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ABSTRACT

In a number of theoretical models, it has been shown that technological externalities can
generate multiple equilibria in the global pattern of specialization and trade, with different
consequences for the relative welfare of the trading countries. In such models, temporary
government policies can have lasting effects by pushing the global economy into a particular
equilibrium. However, the prediction of multiple equilibria generally hinges on the assumption that
the technological externalities are intranational rather than international in scope.

In this paper, I point out important shortcomings in previous attempts to estimate the effects
of intranational and international knowledge spillovers. Then, I provide new estimates of the relative
impact of intranational and international knowledge spillovers on innovation and productivity at the
firm level, using previously unexploited panel data from the U.S. and Japan which provide a rich
description of the firms’ technological activities and allow for potentially much more accurate
measurement of spillover effects.

My estimates indicate that knowledge spillovers are primarily intranational in scope,
providing empirical confirmation of a crucial assumption in much of the theoretical literature. This
finding has important implications for the theoretical literature and the public debate on “strategic

trade policy.”
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L Introduction

The theoretical literature in international economics and economic growth over the last decade has
given considerable attention to the potential role of technological externalities in generating endogenous
growth and determining the pattern of trade. Kfugman (87) and Young (91) examined learming-by-doing,
and Grossman and Helpman (90, 91) have looked at knowledge externalities. In a number of contexts, it
has been shown that assuming externalities of this type can have dramatic effects on the equilibrium pattern
of trade and production. In the traditional Heckscher-Ohlin framework, this equilibrium is unique, and is
determined by exogenous factor endowments.? In the new models, there are multiple equilibria with
different consequénces for the relative welfare of the trading countries. Comparative advantage itself is
endogenously determined, and can be permanently affected by temporary government policies. These
theories have been seized on by industrial policy advocates as providing a theoretical rationale for the
protection or promotion of domestic producers in high-technology sectors.?

However, in order to obtain such multiple equilibria, one must generally assume that technological
externalities are intranational in scope. As Grossman and Helpman have explicitly shown, even in a model
with innovation and technological change, trade patterns can still be ultimately determined by factor
endowments if technological externalities are global in scope. Thus the policy implications, even the policy
relevance, of many of these models depend on technological externalities being to some extent, local in
scope. Are they? Given the central importance of this issue in the theoretical literature, surprisingly little
work has been done to answer this question.

This paper obtains estimates of the impact of “international” and “intranational” knowledge
spillovers on innovation and technological change at the firm level, using previously unexploited panel data
from the U.S. and Japan. I find robust evidence that intranational spillovers are stronger than international

spillovers. This finding is consistent across alternate econometric specifications as well as data from

? To be precise, the equilibrium of trade in goods is unique only when there are as many goods as there are
factors. With more goods than factors, the equilibrium becomes indeterminate. However, the implicit trade
in factor services can still be predicted from factor endowments. See Krugman and Helpman (84) for an
explanation and comparison with alternative models.

? See the recent book Who's Bashing Whom: Trade Conflict in High-Technology Industries, by Laura
Tyson, for a particularly thorough exposition of this kind of argument.



different countries. The implications of this finding for the theoretical literature and for policy are quite
significant, and are discussed in the conclusion.

Before going any further, I wish to be precise about exactly what sort of externality I am
attempting to measure and why I chose it. My work is most closely related to the theoretical contributions
of Grossman and Helpman (90, 91), who have developed growth models in which the number of products
(and/or product quality) expands over time due to the innovative activity of profit-seeking firms. In these
models, decreasing returns to innovation never sets in because the innovative activities of firms not only
lead to new products (whose benefits the firms can appropriate), but also contribute to a general stock of
knowledge upon which subsequent innovators can build. Over time, the foundation of general knowledge
grows, allowing more differentiated products to be introduced without a continual increase in the research
resources that must be expended.® This is referred to as "knowledge spillovers,” so-called because the
benefit of innovation accrues not only to the innovator, but “spills over" to other firms by raising the level
of knowledge upon which new innovations can be based Thus, knowledge spillovers serve as the
endogenous engine of economic growth,

Do the results of traditional models, where the pattern of trade is determined by comparative
advantage, still hold in a world of innovating countries? In their work, Grossman and Helpman have
demonstrated that even in a model in which innovation is fully endogenous, trade can still be determined by

factor endowments if new ideas flow as quickly to other nations as they flow within nations.*

L K

ni /

* In a typical formulation, 7, =
a,

where "n dot" is the rate of new product introduction, L is the level of research employment, a is

the productivity of research labor, and K is the stock of general knowledge. Here the "knowledge

stock” enters directly into the firm's "knowledge production function.”

3 With two countries, the total stock of general knowledge becomes
K, =2, Ie‘”“'"n,(r)dr+ A, Ie“'("”nj(r)d'r

where A, is the rate of knowledge spillover within country i, A¢ is the rate of spillover between
countries, n; is the number of innovations at home by time 1, and »; is the number of innovations
abroad. If A;, = Ay, then firms in both countries will have access to the same level of knowledge
even if knowledge generation occurs more rapidly in one of the countries. If they are different,
then firms in the country with a higher initial level of innovation will have a greater stock of



On the other hand, if the rate of knowledge spillover is much stronger within nations than across
them, then patterns of trade are no longer necessarily determined by factor endowments. Instead, they can
exhibit path dependence. For example, a country that acquires a temporary advantage in R&D-intensive
sectors can build on that advantage, eventually developing a position of enduring comparative advantage.
Once this country's firms begin to innovate at a faster rate than those outside the country, these new
innovations become the foundation upon which more ideas can be created. Because this "foundation” is
higher than it is elsewhere, firms in this country have a powerful advantage over foreign rivals -- they are
likely to continue to generate more ideas than their foreign rivals, further enlarging and broadening the
national "stock" of knowledge from which they can draw and further cementing their technological
advantage. It is possible that by limiting trade temporarily or subsidizing industry R&D, a country could
"build up" an R&D-intensive sector, resulting in the establishment of a comparative advantage in that
sector, arising not from exogenous factor endowments but endogenous innovation. Here, temporary
policies can have permanent effects on the pattern of trade.®

There may be welfare consequences as well. Under certain conditions, economic growth and
wages can be higher in the country with the comparative advantage in the "high-technology” (i.e., R&D-
performing) sectors. This happens, for instance, in Grossman and Helpman's work in cases in which the
steady-state equilibrium is outside the factor price equalization set.

This theoretical framework is not without its critics.” Furthermore, a general test of the model’s
full implications for policy could be extremely difficult given its complicated structure and the extreme
assumptions the authors make to derive a closed form general equilibrium solution, and is beyond the scope

of the present paper.® My goal is not to justify this framework so much as to test one of its key assumptions.

knowledge on which to draw, and will, by the previous equation, become more productive in
subsequent innovation.

¢ See also Krugman (87) for an earlier model which generates similar results.

7 The most serious problem is their assumption that past knowledge is never rendered obsolete by new
innovation. This assumption leads to the unrealistic empirical implication that an increase in the resources
devoted to R&D leads to an increase in the growth rate of the economy. In reality, the stock of knowledge
does depreciate over time due to technological obsolescence. See the critique by Charles Jones (1995) and
the work by Caballero and Jaffe (1994).

8 See work by Charles Jones (95) which tests the relationship between changes in R&D spending and
changes in macroeconomic growth rates implied by these models.



For multiple equilibria in trade to exist, it must be the case that intranational spillovers are relatively
stronger than international spillovers. Following the spirit of this model, 1 derive an empirical framework
that allows us to estimate the steady state relationship of new increments to the general knowledge stock, or
“flows” of spillovers, from foreign and domestic sources, on the innovative performance of the average firm
in Japan and the United States.
IL. Previous Literature

An alternative mechanism for endogenous growth and endogenous comparative advantage is some
form of “learning-by-doing.” Taking a focus very similar in spirit to that of the current paper, Irwin and
Klenow examine the relative strength of intranational and international learning-by-doing spillovers in the
Dynamic Random Access Memory Chip industry. Noting that considerable anecdotal and empirical
evidence suggests that learning-by-doing is an important feature of production in this industry, Irwin and
Klenow proceed to examine the extent to which learning-by-doing by one firm “spills over” to other
producers within the same country and the extent to which they spill over internationally.’ They find that
learning-by-doing spillovers do exist, but that they are much less important than the effects of own-firm
production experience.'® Furthermore, they cannot distinguish empirically between intranational spillovers
and international spillovers in the data. Finally, they find little evidence that production experience in one
generation of DRAM chips has a significantly positive effect on firm productivity in the production of the
next generation.

Unfortunately, the data limitations they confront in their study are substantial. Because they lack
any direct measure of firms’ marginal cost, the dependent variable in their regressions, they are forced to
impute it by assuming that the global DRAM industry is at all times characterized by strict Cournot

competition in quantities with no capacity constraints. These assumptions make a firm’s marginal cost a

® They estimate

c, =v¥EP *¢"

where ¢ is marginal cost and £ is the cumulative production experience of the firm.

' Here experience also includes production external to the firm, such that

E =0 +a(Q. - 0)+y(Q, — O.)where Q. is the production experience of all other domestic
producers and @, the production experience of all world producers. Thus @ captures the effect of
intranational spillovers and ¥ the effect of international spillovers.



linear function of its market share and the market price. To the extent that this assumption fails to hold, the
dependent variable is mismeasured.'’

Irwin and Klenow also lack any firm-level data on R&D. They are thus unable to assess the degree
to which R&D contributes to marginal cost reduction or product innovation in this industry. Given their
focus on learning-by-doing spillovers, this is understandable. Nevertheless, the semiconductor industry is
one of the most R&D-intensive sectors in manufacturing, and has been characterized by a great deal of
product innovation as well as cost reduction. [t is reasonable to suppose that “knowledge spillovers” of the
kind modeled by Romer, Grossman and Helpman, and Aghion and Howitt may also be important in this
sector and are worth exploring.

Looking more generally at the R&D-intensive sectors, it is difficult to identify industries with
learning curves as steep and pervasive as those in semiconductors. However, knowledge spillovers may be
quite pervasive and important in a number of sectors. Furthermore, knowledge spillovers may ultimately be
more significant as an engine of endogenous growth. While learning-by-doing is certainly important, the
economic gains from the refinement of production techniques are probably product-specific (a result
supported by Irwin and Klenow’s results). Over time, the R&D-intensive sectors of the economy may create
more producer and consumer surplus through the introduction of new and better goods and services, rather
than the ever more efficient production of existing goods and services. It is difficult to imagine this kind of
fundamental innovation being driven by learning-by-doing. Finally, one of the central arguments offered
for the promotion of the semiconductor industry is based on the spillovers it provides to related industries
like downstream computer manufacturers and upstream semiconductor manufacturing equipment producers.
Irwin and Klenow’s empirical framework does not measure these intersectoral spillovers. Thus, this paper
complements the work of Irwin and Klenow by examining knowledge spillovers in five R&D-intensive
sectors.

This paper is not the first to attempt to measure international “knowledge spillovers.” Coe and

Helpman (95) and Mohnen and Bernstein (94) have done so, using country-level data to assess the

S
""" To be precise, they assume that p* (1 +—) = ¢, where s, is the market share of firm i, 77 is the price

elasticity of demand for semiconductors, p is the market price and ¢, is the marginal cost of firm /.



statistical relationship between aggregate R&D capital accumulation abroad and own country growth in
total factor productivity. Keller (95) has taken a similar approach using 2-digit industry data from 8
countries. In both cases, taking the country or industry as the unit of observation, a pool of external R&D is
constructed using data on bilateral trade flows.'? Coe and Helpman, in particular, find evidence of
extremely potent international R&D spillovers. Their results suggest that the “output elasticity” of
international spillovers is virtually_ identical to that of intranational spillovers.

The problem with econometric work at this level of aggregation is that within countries and even
within 2-digit industries, there is considerable technological heterogeneity. This requires us to be careful in
measuring spillovers. For instance, a maker of industrial solvents is unlikely to directly benefit from the
research of pharmaceuticals companies on psychoactive drugs, even though both are in the “chemical”
industry. The impact of true knowledge spillovers must be proportional to proximity in “technology space.”
If we find no relationship between the productivity of our industrial solvent manufacturer and research and
development by the pharmaceuticals manufacturer, that does not mean there are no knowledge spillovers.
On the other hand, if we find a relationship, and these authors generally do, it is difficult to give it a causal
interpretation. We are more likely observing common demand or input price shocks or a common time
trend than actual spillovers. This problem has been underscored by recent research conducted by Wolfgang
Keller (96). He finds, using the Coe-Helpman data set, that when one weights *“foreign” aggregate R&D by
randomly created “trade matrices” rather than the actual measures of bilateral trade, one typically gets even
higher coefficients on the “foreign” R&D term than those reported by Coe and Helpman.

This general problem is exacerbated by the way R&D data is collected in some countries. In the
U.S., R&D is collected at the firm level and assigned to the industry which the firm identifies as its primary
industry. However, most of the private sector R&D in the U.S. is done by large firms that span several 3-

digit and even 2-digit sectors. Working at the industry level can lead to what F. M. Scherer has referred to

"2 These models typically posit aggregate (or industry-level) total factor productivity growth as being a
function of own R&D and the R&D of trading partners j not equal to i, so that 7FP, = F(R,,S, ) where
S,, the spillover term, is a weighted sum of external R&D, and where the weights are measures of bilateral
trade, 7, such that S, = Z R T,

12



as “mismeasurement spillovers” - correlations resulting from the misclassification of R&D data at the
industry level.”

Separating the “signal” of real knowledge spillovers from the “noise” of potentially spurious
correlation requires a measure of technological proximity by which to weight the R&D, domestic and
foreign, which is done external to the firm. Obtaining such a measure requires the use of data at the level of
the producer which provides a rich description of the R&D activities of individual firms and the distribution
of that effort across different technological fields. Fortunately, such data exist and are exploited in this
paper.

L Empirical Methodology

This paper builds on the methodologies suggested by Zvi Griliches (1979) and first implemented
by Adam Jaffe (1985). The typical firm conducts R&D in a number of technological fields simultaneously.
We could obtain a measure of a firm's location in "technology space" by measuring the distribution of its
R&D effort across various technological fields. Let a firm's R&D program be described by the vector F,

where

F = 1) M
and each of the k elements of F represent the firm's research resources and expertise in the kth technological
area. We can infer from the number of patents taken out in different technological areas what the
distribution of R&D investment and technological expertise across different technical fields has been. In
other words, by counting the number of patents held by a firm in a narrowly defined technological field, we
can obtain a quantitative measure of the firm’s level of technological expertise in that field.

[ assume that, in the short run, a firm’s position in technology space is fixed. Over time, of course,
a firm can change its position by building tecﬁnological expertise in new areas, but this takes time and the
“adjustment costs” associated with this kind of change can be high. For this reason, I calculate for each
firm in my sample a single location vector based on its patenting behavior over the entire sample period.

By construction, I am assuming that firms remain in that position over the entire period.

13 Personal communication with author.



Griliches and Jaffe have reasoned that "R&D spillovers” between firms should be proportional to
the similarity and intensity of their research programs. We can measure the "technological proximity"
between two firms by measuring the degree of similarity in their patent portfolios. Firms working on the
same technologies will tend to patent in the same technological areas. We can state this more precisely: the
“distance” in "technology space" between two firms / and j can be approximated by P; where P, is the

uncentered correlation coefficient of the F vectors of the two firms, or

FF, |
})y = [ ' 2 )
[(FF XFE )]

Other things being equal, firm 7 will receive more "R&D spillovers"” from firm if firm j is doing a
substantial amount of investment in new technologies. Firm / will also receive more R&D spillovers if its
research program is very similar to that of firm ;. Thus, the total potential pool of intranational R&D
spillovers for a firm can be proxied by calculating the weighted sum of the R&D performed by all other
firms with the "similarity coefficients" for each pair of firms, Py, used as weights. More simply,
suppressing time subscripts here and in the equations below for expositional convenience, the intranational,

or “domestic” spillover pool for the ith is K, where Kj; is

K,=)Y PR, 3)

ix)
Here R, is the R&D spending of the jth firm (/ not equal to /) and P, is the "similarity coefficient.”

Similar, the potential international, or “foreign,” spillover pool is computed as

Kﬁ =ZPURJ C)

=)
Where R, is the R&D of firms based in a foreign country, again weighted by the P;; ’s. Assume that

innovation is a function of own R&D and external knowledge. Then, the "innovation production function”

for the ith firm is
N, =R/K} KO, )

where



¥5.0
O, =ec e )

Here the &’s can be thought of as exogenous differences in the “technological fecundity” of ¢ different
technological fields.

Taking the logs of both sides of (5) and adding time subscripts yields the following log-linear
equation

n, = pr, +yky +7:k, +Z5CD” téy @

In (7), n, is innovation, r,, is the firm's own R&D investment, k, is the domestic spillover pool, & is the
international spillover pool, the D’s are dummy variables to control for differences in the propensity to

generate new knowledge across technological fields (indicated by the subscript ¢} , and & is an error

term."

Our understanding of the way spillovers combine with own firm R&D to generate innovation is
sufficiently limited that the choice of functional form here is somewhat arbitrary. My choice reflects the
influence of Jaffe’s approach and the belief that external knowledge is more likely to enter the knowledge
production function as a complement than as a substitute to the R&D of the firm."

Now we come to a pivotal question: how do we measure innovation? In fact, there are no direct
measures of innovation, so tracking "innovation" will require the use of indirect and noisy empirical
proxies. If some fraction of new knowledge is patented, such that the number of new patents generated by

the ith firm is an exponential function of its new knowledge,

'*" One might suppose that external R&D only enters into the knowledge production function with a long
and variable lag. Empirical research suggests that the time required for new innovation to “leak out” is
actually quite short, with the precise lag structure being difficult to identify. See work by Mansfield (85)
and Caballero and Jaffe (94). 1 will return to this question in the discussion of empirical results.

1> An alternative specification would be one in which innovation is a function of total R&D, both internal

and external, such that NV, = 7,* where T, = (R, + 8K, + 9K, ). Taking the logs of both sides yields

i

the following nonlinear relationship: 7, = @ In(R, + 0K, + 9K ;). At this stage of research, the choice

of functional form is somewhat arbitrary. My specification yields an estimating equation in which the
treatment of random and fixed effects is straightforward. Furthermore, it is true to the spirit of the models
of Grossman and Helpman in that an increase in external R&D increases the innovation-maximizing level of
internal R&D effort. Finally, the use of nonlinear functional forms yielded estimates which are qualitatively
similar to the ones reported for the linear case. I thank Sam Kortum for discussions which clarified my
thinking on these points.



P =ec e N t3)
then the production of new knowledge can be proxied by examining the generation of new patents. We take

the logs of both sides of (8) and substituting into (7), we get
P = Pri + 7k + 7,3k, +25cDic+#i: ®)
4

where p,, is the log of the number of new patents and the other variables are as before, except for the error
term which is defined below. With this substitution, the interpretation of the coefficients on the D’s has
changed. They now represent industry-level differences in the propensity to patent, which are a function of
both the “technological fecundity” of the cth industry, as in (6), and the usefulness of patents as a tool of
appropriation in the cth industry. It is known that strong differences in both factors exist across industries.

In some sense, the interpretation of the y s changes as well. We do not observe the “pure effects”

of knowledge spillovers on firm innovation, which constitute an unambiguously positive externality. We
instead observe the effects of knowledge spillovers on economic manifestations of the firms’ innovation,
patents. Patents are a tool of appropriation. If technological rivalry with other firms is intense enough and
the scope of intellectual property rights conferred by patents is broad enough, firms may sometimes find
themselves competing for a limited pool of available patents -- a patent race. For this reason, the positive
technological externality is potentially confounded with a negative effect of other firms’ research due to
competition.'® Because of this, if actual flows of knowledge are weak and rivalry is strong, our estimates of

the ¥ 's may be negative even though the underlying knowledge externality is positive.

' To make this explicit, we can decompose the ¥ ’s in the following fashion:

In other words, the ¥ ’s that we observe are the net result of two opposite effects -- the “true” positive

technological externality of external knowledge on firm i’s innovation —O;k— , and a negative “patent race

effect,” @ in which the /th firms ability to patent new innovation is crowded out by the previous patenting

of competitive firms. Adam Jaffe (86) and others have also made this point.

12



Some attention needs to be devoted to the assumed properties of the new error term. Allowing the
propensity to patent to vary across firms in a way not correlated with the other regressors creates a

systematic component to the error - an individual effect such that
M, =6+, (10)
where the latter term is assumed to be a normal “jid” disturbance. If &, is uncorrelated with the right

hand side regressors, then this effect can be estimated using the “random effects” framework developed by
Maddala.

One can imagine, though, that this individual effect in the propensity to patent may be correlated
with a firm’s own research levels. If we assume unobservable but permanent differences in the productivity
of firm’s research, owing perhaps to the unequal distribution of high quality research personnel across
firms, we can easily imagine that firm’s with high quality research personnel will do more research, and that
this will lead to more patents. In this case, estimates are biased unless we correct for the correlation
between firm-specific research productivity and R&D levels. We can do this using a “fixed effect”
estimator. Results from both a random effects specification and a fixed effects specification are provided.
Unfortunately, | am unable to allow the propensity to patent to vary according to the strength of the
spillover term, as that would preclude identification.

The propensity to patent does vary widely across industries. I can control for this to some extent
with industry dummy variables. I make the assumption that an individual firm’s propensity to patent does
not change over time -- a reasonable assumption given the short time dimension in my data, but still not
necessarily true. There are other problems with using patents as indicators of innovative activity. The
ultimate economic value of firms’ patents varies widely, with some patents leading to no commercial
products and others leading to billions of dollars in revenues. For these reasons, it would be useful to have
an alternative index of innovation by the firm, and I provide one.

Real technological spillovers should lead not only to more patents but also higher levels of
revenue, by increasing product quality, and thus product demand, or lowering production costs. To measure
this effect, I estimate a standard Cobb-Douglas production function in its “growth rate” (difference) form,

using the spillover terms as regressors. Thus, suppressing time subscripts, output can be described as

13



Q =C L’ R'K;Khe® (11
taking the logs of both sides gives us

g, =oc, +f + o + ok, +pk, +¢, (12)
Here g is output, ¢ is capital, / is labor input, » is the firms’ own R&D stock, and the &’s are the domestic
and foreign spillover stocks respectively. In this case, firm’s own R&D and the spillover terms are
calculated as stocks via the perpetual inventory method.'” Again, we allow for the existence of individual
effects which are potentially correlated with the right hand side regressors, such that

g, =A,+u, (13)
The standard procedure is, of course, to use a “within” panel estimator to eliminate the individual effect.
However, if there is measurement error in the variables of interest, the “within” estimate may have a serious
bias of its own."® Following Hausman and Griliches (86), we use a “within” estimator that is less likely to
suffer from this second source of bias than either using the first-differences estimator or transforming the
data by calculating deviations from firms’ “time means.” We use the so-called “long difference” estimator,
regressing the log difference in the starting and ending levels of firms’ sales on the “long” log difference in

levels of capital and labor inputs, etc.

gy =G =a(cy =)+ Py =1y + @(ry —ro)+olky — ko) + Plhyr —kyuo)+ (A, =A,)+u, —u,
(14)

Here, T is the last period in the panel, while 0 is the first period. Thus our estimates are, it is hoped,
consistent in the presence of measurement error as well as individual effects which are correlated with
firm’s levels of capital, employment, or R&D.

Revenue growth is subject to idiosyncratic and systematic demand and input supply shocks. In
particular, unmeasured growth in the quality of capital and labor inputs, the level of capacity utilization, or
the effective demand for the firm’s products can all show up in the “residual” as productivity growth. Asa

result of this additional noise, it may be considerably more difficult to distill a relationship between

"7 A full discussion of why the use of stock measures is appropriate here is given in section V.

' Here, serious measurement error is a virtual certainty. Research by Griliches and Pakes (84) has shown
that accounting rates of depreciation physical capital are wildly inaccurate measures of the true depreciation
of capital services. Even less is known about the true rate of depreciation of “knowledge capital,” whether
internal or external to the firm.

14



spillovers and firm-level innovation from the data. If, however, our production function regressions give us
results similar to those of the patent equations, we have strong confirmation that we may be observing a
“real” effect.

Revenues of firms are subject to the same mix of positive technological externalities and negative
competitive externalities as are patents, because successful imitation can deplete monopoly rents. Where
knowledge flows are strong, we can expect a net positive effect of external R&D on own firm productivity
growth. Where flows of knowledge are weak and rivalry in the product market is strong, we can anticipate
a zero or even negative estimate.

Iv. A Note on Data

I use microdata on publicly traded high-technology manufacturing firms in the United States and
Japan. This choice was motivated by data availability, but also by the intrinsic importance of the two
countries. Japan and the United States are the leading technological superpowers in the OECD. They are
also highly integrated economically. Japan is disproportionately dependent on the United States both as a
market for its exports and a source of its imports, particularly high-technology imports. Likewise, the
United States trades more with Japan than with any other country with which it does not share a border.
Finally, there is considerable anecdotal evidence to suggest that Japanese firms are particularly good at
monitoring R&D developments abroad. If one is going to find international knowledge spillovers
anywhere, one should find them here. Fortunately, there also exists broadly comparable, publicly available
data at the micro-level on the innovative activities of publicly traded firms in both countries.

I chose to examine the five industries in the U.S. and Japan in which the average R&D/sales ratio
is highest, for the simple reason that one is less likely to identify the sources and effects of spillovers in
industries with little technological innovation. Since I rely on patents as indicators of both innovative
activity and as a means of locating firms in technology space, I restricted my sample to U.S. and Japanese
firms with more than ten patents granted in the U.S. during my initial sample period, 1977-1989. 1 later
shortened this sample period to 1983-1989 because of limitations on the availability of micro-level data on

R&D spending by Japanese firms. Prior to 1985, the publicly available data on firm-level R&D spending is
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of uneven quality, with gaps and large jumps in the time series of individual firms. Thus, in most of my
regressions, | am forced to further restrict the sample period to the years 1985-1989.

The Japanese panel consists of 205 firms from the chemicals, machinery, electronics,
transportation, and precision instruments manufacturing industries. For each firm, we have data by year for
the years 1985-1989. For each year, | have the number of patents granted to these firms in the U.S.
(classified by date of application), their R&D expenditures in that year, a “domestic spillover” term
consisting of the weighted sum of “external” R&D performed by technologically related Japanese firms
computed for each year, and a foreign spillov‘er term consisting of “external” R&D performed by
technologically related U.S. firms.'> Table A gives some summary statistics for the Japanese sample.

Similar data was gathered for American firms from the same industries. The final U.S. panel
consists of 209 firms. Firms were required to be listed on the stock exchange continuously during the
sample period, and firm with large jumps in recorded capital stock (generally the result of large mergers or
divestitures) were removed in the interest of avoiding large outliers. Table B gives sample statistics for the
U.S. sample.

V. Empirical Analysis
Empirical Results for Japan
This section presents results from a linear regression framework. Suppressing time subscripts, the

estimating equation is
pi ='Brl+}/lku‘l+y2kﬁ+26cDic+lui (9)

where p is the log of patents for firm j in the j year, r is the log of firm’s own R&D, the &’s represent the

logs of “domestic” and “foreign” spillover terms, and the D’s are dummy variables for the five industries

represented.

' Here I use the U.S. patents of Japanese firms to locate them in technology space and to measure their
innovation. I also have data, not used in this draft, on the Japanese patents of these firms. The patent
classification schemes and the patent screening processes used in the two countries are different enough
that, to insure the comparability of patents for both sets of firms, I decided to use U.S. patents. It should be
noted that Japanese firms are extremely aggressive about patenting their inventions in the U.S. as well as
Japan. Japanese firms now account for about 25% of new patents in the U.S., by far the most important
foreign users of the American patent system.
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Investments in R&D, particularly basic R&D, may take some time to bear fruit. Accordingly,
when estimating the impact of R&D on some measure of innovation, one can make an argument for
including lagged values of past R&D investment or, alternatively, constructing an R&D “stock” by
assuming that past R&D investments do contribute to current innovation, albeit with decreasing
effectiveness over time due to technological obsolescence. However, a long tradition of empirical research
on patenting by U.S. firms has failed to identify the lag structure of past R&D investment on current
patenting. Most research indicates that the relationship between patenting and R&D is largely
contemporaneous.”® Inventions must represent some advance in the state of the art to qualify for patent
protection. In R&D-intensive industries, where the state of the art is rapidly advancing, it may be the case
that only the firm’s most recent R&D is associated with inventions that meet that test. It also seems to be
the case that firms tend to take out patents at a relatively early stage in the research and development
process to preempt the competing claims of other firms in the product development stage. Based on these
results, my specification of equation (9) relates patents applied for in period ¢ with firm R&D spending in
period ¢. Thus, | use a contemporaneous “flow” measure of R&D.

The same issues of timing exist with regard to the spillover terms. As mentioned before there is a
fair amount of evidence based on U.S. data suggesting that new innovation spills over fairly quickly.?’ The
short length of the time series dimension of my panel and the multicollinearity in the data effectively
preclude the estimation of intricate lag structures on the spillover term. In the regressions below, I treated
“domestic spillovers” as contemporaneous whereas “foreign spillovers” were lagged by one year. This was
done, in part, to allow “foreign” innovations longer to diffuse. It was also done to partly control for
differences in accounting conventions in the two countries, as the fiscal years of most of the U.S. firms and
those of the Japanese firms do not perfectly overlap. However, experiments with contemporaneous “foreign
spillovers” and lagged *“domestic spillovers” yielded results that are qualitatively similar to the ones

reported in this paper.

2 Hausman, Hall, and Griliches (86) found essentially no effect of past R&D investments on current

patenting.
I See Mansfield (85) and Caballero and Jaffe (93).



In results that I do not report, I constructed stock-based measures of own firm R&D and domestic
and foreign spillover terms and reestimated (9) using these stocks rather than flows. This yielded results
very similar to the ones reported in the tables.?? My final defense for the use of “flow” spillover measures is
this: given my data limitations, I purport to measure only the long-run steady-state relationships between
the variables of interest. A full-blown study of the dynamics would require richer data and substantially

longer time series.

In Table 3, the first column and second columns present coefficients and “White” standard errors
for OLS versions of (9) in which domestic and foreign spillovers are entered along with own R&D into
separate equations. The third column presents results for an OLS regression with White standard errors for
both spillover terms. The fourth column is the “random-effects” panel estimator proposed by Maddala
using both terms, and the fifth column is the “fixed-effects” or “within” panel estimator using both terms.
The sixth column reestimates the fixed-effects model using time dummies. A Hausman test rejects the
random effects estimator in favor of a fixed effects estimator, and firm-level heterogeneity in patenting and
R&D spending suggests that firm effects are important.”

In all models but the fixed effects specification without time dummies, we can reject the
hypothesis of equality of the coefficients of domestic and foreign spillovers at the 5% level using the
standard F-test (or Chi-squared test, in the case of the random effects model). Even in the fixed effects
case, there are clear qualitative differences in the estimated impact of the two kinds of spillovers, and

although the domestic term is significant, the international term is statistically indistinguishable from zero.

22 While the similarity is heartening, it is driven by the fact that most of the variability in firms’ R&D
spending is in the cross-section dimension, with individual firms showing little variation in their R&D
spending over time (which also explains why the introduction of simple lags has little effect on my
empirical results). In addition, due to data limitations for Japanese firms, construction of the stock variables
required me to extrapolate R&D spending into the past based on firm behavior in the sample period.
Finally, very little is known about the rate at which knowledge depreciates. | make the standard assumption
of 15% annual depreciation, which is ultimately nothing more than an educated guess. See Griliches and
Mairesse (84).

2 A frequent problem encountered in this type of this specification is that, for a non-negligible number of
firm-years, there are no patents generated. To fit that outcome into the log-linear model, I set the log of
patents for those observations equal to zero. This is the standard adjustment used in this literature. A better
approach may be to use a statistical model formulated specifically to handle count data. Such a model is
derived in the appendix and estimated in the following table, with results similar to those of the log-linear
model.



When time dummies are used in the fixed effects specification, the sign of foreign spillovers changes and
we are again able to reject the hypothesis of equality at the 5% level.
Results from the Negative Binomial Model

Patent data are “count data” - non-negative integers - and in any given year a number of firms
perform R&D but generate no patents. The distribution of patents is highly skewed with most firms
generating far fewer than the mean number of patents in a given year. The linear model was not designed to
handle such data. Over the past decade a set of regression models have been developed expressly for the
purpose of handling this kind of data. A sketch derivation of the technique used here, a generalization of
the Poisson model known as the “negative binomial” estimator, is given below. For a more formal
development of this model, please consult Hausman, Hall, and Griliches (84). Here, I summarize their

results, borrowing extensively from the presentation of these basic results found in Montalvo and Yafeh

(94).
The Poisson estimator posits a relationship between the dependent and independent variables such that
-4 nit
e A"
P”(”,,)=f(",,)=‘—" (15)
n,!
where 4, = "’ (16)

Econometric estimation is possible by estimating the log likelihood function using standard maximum
likelihood techniques. The negative binomial estimator generalizes the Poisson by allowing an additional
source of variance. We allow the Poisson parameter lambda to be randomly distributed according to a

gamma distribution. Thus defining lambda as before

X
A, =e"? v g, a7
Using the relationship between the marginal and conditional distributions, we can write

PN, =n,]= [Pt[N, =n,|4,1f(A,)dA, (18)

If the density function is assumed to follow a gamma distribution, then the Poisson model becomes a

Negative Binomial model:

A, =T(a,0,) (19)
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a,=e"’ (20)
then
w -1 -1
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where
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EA)=a,V(4,)=~— (22)
Integrating by parts and using the fact that
Na)=d(a-1)=(a-1! (23)
yields the following distribution

I'(n, » ,
Pr(n,, ) — (nu + ¢u ) [ ¢: #y [ au ]n,, (24)

r(nil + ])r(¢u) al! + ¢ll ¢ir +ail

with
E(n,)=«a, (25)
and
V(nll) = all + ail2 /¢Il (26)

This can also be estimated using maximum likelihood techniques. The log likelihood function becomes

L(B) =3 Tlogl(A, +n,)-logT(1,)~logT(n, +1) + 4, log(d) - (4, +n,)log(1+8)

@n
with
V(in)=e“*(1+8)/65 (28)
Thus, the coefficients are estimated using standard maximum likelihood techniques. Estimates from a

simple negative binomial model are given in Table 4.
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Again, the coefficients of domestic and foreign spillovers are clearly not equal. The formal null
hypothesis of equality of the two coefficients can be rejected at conventional levels. Hausman, Hall, and
Griliches have also developed a “fixed effect” version of the negative binomial estimator. The derivation of
this estimator is given in the technical appendix. Results are provided in the third column of Table 4.
Results from a *'Productivity Growth" Equation

As an alternative to the results based on patents, [ also present empirical evidence based on the
“long difference” form of the Cobb-Douglas production function derived in equation (14). Unlike the
relationship between patents and R&D, the relationship between R&D and revenues is subject to fairly long
lags. Bringing an idea from the “patent” stage to the “product” stage requires several steps, each of which
generates a lag between the time the initial R&D is performed and the period in which it has an impact on a
firm’s sales. Because of this, | estimate (14) using “stock” measures of a firm’s own R&D and the spillover
terms.

Because revenue growth is affected by changes in demand and in the quality and price of factors of
production other than technology, we attempt to eliminate the effect of these irrelevant fluctuations by
“averaging them out.” Thus data preparation differs from that used with the patent equations. I use a
longer sample period, 1983-1989. In my specification of (14), the variables consist of the log differences in
the data averaged over the first 3 years of the sample and the data averaged over the last 4 years of this
extended sample. In the U.S. panel, capital stock data are calculated using the perpetual inventory method.
Data limitations in the Japanese panel require me to use the “book value” of a firm’s capital stock, taken
directly from the firm’s accounts and deflated by the capital goods price deflator. This introduces an
additional source of measurement error, as accounting adjustments in the capital stock often have little basis
in economic reality. Furtl;ermore, the shorter time series available on Japanese firms’ R&D spending
means that a relatively higher degree of imputation is necessary to construct the R&D stock variables.
Finally, data on raw materials expenditures are available at the firm level for Japanese firms but such data
are not available for the U.S. sample. Because of all these caveats, the results from the production function
are offered in the spirit of a “reality check” for the patent equation results. Table 5, based on Japanese data,

yields results that are very consistent with the patent equation results.
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The coefficients on capital stock and own R&D stock are implausibly small and insignificant,
suggesting that measurement error in these two variables is leading to a downward bias in the coefficients.
The presence of the bias limits the inference we can make, but the coefficients on the spillover terms are
very consistent with the results from the patent equations. Domestic spillovers are strongly positive and
significant at conventional levels. Foreign spillovers are statistically indistinguishable from zero.

Results from U.S. Data.

A U.S. panel of 209 high-technology manufacturing firms was prepared along the same lines as the
Japanese panel. Empirical results from this sample were broadly consistent with those obtained for Japan.
Table 6 gives results for regressions based on a linear model.

There are a few differences with the Japanese results that I wish to comment on here. The
domestic spillover effect is generally weaker and less robust in the U.S. data, depending on the
specification. This is consistent with considerable anecdotal evidence suggesting that U.S. corporate R&D
laboratories suffer from a “‘not-invented-here” syndrome, giving insufficient attention to technological
developments outside the firm.

Table 7 gives results from a negative binomial model. Again, the negative binomial estimator
results indicate the impact of the two types of spillovers is not equal.

Finally, 1 offer results based on a “production function™ approach for the U.S. data in Table 8. The
production function results seem more plausible than those for the Japanese sample, reflecting the higher
quality of the U.S. data. They, too, are consistent with the results from the patent equations.

The empirical results are presented in terms of elasticities. In order to provide the reader with a
sense of the economic magnitudes involved, | calculated the patents generated per one billion yen of
“internal” and “external” R&D. Evaluated at the mean of the data for the Japanese sample, the coefficients
from the “fixed effects linear model” in Table 3 imply that one billion yen of “own” R&D generated 2.1
patents in the U.S. (a figured quite similar to that of the U.S. firms, adjusted for exchange rate differences),
whereas one billion yen of “domestic spillovers” yielded .06 patents and the same amount of foreign

spillovers yielded .01 patents. This calculation, however, should be taken with a large grain of salt. The
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reason is that, with no obvious means of normalizing the P;; matrices, the units of the spillover terms are
arbitrary. Adam Jaffe explains this problem in greater detail in his paper (Jaffe, 86).
Comments on Results

Are these results plausible? The results for Japan seem plausible enough. The frequency with
which foreign spillovers are negative, especially in the U.S. data, is certainly surprising. Of course, one
can never rule out the possibility that these resuits are an artifa;t of the data. The use of diagnostic
techniques to identify influential outliers seems to indicate that they are not driving these results. The data
are characterized by a fairly high level of multicollinearity. In particular, the spillover terms are generally
more highly correlated with one another than they are with the dependent variable or the other regressors.?*

This multicollinearity is less pronounced in the “within” dimension of the data, which seem to
produce the more plausible estimates (for instance, in the production function estimates, the two terms have
a correlation of only .2668 in the Japanese data). Two of the fixed-effects models show the effect of foreign
spillovers on Japanese innovation to be substantially positive, though estimated with little statistical
precision. Even in these “within” estimates, though, substantial differences can be seen in the impact of
intranational and intemnational spillovers. Moreover, when domestic and foreign spillover terms are entered
into the knowledge production function separately, they have very different elasticities. This differential is
quite consistent across specifications and countries.”

It is important to recall that | am estimating a net effect of unobservable technological externalities,
which are positive, and competitive externalities, which are negative. A consistently net negative result in

the case of the U.S. is not so surprising given considerable anecdotal evidence of a “not-invented-here”

# The Data Appendix illustrates this problem with tables showing simple correlations among the
dependent variable and the regressors.

% An alternative interpretation of these coefficients is that they represent the competitive reaction of the
ith firm to an increase in the R&D spending of its domestic (and foreign) rivals. There are several problems
with this hypothesis. First, the “external R&D” is not just the weighted sum of that firm’s rivals in the
product market. Instead, it is the weighted sum of external R&D performed by all technologically
proximate firms, including firms in upstream and downstream industries. Given that product market rivals’
R&D constitutes only a small fraction of total external R&D, the “reaction” interpretation is problematic.
Second, this interpretation requires us to impose some assumptions on the nature of competition, namely
that increases in R&D spending are “strategic complements” rather than “strategic substitutes.” Empirical
evidence on this presented by Scherer and Kuh (1992) suggests that such an assumption is unwarranted.
Finally, there is no obvious reason why such a reaction should differ so markedly for domestic versus
foreign rivals. I thank Aloysius Siow for raising these points.
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syndrome among technologically active U.S. firms.2® If U.S. firms devote little effort to tracking research
activities abroad, as they are accused of doing, than the weak technological externalities will have less
effect on my estimates than the negative “competitive” externalities. In some industries, such as electronics,
these competitive effects are obviously quite strong and may be driving my results. Even in the case of
Japanese firms, a result in which foreign spillovers are statistically indistinguishable from zero is not
inconceivable. The ability of firms to track technological developments abroad probably requires a
substantial investment in an international industrial intelligence network that only the larger, more capable,
and more international companies in Japan’s more competitive industries are capable of making. The firms
in my data set are quite diverse in their size, R&D-intensity, and involvement in international markets. It
must be true that the average company is considerably less plugged in to the American R&D networks than
Fujitsu or Toshiba.

The central conclusion of this paper, namely that knowledge spillovers are primarily an
intranational phenomenon, receives support from other recent studies using very different methods. Francis
Narin (95) has recently conducted a study of knowledge spillovers in pharmacological science research
community. Using data on citations in scientific papers, Narin finds that scientists tend to cite other
scientists in the same country far more frequently than one would expect given the geographic distribution
of scientists and research resources. Jaffe and Trajtenberg (95) find similar patterns in their preliminary
work on patent citations: patent citations also seem to indicate that knowledge spillovers have a strong
intranational component. I have one final piece of confirming evidence: the subjective opinion of Japanese
R&D managers themselves. Goto and Cohen have recently created surveys on the appropriability of R&D
along the lines of the survey used by Levin, Cohen, et. al. These surveys were distributed to R&D
managers in the U.S., Japan, and the EC to allow for an international comparison. When asked whether
foreign or domestic “spillovers” were more important, the Japanese respondents’ answers indicate that

domestic spillovers are overwhelmingly more important.27

% | thank Dr. David Kahaner of the Asian Technology Transfer Project and Miles Wakayama of Hitachi
Central Research and Development for sharing their stories and insights on this topic.

%7 Based on personal communication between Professor Goto and the author concerning contemporary
research of the National Institute for Science and Technology Policy, Science and Technology Agency,
Japan.

24



VL Conclusions and Extensions

In general, the data support the following three conclusions:
L. Intranational spillovers are stronger than international spillovers.
2. There is some evidence that Japanese companies benefit positively from research undertaken by
American firms, although this effect is smaller and less robust than the effect of intranational spillovers.
3. There is no evidence that American companies benefit positively from research undertaken by
Japanese firms, in fact where the effect is statistically distinguishable from zero, it is negative.

The implications of these findings for the theoretical and empirical literature are significant. First,
these results provide empirical backing for the assumption that knowledge spillovers are primarily
intranational in scope. This clearly lends credence to a number of models that generate multiple equilibria
in trade flows, allow comparative advantage to be determined endogenously, and allow government policy
to have a lasting impact on trade. It also leads to a whole nexus of research questions: what are the barriers
to the flow of knowledge spillovers across countries? Will they become less important over time as
multinational firms conduct more R&D abroad and become more aggressive and proficient in transferring
their existing knowledge capital abroad?

The implications for policy are also potentially significant, and lead to some natural extensions of
the paper. My results certainly support the view that private R&D has public good aspects and that the
private marginal product of investment in R&D may be considerably lower than the social marginal
product. In addition, because these effects are intranational in scope, they lend some support to the view
that there may be strategic reasons for supporting private R&D.

I hesitate to say that this provides justification for “strategic trade policy.” There is nothing in my
empirical results to suggest that it is in the national interest to subsidize the production of any particular
commodity or to deny foreign producers the right to export to or make direct investments in the United
States. However, the idea that promotion of private R&D can have an impact on comparative advantage is

one that trade economists should take more seriously. At the very least, the promotion of research consortia
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along the lines advocated by Spence (84) may be an option worth considering, since it seeks to “internalize
the externality created by new technological innovation.”*

The potential benefits of such policies have not been lost on the Japanese. The celebrated research
consortia organized by MITI have been lauded and feared as a potent policy instrument by which Japan
built comparative advantage. Surprisingly little serious empirical research has been done on these
consortia.” Ongoing research with Mariko Sakibara of Anderson Graduate School of Management is using
the data developed here to estimate the impact of participation in a joint venture on Japanese firms’ ex-post
R&D spending, patenting in Japan and the U.S., and measures of intranational spillovers. Are they
responsible for the measurably higher levels of spillovers in Japan? Perhaps policy lessons for the U.S.
could be drawn from the Japanese experience.

It is also well-known that Japanese firms are more apt to collaborate with their suppliers or
customers in the development of new products even without the carrots and sticks of government-organized
consortia. This kind of collaboration is concentrated in the vertical keiretsu groups. To what extent is
Japanese industrial organization responsible for the high and robust estimates of intranational spillovers in
this data?’® Using micro-level data on affiliation to vertical keiretsu groups, I investigated this potential
linkage in the fourth chapter of my Ph.D. dissertation, comparing the spillovers of affiliated firms to non-
affiliated firms, and examining the intra-group correlation of productivity residuals. 1 have found strong
evidence of a relationship between keiretsu affiliation and spillovers of process technology, but further work
is needed to clarify the nature of this relationship and its interpretation.

Finally, it is my hope that this paper will stimulate additional research in international economics at
the firm level employing the types of data used here. Knowledge capital and innovation are not only at the
core of the “new” models of trade and growth, but they also figure prominently in existing theories of
foreign direct investment and in the theory of the multinational firm. Detailed, publicly available data at the

producer level exists on these assets, and the econometric techniques developed by the micro productivity

28 Spence (84) was the first to draw attention to the potential role of research joint ventures in correcting
the externality problem. More recently, Paul Romer (93) and Paul Krugman (90) have also advocated
subsidized research joint ventures.

¥ See Wakasugi (86) for an excellent summary of the issues involved and some “case study” evidence on

the effectiveness of the consortia.
30 See Suzuki (93) for another analysis of the effects of vertical keiretsu ties on innovation.
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literature should find fruitful application in testing a number of the hypotheses generated by these theories.
Intellectual arbitrage between these two fields (or, exploiting the spillovers between them) should increase

the research productivity of both.
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Data Appendix

Firm-level data on Japanese R&D spending are taken from Japanese language primary sources,

namely the Kaisha Shiki Ho, published by Toyo Keizai, and the Nikkei Kaisha Joho, published by the

Nihon Keizai Shimbunsha. Data on Japanese firm output and other inputs was drawn from the Japan

Development Bank Corporate Finance Data Base. Data on the U.S. patents of Japanese firms was obtained

from the U.S. patent office. These data had to be matched to the other micro data on a firm by firm basis,

since patents are classified by the English name of the Japanese firm while my other data are classified by

the Tokyo Stock Exchange code, which is the Japanese equivalent of the Compustat code. Data on the

Japanese patents of Japanese firms and additional information on the R&D activities of Japanese firms was

taken from the Japanese language records of the Ministry of International Trade and Industry. The full data

construction process required over six months, four of which were spent in Japan. It would not have been

completed without the generous assistance of the staff at the Japan Development Bank’s Research Institute

of Capital Formation and the Research Institute of the Ministry of International Trade and Industry.

The U.S. data comes from the NBER R&D/Productivity data base compiled by Bronwyn Hall and

others. Data on subsidiaries was taken from the Directory of Corporate Affiliations, various issues.

The following tables illustrates the multicollinearity in levels in the data:

Table A Japanese Data

Variables log(patents) log(R&D) log(domestic) log(foreign)
log(patents) 1

log(R&D) 7536 1

log(domestic 4751 4847 1

pool)

log(foreign pool)  .4372 5217 .8549 1

Table B U.S. Data

Variables log(patents) log(R&D) log(domestic) log(foreign)
log(patents) 1

log(R&D) .8238 1

log(domestic .4226 .5326 1

pool)

log(foreign pool) 3262 .4849 .9056 1
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Technical Appendix

In this section I present a sketch derivation of the “conditional” or “fixed-effects” negative binomial
estimator. The derivation and the notation very closely follow Hausman, Hall, and Griliches (84) and is
merely intended to be a summary of their analysis. For a more complete treatment of the topic, the reader is

referred to that paper.

Let the moment generating function for the negative binomial distribution be

1+5+e’)_'y
o

o<
Now consider a simple case with two observations. If ¥ is common for two independent negative binomial
random variables w, and w,, then w,+w,=z is distributed as a negative binomial with parameters

(}', +¥, ,5) . This is due to the fact that the moment generating function of a sum of independent random

variables equals the product of their moment generating functions. We derive the distribution for the two

observations case.
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Here each firm can have its own delta so long as this delta does not vary over time. The delta has been
eliminated by the conditioning argument. More generally, considering the joint probability of a given

firm’s patents conditional on the 4 year total, we can obtain the following distribution.
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Given this, we are able to do estimation of the following log likelihood function

logL =) > logl'(4, +n,)—1logl'(4,)~logl(n, +1)+logl(>_4,)+
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Table 1 Sample Statistics for Japanese Data

Variable Obs Mean St. Dev. Min Max
patents 1025 41.47 117.17 0 966

R&D 1025 15369.33 39020.69 0 316147
Dom. Pool 1025 605,780.6 294,972.7 50326.07 1,742,435
Foreign Pool 1025 1,441,850 136,659.1 3,462,034
Units are millions of 1985 Japanese yen.

Table 2 Sample Statistics for U.S. data

Variable Obs Mean St. Dev. Min Max
patents 1045 58.11 107.5 0 750

R&D 1045 189.58 495.15 .6939 4885.939
Dom. Pool 1045 9532.2 3669.64 1806.36 21841.21
Foreign Pool 1045 3872.14 419.36 10328.73

Units are millions of 1987 U.S. dollars.
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Table 3 Linear Regressions Based on Japanese Data
Dependent Variable: Log(Patents), Obs=820 Standard Errors in Parentheses

OLS OLS OLS Random Fixed Fixed
(dom) (foreign)  (both) Effects Effects Effects

log R&D .7698 8169 .7855 .6377 .0953 .0793
(.0255) (.0298) (.0284) (.0477)  (0977) (.0974)

log domestic spillovers 5011 9642 1.245 9268 1.249
(.0944) (.2055) (3017) (3557 (.6591)

log foreign spillovers 2752 -.5837 -.5981 3727 -2.033

(.1190) (.2284) (.3208) (5022) (1.306))
test of equality n.a. n.a. F=13.53 Chi2=9.67 F=47 F=5.65
p=0.0003 p=0.0019 p=49 p=0.018

chemicals -.5631 -.7815 -4270 -.2735 na. n.a.
(.1645) (.1805) (.18324)  (.3201)

machinery -.0795 -.1702 -.0914 -.0926 n.a. n.a.
(.1720) (.1971) (.1849) (.3207)

transportation -.5399 -.5362 -.5848 -.5862 n.a. n.a.
(.1599) (.1831) (.1721) (.3076)

precision instruments -.5084 -.5828 -.5156 -4816 n.a. n.a.
(.1752) (:2003) (.1906) (.3185)

year 2 -.0238 -.0821 - 0534 -.0299 -.3579
(.1128) (.1071) (.1054) (.0632) (.2647)

year 3 .0155 -.0765 0365 .0797 -.0984
(.1095) (.1022) (.1028) (.0682) (.1991)

year 4 .0781 .0345 .0648 0794 -.0360
(.1132) (.1043) (.1025) (.0575) (.1143)
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Results from the Negative Binomial Model

Table 4 Negative Binomial Model (Japanese Data)

Dependent Variable: Patents, Obs=820
n.b. totals  fixed

effects

log R&D .6753 .8483
(.0245) (.02110))

log domestic spillovers | 4131 1.275
(.1414) (.1347)

log foreign spillovers -.1353 ..-1.518
(.1414) (.1245)

test of equality Reject* Reject*

chemicals -.9168 n.a.
(.1220)

machinery -.5319 n.a.
(.1184)

transportation -.6789 na.
(.1056)

precision instruments -.9690 n.a.
(.1165)

time trend -.08331 -.0104
(.0236) (.0311)

Log likelihood -3173.84 -3004.80

The negative binomial regressions follow Hausman, Hall, and Griliches (84). Standard errors are computed

from the analytic second derivatives.
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Table 5§
Production Function Regression (Japanese Data)
: A Log (Deflated sales), Obs=205

A Log (Capital) 0864
(.0566)
A Log (Labor) 2829
(.0816)
A Log (Materials) .3803
(.0854)
A Log (Own firm R&D) 0132
(.0493)
A Log (Dom. Pool) 7034
(.3464)
A Log (Foreign Pool) 3787
(:3056)
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Table 6
Linear Regressions Based on U.S. Data

Dependent Variable: Log(Patents) Obs=836
Domestic  Foreign OLS Random Fixed Fixed
Both Effects Effects Effects
log R&D 7575 .7873 7791 6841 2461 2225
(.0194) | (.0234) (.0230) (.0401)  (.0907) (.0901)
log domestic spillovers 1551 9869 1.1467 3638 1.303
(.0881) (.1900) (.3487)  (.5320) (1.186)
log foreign spillovers -.0791 -.8475 -.7990 -.6568 -1.937
(.0958) | (.1781) (.3094)  (.4020) (.7656)
test of equality F=26.92 Chi2=9.45 F=13 F=3.96
p=0 p=0.002 p=25 p=0.05
machinery .5061 4681 4195 3975 n.a. na.
(.0947) | (.1081) (.1069) (.1962)
chemicals .6314 5147 3232 4489 n.a. n.a.
(.0892) | (.1174) (.1251) (.2060)
transportation 3920 4248 .3387 3741 n.a. n.a.
(.1114) | (127D (.1312) (.2222)
precision instruments 2257 2075 1375 .0849 n.a. n.a.
(.0903) [ (.1010) (.1043) (.2090)
year 2 .0795 1241 1124 1319 -.1504
(.0812) | (.0968) (.0957) (.0560) (.1944)
year 3 1312 .1883 2267 .2406 .1039
(.0814) | (.0956) (.0946) (.0507) (.1361)
year 4 1021 1650 1296 .1410 .0015
(.0829) | (.0968) (.0962) (.0514) (.1005)
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Table 7

Negative Binomial Model (U.S. Data)
Dependent Variable: Patents, Obs=836

n. b, totals | fixed-
effects
log R&D .8106 .8056
(.0203) (.0329)
log domestic spillovers 7284 8123
(.1706) (.2278)
log foreign spillovers -.8178 -.8923
(.1930) (.2589)
test of equality Reject* Reject*
machinery 3013 n.a.
(.0919)
chemicals .1602 n.a.
(.1055)
transportation 4101 n.a.
(.0957)
precision instruments -.0218 n.a.
(.1256)
time trend -.0081 -.0226
(.0284) (.0525)
log likelihood -3468.8 -3561.23
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Table 8
Production Function Regression (U.S. Data)
Dependent Variable: A Log Deflated sales), Obs=209

A Log(Capital) 2842
(.0992)
A Log(Labor) 5292
(.0962)
A Log(Own firm R&D) 3619
(.1298)
A Log(Dom. Pool) 8307
(4431)
A Log(Foreign Pool) -.4828
(.5089)
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