	

the following manner: first, the within agreement across cutoff values for each fit index; second, 496	

the between agreement across fit indices and cutoff values; and third, the agreement between the 497	

fit indices, parallel analysis, and the simulated/population factors.    498	

PLEASE INSERT FIGURE 1 ABOUT HERE 499	

According to the Cc heat maps shown in Figure 1, RMSEA only maintained a very good 500	

level of agreement across successive cutoff values, while SRMR achieved very good agreement 501	

across two cutoff values for the majority of the range that was evaluated. As far as CFI and TLI, 502	

although there was only good to poor agreement across successive cutoff values in the most 503	

liberal range (.05 to .25), there was very good agreement across two cutoff values for most of the 504	

range between the .30 and .99 cutoff values. In general, these results indicate that changes in 505	

cutoff value of more than .01 for RMSEA, more than .02 for SRMR, and more than .05 or .10 for 506	

CFI and TLI, produced notable changes in the number of factors that were estimated. 507	

In terms of the levels of agreement across fit indices, CFI and TLI showed a similar pattern 508	

of agreement between them as they did within. The pattern, however, was slightly shifted, 509	

meaning that there was more agreement for CFI that had equal or higher cutoff values than TLI, 510	

than in the reverse case. This result was expected, as TLI will always be lower than CFI in the 511	

normed range between 0 and 1 (see Equations 2 and 3). For example, for CFI always one cutoff 512	

value lower than TLI, the mean Cc was .61; for CFI and TLI with equal cutoff values, the mean 513	



FIT INDICES TO ESTIMATE THE NUMBER OF FACTORS 
 

	

25	

Cc was .71; and for CFI always one cutoff value above TLI the mean Cc was .81. Also, the 514	

agreement became stronger with more stringent cutoff values, to the point where the estimations 515	

between these two indices became practically redundant at the higher end of cutoff values (e.g., 516	

Cc = .96 for CFI and TLI with .90 cv; Cc = .97 for CFI with .95 cv and TLI with .90 cv). 517	

Regarding their level of agreement with RMSEA, both obtained very good agreement for a 518	

portion of the intersection between the .90 to .99 cv for CFI/TLI and .01 to .02 cv for RMSEA 519	

(Ccmax = .96 for CFI/TLI with .99 cv and RMSEA with .01 cv). As far as the agreement between 520	

CFI/TLI and SRMR, a maximum agreement of good was achieved, and it occurred for parts of 521	

the crossing between CFI/TLI with .80 to .99 cv and SRMR with .05 to .11 cv (Ccmax = .74 for 522	

CFI/TLI with .99 cv and SRMR with .07 cv). Similarly, RMSEA and SRMR had a maximum 523	

agreement of good, which occurred at parts of the intersection of .01 to .03 cv for RMSEA and 524	

.06 to .11 cv for SRMR (Ccmax = .72 for RMSEA with .01 cv and SRMR with .07 cv).  525	

Regarding the agreement of the fit indices with PA, both CFI (Ccmax = .72 for the .90 cv) 526	

and TLI (Ccmax = .72 for .90 cv) reached a maximum agreement of good with PA, while RMSEA 527	

and PA obtained a maximum agreement of moderate (Ccmax = .58 for the .02 cv), and SRMR and 528	

PA only achieved a level of fair agreement (Ccmax = .37 for the .08 and .09 cv). On the other 529	

hand, the method that had the highest agreement with the simulated factors was PA (Cc = .79), 530	

followed by CFI (Ccmax = .63 for .90 cv), TLI (Ccmax = .63 for .90 cv), RMSEA (Ccmax = .53 for 531	

.02 cv), and finally SRMR, which achieved an agreement of just fair (Ccmax = .34 for .08 and .09 532	

cv). These latter results are particularly relevant as they assess the level of agreement with the 533	

number of factors in the population, thus making it also a measure of estimation accuracy.  534	

Overall Accuracy Across Cutoff Values  535	

A look at the overall accuracy of the fit indices across the different cutoff values is 536	

presented in Figures 2, 3, and 4. These figures summarize the performance of the fit indices 537	
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according to each of the three dependent criterion variables, PC, MBE, and MAE. In order to 538	

make the results for the normal continuous variables (NCV) more directly comparable to those 539	

for the categorical variables, the latter were split into two groups: the unskewed (UOV) and the 540	

skewed (SOV) ordered-categorical variables. This way, the results for the NCV could be 541	

weighted against those obtained for the categorical variables with symmetric distributions. 542	

Furthermore, each graph includes a box plot for the parallel analysis method, so as to give proper 543	

context to the performance of the fit indices.   544	

The results shown in Figures 2, 3, and 4, reveal that the behavior of the fit indices with 545	

NCV and UOV was highly congruent. As can be seen in these figures, the shapes of the box plots 546	

across the range of cutoff values are analogous for these two types of variables. Also, with the 547	

exception of SRMR, the peak levels of overall accuracy (highest mean PC, lowest mean MAE) 548	

were roughly equivalent for the NCV and the UOV. These results indicate that there was not a 549	

relevant loss in accuracy in the estimation of the number of factors when the NCV were 550	

categorized with symmetrical thresholds and subsequently factor analyzed with categorical 551	

variable estimators. In terms of the results for the SOV, the performance of all the fit indices 552	

tended to be less accurate (lower PC, higher MAE), and more variable at the ranges of peak 553	

accuracy (larger box plots, more extreme values), than for the UOV, signaling greater error in the 554	

estimation of the number of factors with skewed categorical variables. In this line, Figure 3 555	

reveals that the MBE was higher for SOV than for UOV, with the former producing greater 556	

levels of overfactoring at the more stringent cutoff values (cv).  557	

PLEASE INSERT FIGURE 2 ABOUT HERE 558	

PLEASE INSERT FIGURE 3 ABOUT HERE 559	

PLEASE INSERT FIGURE 4 ABOUT HERE 560	
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A comparison across fit indices and cutoff values in Figures 2 to 4 reveals that the three χ! 561	

based fit indices performed very similarly across the range of cutoff values that were evaluated, 562	

with RMSEA producing moderately larger variability across conditions and poorer mean 563	

accuracy levels (PC, MBE, MAE) than CFI/TLI. The SRMR index, on the other hand, showed a 564	

notably worse performance, with extreme levels of overfactoring across the most stringent cutoff 565	

values (see Figure 3). Parallel analysis, on the other hand, was the most accurate out of all the 566	

methods, showing less variability across conditions, higher PCs, lower MAEs, and minimum 567	

levels bias for both continuous and categorical variables. 568	

As far as the actual mean levels of accuracy obtained by the fit indices across the 569	

categorical variable conditions, the maximum PC in the UOV conditions was the .80 achieved by 570	

CFI (.95 cv), followed by .79 for TLI (.95 cv), .70 for RMSEA (.02 and .03 cv), and .57 for 571	

SRMR (.06 cv). Similarly, the lowest MAE for the fit indices in these conditions was the .28 572	

obtained by CFI (.95 cv), tailed by .32 for TLI (.95 cv), .43 for RMSEA (.02 cv), and .84 for 573	

SRMR (.08). In the case of the SOV conditions, the maximum PC was the .69 produced by CFI 574	

(.95 cv), which was closely followed by the .67 of TLI (.95 cv), and then by the .59 of RMSEA 575	

(.02 cv), and the .45 of SRMR (.07 and .08 cv). The MAE criterion produced a similar ordering 576	

of the fit indices, with the minimum MAE of .60 obtained by CFI (.90 cv), and values of .64, .80, 577	

and 1.21, for TLI (.90 cv), RMSEA (.02 and .03 cv), and SRMR (.11 cv), respectively. These 578	

levels of accuracy were all inferior to the ones achieved by parallel analysis, which obtained a PC 579	

of .86, a MAE of .21, and a MBE of -.05 for the UOV conditions, and a PC of .78, a MAE of .36, 580	

and a MBE of .00, for the SOV conditions.  581	

Accuracy Across Factor Levels and Cutoff Values  582	
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Due to the great similarity in the performance of the CFI and TLI indices, in particular for 583	

the most accurate ranges of cutoff values, only those results pertaining to CFI will be presented in 584	

this and the following sections. Also, and in order to limit the length of the manuscript, the MAE 585	

criterion will be the only one analyzed in an in-depth manner from this point forward. Although 586	

all three dependent variables considered in this study are highly informative and complement 587	

each other, the MAE statistic informs of the actual distance between the population and the 588	

estimated number of factors, which is especially relevant for applied research. The line plots 589	

corresponding to the MAE statistic across factor levels and cutoff values for the categorical 590	

variable conditions are presented in Figure 5.  591	

Overall, the behavior of CFI and RMSEA across the levels of the independent variables 592	

was remarkably similar, while SRMR exhibited a markedly different pattern of performance.  593	

The general performance of CFI and RMSEA consisted of a gradual reduction in MAE with 594	

more stringent cutoff values until the next-to-last or second-to-last cutoff value, at which juncture 595	

the MAE started to increase (due to overfactoring). The accuracy of CFI and RMSEA, however, 596	

differed considerably across factor loadings and factor correlations. In the case of the factor 597	

loadings, while for CFI the MAEs were fairly similar across cutoff values for the different factor 598	

loadings, for RMSEA the MAEs varied considerably across a large portion of the range of cutoff 599	

values examined (≈ from .10 cv to .03 cv). In this regard, RMSEA needed increasingly more 600	

stringent cutoff values for a reduction in MAE as the factor loadings became weaker. Regarding 601	

the factor correlation variable, the aforementioned pattern was exactly reversed. Whereas 602	

RMSEA displayed similar MAEs across cutoff values for the different factor correlations, CFI 603	

needed increasingly more stringent cutoff values for a reduction in MAE as the factor 604	

correlations became stronger. In all, CFI produced accuracy levels that were slightly/moderately 605	

higher than those of RMSEA. 606	
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PLEASE INSERT FIGURE 5 ABOUT HERE 607	

The most notable differences in the performance of SRMR were the extremely high MAEs 608	

that it produced at the most stringent cutoff values (cv ≤ .05), which reached magnitudes far 609	

greater than the ones obtained by the other fit indices. These results imply that much larger 610	

samples than those considered here are required for SRMR to approximate its population value 611	

(which was .00 for all the simulated structures). Another noteworthy result for SRMR was that 612	

for several variables a cutoff value that produced one of the lowest MAE for one level also 613	

produced one of the largest MAE for another level of the same variable. For example, with 1,000 614	

cases SRMR achieved its lowest MAE of .37 with a cutoff value of .05, which, conversely, also 615	

produced an especially large MAE of 3.96 with 100 cases. Overall, SRMR produced the highest 616	

MAEs of all the fit indices at each factor level that was evaluated.  617	

Regarding how the accuracy of the fit indices fared in comparison to PA, the latter 618	

produced the lowest MAE for 21 of the 22 factor levels that were evaluated. The one exception 619	

came with 4 variables per factor, where CFI obtained a MAE of .37 that was slightly lower than 620	

the .41 of PA. On the other hand, PA outperformed the fit indices by the greatest margin with 12 621	

variables per factor (MAE[PA] = .24 < MAEmin[CFI] = .60), with 4 factors (MAE[PA] = .50 < 622	

MAEmin[CFI] = .83), and with skewness of ±2 (MAE[PA] = .47 < MAEmin[CFI] = .79).  623	

Higher-Order Factor Interactions 624	

The final series of analyses aimed to uncover potential patterns of performance that differed 625	

from the general ones presented in Figure 5. In order to carry out this goal, mixed Analyses of 626	

Variance (ANOVAs) were performed for each fit index, with cutoff value as the repeated 627	

measures within-subjects independent variable, the structure and sample factors as the between-628	

subjects independent variables, and MAE as the dependent variable. Due to the especially poor 629	

performance of SRMR already evidenced in Figures 1 to 5, and in order to limit the length of the 630	
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manuscript, no higher-order interactions affecting this index will be represented visually or 631	

commented on in this section. Similarly, only those higher-order interactions with large or near-632	

large effect sizes will be presented. According to Cohen (1988), partial eta squared (ηp
2
) effect 633	

sizes of .14 or greater can be considered as large effects. Because the repeated measures variable 634	

(CV) contained 20 levels, contrasts from order 1 up to order 19 could be tested. However, the 635	

results revealed that the highest effect sizes were consistently found for contrasts of order 1 636	

“linear contrasts”, of order 2 “quadratic contrasts”, and of order 3 “cubic contrasts", so those will 637	

be the only ones presented here. It should be noted that the 1-factor condition was excluded from 638	

the ANOVAs because it did not cross with the factor correlation variable. The mixed ANOVA 639	

effect sizes for the CFI, RMSEA, and SRMR indices are shown next in Table 1.  640	

PLEASE INSERT TABLE 1 ABOUT HERE 641	

There were 3 three-way interactions that reached a large effect size for the CFI index: CV x 642	

VARFAC x N, CV x N x SKEW, and CV x FAC x FCORR. In addition, the four-way CV x 643	

VARFAC x N x SKEW interaction obtained a near-large effect size (ηp
2
[linear] = .13). Similar to 644	

the CFI index, RMSEA also produced 3 three-way interactions that reached a large effect size, 645	

CV x VARFAC x N, CV x N x SKEW, and CV x FLOAD x FAC, which was the most salient 646	

(ηp
2
[linear] = .31; ηp

2
[cubic] = .24). Also, the same four-way CV x VARFAC x N x SKEW 647	

interaction obtained a notable effect size for RMSEA as well (ηp
2
[linear] = .10). This four-way 648	

interaction, which contains 2 of the 3 salient three-way interactions, and the remaining three-way 649	

interactions (CV x FAC x FCORR for CFI and CV x FLOAD x FAC for RMSEA), are shown in 650	

Figure 6. Because the four-way interactions for CFI and RMSEA were nearly identical, only the 651	

one for CFI is represented in the Figure. 652	

PLEASE INSERT FIGURE 6 ABOUT HERE 653	
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The three-way CV x FAC x FCORR interaction for CFI consists of the following patterns: 654	

(1) for each level of factor correlation the MAEs for 2 and 4 factors were separated by the largest 655	

magnitude with very liberal cutoff values (due to maximum underfactoring), but as the cutoff 656	

values become more stringent, the MAEs became gradually closer (due to a convergence towards 657	

the correct solution); and (2) with stronger factor correlations, more stringent cutoff values were 658	

needed for the MAEs to show a reduction and ultimately reach its minimum values, leading to a 659	

notable difference in the optimal cutoff values for the different levels of factor correlation. For 660	

example, with 2 factors the optimal cutoff values were .80, .85, and .95, for factor correlations of 661	

.00, .30, and .50, respectively. Similarly, with 4 factors the optimal cutoff values were .85, .95, 662	

and .95, for these same corresponding factor correlations.  663	

In terms of the three-way CV x FLOAD x FAC interaction for RMSEA, the pattern was as 664	

follows: (1) for each level of factor loading the MAEs for 2 and 4 factors were separated by the 665	

largest magnitude with very liberal cutoff values, but as the cutoff values become more stringent, 666	

the MAEs became gradually closer; and (2) with weaker factor loadings, more stringent cutoff 667	

values were needed for the MAEs to show a reduction and ultimately reach its minimum values, 668	

leading (similarly to CFI) to a notable difference in the optimal cutoff values for the different 669	

levels of factor loading. In this regard, with 2 factors the optimal cutoff values were .03, .05, and 670	

.07, for factor loadings of .40, .55, and .70, respectively, whereas with 4 factors the optimal 671	

cutoff values were .01, .02, and .03, for these respective factor loadings.  672	

The four-way CV x VARFAC x N x SKEW interaction for CFI is also shown in Figure 6. 673	

Because the factor structures that were simulated had no population error, the normal pattern for 674	

the MAEs with a “large-enough” sample would be to gradually decrease across the range of 675	

cutoff values. This pattern of results can generally be seen, for example, in the conditions with 676	

the largest sample size (1,000) or with the smallest number of variables per factor (4). However, 677	
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when the ratio of sample size to variables became smaller, a notable increase in MAE was 678	

produced across the most stringent cutoff values (e.g., with N = 100 and VARFAC ≥ 8; with N = 679	

300 and VARFAC = 12). In addition, this increase in MAE was greater with larger absolute 680	

skewness and also with smaller samples, which is the reason why the four-way interaction arose. 681	

These results are especially relevant because earlier it was seen that the most stringent cutoff 682	

values generally produced the lowest MAEs, but as can be seen in Figure 6, this finding does not 683	

apply to certain data conditions. Further, the distance in optimal cutoff values was sometimes 684	

quite large depending on the combination of the factor levels of these variables. For example, 685	

with 12 variables per factor and skewness of ±2, the optimal cutoff values for CFI were .65, .90, 686	

and .95, for samples of 100, 300, and 1,000 observations, respectively.  687	

In terms of the comparison with PA, both CFI and RMSEA generally produced minimum 688	

MAEs with 2 factors that were approximately equal to the MAEs of PA (albeit for varying cutoff 689	

values across some factor levels), but PA was moderately more accurate with structures of 4 690	

factors. Also, when the ratio of sample size to variables was larger, CFI/RMSEA obtained 691	

minimum MAEs that were generally similar to those of PA. However, when the ratio became 692	

smaller (and in particular with skewness of ±2), PA outperformed these fit indices by a 693	

considerable margin.  694	

Discussion 695	

Researchers in the social and behavioral sciences have been using fit indices to estimate the 696	

number of factors underlying sets of observed variables as part of a coherent validation strategy 697	

in which the fit assessment of the measurement model is not divorced from the dimensionality 698	

decision (e.g., Campbell-Sills et al., 2004; Tepper & Hoyle, 1996). This synergy between 699	

dimensionality and model fit assessment has been further propelled by the advent of exploratory 700	

structural equation modeling (ESEM; Asparouhov & Muthén, 2009). Within the ESEM 701	
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framework, researchers can explore unrestricted factor structures with all the measures of fit and 702	

model diagnostics that were available decades earlier for confirmatory factor analysis (CFA) and 703	

structural equation modeling (SEM). However, despite this increased use of fit indices to 704	

estimate data dimensionality, the systematic evaluation of their accuracy in this area has so far 705	

been scarce (Frazier & Youngstrom, 2007), with only a few recent studies attempting to address 706	

this issue (e.g., Barendse et al., 2015; Preacher et al., 2013; Yang and Xia, 2014). The current 707	

study, subsequently, sought to further reduce this gap in the literature by examining the accuracy 708	

of four commonly used fit indices –CFI, TLI, RMSEA, and SRMR– in the estimation of the 709	

number of factors with categorical variables, which are typically encountered in the human 710	

sciences (Flora & Curran, 2004).  711	

A unique feature of this study was the examination of the fit indices across wide ranges of 712	

cutoff values which allowed to capture the majority of their practical range, going from 713	

maximum underfactoring to maximum overfactoring, and including their maximum estimation 714	

accuracy somewhere in between. This approach, in combination with the manipulation of a large 715	

number of independent variables and factor levels, as well as the evaluation of estimation 716	

accuracy from the perspective of different complementary criteria, enabled a broader look into 717	

the performance of fit indices as dimensionality assessment methods.  718	

Main Findings 719	

An initial set of analyses intended to compare the accuracy of fit indices with continuous 720	

versus categorical variables. Because much less is known about the performance of fit indices 721	

with categorical variables and estimators, it was important to establish whether the results 722	

obtained in this study were particular to the methods related to this level of measurement or if 723	

they could be generalizable across types of variables and estimators. In this regard, the chi-square 724	

based fit indices –CFI, TLI, and RMSEA– produced remarkably similar levels of accuracy for 725	
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unskewed categorical variables (WLSMV estimator) and the “pre-categorization” normal 726	

continuous variables (ML estimator). These findings extend previous CFA/SEM research, which 727	

have shown the robust categorical variable estimators perform well across a variety of sample 728	

sizes and data characteristics (e.g., Flora & Curran, 2004; Forero et al., 2009; Lei, 2009; Nestler, 729	

2013; Yang-Walentin et al., 2010). In contrast, the accuracy of SRMR was notably lower for 730	

categorical variables, in particular across the most stringent cutoff values, where it tended to 731	

overfactor at much larger rates than with continuous variables. On the other hand, all the fit 732	

indices produced substantially poorer dimensionality estimates for skewed categorical variables, 733	

with a notable bias toward overfactoring across the cutoff values that produced the best estimates 734	

for the unskewed conditions. These are not unexpected findings, as the categorical estimators 735	

tend to produce inflated model fit statistics with skewed variables, and the polychoric correlations 736	

have larger sampling errors when the indicators differ in skew (Forero et al., 2009; Timmerman 737	

& Lorenzo-Seva, 2011; Savalei & Rhemtulla, 2013). 738	

In terms of the differential accuracy of the fit indices in the estimation of the number of 739	

factors with categorical variables, CFI and TLI produced the highest levels of accuracy, followed 740	

at a step below by RMSEA, and then by SRMR, which provided notably poor dimensionality 741	

estimates. These results are in line with Mahler (2011), who found CFI/TLI to be superior to 742	

RMSEA and SRMR in the detection of latent misspecification for CFA population models. Also, 743	

and in line with Yu (2002), the decisions based on these two indices were extremely similar, 744	

making them redundant for practical purposes. It should be noted that, as derived from their 745	

formulas, TLI always produces lower values than CFI, leading to slightly higher number of factor 746	

estimates for the same cutoff values. In general, changes in cutoff value greater than .05 or .10 for 747	

CFI/TLI, .01 for RMSEA, and .01 or .02 for SRMR, resulted in meaningfully different 748	

dimensionality estimates.  749	
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A controversial issue regarding the usefulness of fit indices for the evaluation of latent 750	

variable models is the appropriateness of applying fixed cutoff values (Chen et al., 2008; Heene et 751	

al., 2011; Marsh et al., 2004; Saris, Satorra, & van der Veld, 2009). Unfortunately, the findings 752	

from this study appear to further fuel these concerns by evidencing substantial problems in the 753	

performance of cutoff values across factor models and measurement conditions. In this respect, 754	

all the fit indices showed notable interactions between their estimation accuracy across cutoff 755	

values and the population and sample properties of the data. For all four fit indices examined, 756	

although more markedly for SRMR, the pattern of performance across cutoff values interacted 757	

strongly with the number of variables per factor, the sample size, and the skewness of the 758	

categorical variables. That is, the same cutoff values yielded more factors –for the same number 759	

of factors in the population– when small samples were combined with many variables per factor 760	

and high levels of skewness. This led to important fluctuations in the optimal cutoff values for 761	

the fit indices across conditions, in particular for SRMR. These findings are consistent with the 762	

CFA/SEM literature, which has shown that under these data conditions the chi-square statistic of 763	

the WLSMV estimator tends to be upwardly biased, over-rejecting correctly specified models 764	

(Forero et al., 2009; Savalei & Rhemtulla, 2013). In the case of SRMR, it is important to consider 765	

that it is an index that evaluates raw sample misfit and does not take into account the sample 766	

variability of the residuals, a characteristic that may make it more susceptible to the large 767	

sampling errors of the polychoric correlations (see also Yu, 2002). 768	

In addition to the aforementioned results, CFI and TLI also displayed strong interactions 769	

between their accuracy across cutoff values and the magnitude of the factor correlations (the 770	

same cutoff values tended to estimate fewer factors –for the same number of factors in the 771	

population– with stronger factor correlations), while for RMSEA the performance across cutoff 772	

values interacted with the factor loadings (the same cutoff values tended to estimate fewer factors 773	
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–for the same number of factors in the population– with weaker factor loadings). Further, these 774	

patterns became more pronounced with structures that had higher population dimensionalities. 775	

This latter finding further extends previous CFA/SEM research where RMSEA has displayed a 776	

tendency to accept highly misspecified models when the observed variables have large unique 777	

variances (Heene et al., 2011; Mahler, 2011; Savalei, 2012). A theoretical explanation for this 778	

behavior of RMSEA has been given in Heene et al. (2011), who showed that increasing 779	

uniquenesses leads to a considerable loss of statistical power of the chi-square test and sensitivity 780	

of the chi-square based fit indices, which subsequently fail to reject models with even strong 781	

model misspecification. Although this characteristic should apply to all chi-square based fit 782	

indices, it is not observed for the incremental fit indices because the improvement of a given 783	

model over the null model becomes smaller with weaker factor loadings, thus flagging 784	

misspecified models as increasingly misfitting (Heene et al., 2011). 785	

The current study also evaluated the usefulness of the fit indices by comparing them to 786	

what is arguably the most accurate factor retention method available at the moment, Horn’s 787	

parallel analysis. In this regard, the findings were generally consistent: parallel analysis was 788	

more accurate than the fit indices across the different factor models and criterion variables that 789	

were considered, showing higher mean accuracy levels and less variability across conditions. 790	

This superiority of parallel analysis was especially evident in conditions where the ratio of 791	

variables to sample size was small and the variables were skewed. It thus appears that larger 792	

samples are needed for the fit indices to provide useful information about the fit of a given model 793	

than what is needed to assess the dimensionality of set of categorical variables with parallel 794	

analysis.  795	

Limitations 796	
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The current study has some limitations that need to be considered. As noted in the Method 797	

section, all of the structures that were simulated had a simple structure design at the population 798	

level, with homogeneous indicator and factor properties and without minor factors. Although this 799	

strategy has some important benefits, such as the generation of structures with unambiguous 800	

dimensionalities, it limits the generalizability of the findings. For example, it is likely that more 801	

liberal cutoff values than those found here would be needed with empirical data, where the factor 802	

structures generally contain non-negligible levels of population error. In addition, future studies 803	

are required to determine the impact of including minor factors and heterogeneous data properties 804	

in the relative or comparative accuracy of the fit indices and parallel analysis.  805	

Another limitation of this study, despite its large number of simulated conditions and in-806	

depth evaluation of several commonly used fit indices, is that it only included one categorical 807	

variable estimator and may have excluded other relevant fit indices. In this line, future studies 808	

could examine estimators such as robust ULS or the polychoric instrumental variable estimator 809	

(PIV), which have been shown to work well in the estimation of factor models with categorical 810	

variables (Nestler, 2013). Furthermore, the accuracy of some fit indices might be enhanced by 811	

using complementary information, such as the confidence intervals associated with RMSEA 812	

(Preacher et al., 2013), or by applying the Hull method, which examines the plots of the fit 813	

indices’ values against the degrees of freedom corresponding to the series of factor solutions 814	

(Lorenzo-Seva, Timmerman, & Kiers, 2011).  815	

Practical Implications 816	

The title of this manuscript posited the question: are fit indices really fit to estimate the 817	

number of factors with categorical variables? Given the findings from this study, as well as the 818	

current factor-analytic literature, the answer would have to be a less than favorable one. On one 819	

hand, the estimations by the fit indices display substantial interactions between the cutoff values 820	
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chosen and the population and sample the properties of the data. This is particularly detrimental 821	

in terms of their applied usefulness, as researchers generally do not know the population 822	

properties of the data their analyzing and will have a hard time determining the optimal cutoff 823	

values for their particular datasets. On the other hand, even if the optimal cutoff values were 824	

somehow known in advance, the findings from this study indicate that parallel analysis would 825	

still be a better dimensionality estimator for the overwhelming majority of factor models. 826	

Consequently, we have to recommend that for the moment applied researchers lean primarily on 827	

the dimensionality estimates provided by parallel analysis. In the scenario that fit indices were 828	

used, CFI/TLI and RMSEA are clearly better choices than SRMR, which we believe should not 829	

be interpreted with categorical variables (see also Yu, 2002). In either case, we encourage 830	

researchers to perform Monte Carlo simulation studies in order to estimate the sample size 831	

required to produce “good-enough” dimensionality estimates for the type of models and retention 832	

methods they wish to evaluate and employ (see Muthén & Muthén, 2002, for more information).  833	

It is important to emphasize that whatever factor retention methods or cutoff values 834	

researchers may wish to use, they should not be treated as inviolable or infallible rules that trump 835	

all other considerations. In this line, we strongly echo the message of other researchers (e.g., 836	

Chen et al., 2008; Marsh et al., 2004) that the appropriateness of factor models should not be 837	

based solely on statistical information, but also on substantive and theoretical considerations that 838	

require human judgment. Thus, all statistical methods ought to be employed as aids and not rules 839	

in the determination of the number of factors to retain.  840	

 841	

 842	

 843	

 844	
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Appendix 1033	

The thresholds (τ) for the symmetric conditions were: for 2 categories, τ1 = 0.00; for 3 1034	

categories, τ1 = -1.00, τ2 = 1.00; for 4 categories, τ1 = -1.50, τ2 = 0.00, τ3 = 1.50; for 5 categories, 1035	

τ1 = -1.80, τ2 = -0.60, τ3 = 0.60, τ4 = 1.80. Thresholds for the asymmetric conditions with 1036	

skewness level of +1 were: for 2 categories, τ1 = 0.59; for 3 categories, τ1 = 0.32, τ2 = 0.99; for 4 1037	

categories, τ1 = 0.17, τ2 = 0.69, τ3 = 1.25; for 5 categories, τ1 = 0.05, τ2 = 0.51, τ3 = 0.94, τ4 = 1038	

1.45. Thresholds for the asymmetric conditions with skewness level of +2 were: for 2 categories, 1039	

τ1 = 1.05; for 3 categories, τ1 = 0.85, τ2 = 1.38; for 4 categories, τ1 = 0.75, τ2 = 1.13, τ3 = 1.60; for 1040	

5 categories, τ1 = 0.68, τ2 = 1.00, τ3 = 1.34, τ4 = 1.77. The thresholds for the negative skewness 1041	

levels were obtained by changing the signs of the thresholds used to generate positively skewed 1042	

categorical variables. 1043	
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Table 1 1057	

Mixed Analysis of Variance Effect Sizes for the Fit Indices 1058	

Effect Type    CFI   RMSEA   SRMR 

Variables   Lc Qc CUc   Lc Qc CUc   Lc Qc CUc 

Main Effects 

 

           

CV (Cutoff Value) .88 .22 .20 

 

.84 .32 .10 

 

.73 .85 .75 

Two-Way Interactions 

           CV * FLOAD (Factor Loading) .16 .07 .01 

 

.38 .24 .37 

 

.06 .02 .03 

CV * VARFAC (Variables per Factor) .06 .14 .12 

 

.09 .01 .02 

 

.75 .66 .30 

CV * FAC (Number of Factors) .61 .12 .01 

 

.62 .47 .06 

 

.13 .41 .38 

CV * FCORR (Factor Correlation) .27 .45 .42 

 

.05 .06 .07 

 

.01 .03 .00 

CV * N (Sample Size) .33 .30 .23 

 

.36 .27 .18 

 

.55 .14 .49 

CV * RESCAT (Response Categories) .01 .03 .03 

 

.01 .06 .05 

 

.14 .01 .12 

CV * SKEW (Skewness) .18 .12 .04 

 

.23 .04 .01 

 

.08 .12 .37 

Three-Way Interactions 

           CV * FLOAD * FAC .03 .01 .00 

 

.31 .05 .24 

 

.05 .00 .01 

CV * VARFAC * FAC .01 .03 .02 

 

.04 .00 .01 

 

.29 .27 .12 

CV * VARFAC * N .17 .18 .11 

 

.14 .13 .10 

 

.31 .03 .24 

CV * VARFAC * SKEW .08 .07 .02 

 

.09 .08 .02 

 

.01 .13 .18 

CV * FAC * FCORR .08 .14 .07 

 

.06 .00 .04 

 

.00 .01 .00 

CV * FAC * N .06 .07 .07 

 

.02 .02 .06 

 

.14 .09 .05 

CV * N * SKEW .11 .18 .07 

 

.10 .15 .07 

 

.02 .37 .29 

Four-Way Interactions 

           CV * VARFAC * N * SKEW .13 .10 .02 

 

.10 .07 .03 

 

.04 .21 .07 

CV * N * RESCAT * SKEW .08 .07 .02   .08 .07 .02   .02 .04 .15 

Note. Tabled values are partial eta squared (ηp
2
) estimates of variance explained by each of the effects shown. 

The dependent variable was the mean absolute error in the estimation of the number of factors. Large effect sizes 

(ηp
2
 ≥ .14) are bolded and underlined. CFI = Comparative Fit Index; RMSEA = Root Mean Square Error of 

Approximation; SRMR = Standardized Root Mean Square Residual; Lc = Linear Contrast; Qc = Quadratic  

Contrast; CUc = Cubic Contrast. p < .01 for all the effects shown in the table. 

 1059	

 1060	

 1061	

 1062	

 1063	

 1064	

 1065	

 1066	



FIT INDICES TO ESTIMATE THE NUMBER OF FACTORS 
 

	

49	

 1067	

Note. SF = Simulated Factors (factors present in the population); PA = Parallel Analysis; CFI = Comparative Fit 1068	

Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Square Error of Approximation; SRMR = Standardized 1069	

Root Mean Square Residual; Cc = Lin’s Concordance Correlation Coefficient. The square highlighted in the figure 1070	

shows the agreement between SRMR with a .18 cutoff value and RMSEA with a .05 cutoff value.  1071	

Figure 1: Retention Method Agreement in the Estimation of the Number of Factors 1072	
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 1074	

Note. NCV = normal continuous variables; UOV = unskewed ordered-categorical variables; SOV = skewed ordered-1075	

categorical variables; CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Square Error 1076	

of Approximation; SRMR = Standardized Root Mean Square Residual. The thick horizontal lines represent the mean 1077	

proportion of correct estimates for each cutoff value, while the thin horizontal lines represent the median values. The 1078	

top and bottom black circles indicate the 95
th

 and 5
th

 percentiles, respectively. The input values for the box plots are 1079	

the mean proportion of correct estimates across 100 replications for each simulated condition. The rightmost box in 1080	

each plot corresponds to the Parallel Analysis method. The last cutoff value plotted for the CFI and TLI indices is .99 1081	

(as opposed to 1.00).  1082	

Figure 2: Box Plots for the Proportion of Correct Estimates Across Successive Cutoff Values 1083	
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 1085	

Note. NCV = normal continuous variables; UOV = unskewed ordered-categorical variables; SOV = skewed ordered-1086	

categorical variables; CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Square Error 1087	

of Approximation; SRMR = Standardized Root Mean Square Residual. The thick horizontal lines represent the mean 1088	

bias error of estimations for each cutoff value, while the thin horizontal lines represent the median values. The top 1089	

and bottom black circles indicate the 95
th

 and 5
th

 percentiles, respectively. The input values for the box plots are the 1090	

mean bias error of estimation across 100 replications for each simulated condition. The rightmost box in each plot 1091	

corresponds to the Parallel Analysis method. The last cutoff value plotted for the CFI and TLI indices is .99 (as 1092	

opposed to 1.00). In order to facilitate the visual comparison of the methods, the range of the mean bias error was 1093	

restricted between -4 and 6; this resulted in some truncated boxes for SRMR.  1094	

Figure 3: Box Plots for the Mean Bias Error of Estimation Across Successive Cutoff Values 1095	

 1096	

	

NCV

0.00 0.25 0.50 0.75 1.00

-4

-2

0

2

4

6 UOV

0.00 0.25 0.50 0.75 1.00

SOV

0.00 0.25 0.50 0.75 1.00

-4

-2

0

2

4

6

NCV

0.000.050.100.150.20

-4

-2

0

2

4

6 UOV

0.000.050.100.150.20

SOV

0.000.050.100.150.20

-4

-2

0

2

4

6

NCV

-4

-2

0

2

4

6 UOV SOV

-4

-2

0

2

4

6

NCV

M
e
a
n
 B

ia
s
 E

rr
o
r

-4

-2

0

2

4

6 UOV SOV

-4

-2

0

2

4

6

CFI & TLI Cutoff Values

CFI

TLI

RMSEA

SRMR

RMSEA & SRMR Cutoff Values



FIT INDICES TO ESTIMATE THE NUMBER OF FACTORS 
 

	

52	

 1097	

Note. NCV = normal continuous variables; UOV = unskewed ordered-categorical variables; SOV = skewed ordered-1098	

categorical variables; CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Square Error 1099	

of Approximation; SRMR = Standardized Root Mean Square Residual. The thick horizontal lines represent the mean 1100	

absolute error of estimations for each cutoff value, while the thin horizontal lines represent the median values. The 1101	

top and bottom black circles indicate the 95
th

 and 5
th

 percentiles, respectively. The input values for the box plots are 1102	

the mean bias error of estimation across 100 replications for each simulated condition. The rightmost box in each 1103	

plot corresponds to the Parallel Analysis method. The last cutoff value plotted for the CFI and TLI indices is .99 (as 1104	

opposed to 1.00). In order to facilitate the visual comparison of the methods, the range of the mean absolute error 1105	

was restricted between 0 and 6; this resulted in some truncated boxes for SRMR.  1106	

Figure 4: Box Plots for the Mean Absolute Error of Estimation Across Successive Cutoff Values 1107	
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 1109	

Note. FLOAD = Factor Loading; VARFAC = Variables per Factor; FAC = Number of Factors; FCORR = Factor 1110	

Correlation; N = Sample Size; RESCAT = Response Categories; SKEW = Skewness. The 1-factor condition was not 1111	

averaged across the levels of factor correlations. The rightmost circles in each plot correspond to the Parallel 1112	

Analysis method. The last cutoff value plotted for the CFI index is .99 (as opposed to 1.00). The horizontal gray lines 1113	

denote perfect accuracy. Some SRMR plots had to be truncated to facilitate the visual comparisons of the methods.  1114	

Figure 5: Mean Absolute Error of Estimation Across the Levels of the Independent Variables 1115	
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 1116	

Note. FLOAD = Factor Loading; VARFAC = Variables per Factor; FAC = Number of Factors; FCORR = Factor 1117	

Correlation; N = Sample Size; SKEW = Skewness. The dependent variable was the mean absolute error of 1118	

estimation. The 1-factor condition was not included in the ANOVAs. The rightmost circles in each plot correspond 1119	

to the Parallel Analysis method. The last cutoff value plotted for the CFI index is .99 (as opposed to 1.00). The 1120	

horizontal gray lines denote perfect accuracy.  1121	

Figure 6: Mixed ANOVA Salient Higher-Order Interactions for the CFI and RMSEA Indices 1122	
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