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ABSTRACT

Graph edge perturbations are dedicated to damaging the predic-

tion of graph neural networks by modifying the graph structure.

Previous gray-box attackers employ gradients from the surrogate

model to locate the vulnerable edges to perturb the graph struc-

ture. However, unreliability exists in gradients on graph structures,

which is rarely studied by previous works. In this paper, we dis-

cuss and analyze the errors caused by the unreliability of the struc-

tural gradients. These errors arise from rough gradient usage due

to the discreteness of the graph structure and from the unreliabil-

ity in the meta-gradient on the graph structure. In order to address

these problems, we propose a novel attack model with methods to

reduce the errors inside the structural gradients. We propose edge

discrete sampling to select the edge perturbations associated with

hierarchical candidate selection to ensure computational efficiency.

In addition, semantic invariance and momentum gradient ensem-

ble are proposed to address the gradient fluctuation on semantic-

augmented graphs and the instability of the surrogate model. Ex-

periments are conducted in untargeted gray-box poisoning scenar-

ios and demonstrate the improvement in the performance of our

approach.

CCS CONCEPTS

• Computing methodologies → Supervised learning by classifi-

cation.
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1 INTRODUCTION

GraphNeural Networks (GNNs) demonstrate excellent performance

on various applicationswith structural, relational data [25], such as

traffic [19], recommendation systems [5], and social networks [18].

As the prospects for the applications of GNNs expand rapidly, their

reliability and robustness are beginning to be of interest. Several

works have presented experimental evidence that GNNs are vul-

nerable to adversarial attacks [3, 26, 27]. They design undetectable

perturbations which successfully mislead GNNs’ prediction of tar-

geted nodes or degrade the performance on a global scope. Sub-

sequently, many works have been carried out around the graph

adversarial attack and defense [15, 22].

Gray-box attacks allow attackers to access the training labels

from the victimmodel. The attacker aims to damage the prediction

of the victim model by injecting indistinguishable perturbations

into the graph. The attacker should search for vulnerable edges

and attack them by modifying the graph. In the field of adversar-

ial attack, gradients are widely-used for attacking attributes that

are spatially continuous [22]. However, for graphs, the sparseness

and discreteness of the graph structure make it challenging to per-

turb the graph structure in the way of Fast Gradient Sign Method

(FGSM) [4] or Projected Gradient Descent (PGD) [12]. To solve this

problem, Zugner et al. [27] firstly introduce the meta-gradient on

the graph structure to determine the perturbation. The attacker

chooses one edge at a time to perturb based on the saliency of the

gradient and iterates this step until the entire attack budget is con-

sumed. Subsequent works focus on improving the attack strategy

after deriving the gradient and the surrogate model [9, 10]. How-

ever, few works focus on whether the saliency of the gradient on

the graph structure is reliable.

Meta-gradients are demonstrated to be noisy in attribution prob-

lems [17]. The gradients on the graph structure originate from

the aggregation of node features, which means noises are equally

propagated into the structural gradients. Moreover, edge flipping

changes the value of edges across a considerable step size (i.e.,

http://arxiv.org/abs/2208.05514v2
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adding edges are from 0 to 1 and deleting edges are from 1 to 0). Ex-

isting methods select the edge to be flipped based on the saliency

of the gradient. It is worth noting that, during the edge flipping,

the structural gradient varies since the aggregation of node fea-

tures is influenced by the edge value. We consider edge perturba-

tion to be a problem of modeling continuous gradient distributions

rather than a discrete problem. However, the structural gradients

are imprecisely assumed to be constant, ignoring the variance in

the edge-flip interval.

This paper points out the gradient errors that negatively affect

the untargeted gray-box attacks on graph structure. The discrete-

ness of edges leads previous works to consider edge perturbation

as a discrete problem about gradients. However, the gradient at the

current edge state commonly used in previous works is inaccurate

for describing the gradient over the edge-flip interval. We propose

to transform the edge perturbation from a discrete problem to an

approximation of a continuous problem and propose edge discrete

sampling to reduce this error. Edge discrete sampling calculates the

gradient of the transition process between the edge-flip interval in

batches. It reduces the error from the discrete approximation to the

continuous gradient distribution, which performs a more accurate

structural gradient estimation. Since the space of edge perturba-

tions is about the square of the number of nodes, the computational

cost is unacceptable if the edge discrete sampling is performed for

the whole space. Hierarchical candidate selection is then proposed

to reduce the computational complexity. It retains a bag of candi-

date edges that are more likely to be effective than processing the

whole space. In this step, we exploit the saliency of the gradient on

the graph structure while the error still exists. The random initial-

ization of parameters leads to variance in surrogate model train-

ing, which affects the structural gradients via back-propagation.

Besides, the error occurs in gradient fluctuations on semantically

identical graph augmentations. These two errors are to be consid-

ered since gray-box attacks focus on attack transferability, so the

gradient information from the surrogate model is expected to be

more general and representative. To address these errors, we first

proposemomentum gradient ensemble to mitigate the instability of

the structural gradients provided by the surrogate model at each

attack iteration. Then, we propose surrogate semantic invariance

based on graph augmentation in a limited semantic range. These

two methods of reducing the error on the gradient of the graph

structure allow hierarchical candidate selection to provide better

quality edge candidates. Candidate selection ensures that the com-

putational cost of edge discrete sampling does not grow exponen-

tially, allowing the attacker to perform poisoning attacks.

The contributions of this paper are summarized as follows:

• We analyze the errors in structural gradients caused by model

instability and the discreteness of graph structure in untar-

geted gray-box attacks.
• We propose edge discrete sampling to approximate the contin-

uous distributions of gradient over the edge-flip interval. Hi-

erarchical candidate selection is proposed to ensure that the

computational complexity does not explode.

†Corresponding author: Stan Z. Li.

• We propose semantic invariance and momentum gradient en-

semble to address the gradient fluctuation on semantic graph

augmentation and the instability of the surrogate model.
• We demonstrate the improvement of our approach and prove

each module’s effectiveness in the ablation study.

2 PRELIMINARIES

Before presenting the methodology and demonstrating the exper-

iments, we first introduce the notations and backgrounds in this

section. The notations used in the following sections can be refer-

enced in Subsection 2.1. Subsection 2.2 introduces how to obtain

the gradient on the graph structures by attacking loss in a generic

attack strategy with edge perturbations.

2.1 Notations

Agraph� is represented as� = (+ , �, - ), where+ = {E1, E2, ..., E=}

is the node set, � ⊆ +×+ is the edge set, and- is the attribution set.

In node classification tasks, a vertex E8 is a sample with its features

G8 ∈ R3 and label ~8 ∈ R
2 . A total of # samples in the graph are

distributed across 2 classes. The edges are represented as a binary

adjacent matrix � = {0, 1}#×# , where �8 9 = 1 if (8, 9) ⊆ �. We

can also represent a graph with an adjacent matrix and nodes’ at-

tributes� = (�,- ). For a gray-box attack, the attacker constructs

a surrogatemodel, denoted by 5\ , to simulate the process of the vic-

tim model being attacked. The prediction of 5\ is denoted by the

probability distribution %E8 . We use L to represent the loss func-

tions. The perturbed graph is indicated as � ′
= (�′, - ′) to distin-

guish the perturbed graph from the original graph. The attack is

limited by a budget Δ.

2.2 Edge Perturbations

In the case of untargeted edge perturbation, the attacker is restricted

to perturbing only bymodifying the adjacency matrix (i.e., flipping

edges). The ;0 norm of the changes in the perturbed adjacency ma-

trix with respect to the original one is bounded by the attacker’s

budget Δ. For an undirected graph, Δ is set as:

‖� −�′‖0 ≤ 2Δ, (1)

where the budget Δ is generally equal to or less than 5% of the

number of edges in the original graph.

Gradient-based attack models now become mainstream meth-

ods of edge perturbations on the graph structure [9, 23, 27]. In con-

trast to the gradient-based attacks widely used in computer vision

[24], the discrete graph structure restricts the gradient from being

added directly to the adjacency matrix. The gradient on the adja-

cent matrix (i.e. graph structure) [27] �6A03 can be derived by the

following equations:

\∗ = argmin
\

L24 ( 5\ (�), . ), (2)

�6A03
= ∇�L0C: ( 5\ ∗ (�)), (3)

whereL0C: is the attack loss function and 5\ ∗ is the properly trained

surrogate model. To facilitate understanding, we elaborate in a

more intuitive way of deriving�6A03 . First, a GNN surrogate model

5\ ∗ is trained until it fits the training samples. Subsequently, the

attack loss is backpropagated through the surrogate model gen-

erating gradients on the input adjacency matrix. The attack loss is
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expressed asL0C: = −L�� , which is a negative cross-entropy loss.

For the edge between nodes E8 and E 9 , if �8, 9 = 1 and �
6A03
8, 9 < 0,

or if �8, 9 = 0 and �
6A03
8, 9 > 0, then flipping edge �8, 9 is considered

as a perturbation that has the potential to negatively affect the vic-

tim model. Among these edges, the one with the most significant

gradient value is considered the most desirable perturbation for

the current graph. The process of perturbing the graph using the

gradient information can be represented as:

� ′
C = q (∇�L0C: ( 5\ ∗ (� ′

C−1)), �
′
C−1), (4)

where q denotes the strategy for choosing the edge to be attacked.

The factors that influence the perturbation include the attack loss

L0C: as well as the strategy q and the surrogate model 5\ ∗ .

3 METHODOLOGY

This section introduces the errors of the gradient on the graph

structure and themethods to solve these errors. Section 3.1 first an-

alyzes the error caused by interpreting edge perturbations as a dis-

crete problem and proposes the solution edge discrete sampling. To

rationalize the computational cost, we propose hierarchical candi-

date selection. It selects a bag of edge candidates based on the meta-

gradient on the graph structure so that edge discrete sampling re-

quires only a small number of edges to be processed in batches.

When we rethink the meta-gradient on the graph structure, we

find room for improving the reliability of the structural gradient.

We analyze and discuss this part in Sections 3.2 and 3.3 and give

the corresponding solutions. Section 3.4 describes the overall at-

tack flow.

3.1 Error Caused by Edges’ Discreteness

As indicated by Eq.2&3, the gradient on �8 9 is the partial deriva-

tive of the attack loss L0C: to the adjacent matrix. In the existing

approaches, the attackers treat the gradients on graph structure

as a discrete problem of choosing the perturbations directly based

on the saliency of the gradient [9, 27]. This means that the pre-

vious approach assumes that the gradient value is maintained at

its value on the original state of the edge during the edge flipping

(i.e., the state of an edge turns from 0 to 1 or from 1 to 0). We give

an example of the gradient approximation error introduced by this

approach in Fig.1. In contrast, we consider the gradient used to de-

termine the edge perturbation as a continuous problem with con-

tinuous distribution approximation.

In Fig.1, the blue curve indicates the gradient distribution with

edge value between 0 and 1, and the red line indicates the approx-

imation of this distribution by the existing approaches. The light

yellow shading indicates the error of the previous method com-

pared to the ground truth continuous gradient distribution. As-

suming that the interval for deriving the continuous distribution

shown in the blue curve is X , the time complexity required to com-

pute the gradient distribution for each edge is$ (# 2/X). The prob-

lem is that the computational cost of calculating the gradient distri-

bution for all edges is unacceptable. In order to reduce the compu-

tational complexity, we propose hierarchical candidate selection.

As mentioned in Section 2.2, the gradients on the adjacency ma-

trix �6A03 can be derived from a trained surrogate model by back-

propagation of the attack loss. The first candidate selection step
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Figure 1: Illustration of the error generated by our method

and the existing method in estimating gradient distribution

on edge. The blue curve shows the continuous distribution.

The thick lines in green and red are the estimation of our

method and the existing method, while their estimation er-

ror to the continuous distribution is presented in thin green

slash and light grey background.

removes edges (set the saliency of the gradient to 0) where the

sign of the gradient and the change of the edge does not match

[27], after which the gradient matrix is processed to be �̃6A03 . For

the second step, we sort the rest of candidates according to the

saliency of the gradient values in descending and retain the top �

edges as candidates:

( = {4 (D1,E1) , ..., 4 (D2 ,E2 ) } = C>?�
4=(D,E)

(�̃6A03), (5)

where function C>?� extracts � edge candidates of high saliency

from the gradient matrix. For these candidates, we reduce the time

complexity to $ (�/X), where � << # 2. Up to this point, the time

complexity of the algorithm is still enormous because X is tiny.

Therefore, in order to reduce the error while being able to ensure

computational efficiency, we propose a discrete sampling method

to approximate the continuous gradient distribution. The expres-

sion of the this approximation is:

68=CDE =

∫ 1

0
[∇�L0C: ( 5\ ∗ (�,- ))]D,E 3�DE

≈ _

1/_∑
B=1

[∇�L0C: ( 5\ ∗ (�DE = B_,- ))]D,E ,

(6)

where 68=CDE represents the integral gradient as the edge flips from 0

to 1 and 5\ ∗ (�DE = B_,- ) is the result of modifying �DE to a tran-

sitional value B_ without retraining. The solid thick green line in

Fig.1 indicates the approximation by our algorithm, and the area

in the thin green slash indicates the error caused by ours. Com-

pared with the error of the previous method indicated by the blue

shading, our method substantially reduces the error generated in

the edge-flipping process. Based on the above algorithm, the time

complexity of our method decreases to $ (�/_). Considering that

a perturbation can add or delete an edge, we adopt the one with
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Figure 2: Possibility distributions of the gradient on two ex-

ample edges. The x-axis is the interval of the gradient values,

and the y-axis is the frequency of the gradient in the inter-

val over 500 replicate experiments.

the highest saliency of integrated gradient as a perturbation:

4 ′ = C>? 1
4=(D,E)

({(1 − 2�DE) 6
8=C
DE | (D, E) ∈ (}), (7)

where 4 ′ denotes the selected edge to be perturbed, (1 − 2�DE) is

to invert the value of 68=CDE for those candidates to delete an edge.

To further increase the computational efficiency, we introduce

batch processing of candidates. A batch contains batch size 1B can-

didates. Since the gradients on the adjacent matrix come from the

aggregation of node features, for a general 2-layer graph neural

network, the state of one edge will influence the gradient on the

other when the same node joints two edges. In other words, simul-

taneously changing the states of both edges causes a small amount

of error. However, for a batch of candidates selected from # 2 space,

the probability that the candidates happen to be connected is min-

imal. Therefore we adopt batch processing which reduces the time

complexity to $ (�/(_ ∗ 1B)).

The method mentioned in Section 3.1 has a high dependence on

the gradients on the adjacency matrix �6A03 . Hierarchical candi-

date selection selects � from the # 2 space, which requires strong

reliability and stability of the gradients. In Sections 3.2 and 3.3, we

discuss the errors present in �6A03 as well as their solutions.

3.2 Error Caused by Uncertainty of Model
Optimization

When the samples are not dense enough to describe the manifold

of the data, themodel is prone to fall into local optima. The local op-

tima of a model based on backpropagation optimization is related

to the initialization of the mapping function of the neural network

(i.e., the initialization of the learnable weights). For the surrogate

model, it tends to perform differently after retraining with differ-

ent parameter initializations (i.e., in Equation 2 different \ leads

to different \∗). We give an example to verify the uncertainty of

structural gradients �6A03 , shown in Fig.2.

Fig.2 shows the gradients on two edges of the consistent graph

after retraining the surrogate model with different weight initial-

izations. We can see that the gradient expectation of Edge 2 is

around 0.007, which is higher than 0.004 of Edge 1. We conduct

experiments showing that attacking Edge 2 is more effective than

attacking Edge 1. However, due to the randomness of weight ini-

tialization, the gradient of Edge 1 is possible to be higher than that

of Edge 2, thus misleading the attacker to make a wrong judgment.

To enhance the reliability of �6A03 at each attack iteration, we

expect each structural gradient obtained from the surrogate model

to be as close as possible to its expectation in such distribution

shown in Fig.2. To this end, there is an easy way to solve this prob-

lem using an ensemble algorithm. We sample several weight ini-

tializations and integrate the gradients from retrained surrogate

models to approximate the expectations of the structural gradients,

reducing the probability of the gradient being sampled to outliers.

The expression of the gradient ensemble is:

�6A03
=

1

:

:∑
8=1

�
6A03

\ ∗
8

, (8)

where \∗8 represents the parameters of the surrogate model after

training under initialization \8 and : denotes the number of inte-

grations. This is an ensemble-based method that randomly initial-

izes the model parameters with the identical uniform distribution

between [0, 1]. However, retraining the surrogate model is unac-

ceptable, for it causes : times the computational cost to be spent.

Considering that the attack on graph edges is a perturbation-

by-perturbation iterative process, we propose a momentum gradi-

ent ensemble as a more efficient solution. The variation between

perturbed graphs �
′

C and �
′

C−1 is limited. The structural gradient

�
6A03
C at iteration C can reduce the instability of the gradient brought

by each retraining of the surrogate model by fusing the structural

gradient at previous iterations. The derivation of the structural gra-

dient at attack iteration C is redefined as:

�
6A03
C = ∇�L0C: ( 5\ ∗ (�

′

C )) + ?�
6A03
C−1 , (9)

where ? is the coefficient of the momentum term. Compared with

the ensemble method in Equation 8, ourmomentum-based method

consumes no additional computational cost. It makes full use of the

structural gradients from previous iterations and avoids retraining

the surrogate model multiple times in a single iteration.

3.3 Error Caused by Model’s Unrobustness

The gradients of continuous data features are demonstrated to be

noisy [17]. Similar to data features, the graph structure is explicitly

involved in the forward process in GNNs. Taking a 2-layer GCN as

an example, the expression of the forward process of graph neural

network and the structural gradient is shown below.

5\ (�,- ) = B> 5 C<0G (�̂g (�̂-, (0) ), (1) ) (10)

L0C: = −L�� = log% (~8 | 5\ (�,- )), (11)

∇�8 9
L0C: =

m log % (~8 | 5\ )(�,- )

m�8 9
, (12)

where �̂ is the normalized adjacent matrix, g is the activation

function,, is theweightmatrix,L0C: equals to−L24 and % (~
′
8 | 5\ )

represents the prediction at label class~8 . It can be seen fromEq.10,11&12
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Figure 3: Illustration of the noisy gradients on graph struc-

tures. The curve represents the gradient change on an ex-

ample edge under Gaussian noise on node attributes with

variances f.

that the derivation of the structural gradient involves the features

of the nodes (which is related to the message passing mechanism

in GNNs), resulting in the noise on the features being able to be

propagated to the structural gradient. The graph structure explic-

itly participates in the forward process of the model, so both in-

put features and model parameters are influencing factors of the

structural gradient. Therefore, similar to the sample features, the

structural gradient is noisy.

Fig.3 is an example which shows the gradients on an example

edge on Citeseer [14]. It is a citation network in which 10−3 can be

considered as a non-disturbing semantic perturbation for node at-

tributes. We inject Gaussian noise on the attributes of nodes E8 and

E 9 and their 1-hop neighbors, where the horizontal axis of Fig.3 is

the expectation of Gaussian noise and the vertical axis is the value

of the gradient. As can be seen in Fig.3, Gaussian noise with a stan-

dard deviation of 10−3 can make the gradient noisy. Considering

the need for transferability for gray-box attacks, the instability of

the surrogate model in the semantic range will affect the attacker’s

estimation of the retrained victim model.

It is worth noting that the noise is added to the node attributes

rather than the graph structure. We consider adding noise to the

graph structure would harm the graph homophily. For multi-class

tasks, themajority of the noises are added between inter-class edges

while the minority are added between intra-class edges. This leads

to the fact that adding Gaussian noise to the graph structuremeans

decreasing the homophily ratio of the graph. Therefore, addingGauss-

ian noise on the node attributes is relatively reasonable than the

graph structure.

In order to maintain the consistency of gradients in semantic

graph augmentations, we propose a semantic invariance strategy

based on graph augmentation. Computing the expectation of gradi-

ent over a high-dimensional augmentation space is intractable, so

we approximate this expectation by averaging sampled augmenta-

tions in the local space of the original graph. The semantic invari-

ance is expressed mathematically as:

�
6A03
B8 =

1

=

=∑
8=1

∇�L0C: ( 5\ ∗ (�,- + N (0, f2))), (13)

where= is the number of samples, andN(0, f2) represents amatrix

of Gaussian noise with variable standard deviation f . This method

preserves the invariance of gradients on semantically consistent

augmented graphs. The variance of Gaussian noise is a hyperpa-

rameter specific to the dataset. We empirically select the hyper-

parameter with the optimal performance on the validation set for

testing based on grid search. For example, on Citeseer, the variance

of theGaussian noise is set to 5e-4.We verify that Gaussian noise at

this variance has little effect on the classification accuracy of GNN,

and that is how we define the noise as semantically non-disturbed.

3.4 The Overall Attack Model

This section describes the implementation of the above three er-

ror reduction methods in the attack model. Algorithm 1 is used to

illustrate the whole flow of our proposed attack.

Algorithm 1 Attack Pipeline

Input: Original graph� = (�,- ), label of training data . , attack

budget Δ, momentum coefficient ? ;

Output: Graph with edge perturbations� ′
= (�′, - );

1: C = 0;�′
= �;

2: while ‖� −�′‖0 < 2Δ do

3: Train surrogate model 5\ ∗ with� ′
= (�′, - ) and . ;

4: Derive the semantic invariance structrual gradient �
6A03
B8 ;

5: stack the structural gradient with that at the previous iter-

ation in the way of momentum �
6A03
C = �

6A03
B8 + ?�

6A03
C−1

(�
6A03
0 = �

6A03
B8 at C = 0);

6: Filter the candidates whose gradient symbols and edge

states mismatch, and take the absolute value to get the

saliency �̃
6A03
C ;

7: Retain top� edges in �̃
6A03
C as candidate set (C and (C ·2>?~

8: while (C is not none do

9: Sample a batch 1 of edge candidates from (C ;

10: Derive the integral gradient 68=CDE of each edge 4DE in batch

1 at the edge flip interval [0,1];

11: Remove the batch 1 from (C ;

12: end while

13: Extract the edge 4<= with the most significant 68=C<= in edge

candidates (C ·2>?~ ;

14: Update the perturbed graph �′[<,=] = 1 − �′[<,=] and

�′[=,<] = 1 −�′[=,<];

15: C = C + 1;

16: end while

The whole attack process is decomposed into Δ iterations, with

one edge perturbed in each iteration. At the beginning of each it-

eration, a surrogate model is trained using the perturbed graph� ′

(Equation 2) to simulate the victim model under poisoning attacks.
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With the trained surrogate model, we derive the semantic invari-

ance structural gradient �
6A03
B8 following Equation 13. Then we

add the momentum term onto the structural gradient to minimize

the error arising from the model’s local optima (Equation 9). Line

6-7 in the Algorithm describe the hierarchical candidate selection,

which is to choose candidate set (C from the # 2 space. Line 8-11

in Algorithm perform edge discrete sampling (Equation 6) to ap-

proximate the continuous gradient distribution for each edge in (C .

Afterward, we select the edge with the most significant integral

gradient 68=C<= as the perturbed edge at the C-th iteration. Finally,

The perturbed graph structure is updated, and the C + 1 iteration is

started.

This algorithm ensures that the surrogate model needs to be

trained only once in each iteration. Therefore, it achieves high com-

putational efficiency while reducing the errors in structural gradi-

ents.

4 EXPERIMENTS

We present experiments to demonstrate the effectiveness of our

proposed attack model, named AtkSE 1 (Attacking by Shrinking

Errors). The experimental settings are detailed in Section 4.1. In

the following two sections, we compare our approach with other

gray-box untargeted poisoning attack methods and provide abla-

tion studies to verify our proposed improvements’ validity. In Sec-

tion 4.4, we provide the gradients’ distribution on the edges’ values

between 0 and 1 to prove the necessity for our proposed approxi-

mation method for continuous gradient distribution.

4.1 Experimental Settings

4.1.1 Datasets. In this paper, we use the citation networks Cite-

seer [14], Cora [13] and Cora-ML [13] as well as the social net-

work Polblogs [1] as the datasets. Consistent with the experimen-

tal setup of baselines, we randomly divide the dataset into 10% of

labeled nodes and 90% of unlabeled nodes. The labels of the unla-

beled nodes are not provided to the attacker or the victim model,

and they are only used when evaluating the performance of the

victim model.

4.1.2 Victim Models. The widely-used victim model is GCN [8]

used in baseline papers. This paper extends GraphSage [6] as a

more advanced GNN victim model. It is worth noting that there

are some gray-box attacks, such as [9] and [10], where the net-

work architecture of the victim model is considered to be known.

The attack scenario in this paper considers that the victim model’s

architecture is unknown to study the poisoning attack’s transfer-

ability better. Therefore, the GCN victim model differs from the

surrogate model in linearity and number of neurons.

We uniformly use a 5% perturbation rate as the attack budget

for imperceptibility needs. We repeat the experiments ten times

for each experimental scenario and present the mean and variance

of each set of experiments in the results. To ensure the fairness of

the experiments, we test the perturbed graphs generated by each

method with uniform and independent test files.

4.1.3 Baselines. Random, DICE [20], EpoAtk [9], Meta-Train &

Meta-Self [27] are used as baselines in the experiments.

1https://github.com/Zihan-Liu-00/AtkSE

Random removes or add edges randomly.

DICE randomly removes edges between nodes from the same class

or adds edges between nodes from different classes.

EpoAtk is originally a white-box attack model, transferred to the

gray-box attack in our experiments. It proposes an exploration

strategy where the attacker chooses edges from a set of candidates.

Meta-Self andMeta-Train consider the adjacent matrix as hyper-

parameters to optimize via meta-learning. Two attack models dif-

fer in the node subset used to calculate attack loss.

4.1.4 Hyperparameters. In the implementation of our attackmodel,

the interval of edge discrete sampling _ is set to 0.2, the number

of edge candidates � is set to 64, the batch 1B is set to 16, the mo-

mentum coefficient is set to 0.8, and = in semantic invariance is

5.

4.2 Performance of AtkSE

Table 1 shows the comparison of our approach with baselines on

various datasets and victim models. Among the eight experiments,

our proposed AtkSE outperforms baselines in seven of them. Meta-

Self is the most effective baseline in other gradient-based base-

lines, followed by Meta-Train and EpoAtk. The randomness-based

methods DICE and Random are the worst. Our method ranks sec-

ond behind the best effect in Polblogs/GraphSage. When the vic-

tim models are GraphSages, our method improves the attack suc-

cess rate over the second-best method by 1.6%, 0.9%, and 0.1% on

datasets Cora, Cora-ML, and Citeseer, respectively. On Polblogs,

our method ranks second, below the first place by 1.5%. This result

may be due to the independence of victim models’ representation

learning and the difficulty of transferring attacks. When the vic-

tim models are GCNs, our method is better than other methods

across the board. The attack performance of our method improves

2.1%, 1.8%, 0.9%, and 4.3% onCora, Cora-ML, Citeseer, and Polblogs,

compared to the second-place method Meta-Self.

Averaged over experiments, the attack effect of our method is

1.275% higher than that of Meta-Self. Our proposed AtkSE outper-

forms the second-ranked model by more than 1% in four experi-

ments and 2% in two experiments. Experiments prove that our at-

tack model, AtkSE, is more effective than other methods. It proves

that errors exist in the previous methods and that reducing these

errors can improve the effectiveness of the attack model.

4.3 Ablation Study

To verify the effectiveness of each error reduction module, we con-

duct the ablation study. We ablate the three error reduction mod-

ules in Sections 3.1 (Hierarchical candidate selection and edge dis-

crete sampling), 3.2 (Momentum gradient ensemble), and 3.3 (Semantic

invariance), respectively. The ablated attack models are denoted as

AtkSE-H, AtkSE-M, and AtkSE-S. Table 2 shows the results of the

ablation study.

In the ablation experiments, the worse the attack of the ablated

model is, the more critical the ablated module is. AtkSE-M has the

best accuracy on Cora, Citeseer/GraphSage, and Polblogs/Graph-

Sage. It ranks second on Cora-ML/GraphSage and Citeseer/GCN

and worse than the other scenarios. AtkSE-H has the highest accu-

racy when the dataset is Cora-ML, Citeseer and Polblogs, and the

victim model is GCN. AtkSE-H ranks second on four experiments
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Table 1: Experimental results comparing our method with other methods. The group ’Clean’ denotes the performance for

unperturbed graph. The victim models are GraphSages and GCNs. The results are shown in the classification accuracy (%)

under perturbation rate 5% on Cora, Cora-ML, Citeseer and Polblogs. The best results from experiments are bold.

Cora Cora-ML Citeseer Polblogs

Victim GraphSage GCN GraphSage GCN GraphSage GCN GraphSage GCN

Clean 80.8±0.4 81.7±0.3 81.9±0.6 84.0±0.4 69.8±0.5 69.9±0.4 90.5±4.4 95.4±0.4

Random 80.7±0.6 81.2±0.3 80.6±0.8 82.8±0.4 68.7±0.7 67.8±0.4 78.1±1.1 84.0±0.9

DICE 80.0±0.4 80.9±0.5 80.7±0.9 82.5±0.4 69.1±0.8 69.0±0.4 76.1±1.9 79.2±0.7

EpoAtk 78.9±0.8 77.0±0.6 80.2±0.7 81.3±0.4 68.8±0.5 66.3±0.4 69.4±1.8 82.6±0.3

Meta-Train 76.1±1.0 76.4±0.2 77.7±1.8 79.0±0.3 67.9±0.9 65.5±0.4 71.2±4.0 83.5±0.7

Meta-Self 74.9±0.8 75.8±0.4 76.3±1.6 76.2±0.3 60.8±0.6 60.4±0.4 64.1±2.6 75.8±0.5

AtkSE(ours) 73.3±0.6 73.7±0.4 75.4±1.0 74.0±1.0 60.7±0.4 59.5±0.5 65.6±0.8 71.5±0.3

Table 2: Ablation study of our proposed error reduction methods, where AtkSE-H ablate the hierarchical candidate selection

as well as discrete sampling in Sec 3.1, AtkSE-M ablates the gradient ensemble in Sec 3.2, and AtkSE-S ablates the semantic

invariance in Sec 3.3. The highest accuracy in the ablation is highlighted by underlining, representing the module that is

ablated as more important in that experiment.

Cora Cora-ML Citeseer Polblogs

Victim GraphSage GCN GraphSage GCN GraphSage GCN GraphSage GCN

AtkSE 73.3±0.6 73.7±0.4 75.4±1.0 74.0±1.0 60.7±0.4 59.5±0.5 65.6±0.8 71.5±0.3

AtkSE-H 73.9±0.6 74.6±0.3 75.2±1.1 75.3±0.8 61.0±0.6 60.4±0.5 67.6±0.9 72.4±0.3

AtkSE-M 74.0±0.7 75.2±0.2 75.5±1.0 74.7±0.7 61.6±0.5 60.3±0.5 68.0±1.3 71.8±0.1

AtkSE-S 73.8±0.6 74.5±0.4 75.6±1.1 75.1±0.7 60.6±0.8 60.0±0.4 66.1±2.3 72.0±0.3

and worse on Cora-ML/GraphSage. AtkSE-S ranks first on Cora-

ML/GraphSage, while it ranks lower on five experiments. AtkSE-

M has the highest accuracy on four experiments, while AtkSE-H

and AtkSE-S have three and merely one, respectively.

Overall, the momentum gradient ensemble is the module that

enhances the attack model the most. The results indicate that the

modules are ranked from highest to lowest importance as the mo-

mentum gradient ensemble, the hierarchical candidate selection

and edge discrete sampling, and the semantic invariance. By com-

paring ablated models with AtkSE, the experiments prove the ef-

fectiveness of each module in AtkSE.

4.4 Gradient between the Edge-flip Interval

In this paper, graph edge perturbation is considered a problem of

modeling a continuous distribution of gradients on edges. A possi-

ble challenge for our approach is whether the problem is worthy

of being solved as a continuous problem over the edge-flip interval.

To answer this question, we give examples of continuous gradient

distributions of edge candidates in Fig.4. We can see that the gra-

dients of the edges are continuous and smooth on the interval. We

use the blue slash to indicate cases where the estimate is above the

actual distribution and the red slash to indicate cases where the es-

timate is below the actual distribution. Referring to the error anal-

ysis in Section 3.1, in Fig.4, the previous methods adopt a gradient

value higher than the integral of the continuous distribution on the

(a,b,c) plot and lower than the integral on the (d) plot. Our approach
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Figure 4: Illustrations of several variations of the structural

gradient between the edge-flip interval.

considers the variation of gradients and transforms the edge per-

turbation from a discrete problem to a continuous gradients mod-

eling problem. The error observed in Fig.4 proves the necessity

for modeling continuous structural gradients. It also demonstrates

why our approach improves the effectiveness of the attack.
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5 RELATED WORKS

5.1 Graph Adversarial Attack

Graph adversarial attacks aim to disrupt the performance of graph

neural networks using imperceptible attacks. There are three ways

to attack graph-structured data: modifying the node features, mod-

ifying the graph structure, and injecting nodes [2, 7]. Among the

researches in this field, more studies focus on modifying the graph

structure [3, 20], and node injection [16], due to the specificity of

graph data compared to general data. Among the general imper-

ceptibility measures, attacks on graph structure are constrained

by the L0 norm [27], and node injections are constrained by the

number of manual nodes and their degrees [16]. Depending on the

attacker’s knowledge, attacks are classified as white-box attacks,

gray-box attacks, and black-box attacks.White-box attacks [21, 23]

open all the information of victim models. Gray-box [9, 10] attacks

open labels of training set. Black-box attacks [11, 22] allow the at-

tackers to query the predictions of the victim models. If the victim

model is retrained, the attack is referred to as a poisoning attack,

otherwise, it is referred to as an evasion attack. This paper studies

the gray-box poisoning attacks. We aim to transfer the attack from

the surrogate model to an unknown victim model, also referred to

as the study of attack transferability.

5.2 Graph Edge Perturbation

This paper investigates attackers which globally perturb the graph

structure. Mainstream approaches are based on the gradient de-

rived from the loss function by backpropagation on the graph struc-

ture (or the adjacent matrix). Metattack [27] is the first gradient-

based edge perturbation work on graph networks. It is a global

poison attack model with a gray-box setting and the basis of other

gradient-based edge perturbation methods. The attack strategy of

Metattack is to search for the edge with the most significant gradi-

ent by the gradient on the adjacency matrix for modification, mod-

ifying one edge per iteration until an upper limit of the budget is

reached. Another work [23] makes use of PGD [12] to search for

an optimal perturbationmatrix ( ∈ {0, 1}= . EpoAtk [9] tries to add

exploration to the attack model. EpoAtk has a small probability of

not directly perturbing the edge with the most significant gradi-

ent, but instead of generating a perturbation from many candidate

edges based on the loss values. These three works ignore whether

the gradients they use are reliable. They only use the gradient de-

rived from the current state of the graph and do not take into ac-

count the variation of the gradients on edges over the perturbation

interval from 0 to 1. A method of integrated gradient on edges [21]

is proposed to solve this problem. It requires traversing the adja-

cency matrix to score all edges and multiple gradient calculations

to score each edge. It needs to traverse the adjacency matrix to

score all edges, which has an exploded computational complexity

$ (# 2). Moreover, it requires a massive amount of computing re-

sources to perform a single time gradient calculation on all edges,

limiting it to be used only in evasion attacks of small graphs, not

any of the other scenarios. In addition, these efforts do not consider

the gradient instability during themodel optimization process. The

above problems are addressed in our proposed method.

6 CONCLUSION

This paper proposes that the gradient on the graph structure in

graph adversarial attack is subject to errors. This paper aims to il-

lustrate these errors and propose correspondingmodules to reduce

them and implement them into our proposed attack model AtkSE.

This paper first analyzes the error caused by treating graph struc-

ture attacks as a discrete problem with respect to gradients. We

propose edge discrete sampling to reduce this error by approxi-

mating the continuous distribution of gradients over the edge flip-

ping interval [0,1]. To ensure the computational cost of this step,

we propose hierarchical candidate sampling based on the gradi-

ent saliency of the graph structure to select a small bag of edges

as the candidates to be attacked rather than the entire # 2 space.

Subsequently, we discuss the errors present in the gradient of the

graph structure, including GNNs’ unrobustness on the semantic

space of the graph and the instability of the GNNs’ representa-

tions due to the randomness of the parameter initialization. We

propose semantic invariance and momentum gradient ensemble to

solve these two errors, respectively. We integrate the above error

reduction modules and propose the attack model AtkSE. In the ex-

periments, we validate the effectiveness of our proposed method

by comparing it with state-of-the-art baselines and showing the

ablation study in untargeted poisoning gray-box attacks. The re-

sults demonstrate that our approach improves the attacker’s per-

formance, proving the reliability of our discussion on the error

analysis and the effectiveness of our approach.
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