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Recent research suggests that social networks may present an avenue for intervention against obesity. By

using a simulation model in which artificial individuals were nested in a social network, we assessed whether inter-

ventions targeting highly networked individuals could help reduce population obesity. We compared the effects of

targeting antiobesity interventions at the most connected individuals in a network with those targeting individuals

at random. We tested 2 interventions, the first “preventing” obesity among 10% of the population at simulation

outset and the second “treating” obesity among 10% of the obese population yearly, each in 2 separate simula-

tions. One simulation featured a literature-based parameter for the network spread of obesity, and the other fea-

tured an artificially high parameter. Interventions that targeted highly networked individuals did not outperform

at-random interventions in simulations featuring the literature-based parameter. However, in simulations featuring

the artificially high parameter, the targeted prevention intervention outperformed the at-random intervention,

whereas the treatment intervention implemented at random outperformed the targeted treatment intervention.

Results were qualitatively similar across network topologies and intervention scales. Although descriptive studies

suggest that social networks influence the spread of obesity, policies targeting well-connected individuals in social

networks may not improve obesity reduction. We highlight and discuss the potential applications of counterfactual

simulations in epidemiology.

computer simulation; intervention; obesity; public health; social networks

Abbreviation: ABC, agent-based counterfactual.

The rates of overweight and obesity have increased dra-
matically in high-income countries during the past 30 years
(1–4). Obesity is an important determinant of chronic disease
morbidity and mortality (5–7) and is associated with the risk
of hypertension, hypercholesterolemia, coronary heart disease
(5), stroke (8), and diabetes mellitus (9).

Compounding the concern about the broader implications
of rising obesity rates has been uncertainty about interven-
tions that might mitigate the epidemic. Despite substantial
investment in behavioral and pharmacotherapeutic interven-
tions to reduce obesity (10–12), the efficacy of many of
these interventions has been questionable (13, 14). For this
reason, a recent study suggesting that social interactions may
influence the spread of obesity within a densely interconnec-
ted social network (15) has been greeted with enthusiasm (16).

Identifying the influences of social networks on obesity may
well suggest a potential novel approach to intervention, tar-
geting key network influences to reduce overall population
obesity risk.

Beyond concerns about the appropriate methodology for
measuring network effects longitudinally (17, 18), there
remains a substantial inferential leap from observational data
suggesting that there are social network influences on the
risk of obesity over time to confidence that manipulating
social networks can substantially reduce obesity (19–21).
There has been a growing call for randomized social inter-
ventions in population health research to address this chal-
lenge (22, 23). However, randomization is not without
challenges, including resource constraints, ethical issues, the
physical impossibility of randomization to certain exposures,
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and long latency periods between social exposure and the
onset of symptoms (21).
Computerized simulation approaches, such as agent-

based models, are of growing interest in population health
research (24, 25). Agent-based models are computerized
simulation models that can be used to simulate individuals
nested in simulated environments over simulated time. The
simulated individuals behave according to programmed rules
that define baseline characteristics, locations in space, and
interactions with their environments and with one another.
These simulated individuals are dynamic and adaptive over
time, autonomous from one another, and heterogeneous with
regard to baseline characteristics. Moreover, they can be
nested within networks that can simulate diverse motifs of
human interaction, such as households, families, social net-
works, neighborhoods, and communities. We propose the use
of agent-based counterfactual (ABC) simulations, simulations
of counterfactual universes that use artificial computerized
models, to allow for discrete in silico “policy experiments”
from which researchers can infer the influences of perturba-
tions within particular exposure parameters on outcomes of
interest within the simulation.
Although this approach is only in its early stages, there

are already fruitful examples of the use of ABC simulations
in epidemiologic inquiry. For example, 2 recent studies used
similar computerized simulations to characterize the mecha-
nisms underlying social disparities in walking behavior and
food choices, respectively. Yang et al. (26) used an agent-
based model in which walking choices were influenced by
demographic and spatial characteristics as well as distances
to different activities, walking ability, and attitudes toward
walking to simulate walking behaviors within a city. By
comparing walking behavior across 4 counterfactual simula-
tions, each with different levels of safety and walkable land
use, the authors demonstrated that differences in these
factors in more deprived compared with less deprived neigh-
borhoods might explain socioeconomic disparities in walk-
ing behavior. Another study (27) used an agent-based model
to understand socioeconomic disparities in healthy food
consumption. In this model, aggregate household food pref-
erences in a neighborhood, which are products of household
socioeconomic status, predicted the availability of stores
offering healthy food in that neighborhood. The authors
demonstrated that with socioeconomic segregation, stores
offering healthy food became less prevalent in low-income
neighborhoods. Furthermore, through a series of simula-
tions, they demonstrated that both increasing healthy food
preferences in low-income households and decreasing the
price of healthy foods were necessary to improve availability
of healthy food in low-income settings.
In the present analysis, we had 2 aims. First, we used an

ABC simulation model to explore the implications of inter-
ventions targeting social networks to reduce obesity. To do
this, we simulated the relative efficacy of interventions that
target the most highly connected individuals in a social
network relative to those targeting individuals at random.
Second, we illustrated the potential of ABC simulations as a
powerful tool in etiological inference building on observa-
tional analyses in settings where randomized social interven-
tions are impractical.

MATERIALS ANDMETHODS

Model

We used data from the Health Surveys for England in
1999 and 2004 as well as data about the relative risk of
obesity among those with obese contacts compared with
those without obese contacts from Christakis and Fowler
(15) to design an agent-based social network model of
obesity in England among a simulated birth cohort born in
1981.
Initial conditions for the baseline model were as follows:

Each agent was stochastically assigned gender, ethnicity,
social class, and educational level, adherent to distributions
of each characteristic in England, such that the proportion of
Asian, black, and white agents, for example, mimicked that
of the English population overall. Each agent was nested
within 1 of 6 spatial contexts, representing different ethnic
and social class compositions, and was placed in a context
preferentially by demographic characteristics (ethnicity and
social class). A proportion of the population was assigned
obese status at the model outset by demographic and neigh-
borhood allocation similar to the population 18 years of age
who are obese in England. Each agent represented an indi-
vidual 18 years of age at the model outset, aging by 1 year
for each time step, each agent’s risk for developing obesity
in that time step was calculated as a function of gender,
ethnicity, social class, education, and social contacts and
was implemented (Web Appendix available at http://aje.
oxfordjournals.org/).
To model the effects of social networks on the spread of

obesity, agents were also nested within a segregated social
network that was generated by using a biased preferential
attachment growth model to create a scale-free (Barabási-
Albert model) (28) social network with assortative mixing.
The network was initialized from a seed network composed
of a small number of agents. Each new agent added to the
network was connected to up to 4 existing agents with a
probability of connecting to an existing agent that was pro-
portional to the number of connections that that existing
agent already had. Moreover, an additional bias was
included to preferentially connect agents with like character-
istics. Whereas 25% of new agents to the network were con-
nected without regard to their characteristics (i.e., ethnicity,
social class, education), 50% of new agents to the network
were restricted to connecting with existing agents of similar
ethnicity, again with a probability of connecting to existing
agents with the same ethnicity that was proportional to the
number of connections that that agent already had. Twenty-
five percent of new agents added to the network were
restricted to connecting with existing agents of similar eth-
nicity and social class, again with a probability of connect-
ing to an existing agent with the same ethnicity and social
class that was proportional to the number of connections that
agent already had.
For contacts of obese nodes, we assigned a higher proba-

bility of becoming obese in each time step on the basis of
findings from Christakis and Fowler (15), such that if an
agent’s contact became obese in a previous time step, that
agent had a 1.16 times higher risk of developing obesity in
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the current time step. For more detailed information about
the construction of the model and its limitations, see the
Web Appendix.

Simulations

We tested 2 interventions. The first was a prevention inter-
vention that rendered a proportion of the population incapa-
ble of becoming obese throughout the simulation. It was
administered first among 10% of the population at random
and then among the most well-connected 10% of the popu-
lation. The second intervention featured a treatment for
obesity, which returned a proportion of the entire obese pop-
ulation back to normal body mass index each year. It was
implemented among 10% of the obese population each year,
first at random, and then among the most well-connected
10% of the population. To understand the influence of the
strength of the network effect of obesity on our findings, we
tested each of these interventions both on the baseline model
and by using an altered model in which the parameter indi-
cating the relative risk of developing obesity if a network
contact became obese in the previous time step was
increased from 1.16 (the Christakis and Fowler parameter)
to 10.

We ran further simulations to ensure the robustness of our
findings to the population scale of each intervention as well
as to differences in network topology as discussed above. To
account for the potential for different outcomes by interven-
tion scale, we simulated each of the interventions applied
to 30% of the population as well. To account for potential
sensitivity to network topology, we replicated each of our
simulations by using a segregated Erdős-Rényi model and
a clustered network (construction described in detail in the
Web Appendix).

To further characterize the mechanism underlying our
findings regarding the effects of targeting our treatment inter-
vention, we ran 2 further simulations. By using the scale-free

network model with an artificially high network communi-
cability parameter of 10 (the relative risk of developing
obesity if a network contact became obese in the previous
time step), we implemented a permanent treatment interven-
tion whereby in each time step, 10% of the obese population
reverted back to normal weight and was made incapable of
developing obesity in future time steps. This intervention
was implemented both at random and by targeting the most
well-connected individuals in the population.

All intervention simulations were compared with a con-
trol simulation (with the same network effect parameter and
network topology) without any intervention. All results were
subject to Monte Carlo simulation with 100 iterations.

RESULTS

Among the most well-connected 10% of individuals in
the scale-free social network, the mean number of contacts
was 25.4 per agent, and the median number of contacts was
17 (not shown). Among the remaining agents in the model,
the mean number of contacts was 6.1 per agent, and the
median number of contacts was 5 (not shown).

Figure 1 shows obesity prevalence by age among 10,000
agents representing a cohort born in 1981 in England in a
simulation without intervention (baseline), simulating an
intervention that prevented 10% of the population from
becoming obese at random, and simulating an intervention
that prevented the most well-connected 10% of the popula-
tion from becoming obese. There was almost no difference in
the prevalence of obesity throughout the life course between
simulations that included interventions and the baseline simu-
lation. Similarly, there was no difference in the prevalence of
obesity between the simulation featuring the intervention
implemented among the most well-connected individuals and
that featuring the intervention implemented at random. Simi-
larly, Figure 2 shows differences in obesity prevalence in a
simulation without intervention (baseline), in a simulation of

Figure 1. Obesity prevalence by age among 10,000 agents representing a cohort born in 1981 in England with no intervention (solid line),
simulating an intervention that prevented 10% of the population from becoming obese at random (dashed line), and simulating an intervention that
prevented the most well-connected 10% of the population from becoming obese (dotted line). Note that the dashed and dotted lines are overlaid
on one another. Obesity was defined as a body mass index (weight (kg)/height (m)2) >30.

Networks and Obesity: An Agent-Based Approach 289

Am J Epidemiol. 2013;178(2):287–295

D
ow

nloaded from
 https://academ

ic.oup.com
/aje/article/178/2/287/122804 by U

.S. D
epartm

ent of Justice user on 17 August 2022



an intervention that treated obesity among 10% of the obese
population each year at random, and in a simulation of an
intervention that treated obesity among the most well-con-
nected 10% of the obese population each year, with similar
findings. Although both intervention simulations showed
lower prevalence of obesity throughout the life course than
the baseline simulation, the targeted intervention did not
outperform the intervention implemented at random in
reducing obesity prevalence.
Figures 3 and 4 are analogous to the previous 2 figures,

although demonstrating the results of simulations run in the
model with the artificially high network effect on obesity

risk. Figure 3 shows the results of preventive interventions
implemented both among the most well-connected individu-
als and at random relative to baseline. The lowest prevalence
of obesity occurred in the simulation with the intervention
targeting the most well-connected obese individuals, fol-
lowed by the simulation featuring the at-random interven-
tion, and then the baseline simulation with no intervention.
By contrast, Figure 4, which shows the results of the treat-
ment intervention implemented both among the most well-
connected individuals and at random relative to baseline,
demonstrates the lowest prevalence of obesity in the sim-
ulation featuring the intervention implemented at random,

Figure 2. Obesity prevalence by age among 10,000 agents representing a cohort born in 1981 in England with no intervention (solid line),
simulating an intervention that treated obesity among the most well-connected 10% of the obese population each year (dashed line), and
simulating an intervention that treated obesity among 10% of the obese population at random each year (dotted line). Note that the dashed and
dotted lines are overlaid on one another. Obesity was defined as a body mass index (weight (kg)/height (m)2) >30.

Figure 3. Obesity prevalence by age among 10,000 agents representing a cohort born in 1981 in England in simulations with artificially high
network effects on obesity risk with no intervention (solid line), simulating an intervention that prevented the most well-connected 10% of the
population from becoming obese (dashed line), and simulating an intervention that prevented 10% of the population from becoming obese at
random (dotted line). Throughout these simulations, if a network contact became obese, an agent’s relative risk of becoming obese increased to
10 compared with 1.16 in the baseline model. Obesity was defined as a body mass index (weight (kg)/height (m)2) >30.
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followed by the simulation featuring the targeted interven-
tion, and then the baseline simulation. Results in Figures 1–
4 were replicated across network topologies and intervention
scales with no qualitative differences in findings.

Figure 5, analogous to Figure 4, shows the results of a per-
manent treatment intervention wherein treated individuals
were made incapable of becoming obese again in future
time steps. Relative to Figure 4, which shows the results of
treatment interventions that imposed no restrictions on indi-
viduals’ future risks of developing obesity, Figure 5 demon-
strates that eliminating future risk of obesity eliminated
nearly the entire gap in efficacy between the intervention
implemented at random and that targeting the most well-
connected individuals in the population.

DISCUSSION

In this ABC simulation of the progression of obesity
through a densely interconnected social network among a
simulated population of 10,000 individuals representing an
English cohort born in 1981 between ages 18 and 65 years,
we found no difference in the progression of obesity when
either preventive or treatment interventions were applied dif-
ferentially to well-connected individuals in a network or ran-
domly across the population.

Our study adds to a small but growing literature that has
simulated obesity interventions predicated on epidemiologic
observations about the spread of obesity through social net-
works. Bahr et al. (29) used social networks to test hypothe-
ses with regard to effective interventions against the obesity
epidemic. By using the body mass index (calculated as
weight (kg)/height (m)2) distribution from US data in 2000
to initialize their network, as well as the basic rule that the
likelihood of progression between classes of body mass
index (underweight, appropriate weight, overweight, or obese)

was a function of the body mass index class of the majority
of an agent’s contacts, they found stable results across
network topologies (e.g., lattice, random, small-world, or scale
free). They concluded that weight loss among friends of
friends was more important than weight loss among friends
alone in affecting the weight loss of an index individual, that
pinning the body mass index of random individuals in the
network could promote a more healthy body mass index dis-
tribution, and that interventions among well-connected indi-
viduals would be more effective than interventions among
individuals at random.

Our findings contrast with those of Bahr et al. (29). We
found that keeping constant the body mass index of 10% of
the population chosen at random did not considerably
decrease obesity prevalence. Differences in these outcomes
may be explained by differences in our work from that of
Bahr et al. more broadly. First, Bahr et al. modeled a major-
ity rule, whereby the probability of an individual becoming
obese in each time step was a function of the obesity state
of the majority of the individual’s contacts. Rather, we
modeled each node’s probability of becoming obese in the
next time step as a function of obesity among 1 or more of
its contacts, more akin to the mechanism of spread demon-
strated by Christakis and Fowler (15). Second, our analysis
was nested within a broader agent-based model that
accounted for heterogeneity in agent characteristics and the
social segregation of social networks. Third, our model was
parameterized directly from data about a real population.
The model implemented by Bahr et al., by contrast, was not
parameterized from data from a real population and did not
account for heterogeneity in either agent characteristics or
spatial context.

Our observations suggest that even if observational find-
ings (15) demonstrating increased risk of obesity among indi-
viduals with obese contacts are valid, targeting influential

Figure 4. Obesity prevalence by age among 10,000 agents representing a cohort born in 1981 in England in simulations with artificially high
network effects on obesity risk with no intervention (solid line), simulating an intervention that treated obesity among the most well-connected 10%
of the obese population each year (dashed line), and simulating an intervention that treated obesity among 10% of the obese population at
random each year (dotted line). Throughout these simulations, if a network contact became obese, an agent’s relative risk of becoming obese
increased to 10 compared with 1.16 in the baseline model. Obesity was defined as a body mass index (weight (kg)/height (m)2) >30.
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individuals is not likely to translate to an effective population-
based intervention strategy. Comparison of outcomes from
simulations carried out with a literature-based network influ-
ence parameter with those with artificially high network
influences on obesity risk suggested that, with respect to
other influences operating in the complex etiology of obesity,
network influences on obesity risk are simply not of suffi-
cient strength to warrant network targeting of antiobesity
interventions.
We found, perhaps counterintuitively, that in simulations

with artificially high network effect parameters, the treatment
intervention implemented at random was more effective than
the same intervention targeting the most well-connected indi-
viduals. This observation, however, is quite plausible. The
most well-connected obese individuals are most likely, by
definition, to have social contacts with individuals in the
network. They are therefore most likely to both “expose” others
to obesity and to be “exposed” to obesity via the network
effect. Interventions aimed at preventing obesity among the
most well-connected individuals are, therefore, likely to be
more effective than those among individuals at random
because targeting the intervention is the most effective way
to limit overall exposure within the network. However, in a
treatment intervention, even if well-connected individuals
are “cured” at a given time-step, they are more likely than
others to be further exposed because of the number of con-
tacts they share and, therefore, to contract the condition
again following the treatment. This rebound effect may
explain the finding here. Supporting this explanation are our
findings (Figure 5) demonstrating little difference in the out-
comes of treatment interventions implemented at random
compared with targeting the most well-connected individu-
als when these interventions were made permanent, block-
ing any potential for rebound because treated individuals
were no longer vulnerable.

The costs and logistical difficulties associated with ran-
domized social interventions testing the effects of targeting
antiobesity interventions among the most well-connected
individuals in a social network would likely preclude the
design and implementation of such studies that could test the
hypothesis that our ABC simulations tested here. Moreover,
aside from the costs and logistical difficulties, the influence
of social exposure on obesity risk may occur over several
years (30–32), suggesting that adequate follow-up in such a
randomized intervention would require several decades.
Therefore, the use of ABC simulations allowed us to draw
important inferences about the causal relationship between
targeting the most well-connected individuals and mitigating
obesity prevalence over time, above and beyond observa-
tional data, in the setting of limited opportunities to assess
this relationship experimentally with a randomized social
intervention. Kaufman et al. (21) suggest that a key concep-
tual contribution of randomized social interventions to
social epidemiology is that the experimental conceptual par-
adigm of randomized interventions forces investigators to
explicitly define interventions of interest in study design—
formulating a cogent articulation of the counterfactual to be
considered and, therefore, the causal relationship to be
tested. Similarly, the construction of the ABC simulations
featured here also forces investigators to explicitly define
their interventions of interest prior to simulation.
A central limitation to randomized social interventions

is that contexts may predict outcomes in randomized trials
by influencing compliance and participation rates (33). Par-
ticipation and compliance rates particular to a context where a
randomized social intervention study may be situated may
limit the generalizability of findings in other contexts where
participation and compliance rates may differ. ABC simula-
tions are not as vulnerable to the same limitation because they
allow investigators to program differential participation and

Figure 5. Obesity prevalence by age among 10,000 agents representing a cohort born in 1981 in England in simulations with artificially high
network effects on obesity risk with no intervention (solid line), simulating an intervention that permanently treated obesity among the most well-
connected 10% of the obese population each year (dashed line), and simulating an intervention that permanently treated obesity among 10% of
the obese population at random each year (dotted line). Throughout this simulation, following treatment, agents were no longer capable of
developing obesity at any further point in time. Moreover, if a network contact became obese, an agent’s relative risk of becoming obese increased
to 10 compared with 1.16 in the baseline model. Obesity was defined as a body mass index (weight (kg)/height (m)2) >30.
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compliance rates into repeated simulations and, therefore, to
assess the impact of participation and compliance on out-
comes of interest. In this way, ABC simulations allow for
testing of the potential effects of specific hypothetical policies
across contexts. Similarly, the transmissibility of social expo-
sures may impair the assumption of unit independence among
study participants in randomized social interventions via the
well-documented “spill over” effect (21); however, ABC sim-
ulations allow investigators to model repeated simulations,
controlling for the effects of exposure transmissibility and
thereby facilitating an improved understanding of the effects
of these externalities on outcomes of interest among individu-
als and within the population.

That said, the use of ABC simulations is not without limi-
tations. Among them is balancing mechanistic rigor with
model parsimony during model construction. In this regard,
although building more detail into models may yield a more
faithful representation of our mechanistic understanding of
the phenomena under study, this may overcomplicate model
interpretation and sacrifice predictive power. Along those
lines, however, there is a need for caution, more generally,
when interpreting model output quantitatively. Given the
high number of variables, often parameterized from dispa-
rate sources, that may be included in agent-based models,
qualitative inference may be more appropriate (24, 34).
Also, as discussed elsewhere (35), validating agent-based
models is fraught with conceptual challenges because inves-
tigators have essentially only 2 avenues by which they can
situate their models in reality: They can parameterize their
models with real data, or they can build their models from
hypothesized conceptual relationships and then compare
their output with real-world observations (35). In the former
circumstance, only the relationships between factors in
the model on the front end can be validated, whereas in the
latter, only the outcomes of the model can be validated—
but rarely can both be evaluated simultaneously (35). Finally,
agent-based models are computationally intensive, which can
pose practical limitations to the scope and complexity of
models investigators might build (35). Although randomized
interventions remain the “gold standard” in causal inference
regarding the health effects of social exposures, ABC simu-
lations do present a viable alternative in settings where such
intervention studies are implausible or impractical.

When considering the findings of the present research, the
reader should consider several limitations. First, it is plausi-
ble that there are other interventions that could manipulate
network dynamics to mitigate obesity spread that were not
tested here and that would yield different results. However,
our analysis was not intended to assess the hypothetical out-
comes of all plausible policies involving social networks on
obesity outcomes, but only the specific policy of targeting
well-connected individuals we outlined here. Second, our
agent-based model was parameterized by using data from
England. Therefore, our findings may not generalize to other
contexts globally. However, given several parallels between
the obesity epidemic in England and that in other high-
income countries, we feel our findings should be taken into
account when considering the hypothetical outcomes of
network-based approaches in other high-income contexts.

Third, there are several limitations to our model about which
the reader should be aware. The model allowed for neither
social mobility nor residential mobility among agents. More-
over, we used serial cross-sectional data to parameterize the
model, which imposed several limitations on the findings.
Unfortunately, these limitations were imposed on our model
because of lack of available data for parameterization, as we
discuss in the Web Appendix. Fourth, validation of the
model was limited to comparing life course trajectories in
obesity prevalence projected by our model with those from
real data. However, given that the model was parameterized
from population data, this is less concerning compared with
other similar models in the literature (29). Fifth, although we
simulated the effects of 2 potential antiobesity interven-
tions, prevention and treatment, our findings should not be
used to compare the outcomes of preventive and treatment
approaches head-to-head. These interventions were not con-
structed for this purpose; rather they were designed to draw
out the role of network targeting in antiobesity interventions.
Cost-benefit analyses account for the costs of proposed inter-
ventions when comparing these interventions head-to-head,
and it is likely that in reality, our treatment intervention
would be substantially more expensive than our prevention
approach, and therefore comparisons across these interven-
tions, without accounting for cost, are inappropriate. Sixth,
because serial cross-sectional data were used for the parame-
terization of our model, producing estimates of variance
faithful to the parameter estimates upon which the model
was constructed was beyond its scope. However, all mean
estimates of obesity prevalence were averaged over 100
Monte Carlo runs to correct for artifacts resulting from the
stochastic implementation of the model.

Despite these limitations, our findings have important
implications for policy and future research. With regard to
the policy implications of the present analysis, our findings
suggest that interventions that focus on targeting the most
well-connected individuals in a population will have little or
no added value compared with at-random implementation
toward curbing the risk of obesity among individuals or in
the population overall. However, investigators interested in
understanding the implications of social networks in mitigat-
ing the obesity epidemic might consider other interventions
that attempt to exploit social networks to mitigate obesity
risk overall and by subgroup. Moreover, several studies have
demonstrated the progression of other noninfectious health
outcomes, such as smoking (36, 37), back pain (38), alcohol
consumption (39), and adolescent risk behavior (37), through
a densely interconnected social network. Investigators inter-
ested in these fields may also consider modeling the impacts
of interventions targeting the most well-connected individuals
in a social network. Finally, methodological development of
agent-based modeling for epidemiology is needed. Future
work, for example, may consider improving the capacity of
these models to faithfully translate variance estimates on
parameters used in their construction into the outcomes they
are designed to assess. This information would allow investi-
gators to identify the range of potential outcomes from inter-
ventions and could also be used to identify mechanistic
factors that influence that range.
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