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Abstract

Recent studies projecting future climate change impacts on forests mainly consider either the
effects of climate change on productivity or on disturbances. However, productivity and
disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g.
via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance
susceptibility is often coupled to a certain development phase of the forest with productivity
determining the time a forest is in this specific phase of susceptibility. The objective of this paper
is to provide an overview of forest productivity changes in different forest regions in Europe
under climate change, and partition these changes into effects induced by climate change alone
and by climate change and disturbances. We present projections of climate change impacts on
forest productivity from state-of-the-art forest models that dynamically simulate forest
productivity and the effects of the main European disturbance agents (fire, storm, insects), driven
by the same climate scenario in seven forest case studies along a large climatic gradient
throughout Europe. Our study shows that, in most cases, including disturbances in the
simulations exaggerate ongoing productivity declines or cancel out productivity gains in response
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to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change
induced productivity losses, e.g. because low severity fires can alleviate resource competition and
increase fertilization. Even though our results cannot simply be extrapolated to other types of
forests and disturbances, we argue that it is necessary to interpret climate change-induced
productivity and disturbance changes jointly to capture the full range of climate change impacts
on forests and to plan adaptation measures.

1. Introduction

In the 20th century, forest productivity in Europe has
increased (Spiecker et al 1996, Boisvenue and Running
2006). Simultaneously, damage from disturbances, i.e.
discrete events destroying forest biomass, has increased
as well (Schelhaas et al 2003, Seidl et al 2014). Both
trends are partly associated with a changing climate
(Boisvenue and Running 2006, Seidl et al 2011), and
future projectionsmostly agree on continued changes in
forest productivity (Wamelink et al 2009, Reyer et al
2014) and disturbances (e.g. Lindner et al 2010, Seidl
et al 2014) due to ongoing climate change.

However, with a few, recent exceptions (e.g.
Zubizareta Gerendiain et al 2017) most studies
projecting future climate change impacts on forests
usually only consider either the effects of climate
change on productivity (e.g. Kellomäki et al 2008,
Wamelink et al 2009, Reyer et al 2014, Reyer 2015) or
on disturbances (e.g. Jönsson et al 2009, Bentz et al

2010, Westerling et al 2011, Subramanian et al 2015).
However, both forest productivity and susceptibility to
disturbances change dynamically over forest develop-
ment as affected by environmental (climate, site)
conditions (Urban et al 1987, Gower et al 1996, Ryan
et al 1997, Netherer and Nopp-Mayr 2005, Peltola et al
2010, Thom et al 2013, Hart et al 2015).

Furthermore, productivity and disturbance are
intrinsically linked: 1) disturbances directly affect
forest productivity, e.g. through a reduced ability of
the ecosystem to capture resources (e.g. lowered leaf
area) or a decreased ability to utilize them (Peters et al
2013), and 2) disturbance susceptibility is often
coupled to a specific development phase of the forest
(Dale et al 2000, White and Jentsch 2001), and
productivity determines the time a forest remains in
this specific phase of susceptibility. For example, the
probability of wind damage is strongly associated with
tree height and species (Peltola et al 1999, Cucchi et al
2005, Gardiner et al 2010, Albrecht et al 2012,
Zubizareta Gerendiain et al 2017), and forests that are
more productive may reach critical heights earlier,
increasing their susceptibility to wind damage
(Blennow et al 2010a, 2010b). In the case of forest
fires, it is widely accepted that an increase of
productivity implies a higher rate of fuel build-up
and subsequently higher fire hazard. However, in
managed, even-aged forests, younger, denser forest
stands are more susceptible to forest fires (González
et al 2007, Botequim et al 2013, Marques et al 2012)

and higher productivity may enable them to grow out
of this susceptible state faster (Schwilk and Ackerly
2001, Fonda 2001, Keeley et al 2011).

Here we compare the ‘climate-related productivity

change’ (CPC), i.e. the change in forest productivity
induced solely by climate change over a specific time
period relative to a baseline period, to the ‘climate- and

disturbance-related productivity change’ (CDPC), i.e.
the change in forest productivity resulting from the joint
effects of climate change anddisturbances over the same
time period relative to a baseline period including
disturbances. The objective of this paper is to provide
an overview of forest productivity changes in different
forests in Europe under climate change, and partition
these changes into effects induced by climate change
alone and by climate change and disturbances.

We present projections of CPC and CDPC from
state-of-the-art forest models (table 1) that dynami-
cally simulate forest productivity and the main
European disturbance agents (fire, storm, insects),
driven by the same climate scenario in seven forest case
studies over a large climatic gradient throughout
Europe. We classify these models based on a
conceptual framework of different pathways of forest
productivity-disturbances-climate change interactions
(figure 1, table 2) and use them to test how climate
change-induced productivity changes are interacting
with simultaneously changing disturbances.

2. Conceptual framework of forest
productivity-disturbances-climate
change interactions

Conceptually, the interaction between climate change,
forest productivity and disturbances can take eight
pathways (P1–P8 in the following) which we
characterize as ‘direct’ if the interaction is established
through a clear cause-effect relationship while we use
‘indirect’ if the interaction is mediated through
changes in the forest state (figure 1). According to
this logic, the influence of climate change on
productivity and disturbances can take four pathways
(P1–P4) just like the interaction between forest
productivity and disturbances (P5–P8).

A changing climate directly influences key produc-
tivity processes such as photosynthesis or respiration
(Ryan 1991, Bonan 2008) (P1), but has also indirect

effects through changes in soil characteristics or changes
in species composition (Bolte et al 2010) (P2). In turn,
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Table 1. Key characteristics of the forest case studies. NTFP = Non-timber forest products.

Country Region Area Disturbance Main ecosystem services Tree species Productivity Variable Models References introducing the forest

region

Finland North Karelia 950 ha Wind Timber, Bioenergy, Recreation,

Biodiversity, NTFPs

Picea abies, Pinus sylvestris, Betula

pendula, Betula pubescens

Mean Annual Timber

Yield (m3 ha�1 yr�1)

Monsua Zubizarreta-Gerendiain et al

(2016, 2017)

UK North Wales 11500 ha Wind Timber, Recreation, Biodiversity Picea sitchensis, Picea abies, Pinus

sylvestris, Betula pubescens,

Pseudotsuga menziesii, Pinus

contorta, Larix kaempferi, Quercus

petraea

Biomass production

(t ha�1 yr�1)

MOTIVE8 simulation

using ESC,

ForestGALESb

Ray et al (2015)

Netherlands South-East

Veluwe

1 ha (typical

stand)

Wind Conservation of natural and

cultural history, Timber,

Recreation

Pseudotsuga menziesii Mean Annual Growth

(m3 ha�1 yr�1)

ForGEMc, mechanical

windthrow module

based on HWINDb

Hengeveld et al (2015), Kramer

et al (2006)

Germany Black Forest 1260 ha Bark Beetle Timber, Biodiversity, Recreation Picea abies, Fagus sylvatica, Abies

alba, Pseudotsuga menziesii, Quercus

petreae, 25 others.

Biomass production

(t�1 ha�1 yr�1)

LandClimd Temperli et al (2012, 2013)

Austria Montafon 215 ha Bark Beetle Timber, Protection Picea abies, Abies alba, Fagus

sylvatica, Acer pseudoplatanus,

Sorbus aucuparia, Alnus incana,

Alnus alnobetula

Net Primary Production

(kgC�1 ha�1 yr�1)

PICUS v1.5e Maroschek et al (2015)

Spain Prades 4 typical stands,

1 ha each

Fire Small-scale forestry, Recreation,

NTFPs

Pinus sylvestris Net Primary Production

(Mg�1 ha yr�1)

GOTILWAþf and

adjusted fire modelg
Sabaté et al (2002)

Portugal Chamusca 483 ha Fire Pulp and Paper Eucalyptus globulus Current Annual Growth

(m3 ha�1 yr�1)

Glob3PGh and

management optimizeri
Palma et al (2015)

a Pukkala (2004), Heinonen et al (2009), Zubizarreta-Gerendiain et al (2017).
b Peltola et al (1999), Gardiner et al (2000), Nicoll et al (2015).
c Schelhaas et al (2007).
d Schumacher et al (2004, 2006).
e Lexer and Hönninger (2001), Seidl et al (2005, 2007).
f Gracia et al (1999).
g González et al (2006, 2007).
h Tomé et al (2004).
i Garcia-Gonzalo et al (2014), Rammer et al (2014).
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disturbancesmay be directly affected by climate change,
e.g. through higher wind speeds and changing storm
tracks (Shaw et al 2016) or higher temperatures
increasing bark beetle reproduction rates (Wermelinger
andSeifert 1999,Mitton andFerrenberg 2012) (P3), but
could also experience indirect effects such as increasing
susceptibility to wind damage because of unfrozen soils
(Kellomäki et al 2010) (P4).

Likewise, disturbancesmay directly influence forest
productivity by killing trees (e.g. Michaletz and
Johnson 2007) or through more subtle effects of
disturbances on productivity (P5). For example, insect
defoliation may reduce the amount of absorbed
photosynthetic active radiation, the carbon uptake,
the stored carbohydrates and nitrogen remobilization,
thus reducing overall productivity (Pinkard et al 2011)
and stem growth (Jacquet et al 2012, 2013). Dis-
turbances may also indirectly influence forest produc-
tivity by changing forest structure and composition
(Bolte et al 2010, Perot et al 2013) (P6). For example, a
disturbance-induced increase in tree species diversity
can bolster forest productivity (Silva Pedro et al 2016).
Productivitymay also directly affect the susceptibility to
disturbances (P7). For example, more productive trees
may be more vital and hence better able to cope with
insect attacks due to an increased availability of
carbohydrates for defense (Wermelinger 2004, McDo-
well et al 2011). Changing productivity e.g. due to
changing atmospheric CO2 concentrations may also
influence leaf element stoichiometry and hence
influence the palpability and nutritional value of leaves
for herbivores (Ayres and Lombardero 2000, Netherer
and Schopf 2010). Finally, changing productivity
indirectly determines a forest’s susceptibility to
disturbances by altering key structural features of a

forest (P8). For example, simulation studies indicate
that increasing productivity under climate change in
Sweden leads to increasing height growth and tree
heights which in turn increases the probability of wind
damage (Blennow et al 2010a, 2010b).

3. Material and methods

The seven forest case studies studied here are located in
North Karelia (Finland), North Wales (United
Kingdom), the South-east Veluwe (The Netherlands),
Black Forest (Germany), Montafon (Austria), Prades
(Spain) and Chamusca (Portugal). They provide a wide
range of ecosystem services to society, are shaped by
different climatic, edaphic and socio-economic envi-
ronments and are characterized by varying disturbance
regimes (table 1, SOM1 (available at stacks.iop.org/
ERL/12/034027/mmedia) cf. Fitzgerald and Lindner
2013,Reyer etal2015). Ineachcase studya specific forest
model or differing chains of forest models were applied,
utilizing the best available models for each system, and
buildingona largebodyofworkon testingandevaluating
these models for the respective ecosystems. We chose to
use the best locally available models for each case study
rather than a one-size-fits-all model in order to best
capture the local ecosystem dynamics and disturbances,
management legacies, species choices and responses to
climate change. Consequently, the time periods analyzed
and output indicators are not fully homogenized to
account for constraints of respective models and local
data availability (table 1, see SOM2 for details).

For each forest, four model simulations were
carried out: one under baseline climate (B) and one
including the effects of climate change on forest

Forest Productivity

Forest Disturbances

Climate 

Change

P1 P2

P3 P4

P5P6

P7P8

Forest State

Figure 1. Conceptual framework of interactions between climate change, forest productivity and forest disturbances. Solid, black
arrows indicate direct effects; dashed arrows in gray indicate indirect effects mediated through effects on the state of the forests. P1–P8
refer to interaction pathways described in the text.
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Table 2. Classification of the models used in this study according to the productivity-disturbances-climate change interaction pathways specified in the conceptual framework shown in figure 1.

Model Climate change effect on productivity Climate change effect on disturbances Disturbance effect on productivity Productivity effects on disturbance

Direct (P1) Indirect (P2) Direct (P3) Indirect (P4) Direct (P5) Indirect (P6) Direct

(P7)

Indirect (P8)

Monsu Species- and site-specific

scaling of growth

functions/site index

according to simulations

with physiological model

Change in

species

composition

Na Probability of wind damage

increases by 0.17% per year due to

gradual increase of unfrozen soil

period

Wind damage reduces

forest productivity

when windthrown trees

are not harvested

Non-optimal harvesting time may reduce

forest productivity via effects on forest

structure

Na Changes in dominance of

different tree species,

stocking (stand density),

height and height/diameter

ratio of trees.

MOTIVE8 Temperature, precipitation

and moisture deficit affect

growth

Na Na Na Wind damage before

planned harvest date

reduces forest

productivity

Harvesting before stands reach Maximum

Mean Annual Increment to reduce wind

risk reduces forest productivity as the full

productive potential of the site is never

reached

Na Changes in height growth

alter susceptibility to wind

damage

ForGEM þ

mechanical

windthrow

module based

on HWIND

Species- and site-specific

scaling of growth

functions/site index

according to simulations

with physiological model

Na Na Na Removal of trees Effect on forest structure Na Changes in height growth

alter susceptibility to wind

damage

LandClim Temperature and

precipitation affect growth

Change in

species

composition

Changes in

temperature affect the

reproduction rate of

bark beetles

Bark beetle disturbance susceptibility

depends on drought-stress, age and

basal area share of Norway spruce as

well as the windthrown spruce

biomass

Bark beetle disturbance

causes tree mortality

decreasing forest

productivity

Change in species composition Na Basal area share of Norway

spruce influences bark

beetle disturbance

susceptibility

PICUS v1.5 Temperature, precipitation,

radiation and vapor

pressure deficit affect

growth

Temperature

and

precipitation

affect tree

species

composition

Changes in

temperature affect the

reproductive rate of

bark beetles

Bark beetle susceptibility depends

on drought stress of host trees as

well as host tree availability, basal

area, and age

Disturbances reduce

leaf area and thus the

radiation absorbed,

which in turn affects

productivity

Change in species composition Na Stand structure (age,

Norway spruce share)

influences bark beetle

disturbance susceptibility

GOTILWAþ

and adjusted

fire model

Temperature and

precipitation affect growth

Na Climate change

affects the predicted

annual fire

occurrence

probability

Drought-stressed trees are more

susceptible to die after fire

Mortality and a

temporal (1 to 3 years)

decrease in tree growth

Ash fertilization; a ‘thinning from bellow

effect’ of fire reducing competition for

water

Na Probability of fire and post-

fire mortality are estimated

according to the structure

of the forest

Glob3PG and

management

optimization

method

Temperature and

precipitation affect growth

Na Climate change leads

to 5% decrease in fire

return interval and

5% increase in area

burnt

Na Increased fire

frequency and

increased affected area

destroy biomass

Periodical reductions in area productivity

due to fire, changes optimum

management in each management unit

attempting to respect flow constraints

Na Na
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productivity (CC) to calculate CPC. Subsequently,
these two simulations were repeated also accounting
for the effects of disturbances (abbreviated BD and
CCD respectively) to calculate CDPC. According to
the framework developed in section 3, the simulations
required to calculate CPC include the pathways P1
and/or P2 while the simulations for CDPC potentially
include all pathways (P1–P8) if included in the model
used in each case study (table 2). The climate change
simulations all used forcing from the A1B emission
scenario from the ENSEMBLES project (van der
Linden and Mitchell 2009), and were bias-corrected
and downscaled to the respective case study at a 100 m
spatial resolution (Zimmermann 2010). All simula-
tions assumed business-as-usual management (two
different ones in the Prades region) typical for the
region, and expressed changes in productivity using
slightly different indicators such as net primary
production or mean annual growth, depending on
the model applied. More details about the forests,
modeling approaches and data sources can be found in
table 1 and SOM1-2. In the following, we briefly
describe how, in each forest, productivity and
disturbances are affected by climate change, following
the conceptual framework outlined above (table 2).
We then synthesize results from the case studies across
the different indicators of forest productivity and
disturbances used in each study by comparing CPC
and CDPC.

3.1. Influence of climate change on productivity and

disturbances in the European forest case studies

3.1.1. North Karelia (FI)

In the MONSU simulation system, climate change
impacts on productivity were simulated by adjusting
species- and site-specific growth functions with data
from simulations by a physiological model (Pukkala
and Kellomaki 2012). Under a changing climate, the
probability of wind damage was expected to increase
by 0.17% per year to account for an increase of the
unfrozen soil period (Kellomäki et al 2010), but no
change in wind climate was assumed (Gregow 2013).
Productivity changes alter the dominance of different
tree species, stocking (stand density), height and
height/diameter ratio of trees all of which affect the
critical values of wind speed that determine wind
damage.

3.1.2. North Wales (UK)

In the ‘MOTIVE8’ model framework (Ray et al

2015), temperature, precipitation and moisture
deficit affect forest growth. Climate change impacts
on forest biomass production were simulated
through species- specific scaling of site index. A
changing growth rate affects the age at which the
trees become vulnerable to windthrow. There was no
clear signal of climate change on wind climate in this
region, hence the same wind climate as for the past
was assumed.

3.1.3. South-east Veluwe (NL)

In the ForGEM model (Schelhaas et al 2007), climate
change impacts on productivity were mimicked
through species-specific scaling of site index according
to simulations with a physiological model (Reyer et al
2014), see also (Schelhaas et al 2015). Since the
parameters of the height growth curve are linked to the
site class, increasing productivity also means an
increase in height growth leading to higher suscepti-
bility to wind damage. There was no clear signal of
climate change on wind climate in this case study,
hence the historic wind climate was used.

3.1.4. Black forest (GER)

In the LandClim model, temperature and precipita-
tion affect productivity according to response func-
tions and through changes in species dominance
(Schumacher et al 2004). Changes in temperature
affect the reproduction rate of bark beetles. Moreover,
bark beetle disturbances depend on drought-stress,
age and basal area share of Norway spruce as well as on
windthrown spruce biomass (Temperli et al 2013).
They lead to changes in bark beetle population
dynamics. Moreover, LandClim accounts for the
beetle-outbreak-triggering effect of windthrow by
increased forest susceptibility to bark beetles in the
vicinity (<200m) of windthrow patches and in
relation to the windthrown spruce biomass
(Wichmann and Ravn 2001). For the simulations
considered in this study, the frequency of and area of
stochastically simulatedwindthrow events was assumed
to remain constant under climate change, while bark
beetles responded dynamically to a changing climate.

3.1.5. Montafon (AT)

In the PICUS v1.5 model, temperature and precipita-
tion affect productivity according to a radiation use
efficiency model of stand growth as well as through
changes in species dominance (Lexer and Hönninger
2001, Seidl et al 2005, Seidl et al 2007). Changes in
temperature also affect the reproduction rate of bark
beetles. Moreover, the bark beetle susceptibility of
Norway spruce stands depends on stand age, basal
area, host tree share, and drought stress of potential
host trees (Seidl et al 2007).

3.1.6. Prades (ESP)

In the GOTILWAþ model (Gracia et al 1999),
temperature and precipitation affect productivity by
changing the photosynthetic carbon uptake. Climate
change affects the predicted annual fire occurrence
probability and fuel moisture. Moreover, drought-
stressed trees with reduced amounts of mobile
carbohydrates are more likely to die after fire. Changes
in productivity modify forest structure and fuel loads
and therefore also fire occurrence and severity since
the probability of fire is estimated each year, according
to the state of the forest (stand basal area, mean and
degree of evenness of tree size) and the climatic
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conditions affecting fuel moisture. Once a fire occurs,
it causes mortality plus a temporal (1–3 years)
decrease in tree growth (Valor et al 2013). The
decrease in tree growth can be compensated by ash
fertilization or a ‘thinning from below effect’ of fire,
depending on fire intensity and structure of the stand.
The ‘thinning from below effect’ is in most cases a
result of low to medium severity fires (non-stand
-replacing fires) that modify stand structure and may
reduce tree competition for water resources.

3.1.7. Chamusca (PT)

In the Glob3PGmodel (Tomé et al 2004), temperature
and precipitation affect productivity directly through
modification of canopy quantum efficiency and, in the
case of precipitation, by affecting available soil water
that controls biomass allocation to roots. Climate
change was assumed to lead to 5% decrease in fire
return interval and 5% increase in area burnt.

4. Results

4.1. Climate change impacts on forest productivity

with and without including effects of disturbances

In North Karelia, South-East Veluwe and Montafon,
CPC ranged from þ15.8% to þ33.6% (figure 2, table
SOM2). The productivity increases in North Wales
were smaller and turned negative for the drier site. In
the Black Forest, CPC was negative and ranged

between�10.6% and�24.4%, depending on the time
period considered. In the two southern European
forest case studies, CPC was mostly negative (�22.8%
to �37.6% in Chamusca and �0.8% to �19.4% in
Prades) with the exception of forests on deep soils in
the Prades region, which showed a small productivity
increase (figure 2).

These patterns remained largely consistent
when disturbances were included in the simulations
(figure 2) with the exception of simulations for the
unmanaged Prades forest on deep soils. This forest’s
CDPC amounted to þ8.2% opposed to a slightly
negative CPC (�0.8%) because positive feedbacks
from fire caused a release from competition and a
fertilization effect.

However, even if the patterns remained the same in
most cases, including disturbances had negative effects
on productivity, either by reducing positive CPCs or by
exacerbating negative CPCs (figure 2). These decreases
were rather small and range between �0.05% and
�14.0%. In a few cases, including disturbances in the
simulations increased positive CDCs but only in the
managed Prades forest on deep soils this amounted to a
tangible change ofþ21.1%. In some of the simulations
for Prades (unmanaged forest on deep soils and
managed forest on shallow soils) and Chamusca
(simulation for 2041–2070) regions the negative climate
change effects were partly alleviated by including
disturbances. These positive effects of disturbances
ranged between þ1.1% to þ9.0%.
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Figure 2. Relative climate change-induced productivity changes with (CDPC) and without (CPC) accounting for disturbances in
different forest case studies in Europe. Legend details: 21st century = long-term average over the entire 21st century, Early
21st century = early 21st century average (ca 2000–2040), Middle 21st century = mid-21st century average (ca 2040–2070), Late
21st century = late 21st century average (ca 2070–2100). The exact dates vary slightly according to the different models and
are listed in table SOM2. Symbols linked by lines indicate a temporal sequence of results. The horizontal and vertical lines indicate
‘no change’ and the diagonal line is a 1:1 line. Points above the 1:1 line indicate increased productivity as a result of disturbance,
while points below it illustrate cases where disturbances decrease productivity.

Environ. Res. Lett. 12 (2017) 034027

7



For those simulations for which the effects of
climate change and disturbances on productivity were
studied for more than two time periods, interesting
temporal patterns emerged. In the Black Forest, mid-
century CDPC was lowest while in Chamusca, the
mid-century CDPC was slightly higher than the early-
or late 21st century simulations.

To further test how CPC and CDPC interact, we
only considered the difference of CPC and CDPC of
those data points that represent the longest possible
simulation period for each forest case study (figure 3).
This analysis showed that in those forests where CPC
was negative (left quadrants in figure 3, Chamusca and
Black Forest), disturbances were exacerbating pro-
ductivity losses. In Prades, disturbances alleviated
productivity losses even though the CDPC remained
negative. For North Wales and Montafon for which
CPCs were positive (right quadrants in figure 3),
disturbances were decreasing the positive CPCs but
the CDPC remained positive. For the Southern Veluwe
and North Karelia, the CDPC was slightly positive
because the storm damage in these forests reduced
competition among the remaining trees.

5. Discussion

This paper shows that climate change-induced
productivity changes and disturbances interact in
different forests in Europe. In most cases, including
disturbances in the simulations clearly exaggerate
ongoing productivity declines or cancel out climate
change-induced productivity gains. In fewer cases and

in some regions only, disturbances also increase
productivity or alleviate climate-change induced
productivity losses. Only in rather specific situations
such as for Prades, they are a real ‘game changer’,
turning a climate change-induced productivity loss
into a productivity gain. However, in general, the
contribution of disturbances to productivity changes
compared to those induced by climate change alone is
rather small. It is important to note though, that our
focus on productivity means that we base the
interpretation of our findings on long-term averages
(Blennow et al 2014) while the higher variability that
comes with increased disturbances (as an unplanned
event) might still increase management complexity in
the short term. Even though this study does not allow
us to quantify the individual contribution of the
different productivity-disturbances-climate change
interaction pathways, we show that indeed such
interactions are operating in very different forests
across Europe.

5.1. Climate change impacts on forest productivity

with and without including effects of disturbances

The general trends of increasing CPC in North Karelia,
South-East Veluwe and Montafon turning negative if
water supply is limited such as in NorthWales found in
this study are consistent with climate impacts reported
in earlier modelling studies for temperate and boreal
forests (see Reyer 2015). The rather strong productiv-
ity decrease in the Black Forest can be explained by the
dominance of Norway Spruce plantations that are very
susceptible to climate change (Hanewinkel et al 2010,
2013). The decreases in productivity in the two
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Figure 3. Difference of productivity change induced by climate change and disturbances (CDPC) and climate change only induced
productivity changes (CPC) over climate change only induced productivity changes (CPC) for the longest available simulations in
each forest case study. Note that the data for Prades and North Wales are the average over the forests stands as shown in table SOM2.
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southern European forest case studies (Chamusca and
Prades) are also consistent with other modelling
studies from Southern Europe (Sabaté et al 2002,
Schröter et al 2005).

Our results reveal interesting temporal patterns of
CDPC. The mid-century peak in negative CDPC in
the Black Forest region can be explained by two
mechanisms: 1) at this time, most of the forest is in a
susceptible stage and 2) the damage is so high that
later, even though the climate change signal is stronger,
less forest area is actually damaged. The combined
effects of climate change and bark beetle disturbance
lead to a replacement of the beetle’s host species
Norway spruce with deciduous and more drought
adapted tree species. Similar processes have been
found to influence the projected long-term carbon
stocks in Swiss forests (Manusch et al 2014).
Moreover, when considering only the longest possible
simulation period for each forest region, the negative,
additional effect of disturbances is rather small
(maximum �5.9% in the Black Forest, figure 3)
which is remarkable given the strong changes in forest
composition and structure as well as ecosystem
services provision going along with such changes
(Temperli et al 2012, 2013).

5.2. Direct and indirect pathways of productivity-

disturbance interactions under climate change

The classification of the models based on the
conceptual framework of climate-productivity-distur-
bance interactions (figure 1) demonstrates that most
models are representing both direct and indirect
effects of disturbances on productivity (P5–P6,
table 2). These models also include indirect effects
of changes in productivity on disturbances (P8).
However, no model covers all possible pathways and
especially the direct effects of changes in productivity
on disturbances are not explicitly represented in the set
of models used here (P7), possibly because these
models do not necessarily operate at the level of
process detail required to capture these direct effects,
e.g. by excluding leaf element stoichiometry or the role
of carbohydrates in plant defense. Moreover, the
models mostly cover one or two processes per pathway
even though there might be more (e.g. bark beetle
reproduction is affected by temperature in LandClim
and PICUS but other climatic factors such as drought
also play a role (Netherer and Schopf 2010). As our
knowledge of these effects evolves the inclusion of such
processes into forest models will become more
important in the future. It is also important to note
that some of the models used in this study also include
‘adaptive management responses’. The management
changes according to the disturbance-productivity
interactions under climate change by optimizing
management to maintain stable resource flows (in
Chamusca) or by reducing harvesting age to lower
wind risks (in North Wales). More systematic studies
of the effect and potential of management interven-

tions to alleviate the effects of changing climate and
disturbance regimes on forest productivity are hence
needed.

Moreover, there is evidence for many more direct
and indirect pathways of productivity-disturbance
interactions beyond the ones discussed here (Seidl et al
2012). These will require attention in future model
applications. Likewise, future studies should also focus
on disentangling the importance of the different
pathways and their spatial and temporal interactions.
Furthermore, it is important to note that disturbances
can have a wide variety of other impacts on forests and
the services they provide for society beyond changing
productivity (Andersson et al 2015, Thom and Seidl
2016, Zubizarreta-Gerendiain et al 2017).

5.3. Limitations and uncertainties

One key limitation of our study is that we are relying
only on one emission scenario from one climate model
in each of the forest case studies, even though climate
impacts differ in between emission scenarios and
within emission scenarios when different climate
models are considered (Reyer et al 2014). Therefore,
our simulations do not provide a systematic assess-
ment of the uncertainties induced by climate models
and future socio-economic development, but rather
provide a first look into how climate change,
disturbances and productivity changes are interacting.
Moreover, the simulation results presented in this
study focus on one main disturbance agent in each
forest region to be affected by climate change even
though forest productivity may be strongly affected by
the occurrence of multiple, compounding and
interacting disturbances (Radeloff et al 2000, Dale
et al 2001, Bigler et al 2005, Hanewinkel et al 2008,
Temperli et al 2013, Temperli et al 2015). Wind-blown
or drought-stressed trees for example provide breed-
ing material for insects that then may even attack fully
vigorous trees (e.g. Schroeder and Lindelöw 2002,
Gaylord et al 2013). Newly created forest edges after a
storm may expose formerly rather protected trees to
subsequent storms. Thus, understanding the spatial
and temporal interaction of disturbances and their
interaction with changing productivity is another
important research challenge (Andersson et al 2015,
Seidl and Rammer 2016). Moreover, the models used
in each forest case study are quite different in the way
in which they incorporate the effects of climate change
on productivity, and also their representation of
disturbances. Therefore, comparing the impacts across
different forests can only be done qualitatively, keeping
in mind the differences in the models. Moreover, the
forest case studies are themselves very different in
terms of forest management, species choice etc which
are all factors that determine the influence of climate
change. Altogether, this means that more variation of
the changes in forest productivity under climate
change and disturbances than expressed by our results
is to be expected. However, our results provide first

Environ. Res. Lett. 12 (2017) 034027

9



indications of how climate change and disturbances
may play out at larger spatial scales around our forest
case studies and similar forest ecoregions.

Finally, this study has focused on the role of
disturbances in particular. Future studies should aim
at testing the interactions of all pathways of our
conceptual framework to gain a full understanding of
forest productivity-disturbances-climate change inter-
actions. This could be achieved by developing and
applying improved models of disturbance interactions
based on experiments and observations of such
interactions. Moreover, it would be necessary to study
in greater depth whether our findings are consistent
over different types of disturbances, stages of stand
development, management regimes and soil condi-
tions (which have proven to be very important in e.g.
Prades). Such developments could then be integrated
into larger-scale simulation models allowing upscaling
from the case study level to the continental scale.
However, it is important to consider that such
larger–scale models will be limited in terms of the
number of disturbances and potential interactions that
can be included whenever the disturbances are not
only resulting from large-scale driving forces (such as
extreme heat events depending on planetary waves
(Petoukhov et al 2016)) but also contingent on local
site and forest conditions.

6. Conclusion

While the extrapolation of our case study-based results to
other types of forests and disturbances requires caution,
we argue that our findings have important implications
for the assessment of climate change impacts on forest
products and services inEurope.On theonehand, higher
productivity ina future that is characterizedby increasing
disturbancesmaymean thatmore damage to forestsmay
occur, especially if accompanied by higher standing
volume stocks. On the other hand, reduced productivity
may mean that less biomass is ‘available to be damaged’
but also that what is damaged is more valuable from a
resource availability perspective. Therefore, it is necessary
to interpret climate change-induced productivity and
disturbance changes jointly to capture the full range of
climate change impacts on forests and toplan adaptation.
Likewise, these findings are important since currently
many model studies, also those relying on models
operating at larger spatial scales up to the global level,
show that higher productivitywill result in higher carbon
storage and hence continued carbon uptake from the
atmosphere even though the role of disturbances is only
cursorily accounted for in many models.
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