
Are mutants really natural? A study on how “naturalness”
helps mutant selection

Matthieu Jimenez
SnT, University of Luxembourg
Luxembourg, Luxembourg
matthieu.jimenez@uni.lu

Thiery Titcheu Checkam
SnT, University of Luxembourg
Luxembourg, Luxembourg

thiery.titcheu@uni.lu

Maxime Cordy
University of Namur
Namur, Belgium

maxime.cordy@unamur.be

Mike Papadakis
SnT, University of Luxembourg
Luxembourg, Luxembourg
michail.papadakis@uni.lu

Marinos Kintis & Yves Le
Traon

SnT, University of Luxembourg
Luxembourg, Luxembourg

{marinos.kintis,yves.letraon}@uni.lu

Mark Harman
University College London and

Facebook
London, UK

mark.harman@ucl.ac.uk

ABSTRACT

Background: Code is repetitive and predictable in a way that is

similar to the natural language. This means that code is “natural”

and this “naturalness” can be captured by natural language mod-

elling techniques. Such models promise to capture the program

semantics and identify source code parts that ‘smell’, i.e., they are

strange, badly written and are generally error-prone (likely to be

defective). Aims: We investigate the use of natural language mod-

elling techniques in mutation testing (a testing technique that uses

arti�cial faults). We thus, seek to identify how well arti�cial faults

simulate real ones and ultimately understand how natural the arti�-

cial faults can be. Our intuition is that natural mutants, i.e., mutants

that are predictable (follow the implicit coding norms of developers),

are semantically useful and generally valuable (to testers). We also

expect that mutants located on unnatural code locations (which

are generally linked with error-proneness) to be of higher value

than those located on natural code locations. Method: Based on

this idea, we propose mutant selection strategies that rank mutants

according to a) their naturalness (naturalness of the mutated code),

b) the naturalness of their locations (naturalness of the original

program statements) and c) their impact on the naturalness of the

code that they apply to (naturalness di�erences between original

and mutated statements). We empirically evaluate these issues on

a benchmark set of 5 open-source projects, involving more than

100k mutants and 230 real faults. Based on the fault set we estimate

the utility (i.e. capability to reveal faults) of mutants selected on

the basis of their naturalness, and compare it against the utility

of randomly selected mutants. Results: Our analysis shows that

there is no link between naturalness and the fault revelation util-

ity of mutants. We also demonstrate that the naturalness-based

mutant selection performs similar (slightly worse) to the random

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

ESEM ’18, October 11–12, 2018, Oulu, Finland

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5823-1/18/10. . . $15.00
https://doi.org/10.1145/3239235.3240500

mutant selection. Conclusions: Our �ndings are negative but we

consider them interesting as they confute a strong intuition, i.e.,

fault revelation is independent of the mutants’ naturalness.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

Mutation testing, Fault Revelation, Language Models

ACM Reference Format:

Matthieu Jimenez, Thiery Titcheu Checkam, Maxime Cordy, Mike Pa-

padakis, Marinos Kintis & Yves Le Traon, and Mark Harman. 2018. Are mu-

tants really natural? A study on how “naturalness” helps mutant selection. In

ACM / IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM) (ESEM ’18), October 11–12, 2018, Oulu, Finland. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3239235.3240500

1 INTRODUCTION

Empirical and experimental evaluations of software testing are

typically performed by using arti�cial faults. These faults are seeded

in selected programs and are used as the objectives for comparing

techniques. Thus, the techniques and test cases are assessed by

measuring their ability to detect these types of faults.

This type of assessment is known as fault seeding or mutation

testing. Fault seeding is performed by altering the syntax of the

programs. Thus, researchers transform (mutate) the syntax of the

programs with the aim of generating program versions (mutants)

that are semantically di�erent. By demonstrating (revealing) the

semantic di�erences between the mutants and the original program,

one can e�ectively measure test e�ectiveness [3, 7, 40].

Evidently, as the mutant faults are generated by altering the

programs’ syntax, they alter the program semantics. However, in

practice, most of the mutants tend to have a major e�ect on the

program semantics, which makes them non-useful to testers (since

they are trivial and can be revealed by many tests). On the contrary,

testers need mutants with a small e�ect on the program semantics

as these are hard to reveal and result in strong test cases [33, 37].

Nonetheless, the key question is how well mutants (which are in a

sense arti�cial faults) mimic real code and real faults?

https://doi.org/10.1145/3239235.3240500
https://doi.org/10.1145/3239235.3240500

ESEM ’18, October 11–12, 2018, Oulu, Finland Jimenez et al.

To this end, recent research has indeed shown that some (very

few) mutants are realistic [37, 40]. However, since the number

of realistic mutants is very small, compared to the total number

of mutants [38, 40], these have almost no practical e�ect [7, 37].

In other words, mutation introduces a very large number of non-

interesting (bad) mutants and very few interesting (good) ones. This

raises the question of how to select mutants that are semantically

useful and natural, e.g., simulate well real code and faults.

To identify semantically usefull mutants, we need a model ca-

pable of capturing the goodness of mutants. Previous research has

focused on identifying the types of mutants that are the most im-

portant ones [25, 39]. However, these techniques have little or no

success as they fail to outperform the random mutant selection

[6, 25]. One potential explanation could be that it is the location

of the mutants that makes them good and not their type. Another

potential explanation could be that good mutants are the result of

the combination of the location with the mutant type.

Nevertheless, we need a model capable of identifying the inter-

esting program locations, interesting mutant types and interesting

pairs of location and types. To this end, we investigate the use of

Language Models (LMs), such as N-Grams, as an approximation

mechanism for capturing the program semantics and select mu-

tants. We believe that language models can exploit the implicit

rules, coding conventions and generally repetitiveness of source

code and categorise mutants (and their locations) as “natural” i.e.,

mutated code that is likely to appear in a codebase (follows the

implicit coding norms of developers), and “unnatural”, i.e., mutated

code that is unlikely to appear in codebase.

Naturally, the LMs and the notion of “naturalness” raises the

question of how natural or unnatural mutants are, since they are

simulated faults. This intriguing question motivated our study and

desire to understand the properties and connections between pro-

gram syntax and semantics from a testing (fault revelation) per-

spective.

Interestingly, previous research has shown that the notion of

“naturalness” is powerful [15] and capable of capturing code seman-

tics. Naturalness has been useful in suggesting code [45], checking

compliance with standards [1], and identifying error-prone code

parts [43]. Therefore, our intuition is that natural mutants (con-

sidered as probable by such models) are more valuable than the

unnatural ones because they follow the implicit norms and the

way programmers code. We expect that mutants located on un-

natural code locations (which previous research linked with error-

proneness [18, 43]) to be of higher value than those located on

natural code locations.

In essence, the question regards the likelihood for developers to

do things wrong. Natural code fragments are easier for developers

to compose and more probable of being semantically right (since

they are highly repetitive) than unnatural code fragments. Thus, we

expect that mutants making a code fragment more natural, while

at the same time being semantically di�erent from the original

version, to have more utility than mutants making a code fragment

less natural. This is because such mutants are likely to introduce ex-

pected semantic deviations, which have small e�ect on the program

semantics. Furthermore, such mutants are worth investigating since

they form likely alternatives to the original code.

To investigate our hypothesis, we consider a set of real bugs from

5 Java open source projects. We measure naturalness at both the

�le level granularity (used to compute the naturalness of mutated

�les, i.e., Java classes) and at the statement level (used to compute

the naturalness of the original and mutated code statements).

We use the naturalness measurements to rank the mutants ac-

cording to: a) the naturalness of mutated code �les, b) the natu-

ralness of the original code statements and c) the impact on the

naturalness of the mutated statement(s) (di�erence on the natural-

ness of the original and mutated code). We evaluate these ranks

w.r.t. their probability to be killed by test cases that reveal real

faults. Thus, we assess whether mutants ranked higher are indeed

preferable than those ranked lower (i.e. their killing implies the

revelation of real faults).

Our results are negative. We deemed them as interesting since

they confute intuition and increase our understanding of the inter-

connections of program syntax, program semantics and software

faults.We show that the fault revealing utility of mutants is indepen-

dent of their naturalness, which in a sense suggests that naturalness

is not a discriminative factor for mutant selection. Interestingly, we

�nd that fault revealing mutants are spread across both natural and

unnatural code fragments in such a way that naturalness-based

mutant selection is equivalent to the random one.

The rest of the paper is organized as follows: Section 2 discusses

about mutation testing and naturalness of software. Sections 3 and

4 present the objectives of our study and the experimental design.

Our �ndings are reported on Section 5, while Sections 6 and 7

discuss the threats to validity and related studies. Finally, Section 8

concludes the paper.

2 BACKGROUND

2.1 Mutation Testing

Mutation is a well-studied technique with increasing popularity

among researchers and practitioners alike, as it is evident from the

most recent survey in the area [39]. Mutation works by inserting

arti�cial faults into the program under test, termed the original

program; thus, creating many di�erent versions of it, each one

containing a single syntactic change. These versions are called

mutants. Mutants are used to evaluate test cases based on their

ability to distinguish the mutants’ behavior from that of the original

program. If such a test case exists (or can be created) for a particular

mutant, then we term the mutant killed (or killable). We term a

mutant “fault-revealing” with respect to a particular fault if the test

cases that kill it are a subset of the test cases that can also reveal

that fault, i.e. lead the program under test to an observable failure.

Not all mutants can be killed by test cases. In such a case, we say

that the mutants remain live and we need to investigate why this

happened. A mutant can remain live after its execution with test

cases for two reasons: �rst, the test cases are not “strong” enough

to exhibit the behavioral di�erences between the mutant and the

original program, thus, indicating a weakness of our test suite; or

the mutant is an equivalent one. Equivalent mutants are syntacti-

cally di�erent versions of the original program but semantically

equivalent, meaning that their behavior is the same to the original

program for all the possible inputs [22, 30].

Are mutants really natural? A study on how “naturalness”
helps mutant selection ESEM ’18, October 11–12, 2018, Oulu, Finland

Mutation systematically introduces syntactic changes to the

original program. These changes are based on speci�c, prede�ned

rules called mutations or mutant operators. Such operators can

replace relational operators with each other, replacing > with <, for

example, or increase the values of variables by inserting appropriate

arithmetic operators to variable usages. Research has shown that the

choice of mutation operators and their implementation a�ects the

e�ectiveness of mutation and its tools [3, 26], thus, it is important

to carefully select the mutants and the tools that one uses when

applying mutation.

In mutation testing the identi�cation of “valuable” mutants is a

known open issue [37, 39]. Previous research has shown that the

majority of the mutants is redundant and this can induce severe

problems in the mutation test assessment process [25, 38]. This

means that not all the mutants are of equal value. Indeed, some

few mutants are useful, while the rest (majority) are easy-to-kill,

are duplicates of other mutants [22], or are redundant wrt. to the

useful ones [37]. This begs the question: How can we distinguish the

valuable mutants before analysing them?, or equally, Do valuable

mutants have speci�c properties that can distinguish them from the

less-valuable ones? Motivated by these questions we investigate

whether the notion of software naturalness can formulate mutant

selection strategies.

2.2 Naturalness of Software

Code is a form of human communication and as such it tends to

follow patterns and norms that are similar to those found in natural

languages. As such, code repetitiveness has been shown to be of

interest for software engineering [14].

Indeed, experienced developers prefer to write code that is easily

maintainable, i.e., well structured, readable and concise, which, as

a side e�ect, induces repetitiveness. Hindle et al. [15] showed that

this could be used to train probabilistic models like LMs. Code LMs

have been shown to be of interest for a large variety of applications,

including auto-completion of code [45] and defect prediction [18,

43]. They are able to compute a probability score of a given code

fragment, such that a high score means that the code fragment is

very natural.

The naturalness of code is a research area with a growing interest

in recent years, as witnessed by the recent survey of the area [2].

This �eld is based on the same premise as naturalness, i.e., code

is similar to natural languages, and aims at applying decades of

works in Natural Language Processing (NLP) to improve Software

Engineering. The idea to consider code not only as an instruction

of a developer to a computer but also as a form of communication

between humans is not recent, and can in fact be traced back to the

work of Knuth [24] on literate programming. However, works on

this area have really started 30 years later with the aforementioned

work of Hindle et al. [15]. Overall, according to Allamanis et al. [2]

the naturalness hypothesis has been de�ned as:

“Software is a form of human communication; software corpora

have similar statistical properties to natural language corpora; and

these properties can be exploited to build better software engineering

tools."

This paper can be classi�ed according to Allamanis et al. [2] ’s

taxonomy as code-generating probabilistic models relying on LMs.

2.3 Code Language Models

LMs assign a non-zero probability to every possible slice of code

without requiring any prior knowledge. These models can be eval-

uated using three di�erent metrics: cross-entropy, perplexity and

word error rate. Cross entropy originates from the information the-

ory area and measures the degree of surprise of the trained model

M given a slice of code s composed of n tokens, i.e., the average

number of bits per token required to encode s given M using a

perfect code. A lower cross entropy value is better, as it means that

M is less surprised by s . More formally, cross-entropy is given by:

HM (s) = −
1

n
loд2(pM (a1...an))

where pM is the probability thatM observes the sequence of token

a1...an . The perplexity metric is the reciprocal of the geometric

average probability assigned by model M to each token of s [8]. It

is given by PPM (s) = 2
HM (s).

The most commonly used LMs for naturalness are the N-Gram

Models [15, 45]. These rely on the Markov’s property, i.e., the oc-

currence of a token is in�uenced only by a limited number (n)

of previous tokens (gram). Hence, the probability of s can be ap-

proximated by the probability of all token sequences of size n it

contains.

The probability of an n-gram N can be computed using a stan-

dard maximum likelihood estimate, where the number of occur-

rences of N in a training corpus is divided by the number of occur-

rences of them �rst token of N . However due to data sparsity, it is

likely that some n-gram that never appeared in a training corpus

will appear in s . This n-gram would then get a probability of 0 lead-

ing to an in�nite cross entropy, which is not possible for a LM. To

circumvent this problem, the NLP community came up with a fam-

ily of techniques called smoothing [8, 29]. Smoothing techniques

take a part of the probability of existing N-grams and attribute it

to non-existing ones by extrapolating on the information given by

m-grams, wherem < n.

In this paper, we aim at investigating whether mutation test-

ing can bene�t from naturalness analysis. Following the lines of

previous work [15, 18, 45], we base our investigations on N-Gram

models because these are simple and fast to compute.

3 RESEARCH QUESTIONS

We start our investigation by checking whether mutants alter the

naturalness of a project and to which direction (make the code

more natural or unnatural). This poses our �rst research question:

RQ1: What is the impact of mutants on the naturalness of

code?

We answer this question by checking the di�erences in the nat-

uralness of the original and mutant program �les. We also check

the number of mutants having the same naturalness values. The

answer to this question ensures that we can leverage natural lan-

guage models in mutation testing. Given that we found evidence

that mutants have di�erent naturalness values, we turn to design

naturalness-based mutants selection strategies. We thus, investigate

the fault revelation ability of the mutants that can be categorised

as natural and unnatural. Hence:

ESEM ’18, October 11–12, 2018, Oulu, Finland Jimenez et al.

Table 1: Java Subjects’ Details

Test Subject Description LoC #Faults Used

JFreeChart A chart library 79,949 19

Closure Closure compiler 91,168 92

Commons Lang Java utilities library 45,639 30

Commons Math Mathematics library 22,746 74

Joda-Time A date and time library 79,227 15

Total - 318,729 114

RQ2: Is “natural” mutant selection stronger than the “unnatu-

ral” mutant selection?

To answer RQ2, we need to know the the probability of revealing

a fault when killing a mutant, for every mutant in our set. We

therefore repeatedly applied mutation testing on our benchmark

sets and compute the fault revelation of both natural and unnatural

mutant sets (of di�erent sizes).

We report on the di�erences in fault revelation of three strate-

gies based on: (1) the naturalness of mutated code fragment; (2)

the naturalness of the original code fragments; and (3) the impact

of mutants on the naturalness of the code (entropy di�erence be-

tween the original and mutated code fragments). This information

is useful for designing e�ective naturalness-based mutant selection

strategies.

After experimenting with the di�erent naturalness-based muta-

tion testing strategies, we evaluate them with respect to other base-

line methods. We select the random mutant selection as baseline

since previous research showed that it is indeed the most e�ective

mutant selection strategy [6, 25]. Thus, our next RQ is:

RQ3: How does naturalness-based mutant selection compares

with random selection?

To demonstrate whether there are bene�ts related to the natural-

ness-based mutation testing, we repeatedly compute the fault re-

vealing potential of the studied approaches and compared them on

the basis of fault revelation.

4 METHODOLOGY

This section presents details related to experimental settings, i.e.,

test subjects, test suites, real-faults and tools, and the evaluation

procedure that we use in the experiments.

4.1 Test Subjects: Real Faults, Mutants and Test
Suites

To answer our RQs, we use 5 real-world projects and 230 real-world

bugs from the Defects4J database [20]. Defects4J includes a repro-

ducible set of real faults mined from source code repositories, along

with scripts that facilitate the conduction of experiments on these

faults. In total, we considered 357 real-world faults accompanying

our test subjects. For each fault, the database provides the faulty

version of the project, the �xed one and at least one test case that

triggers the faulty behaviour, i.e. fails when executed against the

faulty version of the project.

Table 1 present details about the test subjects. The �rst four

columns of the table record the subject names, their description,

their source code lines1 and the number of faults that they include.

To compose test pools with large number of tests, we used the

data from the study of Papadakis et al. [40], which involved two

state-of-the-art test generation tools (EvoSuite [13] and Randoop

[36]). The test pools are composed of the available developer test

suites and 20 test suites, 15 from EvoSuite and 5 from Randoop.

Randoop has 5 test suites since it generates a vast number of tests,

which impose a big overhead on the experiment. In total the test

pools are composed of 1,375,341 automatically generated tests and

58,131 tests from the project developers.

For the creation of mutants, Major [21] was used. Major imple-

ments the main mutation operators [34], i.e., the Arithmetic (AOR),

Logical Connector Replacement (LCR), Relational (ROR), Bitwise

(BTW), Shift (SFT), Unary Operator Insertion (UOI) and Statement

Deletion (SDL).

Major is robust, easy to use and has been used in many em-

pirical studies [39, 40]. It also operates at the source code level,

which is mandatory for calculating the naturalness of code. In our

experiments we applied the tools on the �xed program versions of

the datasets using all the supported operators.

4.2 N-Gram Model Building

We built N-Gram LMs using all the source �les of the selected

projects. We then evaluate the naturalness of mutants using their

own �le and code fragments that they apply.

To measure naturalness we need a tokenizer and a tool to build

LMs. The �rst one should be able to transform source code into a

sequence of tokens, while the second one builds the models from

a training (tokenized) corpus and returns the cross entropy of the

targeted data (i.e. the testing corpus).

We tokenize the source code �les according to the grammar of

their language [18] using the the Java Parser [41].

We study two tokenization schemes; one at the �le level of granu-

larity and one at the statement level. The �le-level tokenized content

is the result of tokenizing the code �les (Java classes) as as a whole.

The line-level tokenized content is the result of separating the to-

kens according to the statements they belong in the code �les as

suggested by Jimenez et al. [18]. It is noted that the comments were

discarded.

We built the LMs using the Kylm toolkit [32] and the TUNA

infrastructure [19]. Kylm is a reference LM toolkit that is written in

Java and o�ers all the required functionalities for our experiments.

To build N-Gram models, three main parameters are needed: (1)

the maximum value of n, (2) the smoothing technique and (3) the

unknown cut o�. The �rst two parameters have been presented

in Section 2.3. The unknown cut o� represents a threshold on the

number of times a token should appear before being considered

by the model. If a token (after completing the training) fails to

reach this threshold, it will be stored in a speci�c group of tokens

that will be considered as ‘unknown’ by the model. This allows

the generalization of the model on (being able to handle) ‘unseen’

tokens (cases of tokens that have not been appeared before, such

as variable names) when evaluating the testing corpus.

1Reported by the cloc tool (http://cloc.sourceforge.net/).

http://cloc.sourceforge.net/

Are mutants really natural? A study on how “naturalness”
helps mutant selection ESEM ’18, October 11–12, 2018, Oulu, Finland

In our experiments, we followed the best pracices suggested by

Jimenez et al. [18] and pick the following parameters: n equals to 4

with Modi�ed Kneser Ney as smoothing technique. We also set the

unknown cut o� to 1, the default value of Kylm.

Overall, to compute the naturalness of all mutants, we proceed

as follows (for every mutated �le):

(1) Collect and tokenize all source code �les of the projects

containing the mutated �le under evaluation

(2) Exclude the �le that has been mutated

(3) Use the resulting set of source �les as the training corpus to

build two N-Gram models, one at the �le-level and another

one at the line-level

(4) For the mutant �les (test corpus):

• Tokenize the mutant.

• Compute its cross entropy as well as the original one using

the �le level model.

• Do a diff between the line level tokenized versions of the

original and the mutant.

• Measure the cross entropy of the deleted lines and added

lines using the line level model and attribute it to the

original and mutant, respectively.

4.3 Evaluation Process

To answer the stated RQs, we applied mutation testing on the

project �les where the selected faults appeared. We then measured

the cross entropy of all the original and mutant �les using the

process described above. Since the models are measuring the natu-

ralness of code fragments based on the training corpus, we need to

separate the training from the evaluation corpus in order to avoid

biasing the ability of the model (judging code as natural because it

is part of the training corpus).

Thus, for each fault, we train our models on all the project �les

excluding the faulty ones. This establishes a clear separation of

training and evaluation targets as it ensures that the same �les do

not belong to both training and evaluation.

To answer RQ1 and show that the syntactic di�erences of mu-

tants can be scored by language models (ranked according to their

naturalness), we collect all mutants and categorize them according

to the entropy of the original �les (we record the entropy di�erences

of the original and mutant �les). We thus seek to identify trends

regarding the syntactic transformations introduced by the mutants,

e.g., whether mutants make natural �les more or less natural.

To answer RQ2 and demonstrate the ability of the LMs to assist

mutation testing, we rank the mutants according to their natu-

ralness. We investigate three scenarios: the naturalness of the a)

mutant location, b) mutated �le and c) absolute di�erence di�er-

ences of the original and mutant �les. To check whether natural

or unnatural cases are interesting, we rank the mutants in an in-

creasing and decreasing order (of entropy) and contrast their fault

revelation abilities. To determine fault revelation we repeatedly

apply mutation testing by selecting the x% of the top rank mutants

(we consider sets of 0, 5%, 10%, 15% to 100%) and compute the fault

revelation probabilities of these sets. To account for coincidental

and other random factors, we applied our process 1,000 times for

every considered set of mutants.

Table 2: Distribution of entropy values. Number of mutants

with equal entropy values and their frequency. For instance

83,707 mutants have unique entropy values, while 10,347

mutants have entropy value equal to another mutant.

No of mutants 1 2 3 4 5 6 7 8 >=9

Frequency 83,707 10,347 2,506 1,203 550 361 253 176 511

The fault revelation probabilities of the selected mutant sets were

computed by measuring the ratio of the times that the faults were

revealed by the test suites that kill all the considered mutants. The

test suites that kill the candidate mutant sets were selected based

on the following procedure: We start from empty test sets and stop

when we kill all the mutants. At each step we select the next mutant

in the list and randomly pick a test that kills it (selected from the

pool of the available test suites). To avoid composing test suites

with large redundancies we remove all the mutants that are killed

by every test we select. In case no test kills a targeted mutant, we

discard the mutant. This process mimics what a tester does when

she uses mutation testing [3] and ensures that the selected tests are

relevant to themutants we study. Overall, this is a typical evaluation

process that has been followed by many studies [3, 26, 38].

To answer RQ3 and compare with the random mutant selection

we repeat the process followed in RQ2 for randommutant orderings.

To cater for the stochastic nature of the random orderings we repeat

this process 100 times and compare our results with the naturalness-

based orderings.

5 RESULTS

5.1 RQ1: Impact of Mutants on Naturalness

Our �rst research question checks whether mutants change the

cross entropy of the code under analysis. Thus, we check the abil-

ity of the LMs at identifying the syntactic changes introduced by

mutants. To do so, we compare the cross entropy of the mutated

(and original) code �les.

Table 2 records the distribution of entropy values of the mutants

we study. From these data we can see that entropy can distinguish

the great majority of the mutants (very small sets of mutants are

of identical entropy values). Fig. 1 presents the entropy di�erences

between the mutant and the original �les. The boxplots present the

values resulting by the subtraction of the entropy of the mutated

and the original �les. Thus, positive values indicate that mutants are

less natural than the original �les, while negative values indicate

the opposite.

Perhaps not surprising, we observe that models can indeed cap-

ture the syntactic di�erences between the original and the mutant

�les. Interestingly, we observe that mutants sometimes make the

code more natural and sometimes less natural. The tendency is to

make the code less natural as the majority of the mutant �les have

higher entropy, than the original �les. In our results, only 30% of

the mutant �les are more natural than the original �les.

Overall, our results demonstrate that mutants change the cross

entropy of the code under analysis by making it sometimes more

and sometimes less natural. This leads us to the question of whether

there is a link between the value of mutants and their naturalness.

ESEM ’18, October 11–12, 2018, Oulu, Finland Jimenez et al.

−
0

.0
1

0
−

0
.0

0
5

0
.0

0
0

0
.0

0
5

0
.0

1
0

Figure 1: Cross Entropy di�erence betweenmutant and orig-

inal �les.We observe that mutants alter the cross entropy of

the codewith themajority of themmaking the code less nat-

ural.

5.2 RQ2: “Natural” Vs “Unnatural” Mutant
Selection

This RQ regards the design of naturalness-based mutant selection

strategies. To this end, we need to evaluate whether natural or

unnatural mutants are preferable. We thus, collect all the mutants

from our subjects and measure their entropy, using both the �le-

level and statement-level tokenizers, see section 4.2 for details. We

then collect a) the entropy of the code fragments where mutants

are applied (using, the statement-level tokenizer), b) the entropy of

the mutant �les (using, the �le-level tokenizer), and c) the absolute

di�erence in entropy between the original and mutated �les (using,

the �le-level tokenizer), and form naturalness-based mutation test-

ing strategies (by ranking mutants in an increasing and decreasing

order).

These three entropy measurements help us investigate which

ones of the strategies we can compose leads to interesting mutant

sets. We investigate these particular cases because they involve

likely (intuitively) interesting properties: the case a) regards the

locations that should be mutated, the case b) regards the natu-

ral/unnatural order of mutants, and the case c) regards the ‘extreme’

mutants, i.e., choosing mutants that impact the entropy measure

too much, either by making the code much more natural or much

more unnatural.

We apply naturalness-basedmutation testing by rankingmutants

in an increasing and decreasing entropy order, i.e., we follow the

procedure explained in Section 4.3, and obtain the fault revelation

ability of our mutant sets. Here we compare the increasing and

decreasing entropy orders in order to identify the strategy that

leads to the most promising results. We use the same number of

mutants in every comparison to establish a fair comparison.

In the following subsections we discuss the results related to

the cases a), b) and c). All our results are presented by computing

the di�erences in the fault revelation values of the increasing and

decreasing order strategies. Thus, by observing positive values

we can conclude that increasing strategies are preferable over the

decreasing ones.

5.2.1 Mutant Locations. Figure 2(a) depicts the results related

to the fault revelation ability of the mutants located on natural

and unnatural code locations for several ratios of selected mutants.

Higher values indicate that natural locations are preferable. We

observe a small di�erence in favour of the natural locations over

the unnatural ones. To validate this, we performed a Wilcoxon

signed-rank test and found no statistical di�erences (at the a < 0.05

signi�cance level). These results suggests that the naturalness of

the code locations is not discriminative of the fault revelation ability

of the mutants. In other words ranking mutants according to the

naturalness of their location is not really helpful (is not a good

feature of the semantic usefulness of the mutants).

5.2.2 Mutant Files. Figure 2(b) records the results regarding

the fault revelation ability of the natural and unnatural mutants.

Natural mutants are those having mutant �les (whole �les) with

low entropy. In this case the results show a tendency towards

the natural mutants but the di�erence is small. By performing a

Wilcoxon signed-rank test we �nd statistical di�erences (at the

a < 0.05 signi�cance level) when selecting in the range 5% to 25%.

When selectingmore than 25% of themutants the di�erences are not

signi�cant. When measuring the e�ect size of the di�erences, using

the Vargha and Delaney Â12 [46], we get values of approximately

0.57 to 0.58 (meaning that natural mutants are preferable in 57-58%

of the cases). Interestingly the fault detections of both natural and

unnatural mutants are much higher than those of the natural or

unnatural locations indicating a potential of such strategies.

5.2.3 Mutants Impact. Figure 2(c) records the results regarding

the strategies with extreme impact, i.e., abs(original entropy - mu-

tant entropy) (impact on the entropy of the �le). The underlying

idea is that the ‘extreme’ mutants (mutants with largest impact)

are of higher value than the non-extreme ones. Unfortunately, the

results indicate that this choice does not make any big di�erence

(since almost all such values are close to each other). The di�erences

are not statistically signi�cant indicating that the impact on the

naturalness is not a discriminative factor that we could use.

5.3 RQ3: Naturalness-based Mutant Selection
VS Random

This RQ regards the comparison of naturalness-based mutation

testing with a baseline in order to see if it is of any practical value.

To investigate this, we select the two best performing strategy (i.e.,

selecting the most natural mutants) and compare them with the

random selection. As we discussed earlier random mutant selec-

tion forms a tough baseline and thus, by demonstrating that the

LMs outperforms the random selection, we e�ectively establish an

approach capable of discriminating between good and bad mutants.

Figure 3 summarizes the results of the comparison. The boxes

record the fault revelation ability of the mutant sets that are com-

posed of (0-100%, in steps of 5%) of the considered mutants. As can

be seen the naturalness-based strategy performs similarly to the

random mutant selection. By performing a Wilcoxon test, we �nd

that the results are not statistically signi�cant. This means that

the di�erences are marginal and we cannot expect any important

bene�t.

Are mutants really natural? A study on how “naturalness”
helps mutant selection ESEM ’18, October 11–12, 2018, Oulu, Finland

5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

0.0

0.2

0.4

0.6

0.8

1.0

Ratio of selected Mutants

F
au

lt
R

ev
el

at
io

n

Mutant Selection Strategy

Natural Locations UnNatural Locations

(a) Natural VS Unnatural code locations

5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

0.0

0.2

0.4

0.6

0.8

1.0

Ratio of selected Mutants

F
au

lt
R

ev
el

at
io

n

Mutant Selection Strategy

Natural Mutants UnNatural Mutants

(b) Natural VS Unnatural mutants
5

%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

5
0

%

5
5

%

6
0

%

6
5

%

7
0

%

7
5

%

8
0

%

8
5

%

9
0

%

9
5

%

0.0

0.2

0.4

0.6

0.8

1.0

Ratio of selected Mutants

F
a

u
lt

R
ev

e
la

tio
n

Mutant Selection Strategy

Big Impact Small Impact

(c) Big VS Small impact (entropy di�erences introduced by mutants)

Figure 2: Identifying fault revealingmutants. Natural VS Unnatural program locations, Natural VS Unnatural mutant �les and

Big VS Small mutants’ impact. The x-axis records ratios of the top ranked selected mutants, while the y-axis records the fault

revelation ability of the two selected strategies, i.e., fault revelation of natural and unnatural mutants. Higher values indicate

higher fault revelation.

5
%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

5
0

%

5
5

%

6
0

%

6
5

%

7
0

%

7
5

%

8
0

%

8
5

%

9
0

%

9
5

%

0.0

0.2

0.4

0.6

0.8

1.0

Ratio of selected Mutants

F
a

u
lt
 R

e
v
e

la
ti
o

n

Mutant Selection Strategy

Natural Mutants Random

Figure 3: Fault Revelation of naturalness and randommutant selection. The x-axis records ratios of selected mutants and the

y-axis records the fault revelation for every fault considered.

ESEM ’18, October 11–12, 2018, Oulu, Finland Jimenez et al.

6 DISCUSSION

6.1 Visualizing Naturalness and Fault
Revelation

To further investigate the relation between naturalness and fault

revelation we visualize our data (with the hope to see some general

trends that might not be captured by our analysis). Figure 4 plots the

naturalness (naturalness of the original �le minus the naturalness of

the mutant �le) and fault revelation probabilities for every mutant

we consider. In the �gure we observe that there is no pattern that

we can exploit.

Mutants with high fault revelation (points on the x-axis with

values above 0.5) are spread across all the spectrum of naturalness

values. Mutants with low or no fault revelation (close to 0 value on

the x-axis) have the most extreme negative values. Nevertheless,

the visualization helps us demonstrate the absence of any relation

between the examined variables.

6.2 Additional Attempts with Negative Results

Our results are in a sense negative (the expected bene�t was not

reached). However, this could be attributed to a number of param-

eters that were not considered. To account for some of them, we

repeated our experiment (without any success) by using di�erent

parameters. Thus, we also used a di�erent way to tokenize our

programs using the program Abstract Syntax Tree (and compute

naturalness), we composed models by considering n-values upto 10,

we composed models by considering a much larger training corpus,

i.e., we trained using 20 (related) Java programs (from Apache)

and we measured the number of tests and equivalent mutants re-

quired (by the naturalness-based and random mutant selection) to

reach the same level of fault revelation. All these attempts yielded

quite similar results and overall we found no signi�cant di�erences

between naturalness-based and random mutant selection.

6.3 Threats to Validity

The generalisability of the results is a common threat to the external

validity of every experimental study. To mitigate this threat, we

used real-world projects with real faults.

A potential threat a�ecting the internal validity of our study

stems from the sets of mutants and test suites that we used. We

used state-of-the-art mutation testing tools [39] supporting all the

mainstream mutation operators [23]. To compose the test pools, we

used multiple test suites that were generated by state-of-the-art test

generation tools, i.e., Randoop [36] and EvoSuite [13]. Although

it is possible that di�erent tests may lead to di�erent results, the

practice we employed re�ects what current test case generation

research has to o�er in large-scale experiments.

Another threat originates from the computation of naturalness

as we used three external tools (the two tokenizers and a language

models toolkit). Thus potential bugs or errors in the use of those

tools might impact the reported results. Regarding the tokenizers,

we used well known and reliable ones.

We used Java Parser, which is used by more than 50 libraries and

100 projects on Github as well as some companies and is as well

regularly updated. Java Parser is also well documented and provide

handful examples preventing any misuse of the tools.

Regarding Kylm, the project is relatively old and not well docu-

mented but is still regularly used as comparison for new approaches

like in the work of Pickhardt et al. [42], which shows that the re-

sults provided by the tool are still considered as relevant by the

NLP community. To reduce this threat, we carefully analysed and

tested the tool. Similarly, the use of 4-gram and of Modi�ed Kneser

Ney smoothing may have an impact on our results. We chose these

options as suggested by our previous work [18].

Threats that a�ect the construct validity of our study concerns

the metrics we used. To evaluate mutant ranking we used fault-

revealing mutants and fault revelation probabilities approximated

by multiple test executions. We deem this metric appropriate since

fault revelation forms the purpose of testing.

7 RELATED WORK

Mutation testing is a well-studied, fault-seeding technique with

a rich background both in theoretical and practical advances. A

summary of these advances can be found in the recent survey of

Papadakis et al. [39] which summarises the advances in the area

between 2007–2016, complementing previous surveys [17, 35].

The quality of mutants and how to generate “good” mutants

have concerned researchers for many years. This problem has many

facets. First, the question “what changes should be applied to the

program under test” can be posed. This is directly related to the

mutation operators that one should use. Although mutation’s re-

search has expanded the available mutation operators to handle

multiple and diverse artefacts, ranging from mobile applications

[11, 27] to models [4, 12], and includes specialised sets of operators,

e.g., energy- [16], security-[28] and memory-related [47] ones, it

is not clear what constitutes a “good change” for mutant creation.

Ultimately, a “good” mutant will be a fault-revealing one (for testing

purposes), i.e., it will be killed by test cases that reveal underlying

faults in the program under test [7].

O�utt et al. [33] introduced a theoretical model of the “size” of

program faults which makes the separation between its syntactic

and semantic characteristics. The syntactic size of a fault is related

to the source code of the program under test and how it di�ers

from its correct counterpart and the semantic size to the divergence

between the program under test and its speci�cation due to the

presence of the fault. Thus, the authors suggest that mutants having

a small semantic size are more valuable to testing.

Semantic mutation testing has been proposed as a way to gener-

ate mutants that a�ect the semantics of the language of the artefact

under test rather than the syntax [9, 10]. Thus, the semantic mu-

tants simulate a di�erent category of faults than the traditional

ones and are more useful in several scenarios.

Sridharan and Namin [44] attempt to rank mutants by focusing

on mutation operators that are likely to generate mutants that will

not be killed by a speci�c test suite. Their approach is based on

a probabilistic, Bayesian model which analyses a small portion

of the generated mutants and the available test suite to rank the

whole set of mutants. In a similar vein, Namin et al. [31] introduced

MuRanker, an approach that predicts the di�culty and complexity

of mutants and ranks them accordingly. This approach is based on

distance functions which take into account di�erences among the

control �ow graph, the Jimple representation and coverage data

Are mutants really natural? A study on how “naturalness”
helps mutant selection ESEM ’18, October 11–12, 2018, Oulu, Finland

0.0 0.2 0.4 0.6 0.8 1.0

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

Figure 4: Fault Revelation probabilities and naturalness. The x-axis records fault revelation probability of each mutant (mea-

sured by counting the number of tests that kill the mutant and at the same time expose a real fault) and the y-axis records the

naturalness value of every mutant.

between the mutants and the original program. The basic di�erence

between our approach and the previous ones is that they depend

on the available test suite whereas our approach leverage mutants’

naturalness and is applied statically.

Other studies attempt to create mutation operators that resemble

real faults by analysing previous faults that developers have made.

Brown et al. [5] mine fault-�xing commits from the version control

history of projects and extract fault-�xing patterns. Based on these

patterns, they propose new mutation operators that reverse the

patterns, thus, creating faulty program versions (mutants). Linares-

Vásquez et al. [27] created a taxonomy of faults found in Android

applications and propose a new set of Android mutation operators

based on these patterns. However, the utility of these techniques

have not yet been evaluated wrt to their ability to reveal faults.

8 CONCLUSION

Code forms a human artefact and as such it tends to follow patterns

and norms that are repeatable and similar to those found in text and

generally natural language. In the context of fault-based testing,

what does it means for an arti�cial fault to follow the patterns

and norms of the programmers? We investigated this question

and found no link between the naturalness of mutants and the

semantic alterations of real faults. We investigate this statement

using statistical language models and provide evidence that there

is no link between naturalness and the fault revelation utility of

mutants. We also demonstrate that the naturalness-based mutant

selection performs similar (slightly worse) than the random mutant

selection.

We believe that our results are of interest to the software testing

community since they confute a natural intuition. We show that the

fault revealing utility of mutants is independent of their naturalness,

which is in contrast to the �ndings (of previous research) related

to the strong link between error proneness and naturalness. Our

�ndings suggest that mutants (and their locations) coupled with

faults are both natural and unnatural and that naturalness-based

mutant selection strategies are not better than the random mutant

selection.

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. 2014.

Learning natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014. 281–293. https://doi.org/10.1145/2635868.
2635883

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles A. Sutton.
2017. A Survey of Machine Learning for Big Code and Naturalness. CoRR
abs/1709.06182 (2017). http://arxiv.org/abs/1709.06182

[3] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. 2006. Using Mutation
Analysis for Assessing and Comparing Testing Coverage Criteria. Software
Engineering, IEEE Transactions on 32, 8 (2006), 608–624. https://doi.org/10.1109/
TSE.2006.83

[4] F. Belli, M. Beyazit, T. Takagi, and Z. Furukawa. 2011. Mutation Testing of "Go-
Back" Functions Based on Pushdown Automata. In 2011 Fourth IEEE International
Conference on Software Testing, Veri�cation and Validation. 249–258. https://doi.
org/10.1109/ICST.2011.30

[5] David Bingham Brown, Michael Vaughn, Ben Liblit, and Thomas Reps. 2017. The
Care and Feeding of Wild-caught Mutants. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York,
NY, USA, 511–522. https://doi.org/10.1145/3106237.3106280

[6] Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F. Bissyandé, Yves Le
Traon, and Koushik Sen. 2018. Selecting Fault Revealing Mutants. CoRR
abs/1803.07901 (2018). arXiv:1803.07901 http://arxiv.org/abs/1803.07901

[7] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman.
2017. An Empirical Study on Mutation, Statement and Branch Coverage Fault

https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2635868.2635883
http://arxiv.org/abs/1709.06182
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/ICST.2011.30
https://doi.org/10.1109/ICST.2011.30
https://doi.org/10.1145/3106237.3106280
http://arxiv.org/abs/1803.07901
http://arxiv.org/abs/1803.07901

ESEM ’18, October 11–12, 2018, Oulu, Finland Jimenez et al.

Revelation That Avoids the Unreliable Clean Program Assumption. In Proceedings
of the 39th International Conference on Software Engineering (ICSE ’17). IEEE Press,
Piscataway, NJ, USA, 597–608. https://doi.org/10.1109/ICSE.2017.61

[8] Stanley F. Chen and Joshua Goodman. 1999. An Empirical Study of Smoothing
Techniques for Language Modeling. Comput. Speech Lang. 13, 4 (Oct. 1999),
359–394. https://doi.org/10.1006/csla.1999.0128

[9] J. A. Clark, H. Dan, and R. M. Hierons. 2010. Semantic Mutation Testing. In 2010
Third International Conference on Software Testing, Veri�cation, and Validation
Workshops. 100–109. https://doi.org/10.1109/ICSTW.2010.8

[10] H. Dan and R. M. Hierons. 2012. SMT-C: A Semantic Mutation Testing Tools for
C. In 2012 IEEE Fifth International Conference on Software Testing, Veri�cation and
Validation. 654–663. https://doi.org/10.1109/ICST.2012.155

[11] L. Deng, N. Mirzaei, P. Ammann, and J. O�utt. 2015. Towards mutation analysis
of Android apps. In 2015 IEEE Eighth International Conference on Software Testing,
Veri�cation and Validation Workshops (ICSTW). 1–10. https://doi.org/10.1109/
ICSTW.2015.7107450

[12] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves
Schobbens, and Patrick Heymans. 2016. Featured Model-based Mutation Analysis.
In Proceedings of the 38th International Conference on Software Engineering (ICSE
’16). ACM, New York, NY, USA, 655–666. https://doi.org/10.1145/2884781.2884821

[13] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European
Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011.
416–419. https://doi.org/10.1145/2025113.2025179

[14] Mark Gabel and Zhendong Su. 2010. A Study of the Uniqueness of Source
Code. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE ’10). ACM, New York, NY, USA, 147–156.
https://doi.org/10.1145/1882291.1882315

[15] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. De-
vanbu. 2012. On the naturalness of software. In 34th International Conference
on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 837–847.
https://doi.org/10.1109/ICSE.2012.6227135

[16] Reyhaneh Jabbarvand and Sam Malek. 2017. µDroid: An Energy-aware Mutation
Testing Framework for Android. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA,
208–219. https://doi.org/10.1145/3106237.3106244

[17] Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. Software Engineering, IEEE Transactions on 37, 5 (2011), 649–678.
https://doi.org/10.1109/TSE.2010.62

[18] Matthieu Jimenez, Maxime Cordy, Yves Le Traon, and Mike Papadakis. 2018. On
the Impact of Tokenizer and Parameters on N-Gram Based Code Analysis. In 34th
International Conference on Conference on Software Maintenance and Evolution,
ICSME 2018, September 23 - 29, 2018, Madrid, Spain.

[19] Matthieu Jimenez, Maxime Cordy, Yves Le Traon, and Mike Papadakis. 2018.
TUNA: TUning Naturalness-based Analysis. In 34th International Conference on
Conference on Software Maintenance and Evolution, ICSME 2018, September 23 -
29, 2018, Madrid, Spain.

[20] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database of
existing faults to enable controlled testing studies for Java programs. In Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’14, San Jose, CA, USA -
July 21 - 26, 2014. 437–440. https://doi.org/10.1145/2610384.2628055

[21] René Just, Franz Schweiggert, and Gregory M. Kapfhammer. 2011. MAJOR: An
e�cient and extensible tool for mutation analysis in a Java compiler. In 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2011),
Lawrence, KS, USA, November 6-10, 2011. 612–615. https://doi.org/10.1109/ASE.
2011.6100138

[22] Marinos Kintis, Mike Papadakis, Yue Jia, Nicos Malevris, Yves Le Traon, and
Mark Harman. 2018. Detecting Trivial Mutant Equivalences via Compiler Opti-
misations. IEEE Trans. Software Eng. 44, 4 (2018), 308–333. https://doi.org/10.
1109/TSE.2017.2684805

[23] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos
Malevris, and Yves Le Traon. 2018. How e�ective are mutation testing tools?
An empirical analysis of Java mutation testing tools with manual analysis and
real faults. Empirical Software Engineering 23, 4 (2018), 2426–2463. https:
//doi.org/10.1007/s10664-017-9582-5

[24] Donald E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (May 1984),
97–111.

[25] Bob Kurtz, Paul Ammann, Je� O�utt, Márcio Eduardo Delamaro, Mariet Kurtz,
and Nida Gökçe. 2016. Analyzing the validity of selective mutation with domina-
tor mutants. In Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18,
2016. 571–582. https://doi.org/10.1145/2950290.2950322

[26] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. L. Traon, and A. Ventresque.
2017. Assessing and Improving the Mutation Testing Practice of PIT. In 2017 IEEE
International Conference on Software Testing, Veri�cation and Validation (ICST).
430–435. https://doi.org/10.1109/ICST.2017.47

[27] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Massi-
miliano Di Penta, Christopher Vendome, Carlos Bernal-Cárdenas, and Denys
Poshyvanyk. 2017. Enabling Mutation Testing for Android Apps. In Proceedings of
the 2017 11th JointMeeting on Foundations of Software Engineering (ESEC/FSE 2017).
ACM, New York, NY, USA, 233–244. https://doi.org/10.1145/3106237.3106275

[28] T. Loise, X. Devroey, G. Perrouin, M. Papadakis, and P. Heymans. 2017. To-
wards Security-Aware Mutation Testing. In 2017 IEEE International Conference
on Software Testing, Veri�cation and Validation Workshops (ICSTW). 97–102.
https://doi.org/10.1109/ICSTW.2017.24

[29] Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge, MA, USA.

[30] Michaël Marcozzi, Sébastien Bardin, Nikolai Kosmatov, Mike Papadakis, Virgile
Prevosto, and Loïc Correnson. 2018. Time to clean your test objectives. In
Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018. 456–467. https://doi.org/10.
1145/3180155.3180191

[31] Akbar Siami Namin, Xiaozhen Xue, Omar Rosas, and Pankaj Sharma. 2015. Mu-
Ranker: a mutant ranking tool. Software Testing, Veri�cation and Reliability 25,
5-7 (2015), 572–604. https://doi.org/10.1002/stvr.1542

[32] Graham Neubig. 2017. Kyoto Language Modeling Toolkit. (2017). https://github.
com/neubig/kylm

[33] A. Je�erson O�utt and J. Hu�man Hayes. 1996. A Semantic Model of Program
Faults. In Proceedings of the 1996 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’96). ACM, New York, NY, USA, 195–200.
https://doi.org/10.1145/229000.226317

[34] A. Je�erson O�utt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian
Zapf. 1996. An Experimental Determination of Su�cient Mutant Operators. ACM
Trans. Softw. Eng. Methodol. 5, 2 (1996), 99–118. https://doi.org/10.1145/227607.
227610

[35] A. J. O�utt and R. H. Untch. 2001. Mutation 2000: Uniting the Orthogonal. In
Mutation Testing for the New Century, W.Eric Wong (Ed.). The Springer Inter-
national Series on Advances in Database Systems, Vol. 24. Springer US, 34–44.
https://doi.org/10.1007/978-1-4757-5939-6_7

[36] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Companion to the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2007, October 21-25, 2007, Montreal, Quebec, Canada. 815–816. https://doi.org/10.
1145/1297846.1297902

[37] Mike Papadakis, Thierry Titcheu Chekam, and Yves Le Traon. 2018. Mutant
Quality Indicators. In 13th International Workshop on Mutation Analysis (MUTA-
TION’18).

[38] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Threats to the Validity of Mutation-based Test Assessment. In Proceedings
of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016).
ACM, New York, NY, USA, 354–365. https://doi.org/10.1145/2931037.2931040

[39] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2018. Mutation Testing Advances: An Analysis and Survey. Advances
in Computers (2018). https://doi.org/10.1016/bs.adcom.2018.03.015

[40] Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are
mutation scores correlated with real fault detection?: a large scale empirical
study on the relationship between mutants and real faults. In Proceedings of the
40th International Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018. 537–548. https://doi.org/10.1145/3180155.3180183

[41] Java Parser. 2017. Java Parser Github. (2017). https://github.com/javaparser/
javaparser

[42] Rene Pickhardt, Thomas Gottron, Ste�en Staab, Paul Georg Wagner, Till Speicher,
and Typology Gbr. 2014. A generalized language model as the combination of
skipped n-grams and modi�ed Kneser-Ney smoothing. In In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics.

[43] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar Devanbu. 2016. On the "Naturalness" of Buggy Code.
In Proceedings of the 38th International Conference on Software Engineering (ICSE
’16). ACM, New York, NY, USA, 428–439. https://doi.org/10.1145/2884781.2884848

[44] Mohan Sridharan and Akbar Siami Namin. 2010. Prioritizing Mutation Operators
Based on Importance Sampling. In IEEE 21st International Symposium on Software
Reliability Engineering, ISSRE 2010, San Jose, CA, USA, 1-4 November 2010. 378–387.
https://doi.org/10.1109/ISSRE.2010.16

[45] Zhaopeng Tu, Zhendong Su, and Premkumar Devanbu. 2014. On the Localness
of Software. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
269–280. https://doi.org/10.1145/2635868.2635875

[46] A. Vargha and H. D. Delaney. 2000. A Critique and Improvement of the CL
Common Language E�ect Size Statistics of McGraw and Wong. Jrnl. Educ. Behav.
Stat. 25, 2 (2000), 101–132. https://doi.org/10.3102/10769986025002101

[47] Fan Wu, Jay Nanavati, Mark Harman, Yue Jia, and Jens Krinke. 2017. Memory
mutation testing. Information and Software Technology 81, Supplement C (2017),
97 – 111. https://doi.org/10.1016/j.infsof.2016.03.002

https://doi.org/10.1109/ICSE.2017.61
https://doi.org/10.1006/csla.1999.0128
https://doi.org/10.1109/ICSTW.2010.8
https://doi.org/10.1109/ICST.2012.155
https://doi.org/10.1109/ICSTW.2015.7107450
https://doi.org/10.1109/ICSTW.2015.7107450
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/1882291.1882315
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1145/3106237.3106244
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ASE.2011.6100138
https://doi.org/10.1109/ASE.2011.6100138
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1007/s10664-017-9582-5
https://doi.org/10.1007/s10664-017-9582-5
https://doi.org/10.1145/2950290.2950322
https://doi.org/10.1109/ICST.2017.47
https://doi.org/10.1145/3106237.3106275
https://doi.org/10.1109/ICSTW.2017.24
https://doi.org/10.1145/3180155.3180191
https://doi.org/10.1145/3180155.3180191
https://doi.org/10.1002/stvr.1542
https://github.com/neubig/kylm
https://github.com/neubig/kylm
https://doi.org/10.1145/229000.226317
https://doi.org/10.1145/227607.227610
https://doi.org/10.1145/227607.227610
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/2931037.2931040
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1145/3180155.3180183
https://github.com/javaparser/javaparser
https://github.com/javaparser/javaparser
https://doi.org/10.1145/2884781.2884848
https://doi.org/10.1109/ISSRE.2010.16
https://doi.org/10.1145/2635868.2635875
https://doi.org/10.3102/10769986025002101
https://doi.org/10.1016/j.infsof.2016.03.002

	Abstract
	1 Introduction
	2 Background
	2.1 Mutation Testing
	2.2 Naturalness of Software
	2.3 Code Language Models

	3 Research Questions
	4 Methodology
	4.1 Test Subjects: Real Faults, Mutants and Test Suites
	4.2 N-Gram Model Building
	4.3 Evaluation Process

	5 Results
	5.1 RQ1: Impact of Mutants on Naturalness
	5.2 RQ2: ``Natural'' Vs ``Unnatural'' Mutant Selection
	5.3 RQ3: Naturalness-based Mutant Selection VS Random

	6 Discussion
	6.1 Visualizing Naturalness and Fault Revelation
	6.2 Additional Attempts with Negative Results
	6.3 Threats to Validity

	7 Related Work
	8 Conclusion
	References

