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ABSTRACT

Empirical validation of software testing studies is increasingly rely-
ing on mutants. This practice is motivated by the strong correlation
between mutant scores and real fault detection that is reported in
the literature. In contrast, our study shows that correlations are the
results of the confounding e�ects of the test suite size. In particular,
we investigate the relation between two independent variables,
mutation score and test suite size, with one dependent variable the
detection of (real) faults. We use two data sets, CoreBench and De-
fects4J, with large C and Java programs and real faults and provide
evidence that all correlations between mutation scores and real
fault detection are weak when controlling for test suite size. We
also �nd that both independent variables signi�cantly in�uence
the dependent one, with signi�cantly better �ts, but overall with
relative low prediction power. By measuring the fault detection
capability of the top ranked, according to mutation score, test suites
(opposed to randomly selected test suites of the same size), we �nd
that achieving higher mutation scores improves signi�cantly the
fault detection. Taken together, our data suggest that mutants pro-
vide good guidance for improving the fault detection of test suites,
but their correlation with fault detection are weak.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

mutation testing, real faults, test suite e�ectiveness

ACM Reference format:

Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are
Mutation Scores Correlated with Real Fault Detection?. In Proceedings of

ICSE ’18: 40th International Conference on Software Engineering , Gothenburg,

Sweden, May 27-June 3, 2018 (ICSE ’18), 12 pages.
https://doi.org/10.1145/3180155.3180183

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180183

1 INTRODUCTION

What is the relation between mutants and real faults? To date, this
fundamental question remains open and, to large extent, unknown
if not controversial. Though, a large body (approximately 19% [34])
of the software testing studies rely on mutants.

Recent research investigated certain aspects of the fault and mu-
tant relation, such as the correlation between mutant kills with
real fault detection [3, 24] and the fault detection capabilities of
mutation testing [8]. Just et al. [24] report that there is “a statis-
tically signi�cant correlation between mutant detection and real
fault detection, independently of code coverage”, while Chekam
et al. [8] that “fault revelation starts to increase signi�cantly only
once relatively high levels of coverage are attained”.

Although these studies provide evidence supporting the use of
mutants in empirical studies, this is contradictory to the �ndings
of other studies, e.g., study of Namin and Kakarla [28], and to some
extent between themselves (as they do not agree on the strength and
nature of the investigated relations). Furthermore, there are many
aspects of the mutant-fault relation that still remain unknown.

For instance, the study of Just et al. [24] did not control for
the size of the test suites, which is a strong confounding factor in
software testing experiments [21, 27]. This is because a larger test
suite is more likely to detect more faults than a smaller one, simply
because it contains more tests. At the same time, a larger test suite
kills more mutants than a smaller one. Therefore, as both mutation
score and test suite size are factors with potential impact on fault
detection, it is unclear what is the relation between mutation score
and real fault detection, independently of test suite size.

Additionally, the study of Just et al. [24] measured the correlation
between mutant kills and fault detection on Java programs while
the study of Chekam et al. [8] measured the actual fault detection of
mutation-based test suites on C programs. Therefore, it is unclear
whether the �ndings on Java programs hold on the C ones (and vice
versa) and more generally, whether there is any practical di�erence
between the two evaluation measurements, i.e., correlation analysis
between mutant kills and fault detection and actual fault detection
rate of mutation-based test suites.

The di�erences between these two evaluation metrics is impor-
tant as they are extensively used in empirical studies [36]. Yet, it
is unclear whether there are any practically signi�cant di�erences
between them. In case the di�erences are signi�cant, one could
draw di�erent conclusions by using one metric over the other. Thus,
investigating the potential di�erences between these metrics can be
useful to other studies that compare test criteria and test methods.

https://doi.org/10.1145/3180155.3180183
https://doi.org/10.1145/3180155.3180183
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In our study, we use a large number of real faults from real-
world C and Java programs. To perform our analysis in a reliable
and as generic as possible way, we use the developer test suites,
augmented by state-of-the-art test generation tools, KLEE for C [7],
Randoop [32] and EvoSuite [15] for Java. These tools helped us
composing a large, diverse and relatively strong test pool from
which we sample multiple test suites. To ensure the validity of our
analysis, we also repeat it with the developer and automatically
generated test suites and found insigni�cant di�erences.

One key result is that the correlation between mutant kills and
real fault detection drops signi�cantly and became weak when
controlling for test suite size. We also perform regression analysis
and show that both size andmutation score independently in�uence
the fault detection. Both of them, alone achieve a good level of
correlation, which becomes weak when the other is put under
experimental control. Overall, the combination of both size and
mutation score achieves statistically signi�cantly better �ts than
the size and mutation score alone.

Interestingly, a deeper analysis reveals that mutants are indeed
capable of representing the behaviour of real faults. However, these
mutants are very few (less than 1% of the involved mutants). This
means that only a few mutants play the key role in representing
the behaviour of real faults, and thus, mutation scores are subject
to ‘noise e�ects’ caused by the large numbers of mutants that are,
in some sense, “irrelevant” to the studied faults.

Finally, our study investigates the test e�ectiveness question, i.e.,
how e�ective mutants are at �nding faults. Correlations measure
the extent of the variability of the independent variable, i.e., mu-
tation score, is explained by the variability of the dependent one,
i.e., fault detection. However, this does not necessarily imply that
a test criterion provides (or not) enough guidance on uncovering
faults when ful�lling its test requirements as the relation might be
non-linear [8, 12]. We, thus, demonstrate that correlations do not
re�ect the fault detection capabilities of mutation testing, which
can be signi�cant despite the low correlations.

2 MUTATION ANALYSIS

Mutation analysis introduces defects, called mutants, which form
the test objectives. A test case detects a mutant-defect, when it
makes its observable program output di�erent from that of the
original program. A detected mutant is call killed, while a non-
detected one is called live.

The ratio of the killed to the total number of mutants is called
mutation score and represents the degree of adequacy achievement
of the test suites. Unfortunately, some mutants cannot be killed as
they are functionally equivalent to the original program [35, 39].
These mutants are called equivalent and need to be removed from
the calculation of the mutation score. However, their identi�cation
is done manually as it is an instance of an undecidable problem [2].

Mutation analysis has many applications [31, 36], but the ma-
jority of the existing work is using it to support experimenta-
tion [34, 36] and the testing process [2, 16, 36]. In the former case,
the key question is whether mutants provide results that are repre-
sentative of those that one could obtain by using real faults. In the
latter case, the key question is whether, by killing more mutants
one can signi�cantly increase the capability to detect faults.

2.1 Mutants and Real Faults

Studies investigating the relationship between mutants and real
faults are summarised in Table 1. Note that Table 1 is strictly re-
stricted to the �ndings related to the relationship between mutants
and real faults. Additional details related to the subject can be found
in the recent mutation testing survey of Papadakis et al. [36]. As
can be seen in the Table, six of the studies concluded that there is
a strong connection between mutation score and fault detection,
independent of the test suite size. However, studies considering the
in�uence of size report mixed results. Among four such studies, one
reports weak correlation, study of Namin and Kakarla [28], one re-
ports some form of strong correlation as it reports minor di�erences
between the mutant and fault detection ratios, study of Andrews
et al. [3], and the remaining two report that the improvement on
fault detection when reaching higher mutation score levels was
non-linear, studies of Frankl et al. [14] and Chekam et al. [8]. There-
fore, the emerging question is the one about the relation between
size, mutation score, and fault detection.

Furthermore, all these studies have been assessed by employ-
ing two main evaluation metrics. These are either some form of
correlation analysis between mutant kills and fault detection ra-
tios (studies with references [3, 4, 10, 24, 28]) or the fault detection
rate at the higher mutation score levels (studies [8, 14, 37, 38, 40]).
Therefore, it is unclear what the relationship between these two
evaluation metrics is, and what the relationship implies for the
actual application of mutation testing.

Perhaps the �rst study that investigated the use of mutants
as replacements of real faults was that of Daran and Thévenod-
Fosse [10]. This study considered a C program of approximately
1,000 lines of code with 12 faults and showed that mutants infect
the internal program states in a way that is similar to the way that
real faults corrupt program states. In particular, the study reports
that 85% of the corrupted states, produced by mutants, were the
same with those produced by real faults. Only the 7% were di�erent
at the fault introduction state and 8% were di�erent during error
propagation. Overall, all the failures caused by real faults were
reproduced by the mutants.

Andrews et al. [3, 4] used a C program (named space) of approx-
imately 5,000 lines of code with 38 faults and demonstrated that
mutant kills and fault detection ratios have similar trends. In a later
study, Namin and Kakarla [28] used the same program and fault set
and came to the conclusion that there is a weak correlation between
mutants and fault detection ratios. Recently, Just et al. [24] used a
large number of real faults from �ve Java projects and demonstrated
that mutant detection rates have a strong positive correlation with
fault detection rates. Since the study of Just et al. [24] did not con-
sider test suite size and its results contradict the ones of Namin and
Kakarla [28], it remains unclear whether mutation score actually
correlates with fault detection when test suite size is controlled.

Papadakis and Malevris [37] used the space program, C program
of approximately 5,000 lines of code, with 38 faults and found
that mutants provide good guidance towards improving test suites
independent of test suite size. Shin et al. [40] and Ramler et al. [38]
came to similar conclusions (mutants can help improving the fault
detection of test suites). However, both these studies did not account
for the size e�ects of the test suites.
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Table 1: Summary of studies investigating the relationship between mutants and real faults.

Author(s) [Reference] Year
Largest

Subject
Language

Considered

Test Size
No Faults Summary of Scienti�c Findings

Daran &
Thévenod-Fosse [10]

96 1,000 C × 12
Mutants result in failures and program data states that are similar to those produced by
real faults.

Frankl et al. [14] ’97 78
Fortran,
Pascal

✓ 9
Fault detection probability is increasing at higher mutation score levels. The increase is
non-linear.

Andrews et al. [3] ’05 5,000 C ✓ 38 Mutants detection ratios are representative of fault detection ratios

Andrews et al. [4] ’06 5,000 C × 38 Mutants detection ratios are representative of fault detection ratios

Papadakis & Malevris [37] ’10 5,000 C × 38
1st order mutation has higher fault detection than 2nd order and mutant sampling. There

are signi�cantly less equivalent 2nd order mutants than 1st order ones.

Namin & Kakarla [28] ’11 5,000 C ✓ 38 There is a weak correlation between mutant detection ratios and real fault detection ratios

Just et al. [24] ’14 96,000 Java × 357
There is a strong correlation between mutant detection ratios and real fault detection
ratios

Shin et al. [40] ’17 96,000 Java × 352
Distinguishing mutation adequacy criterion has higher fault detection probability than
strong mutation adequacy criterion

Ramler et al. [38] ’17 60,000 Java × 2
Mutation testing helps improving the test suites of a safety-critical industrial software
system by increasing their fault detection potential.

Chekam et al. [8] ’17 83,100 C ✓ 61
Mutation testing provides valuable guidance for improving test suites and revealing real
faults. There is a strong connection between mutation score increase and fault detection
at higher score levels.

This paper ’18 96,000 C & Java ✓ 420
There is a weak correlation between mutation score and real fault detection. Despite the
weak correlations, fault detection is signi�cantly improved at the highest score levels.

Finally, Frankl et al. [14], experimented with some small method-
units (in Pascal and Fortran) and found that mutants provide good
guidance towards improving test suites, even when test suite size
is controlled. Similarly, Chekam et al. [8] used real faults from
four real-world C projects and demonstrated that there is a strong
connection between mutation score attainment and fault detection
only at higher score levels.

Overall, despite the results found in the literature, our under-
standing of the relationship between the test suite size, mutation
score, and real fault detection remains limited as none of the stud-
ies investigates them with a large set of real faults and real-world
programs. Moreover, no previous study investigates whether there
are practical di�erences between the correlation analysis and the
fault detection rate of test suites when used as evaluation metrics
of software testing experiments.

2.2 Mutants and Hand-Seeded Faults

Due to lack of real faults, many studies used hand-seeded faults to
simulate test e�ectiveness (i.e., fault detection capability).

Wong and Mathur [43] demonstrate that mutation testing has
higher fault detection potential than data-�ow. O�utt et al. [30]
also found that mutation is more e�ective than data-�ow (mutation
detected on average 16% more faults than the data �ow) but at a
higher cost (measured as the number of test cases).

Li et al. [26] experimented with coverage criteria and compared
them with mutation testing, in terms of the number of faults de-
tected. Their results showed that mutation testing detected more
faults than the coverage criteria. Interestingly, the same study re-
ports that mutation testing required less test cases than the coverage
criteria. This is somehow contradictory to the results reported by
other studies, i.e., Wong and Mathur [43] and O�utt et al. [30],
which found that mutation requires more tests.

All these studies compared criteria-adequate test suites (test
suites ful�lling all the requirements possessed by the criteria, i.e.,
killing all the mutants) and thus, their objectives were purely eval-
uating the e�ectiveness of the test criteria. However, while such
an experimental design provides some insights regarding the test
criteria, it makes the test e�ectiveness conclusion obscure as it is
unclear whether test suites are better due to the inherent properties
of the criteria or due to their sizes.

Other mutation-related studies that measure test e�ectiveness
through hand-seeded faults are also some of those recorded on Ta-
ble 1 (studies [3, 28, 37]). Andrews et al. [3] report that hand-seeded
faults were much harder to detect than real faults, Papadakis and
Malevris report on the application cost and fault detection capa-
bilities of mutation testing strategies [37] and Namin and Kakarla
report on the in�uence of test suite size, and programming language
on test e�ectiveness [28].

2.3 Mutants and Defect Prediction

Recently researchers started using mutation as an indicator of error-
proneness. Thus, they try to predict where (code components) the
defects of the tested system are. Bowes et al. [6] demonstrated
that using mutation score as a feature the accuracy of the defect
prediction methods is improving.

Tengeri et al. [41] investigated whether statement coverage, mu-
tation score, and reducibility (the amount of redundant test cases
in the test suites, w.r.t. coverage and mutation) are good predictors
of the expected number of remaining defects (con�rmed defects,
normalized by the system size). Their results show that coverage is
not a good indicator, and that mutation and reducibility improve
the predictions. Along the same lines, Ahmed et al. [1] measured
the correlation between coverage, mutation score and subsequent
bug-�x commits and found positive but weak correlations.
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2.4 Test Suite Size and Test E�ectiveness

Early research on software testing showed that test suite size is
an important parameter in�uencing test e�ectiveness [12, 13]. The
studies of Frankl et al. [12–14] consistently report that a positive
relation between coverage attainment and fault detection exist,
when test suite size is controlled. This is reported as non-linear and
mainly appears at the highest coverage levels. Similarly, Chekam et

al. [8] reports a positive relation but with insigni�cant, in practical
terms, improvements (for coverage when test suite size is �xed).
As these results investigated whether coverage provides enough
guidance for improving test e�ectiveness, these �ndings do not
concern the mutants and their representativeness (of real faults) in
software testing experiments.

Namin and Andrews [27] investigated the role and in�uence of
test suite size and coverage on test e�ectiveness, using mutants and
real faults (13 faults for a single program) and concluded that both
coverage and test suite size independently in�uence test e�ective-
ness. Gligoric et al. [18] investigated the correlations between test
suite size and mutation score and report mixed results, i.e., strong
correlations for some programs, and weak for others.

Gopinath et al. [19] used regression analysis to model the rela-
tion between coverage and mutation score and report that test suite
size did not improve the regression (indicating that test suite size
does not contribute to explaining the variability). On the contrary,
Inozemtseva and Holmes [21] report strong correlations between
coverage and mutation score when ignoring test suite size, but
weak correlations when test suite size is controlled. Therefore, con-
cluding that test suite size is among the most important parameters
that in�uence mutation score. Recently, Gay [17] investigated the
fault detection capability (using 353 real faults) of di�erent con�gu-
rations of a search-based test generation tool (EvoSuite) and report
that the test suite size had minor in�uence.

The studies of Andrews et al. [3] and Namin and Kakarla [28] also
control for test suite size but found contradictory results (related
to the underlying relation of mutation score and fault detection).
Additionally, these two studies considered a single C program and
a relatively small set of faults. In contrast, our study considers a
large number of real faults from large real-world programs, written
in both C and Java, and compares results related to the two main
experimental evaluation metrics that are used in the literature.

Overall, from the above discussion, it should be obvious that
there is much of controversy on the �nding of previous studies and
a poor understanding of the relation between test suite size and real
fault detection. We expect a large empirical study can help clearing
up some of this controversy.

3 EXPERIMENTAL PROCEDURE

3.1 Test Subjects

In our study, we use two sets of subjects, CoREBench [5] and
Defects4J [23]. We choose these subjects as they form instances
of relatively large projects that are accompanied by mature test
suites as well as many real faults. CoREBench consists of four C
programs named “Coreutils”, “Findutils”, “Grep” and “Make”. De-
fects4J consists of �ve Java programs named “JFreeChart”, “Closure”,
“Commons-Lang”, “Commons-Math” and “Joda-Time”.

Table 2: The subject programs used in the experiments. For

each of them, their size in KLOC, the number of developer

(Developer TC) and automatically generated test cases (Gen-

erated TC), and number of considered faults are presented.

Program Description Size Developer TC Generated TC Faults

Coreutils
Utilities manipulating
�les and text

83 4,772 13,947 22

Findutils
Search directories
utilities

18 1,054 3,877 15

Grep
Regular expression
utilities

9 1,582 4,317 15

Make
Source code build
system

35 528 163 18

JFreeChart A chart library 96 3,691 111,279 19

Closure Closure compiler 90 271,904 543,947 92

Commons-Lang Java (library) - utilities 22 3,921 167,797 30

Commons-Math Mathematics library 85 8,081 465,361 74

Joda-Time
Date and Time
utilities

28 38,223 86,957 16

Details about the test subjects are recorded on Table 2. Both C
and Java programs are of non-trivial size and all are accompanied
by numerous developer test suites. All of the subjects are open
source. The C subjects, “Coreutils”, “Findutils”, “Grep” and “Make”
are tested by invoking them through command line, while the Java
ones, “JFreeChart”, “Closure”, “Commons-Lang”, “Commons-Math”
and “Joda-Time”, using the JUnit framework.

3.2 Fault Datasets (Defects4J and CoREBench)

Our study investigates the representativeness of mutants when
they are used as test e�ectiveness evaluation metrics. We, therefore,
need sets of typical instances of real faults that can be reliably
reproduced by test cases. As we make a controlled experiment,
we need projects with large and mature test suites so that we can
adequately control and simulate our hypothesis.

Most of the previous studies rely on the programs from the
Software Infrastructure Repository (SIR) [11, 20], typically using the
programs composing the Siemens Suite, space and Unix utilities.
Many of these programs includes arti�cially seeded faults and,
consequently, are less relevant to this study, simply because we
investigate the representativeness of mutants (which are arti�cially
seeded faults themselves).

The space program in SIR is a notable exception as it comes
with real faults. Yet, it is a single C program. Therefore, the degree
to which any generalisation (to other programs and languages) is
possible remains limited. For all these reasons, we consider SIR as
less relevant for our study, and instead opt for benchmarks with
multiple programs and real faults.

We, therefore, use two benchmarks with real faults, CoREBench
and Defects4J, that have been systematically mined and isolated
from the project source code repositories. These benchmarks have
also been used (among many other studies) by the most relevant
mutation-based studies, i.e., Just et al. [24] and Chekam et al. [8].
Therefore, our results complement the �ndings of these studies and
can be compared and contrasted directly (whenever relevant).
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CoREBench [5] is a collection of 70 fault instances of C programs,
identi�ed by test cases that reproduce reported faults (by writing
test cases that reproduce the behaviour described in bug reports).

To identify the faults 4,000 commits were analysed by exercising
them with the validating test cases in order to identify the fault-
introducing and fault-�xing commits (test cases pass before the
introduction of the fault, fail after and pass again after the �xing
commit). Additional details about CoREBench can be found in the
paper [5] and its accompanying website1.

Defects4J [23] is a collection of 357 fault instances, in Java pro-
grams, identi�ed by the developer test cases. The corresponding
faulty and �xed versions were mined and manually veri�ed by exer-
cising them with the developer test cases. The di�erences (between
the faulty and �xed version) were also manually re�ned (minimized
so that they only include the faults) by removing unrelated changes
such as program refactoring. Additional details about Defects4J can
be found in the paper [23] and its GitHub webpage2.

During our study, we veri�ed the faulty and �xed versions using
developer and automatically generated test suites. All faults have
been isolated in single program instances and thus, similar to the
previous studies [8, 24] we treat them as separate subjects. We
excluded the CoREBench faults with identi�ers 57 and 58 (from
the Make program) due to technical issues, these versions failed to
compile in the experimental environment. Similarly, we used 231
faults from Defects4J faults as the remaining 126 required infeasible
amount of execution time for the experiment, i.e., more than an
hour per test suite. As our analysis involves 21 test suites per studied
fault, we were forced to adopt this rule in order to complete the
experiment with reasonable resources.

3.3 Test Suites

CoREBench involves approximately 58,131 developer test cases.
These test suites were later augmented (manually) by the studies
of Böhme and Roychoudhury [5] (which added 70 test cases) and
Chekam et al. [8] (which added 96 test cases) in order to exercise
and detect the studied faults (designed by reproducing the burgs
reported in bug reports) multiple times. Defects4J [23] includes
approximately 553,477 developer tests.

As our experiment involves a uniform test suite selection and
statistical analysis, we need a large, diverse and independently
generated test cases. Therefore, we use the test pools created by
Chekam et al. [8] (for the case of CoREBench) that are large, di-
verse and include multiple tests that exercise the faults in di�erent
ways. These include the developer test suites, the test cases gener-
ated with KLEE [33], in total 22,208 tests, and manually generated
ones, 166 tests. Additional details about the test suites we used (for
CoREBench) can be found in the work of Chekam et al. [8].

Defects4J [23] only includes the developer tests. Therefore, we
augment these tests using two state-of-the-art test generation tools,
Randoop [32] and EvoSuite [15]. Randoop was used for generating
large numbers of random tests, whereas EvoSuite for generating
large numbers of tests that maximise the branch coverage, weak
mutation and strong mutation.

1http://www.comp.nus.edu.sg/~release/corebench/
2https://github.com/rjust/defects4j

We applied these tools �ve independent times with a relatively
robust time budget per class (300 seconds), and limit the maximum
number of tests to 2,000, per run. Overall, the process resulted in 20
test suites, composed of 1,375,341 test cases. Following the typical
process for these experiments [23], all tests were automatically
veri�ed to ensure that they do not cause any compile errors, runtime
errors and non-deterministic behaviour, using the available utilities
provided by Defects4J [23].

3.4 Mutation Testing Tools

We employed the same tools as those used by the studies of Just
et al. [24] and Chekam et al. [8]. We choose these tools as they are
publicly available, robust and can produce results that are compara-
ble to the existing work. We used these tools with the same settings
as used in the initial studies.

Both tools support a set of commonly used mutant operators [25,
29], i.e., the AOR (Arithmetic Operator Replacement), LOR (Logical
Operator Replacement), COR (Conditional Operator Replacement),
ROR (Relational Operator Replacement), ORU (Operator Replace-
ment Unary), STD (STatement Deletion), and LVR (Literal Value
Replacement). Additional details about the mutation testing tools
can be found in Just [22] as well as Chekam et al. [8].

3.5 Evaluation Metrics

We study the use of two evaluation metrics that are frequently
employed by empirical studies. Such studies employ the following
high level process:

(1) Create a large number of test suites, either by sampling test
cases from a large pool of existing tests or by using a test
generation algorithm or tool, until reaching a predetermined
number of tests or criteria score level.

(2) Measure the criteria score such as coverage or mutation
score (if test suites are size controlled) of the test suites or
their size (if test suites are score controlled).

(3) Measure the fault detection capability of the test suites, by
measuring either number or ratio of detected faults. Em-
pirical studies usually employ isolated faulty versions (real
faults) or hand-seeded faults or automatically seeded faults
(mutants).

(4) Determine the test e�ectiveness based on one of the two
following methods: 1) correlation analysis between fault de-
tection ratios and criteria scores such as coverage or mutant
detection ratios (correlation method), or 2) fault detection
ratios at prede�ned score points such as the highest crite-
ria score levels achieved by the available test suites (fault
detection method).

The correlation method is becoming increasingly popular and
is used to judge the e�ectiveness of the test methods. It is also
frequently used to perform the e�ectiveness comparison of the
test techniques, e.g., adopted by studies with references [18, 21, 44]
perform such e�ectiveness comparisons.

The fault detection method simply compares the fault detection
capabilities of test suites at a score level of interest (usually at
100% or close to 100% score levels), e.g., adopted by studies with
references [12, 26, 43].

http://www.comp.nus.edu.sg/~release/corebench/
https://github.com/rjust/defects4j
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The two evaluation metrics, i.e., correlation coe�cients (used
in the correlation method) and fault detection ratios (used in the
fault detection method), are often being confused as being the
same. However, in practice they capture di�erent aspects of the
test criteria and should be investigated distinctly. In the present
study, we demonstrate that mutants can correlate weakly with
fault detection, but they can provide statistically and practically
signi�cant fault detection improvements over randomly selected
test suites (or test suites with lower scores) when reaching higher
mutation score levels.

3.6 Data Analysis

Initially, we form our test pools by merging the automatically gen-
erated with the developer test cases. We, then, sample 10,000 test
suites of random sizes in the range (0-20% of the size of the test
pool). Then, we categorise these suites as ‘Failing’, i.e., they involve
at least one test case fails, and ‘Passing’, i.e., all test cases pass, and
plot their mutation scores and test suite sizes respectively. This
visualisation gives us an initial indication on the examined rela-
tions. We then perform regression analysis (Logistic regression)
on these data by modelling the relationships between test suite
size, mutation score, combination of test suite size and mutation
score, and fault detection. By inspecting the resulting p–values and
pseudo R2 values, we investigate which of these parameters play
the most important role and measure the �t of the models.

To further analyse our data and replicate previous �ndings, we
apply both the correlation and the fault detection methods. For the
correlation method, we use the Kendall and Pearson coe�cients to
compute the correlation between Mutation Score (MS) and Fault
Detection (FD) on the 10,000 suites of random sizes. The resulting
coe�cients show the association between MS and FD when the test
suite size is not controlled. For size controlled results, we sample
test suites of the same size (without replacement) for di�erent test
suite size groups (increments of 2.5% in the range 0-50% of the test
pool size). Thus, we sample 10,000 test suites per size group and
compute the correlations between MS and FD. These results show
the correlations independent of test suite size.

For the fault detection method, we order the test suites, for every
selected size, according to their mutation score and create three
sets of test suites: those that are ranked within top 25%, top 10%
and all of them. We then perform a Chi-squared test, which is a
non-parametric proportion test, to compare the fault detection of
the pairs (top 25% and all test suites, top 10% and all test suites)
and compute the con�dence intervals for 95 percent. These values
represent the fault detection probabilities of the top ranked suites
compared with the whole set of test suites (baseline).

4 RESULTS

4.1 Visualisations

Figure 1 shows the test suite size and mutation score values of the
failing and passing test suites. As can be seen from the boxplots,
the trend is that failing test suites are of larger sizes and, at the
same time, achieve higher mutation scores than the passing ones.
This indicates that both variables may in�uence the fault detection
ability of the test suites.

To further explore the interconnection between size and mu-
tation score, we investigate the relation between test suite size
and mutation score. Due to space constraints, we do not show this
plot, however, the results clearly indicate a logarithmic relation, i.e.,
y = axb where (s < b < 1). Therefore, we expect that test suite size
and mutation score are interconnected in such a way that higher
(or lower) mutation score levels require increased (or decreased)
number of test cases. This leads to the question of whether test
suite size or mutation score explain the test e�ectiveness.

4.2 Regression Models

To get an insight on the relation between test suite size and fault
detection, we apply regression analysis. As our data involve a con-
tinuous independent variable (MS : mutation score), a discrete in-
dependent variable (Size: test suite size), and a binary dependent
variable (FD: fault detection) we apply a logistic regression. We
examined various models between these variables, i.e., Size ∗MS ,
MS , Size , and determined the p–values indicating their signi�cance.

The output of the regression indicates that all the examined
variables associate to fault detection (test suite size, mutation score,
and their combination). They are signi�cantly associated with the
probability of detecting faults (p–values < 0.05). Therefore, the
results suggest that all examined variables independently in�uence
test e�ectiveness.

To evaluate the �t of the regression model we calculated the
pseudo R2 values of the models. Figure 2 present the resulting
pseudo R2 values. These data indicate that both the models of test
suite size and mutation scores (data with labels Size and MS) are
similar. Size models have a higher predictive power (and less vari-
ation) than the mutation score models in Defects4J while lower
in CoreBench. The combined model (Size ∗MS) outperforms both
Size and MS models, in terms of their predictive power. The di�er-
ences are statistically signi�cant (determined by using a Wilcoxon
signed-rank test, and signi�cance level 0.001) suggesting that both
Size, MS and their combination contributes to test e�ectiveness.
However, the majority of the predictions is of moderate strengths.

One �rst �nding is that the fault detection cannot be predicted
well by mutation scores, size or their combination.

4.3 Correlation Analysis with Test Suite Size
Controlled/Uncontrolled

To investigate the extent of confounding e�ects of test suite size, we
perform a correlation analysis by controlling (holding test suite size
constant) and not controlling (selecting test suites of arbitrary sizes)
for test suites size. This is a typical process (also followed by existing
work [8, 21, 28]) that eliminates the in�uence of the independent
variable (size) on the observed e�ect and helps determine whether
mutation score is associated with fault detection (and the strength
of this association).

Our analysis is based on the Kendall and Pearson correlation
coe�cients. We measure the correlations for various constant test
suite sizes, sizes in the range 2.5%-50%, of the test pools, incre-
mented by 2.5% and for arbitrary selected test suites of the same
size: Figure 3 shows the results. The correlations on the left side of
the �gure regard the uncontrolled size case while on the right side
of the �gure the controlled one.
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(a) Mutation Score Vs Fault Detection.
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(b) Test suite size Vs Fault Detection.

Figure 1: Mutation Score and Test suite size of the Passing and Failing Test Suites. Failing Test Suites have higher mutation

scores and suite sizes than the Passing ones.
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Figure 2: Regression Models (R2 values) for Mutation Score

(MS), Test Suite Size (Size) and their Combination (Size*MS).

All p–values are signi�cant.

The results of the uncontrolled size case showmoderate to strong
correlations (the majority of the values is within the range 0.35 to
0.75). These correlations become relatively weak (approximately
within the range 0.05 to 0.20) when the suite size is controlled (i.e.,
the in�uence of size disappears). These results suggest that a major
part of the association between mutation score and fault detection
is simply an e�ect of size. Still a positive relation between them
exists, but it is relatively weak.

Interestingly, our results are fairly consistent across di�erent
programs and the di�erent programming languages (Java and C)
we used. This adds to the evidence that the results we observe are
valid. They also suggest that mutants have a consistent behaviour
among the subjects we used.

Finally, it is worth noting that our results (regarding the uncon-
trolled test size case) are consistent with those reported by the work
of Just et al. [24], which did not consider the test size e�ects. This
fact provides con�dence on our analysis. However, in contrast to
the conclusion of Just et al. [24], our results demonstrate the e�ect
of size and overall that mutants are not strongly correlated with
fault detection, when size is controlled.

4.4 Fault Detection Probabilities

Mutation testing is known for its test e�ectiveness [8, 16, 31], while
our analysis shows that mutation score is not (strongly) correlated
with fault detection. Does this mean that mutation testing is signif-
icantly overrated? While this is a possibility, another explanation
could be that mutation testing is helpful at guiding testers to im-
prove the fault detection capabilities of test suites, while it is not
that good at representing the behaviour of the real faults. It could
be that the relation is non-linear and improves only at the highest
mutation score levels as suggested by some previous studies [12].

To investigate this, for every selected size of test suites, we
compute the fault detection probabilities (using the Chi-squared
test) of the test suites with higher mutation scores and compare
them with the fault detection probabilities of all randomly selected
test suites of the same size. In this case, any di�erences we may
observe (on the fault detection probabilities) would be attributed
to the mutation score di�erences and as we keep the test suite size
constant they are independent of the size e�ects.

Such a process was followed by the recent study of Frankl and
Iakounenko [12], and reports that test suites with higher coverage
scores reveal a signi�cantly higher number of faults. As in our
case, correlations are weak, what happens to the fault detection at
highest mutation score levels? We hypothesise that fault detection
probability can be important given the results reported by the
studies of Chekam et al. [8] and Frankl with her colleagues [12–14]
that reports a signi�cant fault detection only at the highest score
levels (while not much of di�erence at the majority of the scores).

Figure 4 shows the improvement on the fault detection probabili-
ties between the 10% of test suites (with the highest mutation scores)
and randomly selected test suites of the same size. The points in the
plot represent the statistically signi�cant improvements (at 0.05 sig-
ni�cance level) on the probabilities and their con�dence intervals
(for 95 percent con�dence level) computed using the Chi-squared
test. The Defects4J faults that have statistically signi�cant improve-
ments are 138, while the CoreBench are 59. This suggests that we
have no evidence to support the claim that there is a signi�cant
improvement for the 40% (93 out of 231) and 13% (9 out of 68) of
the Defects4J and CoreBench faults.
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Figure 3: Correlation between mutation score and fault detection. Correlations are relatively strong when test suite size is

uncontrolled but drop signi�cantly when test suite size is controlled.

Interestingly, despite the weak correlations, the fault detection
improvements (for the statistically signi�cant cases) can be con-
sidered of practical signi�cance as the majority of the points are
approximately 10% for Defects4J and above 30% for CoreBench.
Speci�cally, the average improvements on fault detection for the
top ranked 25% and 10% of the test suites are 8% and 11% for De-
fects4J and 18% and 46% for CoreBench. These results indicate that
mutation is indeed strong and can successfully guide testers to-
wards improving their test suites. Unfortunately, as also indicated
by the related work, testers have to reach a relatively high score
level before they can be con�dent on their testing [8].

Our results reveal that the correlation method and the fault
detection method capture di�erent aspects of test e�ectiveness.
This implies that future empirical studies that use these evaluation
methods should interpret them accordingly. We discuss this issue
in detail in Section 5.2.

5 DISCUSSION

Our results show that the correlations of mutation score and real
faults are signi�cant, but notably weaker than reported in the liter-
ature and assumed by empirical studies. This �nding is in essence
negative as mutants seem to be relatively unreliable substitutes
of real faults (as a means to support controlled experiments). De-
spite this, we found signi�cant improvements in fault detection (of
test suites at the highest score levels) suggesting that mutants can
provide valuable guidance and establish con�dence.

In the remainder of this section, we try to shed some light on the
mutant-fault relation, by investigating the behavioural similarities
of mutants and real faults. We then discuss possible implications
of the practical di�erences of using correlation analysis and fault
detection methods in software testing experiments.

5.1 Behavioural Similarity between Mutants
and Real Faults

Are mutants a valid substitute of real faults in controlled experi-
ments? If we hypothesise that they are, then we should expect that
the majority of the mutants behaves similarly to the real faults. In
a sense, we expect that when faults are detected, the majority of
the mutants are killed, and when not, the majority remain live.

To investigate this, we measure the behaviour similarity of every
single mutant and the respective faults. To do so, we use a typical
similarity coe�cient, named Ochiai3, which we borrow from fault
localisation studies [42]). Ochiai takes values in the range [0, 1]

indicating the similarity level, with 0 indicating completely di�erent
and 1 exactly the same.

Figure 5 records the maximum similarity and the similarity of
all the mutants for every considered faults. As can be seen from
the maximum similarity values, the majority of the faults is simu-
lated very well by at least one mutant, the one with the maximum
similarity (from the left box-plot we can observe that 50% of the
data have similarities of at least 90%), while the great majority of
the mutants behave di�erently. This implies that some mutants
simulate well the behaviour of the faults, while the majority of
them do not (we measure approximately 1% of all mutants have
behaviour similarities above 0.5).

Overall, our results reveal that irrelevant mutants cause the weak
correlations. We, therefore, believe, that future research should
focus on identifying mutants that are linked with the faults.

5.2 Correlations vs. Fault Detection

To investigate the practical di�erences between the evaluation
methods, i.e., the correlation and the actual fault detection, we
measure the association between the two evaluation metrics, i.e.,
correlation coe�cients and fault detection improvement. Informally,
we check whether high/low correlation coe�cients imply high/low
fault detection improvement. A strong association will indicate that
one method implies the other, while a weak association that the
two methods capture di�erent aspects of interest.

For every fault in our dataset, we measure a) the correlation
coe�cients (between mutation score and fault detection) and b) the
improvement on fault detection (approximated by the fault detec-
tion rate di�erences of the top ranked test suites and all selected
test suites of the same size). Our raw data, when using the Pearson
correlation and fault detection improvements at the top 10%, are de-
picted on Figure 6. To further investigate the association between a)
and b), we used Kendall and Pearson correlation on the data where
we had statistically signi�cant fault detection improvements.

3The Ochiai coe�cient measures the similarity between two variables given a set of
observations, it is equivalent to the cosine similarity.
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Figure 4: Improvement on the fault detection probabilities (intervals) with test suite size controlled. The values represent the

di�erence on the fault detection probabilities between the test suites with the highest mutation score and randomly selected

ones (top 10% of test suites Vs randomly selected). We observe that mutants lead to signi�cant fault detection improvements.
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Figure 5: Behaviour Similarity between Mutants and Real

Faults. Most of the faults’ behaviour is simulated well by the

(few) mutants with maximum similarity, but not by the ma-

jority of the mutants (similarity of all mutants).

Our results show a moderate to strong association between the
two metrics. In particular, the association between the correlation
coe�cients, Kendall and Pearson (used to measure the correlation
between mutation score and fault detection), with the fault de-
tection improvement of the top 25% of test suites was 0.621 and
0.504 when using the Kendall’s rank correlation coe�cient τ and
0.860 and 0.732 when using the Pearson correlation (for Defects4J
and CoreBench respectively). The Kendall’s rank correlations were
found to be 0.471 and 0.500 and the Pearson correlations were found
to be 0.673 and 0.652, respectively for Defects4J and CoreBench. In-
terestingly, by comparing the correlations of the test suites scoring
at the top 25% and 10%, we observe that the disagreement between
the two metrics is increasing when moving at higher score levels.

Overall, since the association is moderate, we can conclude that
correlations are good at providing trends, but at the same time they
do not capture the actual improvements at the speci�c points of
interest (such as the fault detection improvement at the highest
score levels).

6 THREATS TO VALIDITY

The most important question in empirical studies is the extent
to which their �ndings generalise. To cater for this issue, we per-
formed the largest empirical study to date, using two fault sets from
independent studies, written in C and Java, and found consistent
results across all subjects. However, we acknowledge that since
these programs are open source and the faults were mined from
source code repositories, our results might not be representative of
actual industrial systems and other “pre-release” faults (faults not
recorded in the repositories).

Another threat may be due to the incompleteness of the faults in
the benchmarks we study. As the fault sets are not exhaustive, we
can only assume that some code parts are faulty. This means that
we cannot assume that the rest of the code is not faulty. Thus, our
results might be subject to noise caused bymutants residing on code
parts that are irrelevant, to the studied faults, but are relevant to
other ‘unknown’ faults. To diminish this threat, we performed our
analysis using only relevant, to the studied faults, test cases (tests
with dependence to the faulty component). To further check our
results, we also examined a sample of 10 faults from the CoreUtils
by considering only the mutants that are residing on the faulty
and directly dependent (control data dependencies) statements, to
the faulty statements, and found very similar (weak) correlations.
Overall, we are con�dent that the above issues are not of particular
importance since we replicate (to some extent) previous studies
and �nd consistent trends among all the considered subjects.

Threats may arise from the automatically augmented test suites
we used. While the augmented test suites may not be representative
of tests generated entirely by human engineers, the augmentation
was necessary so that we could sample multiple, size-controlled test
suites from a large, strong, and diverse test pool. To mitigate the
threat from augmentation, we repeated our experiments without
the augmentation (i.e., using either only the developer test suites or
only the automatically generated test suites) and found exactly the
same trends (with slightly weaker correlations and fault detection
improvements).
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Figure 6: Pearson correlation coe�cients Vs fault detection improvement.

Similarly, due to technical di�culties, we did not analyse 126
faults from Defect4J. To reduce this threat, we measured the cor-
relations when using (only) the developer test suites for all but 5
faults4 of the benchmark and found similar results.

Other threats might be attributed to the way we handled equiva-
lent mutants, which was based on the composed test pools. Though,
we used state of the art test generation tools and overall achieved a
relatively high mutation score. Unfortunately, there are clear limits
to any practical identi�cation of equivalent mutants, as the problem
itself is undecidable. While we simply admit that this is a potential
threat to our study, we would argue that, in practice, there is not
much else that can be done (at least by today’s standards).

There may be threats due to the tools we used. Though, these
tools were developed by independent studies [8, 22]. To cater for
this threat, we also used Pit [9], a Java mutation testing tool that is
quite popular in mutation testing studies [25, 36]. We repeated our
analysis with Pit using two test suites of Randoop and EvoSuite and
found similar results, i.e., the correlations and fault detection im-
provements did not di�er statistically. Therefore, we are con�dent
that our results generalise to Pit as well.

Following the lines of previous work [4, 22, 28], we applied all
of our analysis on the �xed program version version. Although this
is a common practice, our results might not hold on the cases of
faulty program versions [8]. Though, we were forced to do so, in
order to replicate the previous studies. However, we believe that
this threat is not of actual importance as we are concerned with
mutation testing, which according had a small variation on mutant
couplings of the �xed the faulty programs [8].

Finally, we used Kendall and Pearson correlation coe�cients
to measure the association between the studied variables, while
the work of Just et al. [24] used the Biserial correlation. Unfortu-
nately, Biserial correlation assumes equal variance between the
instances of the dichotomous variable under analysis, which we
found inapplicable in our case as the di�culty of detecting faults
di�ers. Nevertheless, we also computed the Biserial correlations
and found the same results (the di�erences were smaller than 0.001).
We therefore do not consider this as a critical threat.

45 faults were not considered as they required exceedingly long time to complete
(more than an hour per test case).

7 CONCLUSIONS

Our main conclusion is that both test suite size and mutation score
in�uence fault detection. Our results support the claim that rela-
tively strong correlations between mutation score and fault detec-
tion exist, as suggested by previous work [24]. However, these are
simply a product of the dependence between mutation score and
test suite size. Our data show that when controlling the test suite
size (decouple mutation score from test suite size) all correlations
become weak or moderate in the best case.

In practice, our results suggest that using mutants as substi-
tutes of real faults (as performed in most of the software testing
experiments) can be problematic. Despite the weak correlations we
observe, our results also show that the fault detection improves
signi�cantly when test suites reach the highest mutation score
levels. Taken together, our �ndings suggest that mutation score is
actually helpful, to testers for improving test suites (by reaching
relative high levels of mutation scores), but it is not that good at
representing the actual test e�ectiveness (real fault detection).

A potential explanation of this point concerns the “nature” of
mutants and the real faults. Mutants are generated following a
systematic procedure, while real faults are the speci�c instances
that escape programmer’s attention. Thus, mutants represent a
large number and variety of possible faulty instances, while faults
are by nature few and irrelevant to the majority of the mutants.

We also found that somemutants are indeed capable of represent-
ing the behaviour of real faults for most of our subjects. However,
as the majority of the mutants involved have no representative
behaviour, the mutation scores are in�ated and the correlations are
weak. This �nding suggests that future research should focus on
generating more representative sets of mutants.
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