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Abstract

Larger language models have higher accu-

racy on average, but are they better on ev-

ery single instance (datapoint)? Some work

suggests larger models have higher out-of-

distribution robustness, while other work sug-

gests they have lower accuracy on rare sub-

groups. To understand these differences, we

investigate these models at the level of indi-

vidual instances. However, one major chal-

lenge is that individual predictions are highly

sensitive to noise in the randomness in train-

ing. We develop statistically rigorous meth-

ods to address this, and after accounting for

pretraining and finetuning noise, we find that

our BERT-LARGE is worse than BERT-MINI

on at least 1−4% of instances across MNLI,

SST-2, and QQP, compared to the overall ac-

curacy improvement of 2−10%. We also

find that finetuning noise increases with model

size, and that instance-level accuracy has mo-

mentum: improvement from BERT-MINI to

BERT-MEDIUM correlates with improvement

from BERT-MEDIUM to BERT-LARGE . Our

findings suggest that instance-level predictions

provide a rich source of information; we there-

fore recommend that researchers supplement

model weights with model predictions.

1 Introduction

Historically, large deep learning models (Peters

et al., 2018; Devlin et al., 2019; Lewis et al., 2020;

Raffel et al., 2019) have improved the state of

the art on a wide range of tasks and leaderboards

(Schwartz et al., 2014; Rajpurkar et al., 2016; Wang

et al., 2018), and empirical scaling laws predict

that larger models will continue to increase per-

formance (Kaplan et al., 2020). However, little is

understood about such improvement at the instance

(datapoint) level. Are larger models uniformly bet-

ter? In other words, are larger pretrained models

better at every instance, or are they better at some

instances, but worse at others?

Prior works hint at differing answers. Hendrycks

et al. (2020) and Desai and Durrett (2020) find

that larger pretrained models consistently improve

out-of-distribution performance, which implies that

they might be uniformly better at a finer level.

Henighan et al. (2020) claim that larger pretrained

image models have lower downstream classifica-

tion loss for the majority of instances, and they

predict this trend to be true for other data modal-

ities (e.g. text). On the other hand, Sagawa et al.

(2020) find that larger non-pretrained models per-

form worse on rare subgroups; if this result gener-

alizes to pretrained language models, larger models

will not be uniformly better. Despite all the in-

direct evidence, it is still inconclusive how many

instances larger pretrained models perform worse

on.

A naı̈ve solution is to finetune a larger model,

compare it to a smaller one, and find instances

where the larger model is worse. However, this

approach is flawed, since model predictions are

noisy at the instance level. On MNLI in-domain

development set, even the same architecture with

different finetuning seeds leads to different pre-

dictions on ∼8% of the instances. This is due to

under-specification (D’Amour et al., 2020), where

there are multiple different solutions that can mini-

mize the training loss. Since the accuracy improve-

ment from our BERT-BASE1 to BERT-LARGE is

2%, most signals across different model sizes will

be dominated by noise due to random seeds.

To account for the noise in pretraining and fine-

tuning, we define instance accuracy as “how often

a model correctly predicts an instance” (Figure 1

left) in expectation across pretraining and finetun-

ing seeds. We estimate this quantity by pretraining

10 models with different seeds, finetuning 5 times

for each pretrained models (Figure 1 middle), and

1This is not the original release by Devlin et al. (2019); we
pretrained models ourselves.
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Seed 1 Seed 2 Seed 3
Instance 

Accuracy

Instance 1 X ✓ ✓ 66%

Instance 2 X X X 0%

Instance 3 ✓ X X 33%

Instance 4 ✓ ✓ ✓ 100%

Average across seeds

F(*)1 F(*)2

P1 X ✓

P2 ✓ X

P3 X ✓

Finetuning Seeds

Pretrain

-ing 
Seeds

MINI 

LARGE

Instance 1 Instance i

Model

Sizes

…

…

…

…

…

✓ ✓

✓ X

✓ ✓

X ✓

✓ X

X X

X X

✓ X

✓ ✓

Instances

Figure 1: Left: Each column represents the same architecture trained with a different seed. We calculate accuracy

for each instance (row) by averaging across seeds (column), while it is usually calculated for each model by

averaging across instances. Middle: A visual layout of the model predictions we obtain, which is a binary-valued

tensor with 4 axes: model size s, instance i, pretraining seeds P and finetuning seeds F . Right: for each instance,

we calculate the accuracy gain from MINI to LARGE and plot the histogram in blue, along with a random baseline

in red. Since the blue distribution has a bigger left tail, smaller models are better at some instances.

averaging across them.

However, this estimate is still inexact, and we

might falsely observe smaller models to be better

at some instances by chance. Hence, we propose

a random baseline to estimate the fraction of false

discoveries (Section 3, Figure 1 right) and formally

upper-bound the false discoveries in Section 4. Our

method provides a better upper bound than the clas-

sical Benjamini-Hochberg procedure with Fisher’s

exact test.

Using the 50 models for each size and our im-

proved statistical tool, we find that, on the MNLI

in-domain development set, the accuracy “decays”

from BERT-LARGE to BERT-MINI on at least ∼4%

of the instances, which is significant given that the

improvement in overall accuracy is 10%. These

decaying instances contain more controversial or

wrong labels, but also correct ones (Section 4.2).

Therefore, larger pretrained language models are

not uniformly better.

We make other interesting discoveries at the in-

stance level. Section 5 finds that instance-level

accuracy has momentum: improvement from MINI

to MEDIUM correlates with improvement from

MEDIUM to LARGE . Additionally, Section 6 at-

tributes variance of model predictions to pretrain-

ing and finetuning random seeds, and finds that

finetuning seeds cause more variance for larger

models. Our findings suggest that instance-level

predictions provide a rich source of information;

we therefore recommend that researchers supple-

ment model weights with model predictions. In this

spirit, we release all the pretrained models, model

predictions, and code here: https://github.com/

ruiqi-zhong/acl2021-instance-level.

2 Data, Models, and Predictions

To investigate model behavior, we considered dif-

ferent sizes of the BERT architecture and fine-

tuned them on Quora Question Pairs (QQP2),

Multi-Genre Natural Language Inference (MNLI;

Williams et al. (2020)), and the Stanford Sen-

timent Treebank (SST-2; Socher et al. (2013)).

To account for pretraining and finetuning noise,

we averaged over multiple random initializations

and training data order, and thus needed to pre-

train our own models rather than downloading

off the internet. Following Turc et al. (2019) we

trained 5 architectures of increasing size: MINI

(L4/H256, 4 Layers with hidden dimension 256),

SMALL (L4/H512), MEDIUM (L8/H512), BASE

(L12/H768), and LARGE (L24/H1024). For each

architecture we pre-trained models with 10 differ-

ent random seeds and fine-tuned each of them 5

times (50 total) on each task; see Figure 1 middle.

Since pretraining is computationally expensive, we

reduced the context size during pretraining from

512 to 128 and compensated by increasing train-

ing steps from 1M to 2M. Appendix A includes

more details about pretraining and finetuning and

their computational cost, and Appendix B verifies

that our cost-saving changes do not affect accuracy

qualitatively.

Notation. We use i to index an instance in the

evaluation set, s for model sizes, P for pretraining

seeds and F for finetuning seeds. c is a random

variable of value 0 or 1 to indicate whether the

prediction is correct. Given the pretraining seed P
and the finetuning seed F , csi = 1 if the model of

2https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

https://github.com/ruiqi-zhong/acl2021-instance-level
https://github.com/ruiqi-zhong/acl2021-instance-level
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DiffFTune DiffPTrain Stdall
MINI 7.2% 10.7% 0.2%

SMALL 7.2% 10.7% 0.3%

MEDIUM 8.0% 10.7% 0.3%

BASE 8.5% 10.6% 0.2%

LARGE 8.6% 10.1% 0.2%

Table 1: Larger model sizes are at the bottom rows.

DiffFTune: how much do the predictions differ, if two

models have the same pretraining seed but different

finetuning seeds F ? DiffPTrain: the difference if the

pretraining seeds P are different. Stdall: the standard

deviation of overall accuracy, around 40 times smaller

than DiffFTune.

size s is correct on instance i, 0 otherwise. To keep

the notation uncluttered, we sometimes omit these

superscripts or subscripts if they can be inferred

from context.

Unless otherwise noted, we present results on

the MNLI in-domain development set in the main

paper.

3 Comparing Instance Accuracy

To find the instances where larger models are worse,

a naı̈ve approach is to finetune a larger pretrained

model, compare it to a smaller one, and find in-

stances where the larger is incorrect but the smaller

is correct. Under this approach, BERT-LARGE is

worse than BERT-BASE on 4.5% of the instances

and better on 7%, giving an overall accuracy im-

provement of 2.5%.

However, this result is misleading: even if we

compare two BERT-BASE model with different

finetuning seeds, their predictions differ on 8% of

the instances, while their accuracies differ only by

0.1%; Table 1 reports this baseline randomness

across model sizes. Changing the pretraining seed

also changes around 2% additional predictions be-

yond finetuning.

Table 1 also reports the standard deviation of

overall accuracy, which is about 40 times smaller.

Such stability starkly contrasts with the noisiness at

the instance level, which poses a unique challenge.

Instance-Level Metrics To reflect this noisiness,

we define the instance accuracy Accsi to be how

often models of size s predict instance i correctly,

Accsi := EP,F [c
s
i ]. (1)

The expectation is taken with respect to the pre-

training and finetuning randomness P and F . We

estimate Accsi via the empirical average Âcc
s

i ac-

cross 10 pretraining × 5 finetuning runs.

We histogram Âcc
s

i in Figure 2 (a). On most

instances the model always predicts correctly or

incorrectly (Âcc = 0 or 1), but a sizable fraction

of accuracies lie between the two extremes.

Recall that our goal is to find instances where

larger models are less accurate, which we refer

to as decaying instances. We therefore study the

instance difference between two model sizes s1 and

s2, defined as

s1
s2
∆Acci := Accs2i −Accs1i , (2)

which is estimated by the difference between the

accuracy estimates Âcc
s

i , i.e.

s1
s2

ˆ∆Acci := Âcc
s2
i − Âcc

s1
i . (3)

We histogram BASE
LARGE

ˆ∆Acci in Figure 2 (b). We

observe a unimodal distribution centered near 0,

with tails on both sides. Therefore, the estimated

differences for some instances are negative.

However, due to estimation noise, we might

falsely observe this accuracy decay by chance.

Therefore, we introduce a random baseline
s1
s2
∆Acc′ to control for these false discoveries. Re-

call that we have 10 smaller pretrained models and

10 larger ones. Our baseline splits these into a

group A of 5 smaller + 5 larger, and another group

B of the remaining 5+ 5. Then the empirical accu-

racies Âcc
A

and Âcc
B

are identically distributed,

so we take our baseline s1
s2
∆Acc′ to be the differ-

ence Âcc
A
− Âcc

B
. We visualize and compare

how to calculate s1
s2

ˆ∆Acc and s1
s2
∆Acc′ in Figure 3.

We histogram this baseline BASE
LARGE∆Acc′ in

Figure 2 (b), and find that our noisy estimate
BASE
LARGE

ˆ∆Acc has a larger left tail than the baseline.

This suggests that decaying instances exist. We

similarly compare MINI to LARGE in Figure 2 (c)

and find an even larger left tail.

4 Quantifying the Decaying Instances

The left tail of ˆ∆Acc noisily estimates the frac-

tion of decaying instances, and the left tail of the

random baseline ∆Acc′ counts the false discov-

ery fraction due to the noise. Intuitively, the true

fraction of decaying instances can be captured by

the difference of these left tails, and we formally

quantify this below.
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(a) BASE vs. LARGE , Acc (b) BASE vs. LARGE , ∆Acc (c) MINI vs. LARGE , ∆Acc

Figure 2: (a) The distribution of instance accuracy Âcci. (b, c) Histogram of instance difference estimate (x-axis),
ˆ∆Acc (blue) and its baseline ∆Acc′ (red) compares BASE and LARGE . To better visualize, we truncated the

density (y-axis) above 2. Since the blue histogram has a larger left tail than the red one, there are indeed instances

where larger models are worse.

F(*)1 F(*) F(*)3

P1 X ✓ ✓

P2 ✓ X X

P3 X X X

P4 X ✓ ✓

MINI

Pretrain-

ing 

Seeds

̂Acc
A

= 0.58

̂Acc
B

= 0.58

Mini
LargeΔAcc′� = 0

=

̂Acc
MINI

= 0.42̂Acc
LARGE

= 0.75

F(*)1 F(*) F(*)3

P1 X ✓ ✓

P2 ✓ ✓ X

P3 ✓ ✓ X

P4 ✓ ✓ ✓

LARGE

-
MINI
LARGE

̂ΔAcc = .33=

-
Group A

Group B

Figure 3: The tables are model predictions with visual

notations established in Figure 1 middle. ˆ∆Acc (blue)

is the mean difference between the left and the right

table, each corresponding to a model size. The random

baseline ∆Acc′ (red) is the mean difference between

group A (orange) cells and group B (green), which are

identically and independently distributed.

Suppose instance i is drawn from the empirical

evaluation distribution. Then we can define the true

decaying fraction Decay as

Decay := Pi[∆Acci < 0]. (4)

Since ∆Acci is not directly observable and
ˆ∆Acci is noisy, we add a buffer and only consider

instances with ˆ∆Acci ≤ t, which makes it more

likely (but still uncertain) that the true ∆Acci < 0.

We denote this “discovery fraction” ˆDecay(t) as

ˆDecay(t) := Pi[ ˆ∆Acci ≤ t]. (5)

Similarly, we define a baseline control (false

discovery fraction) Decay′(t) := Pi[∆Acc′i ≤ t].
Hence, ˆDecay and Decay′ are the cumulative dis-

tribution function of ˆ∆Acc and ∆Acc′ (Figure 4).

We have the following theorem, which we for-

mally state and prove in Appendix D:

Theorem 1 (Informal) If all the random seeds are

independent, then for all thresholds t,

Decay ≥ E[ ˆDecay(t)−Decay′(t)] (6)

Proof Sketch Suppose we observe cs1R1...2k
and

cs2R2k+1...4k
, where there are 2k different random

seeds for each model size 3. Then

ˆ∆Acci :=
1

2k
(

2k∑

j=1

cs1Rj ,i
−

4k∑

j=2k+1

cs2Rj ,i
), (7)

and hence the discovery rate ˆDecay(t) is defined

as

ˆDecay(t) :=
1

|T |

|T |∑

i=1

1[ ˆ∆Acc ≤ t]. (8)

For the random baseline estimator, we have

∆Acc′i :=
1

2k
(

k∑

j=1

cs1Rj ,i
+

3k∑

j=2k+1

cs2Rj ,i
(9)

−

2k∑

j=k+1

cs1Rj ,i
−

4k∑

j=3k+1

cs2Rj ,i
),

and the false discovery control Decay′ is defined

as

Decay′(t) :=
1

|T |

|T |∑

i=1

1[∆Acc′i ≤ t]. (10)

Formally, the theorem states that

Decay ≥ ER1...R4k
[ ˆDecay(t)−Decay′(t)], (11)

which is equivalent to

|T |∑

i=1

(1[∆Acci < 0]− P[ ˆ∆Acci ≤ t] (12)

+P[∆Acc′i ≤ t]) ≥ 0

3We assumed even number of random seeds since we will
mix half of the models from each size to compute the random
baseline
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6%

Figure 4: The cumulative distribution function of the

histogram in Figure 2 (c); only the negative x-axis is

shown because it corresponds to decays. The maxi-

mum difference between the two curves (6%) is a lower

bound of the true decaying fraction.

Hence, we can declare victory if we can prove

that for all i, if ∆Acci ≥ 0,

P[∆Acc′i ≤ t] ≥ P[ ˆ∆Acci ≤ t].

This is easy to see, since ∆Acc′i and ˆ∆Acci are

both binomial distributions with the same n, but

the first has a larger rate. 4
�

Roughly speaking, the true decaying fraction

is at least the difference between ˆDecay(t) and

Decay′(t) at every threshold t. Therefore, we take

the maximum difference between ˆDecay(t) and

Decay′(t) to lower-bound the fraction of decaying

instances.5 For example, Figure 4 estimates the

true decaying fraction between MINI and LARGE

to be at least 6%.

We compute this lower bound for other pairs of

model sizes in Table 2, and the full results across

other tasks and model size pairs are in Appendix C.

In all of these settings we find a non-zero fraction

of decaying instances, and larger model size differ-

ences usually lead to more decaying instances.

Unfortunately, applying Theorem 1 as above

is not fully rigorous, since some finetuning runs

share the same pretraining seeds and hence are de-

pendent.6 To obtain a statistically rigorous lower

bound, we slightly modify our target of interest. In-

stead of examining individual finetuning runs, we

ensemble our model across 5 different finetuning

runs for each pretraining seed; these predictions

are essentially the same as individual finetuning

runs, except that the finetuning randomness is av-

eraged out. Hence we obtain 10 independent sets

4More details are in Appendix D.
5Adaptively picking the best threshold t depending on the

data may incur a slight upward bias. Appendix E estimates
that the relative bias is at most 10% using a bootstrap method.

6Although we anticipate such dependencies do not cause a
substantial difference, as discussed in Appendix D.1.

s1 \ s2 MINI SMALL BASE LARGE

MINI N/A 9% 18% 21%

SMALL 3% N/A 14% 18%

BASE 6% 5% N/A 10%

LARGE 6% 5% 2% N/A

Table 2: We lower-bound the fraction of instances that

improve when model size changes from s1 (row) to s2
(column). For example, when model size decreases

from LARGE to MINI , 6% of instances improve (i.e.

decays).

Threshold ˆDecay Decay′ Diff

t = −0.4 4.22% 3.49e−3 3.87%

. . . . . . . . . . . .

t = −0.9 0.91% 1.44e−7 0.91%

t = −1.0 0.48% 2.06e−8 0.48%

Table 3: Comparing MINI vs. LARGE by calculating

the discovery fraction ˆDecay, the false discovery con-

trol Decay′, and their difference (Diff) under different

thresholds t. LARGE is worse on at least ∼4% (maxi-

mum Diff) of instances.

of model predictions with different random seeds,

which allows us to apply Theorem 1.

We compare MINI to LARGE using these ensem-

bles and report the discovery ˆDecay and the base-

line Decay′ in Table 3. Taking the maximum differ-

ence across thresholds, we estimate at least ∼4% of

decaying instances. This estimate is lower than the

previous 6% estimate, which used the full set of 50

models’ predictions assuming they were indepen-

dent. However, this is still a meaningful amount,

given that the overall accuracy improvement from

MINI to LARGE is 10%.

4.1 Fisher’s Test + Benjamini-Hochberg

Here is a more classical approach to lower-bound

the decaying fraction. For each instance, we com-

pute a significance level α under the null hypothesis

that the larger model is better, using Fisher’s exact

test. We sort the significance levels ascendingly,

and call the pth percentile αp. Then we pick a

false discovery rate q (say, 25%), find the largest

p s.t. αp < pq, and estimate the decaying fraction

to be at least p(1− q). This calculation is known

as the Benjamini-Hochberg procedure (Benjamini

and Hochberg, 1995).

To compare our method with this classical ap-

proach, we estimate the lower bound of the decay-

ing fraction for different pairs of model sizes with

different numbers of pretrained models available.
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s1 s2 2 6 10

MINI LARGE ours 1.9% 3.1% 4.0%

MINI LARGE BH 0.0% 0.9% 1.9%

BASE LARGE ours 0.4% 0.9% 1.2%

BASE LARGE BH 0.0% 0.0% 0.0%

Table 4: We compare our method to the Fisher’s exact

test + Benjamin-Hochberg (BH) procedure described in

Section 4. For all different model size pairs and number

of pretrained models available, ours always provides a

higher (better) lower bound of the decaying fraction.

To make sure our choice of the false discovery rate

q does not bias against the classical approach, we

adaptively choose q to maximize its performance.

Appendix F includes the full results and Table 4 is

a representative subset.

We find that our approach is more powerful, par-

ticularly when the true decaying fraction is likely

to be small and only a few models are available,

which is usually the regime of interest. For exam-

ple, across all pairs of model sizes, our approach

only needs 2 random seeds (i.e. pretrained models)

to provide a non-zero lower bound on the decaying

fraction, while the classical approach sometimes

fails to do this even with 10 seeds. Intuitively, when

fewer seeds are available, the smallest possible sig-

nificance level for each instance is larger than the

decaying fraction, hence hurting the classical ap-

proach.

4.2 Understanding the Decaying Instances

We next manually examine the decaying instances

to see whether we can find any interpretable pat-

terns. One hypothesis is that all the decaying frac-

tions are in fact mislabeled, and hence larger mod-

els are not in fact worse on any instances.

To investigate this hypothesis, we examined the

group of instances where MINI
LARGE

ˆ∆Acci ≤ −0.9.

MINI is almost always correct on these instances,

while LARGE is almost always wrong, and the false

discovery fraction is tiny. For each instance, we

manually categorize it as either: 1) Correct, if the

label is correct, 2) Fine, if the label might be con-

troversial but we could see a reason why this label

is reasonable, 3) Wrong, if the label is wrong, or

4) Unsure, if we are unsure about how to label

this instance. Each time we annotate, with 50%

probability we randomly sample either a decaying

instance or an instance from the remaining dataset

as a control. We are blind to which group it comes

from.

Correct Fine Wrong Unsure

MNLID 66% 17% 9% 5%

MNLIC 86% 5% 5% 1%

SST-2D 55% 8% 10% 25%

SST-2C 88% 4% 0% 6%

QQPD 60% 26% 10% 2%

QQPC 87% 10% 1% 0%

Table 5: MINI vs. LARGE . We examine whether there

are mislabels for the Decaying fractions (superscript D)

and the rest of the dataset (Control group C). The de-

caying fraction contains more mislabels, but includes

correct labels as well.

For each task of MNLI, QQP, and SST-2, the first

author annotated 100 instances (decay + control

group) (Table 5). We present all the annotated

decaying instances in Appendix J.

Conclusion We find that the decaying fraction

has more wrong or controversial labels, compared

to the remaining instances. However, even after

we adjust for the fraction of incorrect labels, the

Decay fraction still exceeds the false discovery

control. This implies that MINI models are bet-

ter than LARGE models on some correctly labeled

instances. The second author followed the same

procedure and reproduced the same qualitative re-

sults.

However, we cannot find an interpretable pattern

for these correctly labeled decaying instances by

simply eyeballing. We discuss future directions to

discover interpretable categories in Section 7.

5 Correlation of Instance Difference

We next investigate whether there is a momen-

tum of instance accuracy increase: for example,

if the instance accuracy improves from MINI(s1)
to MEDIUM(s2), is it more likely to improve from

MEDIUM(s2) to LARGE(s3)?

The naı̈ve approach is to calculate the Pearson

correlation coefficient between MINI
MEDIUM

ˆ∆Acc and
MEDIUM
LARGE

ˆ∆Acc, and we find the correlation to be zero.

However, this is partly an artifact of accuracies be-

ing bounded in [0, 1]. If MEDIUM drastically im-

proves over MINI from 0 to 1, there is no room for

LARGE to improve over MEDIUM. To remove this

inherent negative correlation, we calculate the cor-

relation conditioned on the accuracy of the middle-

sized model, Âcc
MEDIUM

.

Therefore, we bucket instances by their esti-

mated MEDIUM accuracy into intervals of size 0.1,
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(s1, s2, s3) ↓ Buckets→ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

SMALL, MEDIUM, BASE 0.07 0.22 0.29 0.40 0.35 0.33 0.38 0.27 0.24 0.13

MINI, MEDIUM, LARGE 0.03 0.15 0.18 0.33 0.17 0.16 0.22 0.20 0.19 0.09

Table 6: Each row corresponds to a triplet of model sizes. Each column t represents a bucket that contains

instances with Âcc
s2

∈ [t − 0.1, t]. Within each bucket, we calculate the Pearson correlation coefficient between

the estimated accuracy improvements: s1
s2

ˆ∆Acc and s2
s3

ˆ∆Acc. These correlations are positive and become higher

when model size differences are small.

and we find the correlation to be positive within

each bucket (Table 6, row 2). This fixes the prob-

lem with the naı̈ve approach by getting rid of the

negative correlation, which could have misled us

to believe that improvements by larger models are

uncorrelated.

We additionally find that the correlations be-

tween improvements become stronger when model

size differences are smaller. Table 6 row 1 re-

ports results for another model size triplet with

smaller size difference, i.e. (s1, s2, s3) = (SMALL,

MEDIUM, BASE), and the correlation is larger for

all buckets. Results for more tasks and size triplets

are in Appendix G and the same conclusions hold

qualitatively.

6 Variance at the Instance Level

Section 3 found that the overall accuracy has rela-

tively low variance, but model predictions are noisy.

This section formally analyzes variance at the in-

stance level. For each instance, we decompose its

loss into three components: Bias2, variance due to

pretraining randomness, and variance due to fine-

tuning randomness. Formally, we consider the 0/1
loss:

Li := 1− ci = (1− ci)
2, (13)

where ci is a random variable 0/1 indicating

whether the prediction is correct or incorrect, with

respect to randomness in pretraining and finetun-

ing. Therefore, by bias-variance decomposition

and total variance decomposition, we have

Li = Bias2i + PretVari + FineVari, (14)

where, by using P and F as pretraining and fine-

tuning random seeds:

Bias2i := (1− EP,F [ci])
2, (15)

PretVari := VarP [EF [ci]],

FineVari := EP [VarF [ci]],

capturing “how wrong is the average prediction”,

variance due to pretraining, and variance due to

finetuning seeds, respectively.

Bias2 PretVar FineVar

MINI 0.203 0.017 0.036

SMALL 0.179 0.017 0.036

MEDIUM 0.157 0.014 0.040

BASE 0.134 0.010 0.043

LARGE 0.111 0.007 0.043

Table 7: The bias, pretraining variance, and finetuning

variance for each model size, averaged across all test

instances. Finetuning variance is much larger than pre-

training variance; larger models have larger finetuning

variance.

We can directly estimate FineVar by first calcu-

lating the sample variance across finetuning runs

for each pretraining seed, and then averaging the

variances across the pretraining seeds. Estimating

PretVar is more complicated. A naı̈ve approach is

to calculate the empirical variance, across pretrain-

ing seeds, of the average accuracy across finetuning

seeds. However, the estimated average accuracy for

each pretraining seed is noisy itself, which causes

an upward bias on the PretVar estimate. We cor-

rect this bias by estimating the variance of the esti-

mated average accuracy and subtracting it from the

naı̈ve estimate; see Appendix H for details, as well

as a generalization to more than two sources of ran-

domness. Finally, we estimate Bias2 by subtracting

the two variance estimates from the estimated loss.

For each of these three quantities, Bias2,

PretVar and FineVar, we estimate it for each in-

stance, average it across all instances in the evalua-

tion set, and report it in Table 7. The variances at

the instance level are much larger than the variance

of overall accuracy, by a factor of 1000.

We may conclude from Table 7 that larger mod-

els have larger finetuning variance and smaller pre-

training variance. However, lower bias also inher-

ently implies lower variance. To see this, suppose

a model has perfect accuracy and hence zero bias;

then it always predicts the same label (the correct

one) and hence has zero variance. This might favor

larger models and “underestimate” their variance,
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Figure 5: The pretraining variance conditioned on

Bias2 (the level of correctness). Each curve represents

a model size. Larger models have lower pretraining

variance across all levels of bias.

since they have lower bias. Therefore, we calculate

and compare the variances conditioned on the bias,

i.e. PretVar(b2) := Ei[PretVari|Bias
2
i = b2].

We estimate PretVars(b2) using Gaussian pro-

cess regression and plot it against b2 in Figure 5.

We find that larger models still have lower pre-

training variance across all levels of bias on the

specific task of MNLI under the 0/1 loss. To fur-

ther check whether our conclusions are general, we

tested them on other tasks and under the squared

loss Li := (1 − pi)
2, where pi is the probability

assigned to the correct class. Below are the conclu-

sions that generally hold across different tasks and

loss functions.

Conclusion We find that 1) larger models have

larger finetuning variance, 2) LARGE has smaller

pretraining variance than BASE ; however, the or-

dering between other sizes varies across tasks and

losses, and 3) finetuning variance is 2−8 times as

large as pretraining variance, and the ratio is bigger

for larger models.

7 Discussion and Future Directions

To investigate model behaviors at the instance level,

we produced massive amounts of model predictions

in Section 2 and treated them as raw data. To ex-

tract insights from them, we developed better met-

rics and statistical tools, including a new method

to control the false discoveries, an unbiased estima-

tor for the decomposed variances, and metrics that

compute variance and correlation of improvements

conditioned on instance accuracy. We find that

larger pretrained models are indeed worse on a non-

trivial fraction of instances and have higher vari-

ance due to finetuning seeds; additionally, instance

accuracy improvements from MINI to MEDIUM cor-

relate with improvements from MEDIUM to LARGE

.

Overall, we treated model prediction data as the

central object and built analysis tools around them

to obtain a finer understanding of model perfor-

mance. We therefore refer to this paradigm as

“instance level understanding as data mining”.

We discuss three key factors for this paradigm to

thrive: 1) scalability and the cost of obtaining pre-

diction data, 2) other information to collect for each

instance, and 3) better statistical tools. We analyze

each of these aspects below.

Scalability and Cost of Data Data mining is

more powerful with more data. How easy is it

to obtain more model predictions? In our paper,

the main bottleneck is pretraining. However, once

the pretrained models are released, individual re-

searchers can download them and only need to

repeat the cheaper finetuning procedure.

Furthermore, model prediction data are under-

shared: while many recent research papers share

their code or even model weights to help reproduce

the results, it is not yet a standard practice to share

all the model predictions. Since many researches

follow almost the same recipe of pretraining and

finetuning (McCoy et al., 2020; Desai and Durrett,

2020; Dodge et al., 2020), much computation can

be saved if model predictions are shared. On the

other hand, as the state of the art model size is

increasing at a staggering speed7, most researchers

will not be able to run inference on a single instance.

The trend that models are becoming larger and

more similar necessitate more prediction sharing.

Meta-Labels and Other Predictions Data min-

ing is more powerful with more types of informa-

tion. One way to add information to each instance

is to assign “meta-labels”. In the HANS (McCoy

et al., 2019) dataset, the authors tag each instance

with a heuristic 8 that holds for the training distri-

bution but fails on this instance. Naik et al. (2018a)

and Ribeiro et al. (2020) associate each instance

with a particular stress test type or subgroup, for ex-

ample, whether the instance requires the model to

reason numerically or handle negations. Nie et al.

7e.g. BERT (Devlin et al., 2019) has 340M parameters,
while Switch-Transformer has over 1 trillion parameters (Fe-
dus et al., 2021).

8For example, “the label [entailment] is likely if the
premise and the hypothesis have significant lexical overlap”.
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(2020) collects multiple human responses to esti-

mate human disagreement for each instance. This

meta-information can potentially help us identify

interpretable patterns for the disagreeing instances

where one model is better than the other. On the

flip side, identifying disagreeing instances between

two models can also help us generate hypothesis

and decide what subgroup information to annotate.

We can also add performance information on

other tasks to each instance. For example, Pruk-

sachatkun et al. (2020) studied the correlation

between syntactic probing accuracy (Hewitt and

Liang, 2019) and downstream task performance.

Turc et al. (2019) and Kaplan et al. (2020) studied

the correlation between language modelling loss

and the downstream task performance. However,

they did not analyze correlations at the instance

level. We may investigate whether their results

hold on the instance level: if an instance is easier

to tag by a probe or easier to predict by a larger

language model, is the accuracy likely to be higher?

Statistical Tools Data mining is more powerful

with better statistical tools. Initially we used the

Benjamini-Hochberg procedure with Fisher’s ex-

act test, which required us to pretrain 10 models

to formally verify that the decaying instances ex-

ist. However, we later realized that 2 is in fact

enough by using our approach introduced in Sec-

tion 4. We could have saved 80% of the compu-

tation for pretraining if this approach was known

before we started.

Future work can explore more complicated met-

rics and settings. We compared at most 3 different

model sizes at a time, and higher order comparisons

require novel metrics. We studied two sources of

randomness, pretraining and finetuning, but other

sources of variation can be interesting as well, e.g.

differences in pretraining corpus, different model

checkpoints, etc. To deal with more sophisticated

metrics, handle different sources and hierarchies of

randomness, and reach conclusions that are robust

to noises at the instance level, researchers need to

develop new inference procedures.

To conclude, for better instance level understand-

ing, we need to produce and share more prediction

data, annotate more diverse linguistic properties,

and develop better statistical tools to infer under

noises. We hope our work can inform researchers

about the core challenges underlying instance level

understanding and inspire future work.
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Summary

In this 4-page appendix, we include 1) details on

model training and the datasets we used 2) high-

level ideas underlying the theoretical results, and 3)

relatively more important discussions. We also

have a longer version of this appendix on our

github, which contains the full proofs, discussions,

plots, and tables.

A Pretraining and Finetuning Details

To obtain model predictions under the “pretraining

and finetuning” framework (Devlin et al., 2019), we

need to decide a model size, perform pretraining,

finetune on a training set with a choice of hyper-

parameters, and test the model on an evaluation

set. We discuss each bolded aspects below.

Size Similar to Turc et al. (2019), we exper-

imented with the following five model sizes,

listed in increasing order: MINI (L4/H256) 9 ,

SMALL (L4/H512), MEDIUM (L8/H512), BASE

(L12/H768), and LARGE (L24/H1024).

Pretraining We used the pretraining code from

Devlin et al. (2019) and the pre-training corpus

from Li et al. (2020). Compared to the original

BERT release, we used context size 128 instead of

512, since computation cost grows quadratically

with respect to context size; we also pretrained for

2M steps instead of 1M.

Training Set We consider 3 datasets: Quora

Question Pairs (QQP) 10, Multi-Genre Natural Lan-

guage Inference (MNLI; Williams et al. (2020)),

and the Stanford Sentiment Treebank (SST-2;

(Socher et al., 2013)). For QQP we used the of-

ficial training split. For MNLI we used 350K out

of 400K instances from the original training split,

and added the remaining 50K to the evaluation set,

since the original in-domain development set only

contains 10K examples. For SST-2, we mix the

training and development set of the original split,

split the instances into 5 folds, train on four of them,

and evaluate on the remaining fold.

Hyperparameters As in Turc et al. (2019), we

finetune 4 epochs for each dataset. For each task

and model size, we tune hyperparameters in the

following way: we first randomly split our new

training set into 80% and 20%; then we finetune on

94 Layers with hidden dimension 256
10https://www.quora.com/q/quoradata/First-Quora-

Dataset-Release-Question-Pairs

the 80% split with all 9 combination of batch size

[16, 32, 64] and learning rate [1e-4, 5e-5, 3e-5],

and choose the combination that leads to the best

average accuracy on the remaining 20%.

Evaluation Set After finetuning our pretrained

models, we evaluate them on a range of in-domain,

out-of-domain, or challenging datasets to obtain

model predictions. Models trained on MNLI are

also evaluated on Stanford Natural Language In-

ference (SNLI; (Bowman et al., 2015)), Heuristic

Analysis for NLI Systems (HANS; (McCoy et al.,

2019)), and stress test evaluations (STRESS; (Naik

et al., 2018b)). Models trained on QQP are also

evaluated on Twitter Paraphrase Database (Twit-

terPPDB; (Lan et al., 2017)).

Since pretraining introduces randomness, for

each model size s, we pretrain 10 times with dif-

ferent random seed P ; since finetuning also intro-

duces noise, for each pretrained model we pretrain

5 times with different random seed F ; besides, we

also evaluate the model at the checkpoints after E
epochs, where E ∈ [3, 31

3 , 3
2
3 , 4].

Pretraining 10 models for all 5 model sizes alto-

gether takes around 3840 hours on TPU v3 with 8

cores. Finetuning all of them 5 times for all three

tasks in our paper requires around 1200 hours.

B Compare Our Models to the Original

Since we decreased the pre-training context length

to save computation, these models are not exactly

the same as the original BERT release by Devlin

et al. (2019) and Turc et al. (2019). We need to

benchmark our model against theirs to ensure that

the performance of our model is still reasonable

and the qualitative trend still holds. For each each

size and task, we finetune the original model 5

times and calculate the average of overall accuracy.

The comparison can be seen in Table 8. We find

that our model does not substantially differ from

the original ones on QQP and SST-2. On MNLI,

the performance of our BERT-BASE and BERT-

LARGE is 2∼3% below the original release, but

the qualitative trend that larger models have better

accuracy still holds robustly.

C More Instance Difference Results

Similar to Figure 4, for all 10 pairs of model sizes

and all in-distribution instances of MNLI, SST-2,

and QQP, we plot the cumulative density of ˆ∆Acc
and ∆Acc′, or say, ˆDecay(t) and Decay′(t). See

the long appendix for the figures.
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QQP MNLI SST-2

MINI orig 88.2% 74.6% 92.8%

MINI ours 87.3% 74.3% 92.8%

SMALL orig 89.1% 77.3% 93.9%

SMALL ours 88.7% 76.7% 93.9%

MEDIUM orig 89.8% 79.6% 94.2%

MEDIUM ours 89.5% 78.9% 94.2%

BASE orig 90.8% 83.8% 95.0%

BASE ours 90.6% 81.2% 94.6%

LARGE orig 91.3% 86.8% 95.2%

LARGE ours 91.0% 83.8% 94.8%

Table 8: Comparing our pretrained model (superscript
orig) to the original release by Devlin et al. (2019) and

Turc et al. (2019) (superscript ours). All pretrained

models are finetuned with the training set and tested on

the in-distribution evaluation set described in Appendix

A.

Additionally, for each pair of model sizes s1 and

s2, we estimate “how much instances are getting

better/worse accuracy?” by taking the maximum

difference between the red curve and the blue curve.

We report these results for MNLI, SST-2, and QQP

in Table 9. We find that larger model size gaps

lead to larger decaying fraction, but also larger

improving fraction as well.

D Proof of Theorem 1

Formal Setup Suppose each instance is indexed

by i, the set of all instances is T , and the random

seed is R; then csR ∈ {0, 1}|T | is a random |T |
dimensional vector, where csR,i = 1 if the model of

size s correctly predicts instance i under the ran-

dom seed R. We are comparing model size s1 and

s2, where s2 is larger; to keep notation uncluttered,

we omit these indexes whenever possible.

Suppose we observe cs1R1...2k
and cs2R2k+1...4k

,

where there are 2k different random seeds for each

model size 11. Then

ˆ∆Acci :=
1

2k
(

2k∑

j=1

cs1Rj ,i
−

4k∑

j=2k+1

cs2Rj ,i
), (16)

and hence the discovery rate ˆDecay(t) is defined

as

ˆDecay(t) :=
1

|T |

|T |∑

i=1

1[ ˆ∆Acc ≤ t]. (17)

11We assumed even number of random seeds since we will
mix half of the models from each size to compute the random
baseline

For the random baseline estimator, we have

∆Acc′i :=
1

2k
(

k∑

j=1

cs1Rj ,i
+

3k∑

j=2k+1

cs2Rj ,i
(18)

−

2k∑

j=k+1

cs1Rj ,i
−

4k∑

j=3k+1

cs2Rj ,i
),

and the false discovery control Decay′ is defined

as

Decay′(t) :=
1

|T |

|T |∑

i=1

1[∆Acc′i ≤ t]. (19)

Formally, theorem states that

Decay ≥ ER1...R4k
[ ˆDecay(t)−Decay′(t)] (20)

Proof By re-arranging terms and linearity of ex-

pectation, Equation 20 is equivalent to the follow-

ing

|T |∑

i=1

(1[∆Acci < 0]− P[ ˆ∆Acci ≤ t] (21)

+P[∆Acc′i ≤ t]) ≥ 0

Hence, we can declare victory if we can prove

that for all i,

1[∆Acci < 0]− P[ ˆ∆Acci ≤ t] (22)

+P[∆Acc′i ≤ t] ≥ 0

To prove Equation 22, we observe that if Acci <
0, since the probabilities are bounded by 0 and 1,

its left-hand side must be positive. Therefore, we

only need to prove that

∆Acci ≥ 0 (23)

⇒ P[∆Acc′i ≤ t] ≥ P[ ˆ∆Acci ≤ t],

which will be proved in Lemma 1.�

Lemma 1

∆Acci ≥ 0 (24)

⇒ P[∆Acc′i ≤ t] ≥ P[ ˆ∆Acci ≤ t],

For m = 1, 2, define

psmi := ER[c
sm
i ], (25)

then

ps1i ≤ ps2i (26)
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MNLI s1 \ s2 MINI SMALL MEDIUM BASE LARGE

MINI 0.000 0.087 0.136 0.179 0.214

SMALL 0.033 0.000 0.089 0.139 0.180

MEDIUM 0.050 0.028 0.000 0.090 0.143

BASE 0.060 0.048 0.026 0.000 0.101

LARGE 0.059 0.052 0.040 0.021 0.000

QQP s1 \ s2 MINI SMALL MEDIUM BASE LARGE

MINI 0.000 0.057 0.076 0.100 0.107

SMALL 0.019 0.000 0.039 0.073 0.084

MEDIUM 0.029 0.014 0.000 0.044 0.063

BASE 0.034 0.027 0.016 0.000 0.032

LARGE 0.036 0.031 0.027 0.016 0.000

SST-2 s1 \ s2 MINI SMALL MEDIUM BASE LARGE

MINI 0.000 0.037 0.043 0.052 0.057

SMALL 0.010 0.000 0.015 0.031 0.036

MEDIUM 0.016 0.008 0.000 0.020 0.028

BASE 0.019 0.014 0.009 0.000 0.014

LARGE 0.020 0.017 0.015 0.008 0.000

Table 9: On QQP, MNLI in domain development set and SST-2 we lowerbound the fraction of instances that

improves when model size changes from s1 (row) to s2 (column).

Since cs1i and cs2i are both Bernoulli random vari-

ables with rate ps1i and ps2i respectively, we can

write down the probability distribution of ˆ∆Acci
and ∆Acc′i as the sum/difference of several bino-

mial variables, i.e.

ˆ∆Acci ∼ (Binom(k, ps2i ) + Binom(k, ps2i ) (27)

− Binom(k, ps1i )− Binom(k, ps1i ))/2k,

and

∆Acc′i ∼ (Binom(k, ps2,i) + Binom(k, ps1,i)
(28)

− Binom(k, ps1,i)− Binom(k, ps2,i))/2k

ps1i ≤ ps2i , Binom(k, ps2,i)) first order stochas-

tically dominates Binom(k, ps1,i). Therefore,

∆Acc′i dominates ˆ∆Acci, hence completing the

proof. �

D.1 Independent Seed Assumption

See the long appendix for discussion.

E Upward Bias of Adaptive Thresholds

In section 3 we picked the best threshold that can

maximize the lowerbound, which can incur a slight

upward bias. Here we estimate that the bias is at

most 10% relative to the unbiased lowerbound with

a bootstrapping method.

We use the empirical distribution of 10 pre-

trained models as the ground truth distribution for

bootstrapping. We first compute a best threshold

with 10 sampled smaller and larger pretrained mod-

els, and then compute the lowerbound L with this

threshold on another sample of 10 smaller and

larger models. Intuitively, we use one bootstrap

sample (which contains 10 smaller pretrained mod-

els and 10 larger pretrained models) as the devel-

opment set to “tune the threshold”, and then use

this threshold on a fresh bootstrap sample to com-

pute the lowerbound. We refer to the lowerbound

that uses the best threshold as L∗, and compute the

relative error E[(L∗ −L)]/E[L)], where the expec-

tation is taken with respect to bootstrap samples.

See the long appendix for more detailed results.

In general, we find that the upward bias is negligi-

ble, which is at most around 10%.

F Comparison with Significance Testing

See the long appendix for the Table that compares

our procedure with the classical method that uses

the Fisher’s exact test and Benjamini-Hochberg

procedure for other tasks and model size pairs.

In general, we find that our method always pro-

vide a tighter (higher) lowerbound than the classical

method, and 2 models are sufficient to verify the

existence (i.e. lowerbound > 0) of the decaying

fraction; in contrast, the classical method some-
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times fails to do this even with 10 models, e.g.,

when comparing BASE to LARGE .

Intuitively, our approach provides a better lower-

bound because it better makes use of the infor-

mation that on most instances, both the smaller

and the larger models agree and predict completely

correctly or incorrectly12. For an extreme exam-

ple, suppose we only observe 2 smaller models

and 2 larger models, and infinite number of dat-

apoints, whose predictions are independent. On

99.98% datapoints, both models have instance ac-

curacy 1; on 0.01% datapoints, smaller model is

completely correct while bigger completely wrong,

while on the rest 0.01% smaller completely wrong

but bigger completely correct. Setting threshold

to be 2, our decay estimate ˆDecay is 0.01%, while

Decay′ = 0: since the models either completely

predict correct or wrongly, there is never a false

discovery. Therefore, our method can provide the

tightest lowerbound 0.01% in this case. On the

other hand, since we only have 4 models in total,

the lowest significance-level given by the fisher ex-

act test is 17% ≫ 0.1%, hence the discovery made

by the Benjamin-Hochberg procedure is 0.

G More Results on Momentum

See the long appendix for correlations with other

model size triplets on other tasks.

H Loss Decomposition and Estimation

The core of the PretVar estimator builds on the

following theorem:

Theorem 2 Suppose Dk, k ∈ [F ] are indepen-

dently sampled from the same distribution Ξ, which

is a distribution of distributions; µ̂k is an unbiased

estimator of EX∈Dk
[X], and φ̂k to be an unbiased

estimator of the variance of µ̂k, then

ˆV arF =
1

F − 1

∑

k∈[F ]

(µ̂k − µ̂)2 (29)

−
1

F

∑

k∈[F ]

φ̂k

is an unbiased estimator for

V = V arD∼Ξ[EX∼D[X]], (30)

12This is for intuition, though, and we do not need any
assumption on the prior of instance accuracy, which requires
a Bayes interpretation.

where

µ̂ :=
1

F

∑

k∈[F ]

µ̂k (31)

In this estimator, the first term “pretends” that µ̂·

are perfect estimator for the population mean and

calculate the variance, while the second term cor-

rects for the fact that the empirical mean estimation

is not perfect. Notice the theorem only requires

that µ̂ and φ̂ are unbiased, and is agnostic to the

actual computation procedure by these estimators.

To estimate PretVar, we need µ̂k and φ̂k. The

first term is the empirical accuracy for each pre-

training seed; the second is an unbiased estimator

of the variance of empirical accuracy for each pre-

training seed, which can be estimated by the sam-

ple variance of finetuning divided by the number

of finetuning runs.

See the long Appendix for a more detailed proof,

and also how to generalize this estimator to esti-

mate arbitrary level of variance decomposition.

I Variance Conditioned on Bias

See the long appendix for more figures.

J Example Decaying Instances

Here we present some random annotated decaying

instances on MNLI.

Premise : and that you’re very much right

but the jury may or may not see it that way so you

get a little anticipate you know anxious there and

go well you know

Hypothesis : Jury’s operate without the benefit of

an education in law.

Label : Neutral, Category : Correct

Premise : In fiscal year 2000, it reported

estimated improper Medicare Fee-for-Service

payments of $11.

Hypothesis : The payments were improper.

Label : Entailment, Category : Fine

Premise : INTEREST RATE - The price

charged per unit of money borrowed per year,

or other unit of time, usually expressed as a

percentage.

Hypothesis : Interest rate is defined as the total

amount of money borrowed.

Label : Entailment, Category : Wrong


