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ABSTRACT

Aim To assess the geographical transferability of niche-based species distribution

models fitted with two modelling techniques.

Location Two distinct geographical study areas in Switzerland and Austria, in

the subalpine and alpine belts.

Methods Generalized linear and generalized additive models (GLM and GAM)

with a binomial probability distribution and a logit link were fitted for 54 plant

species, based on topoclimatic predictor variables. These models were then

evaluated quantitatively and used for spatially explicit predictions within (internal

evaluation and prediction) and between (external evaluation and prediction) the

two regions. Comparisons of evaluations and spatial predictions between regions

and models were conducted in order to test if species and methods meet the

criteria of full transferability. By full transferability, we mean that: (1) the internal

evaluation of models fitted in region A and B must be similar; (2) a model fitted

in region A must at least retain a comparable external evaluation when projected

into region B, and vice-versa; and (3) internal and external spatial predictions

have to match within both regions.

Results The measures of model fit are, on average, 24% higher for GAMs than

for GLMs in both regions. However, the differences between internal and

external evaluations (AUC coefficient) are also higher for GAMs than for GLMs

(a difference of 30% for models fitted in Switzerland and 54% for models fitted

in Austria). Transferability, as measured with the AUC evaluation, fails for 68%

of the species in Switzerland and 55% in Austria for GLMs (respectively for 67%

and 53% of the species for GAMs). For both GAMs and GLMs, the agreement

between internal and external predictions is rather weak on average

(Kulczynski’s coefficient in the range 0.3–0.4), but varies widely among

individual species. The dominant pattern is an asymmetrical transferability

between the two study regions (a mean decrease of 20% for the AUC coefficient

when the models are transferred from Switzerland and 13% when they are

transferred from Austria).

Main conclusions The large inter-specific variability observed among the 54

study species underlines the need to consider more than a few species to test

properly the transferability of species distribution models. The pronounced

asymmetry in transferability between the two study regions may be due to

peculiarities of these regions, such as differences in the ranges of environmental

predictors or the varied impact of land-use history, or to species-specific reasons

like differential phenotypic plasticity, existence of ecotypes or varied dependence

on biotic interactions that are not properly incorporated into niche-based

models. The lower variation between internal and external evaluation of GLMs

compared to GAMs further suggests that overfitting may reduce transferability.
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INTRODUCTION

Niche-based species distribution models (SDM) (Guisan &

Zimmermann, 2000; Guisan & Thuiller, 2005) are models that

relate observations of species, gathered over a certain period of

time, to various attributes of the environment such as

topography, climate or geology. These environmental attri-

butes, or predictors, arranged along a gradient from proximal

to distal predictors (Austin, 2002), can have direct or indirect

effects on species establishment and survival. As SDMs do not

consider the time dimension, they are said to be static.

Conceptually, they assume the fitted relationship to be an

adequate representation of the realized niche of the species

under a stable equilibrium constraint (Franklin, 1995; Guisan

& Theurillat, 2000a).

In recent years, a large number of studies have used SDMs,

developed for individual species at various spatial scales (for

examples see Scott et al., 2002). These models are not only of

theoretical interest in biogeography, but are also valuable tools

in conservation biology and species management (Miller, 1986;

Carey & Brown, 1994; Godown & Peterson, 2000; Engler et al.,

2004). However, most published SDMs were developed for

sections of a species’ range and few models have been fitted at

the global scale (Jeffree & Jeffree, 1994) or have used the full

extent of a species’ geographical range. Examples of the latter

include models where regionally endemic species (Peterson

et al., 2000) or the whole native range for invasive alien species

(Peterson et al., 2003) were considered.

Furthermore, SDMs are usually evaluated and applied

within the region in which they were fitted. As a result, their

applicability to other parts of a species’ geographical range

(Thomas & Bovee, 1993; Fielding & Haworth, 1995; Glozier

et al., 1997; Ozesmi & Mitsch, 1997; Schröder & Richter, 1999;

Kleyer, 2002) or to other time periods (Schröder & Richter,

1999; Araújo et al., 2005b) was rarely assessed. This concept of

geographical or temporal cross-applicability of models was

defined as transferability (Thomas & Bovee, 1993; Glozier

et al., 1997; Schröder & Richter, 1999; Kleyer, 2002) or

generality (Fielding & Haworth, 1995). Such transferability can

be an important feature of SDMs, for instance if they are used

for projections into new areas (transferability in space) or for

predictions of climate-change responses (transferability in

time) (Fielding & Haworth, 1995).

There could be potential obstacles to model transferability.

According to Walter’s law of relative habitat constancy (Walter

& Breckle, 1985), species can shift their apparent habitat –

often defined with regard to indirect predictors such as

topography or vegetation structure – to fit to their basic

ecological requirements determined by direct, physiologically

meaningful predictors (such as sum of temperature or water

availability). As a result, transferability should be limited when

indirect predictors are used, as these may fail to express the

true habitat requirements of the species in distinct geograph-

ical areas. Using direct or resource predictors should allow a

more universal, and thus more transferable, definition of a

species’ realized niche, but requires these predictors to be

available in a spatially explicit form (Austin, 1980, 1985; Austin

et al., 1984; Austin & Smith, 1989; Guisan & Zimmermann,

2000). Models incorporating spatial or temporal autocorrela-

tion may also be difficult to transfer into distinct geographical

areas (Hampe, 2004; Araújo et al., 2005a; Guisan & Thuiller,

2005). However, even when the abiotic conditions remain

constant, changes in the regional species pools usually occur in

distinct parts of a species’ range, for instance as a result of

different historical influences. Such local changes in biotic

pressure are likely to generate local modifications of a species’

realized niche (Pulliam, 2000), and thus to affect the

geographical transferability of locally fitted models. The

existence of ecotypes (climatic, edaphic, geographic, etc.)

may also cause problems when transferring a model from one

region to another (Walter & Breckle, 1985; Joshi et al., 2001).

Moreover, it is well documented that species tend to thrive

in a more varied array of habitats at the centre of their

distribution, and to become rarer and more restricted to

specialized habitats towards the margins (Brown et al., 1995).

In addition, landscape-scale population dynamic processes,

such as mass effects and source–sink dynamics (Dias, 1996;

Pulliam, 2000; Mouquet & Loreau, 2002, 2003), can inflate

realized niches where species are abundant, whereas other

processes, such as Allee effects, may shrink them where species

are rare (Groom, 1998; Keitt et al., 2001). Hence the position

of the different study areas within the whole species’ range is

also likely to affect the way niche models are fitted (Peterson

et al., 2000). Furthermore, it has been shown for SDMs of

plant species that spatial predictability depends on particular

traits of individual species such as those that determine their

colonization ability (Dirnböck & Dullinger, 2004).

Despite these potential obstacles, several studies provided

evidence supporting the idea that niche positions are more

than merely regional phenomena (Thompson et al., 1993; Hill

Overall, a limited geographical transferability calls for caution when projecting

niche-based models for assessing the fate of species in future environments.
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et al., 2000; Prinzing et al., 2002). They showed that most

species can occupy similar niche positions in distinct regions,

and that geographical variation of the niche does not usually

increase for species that are more susceptible to competitive

displacement or ecophysiological stress. This is further

supported by several previous studies that successfully tested

spatial and temporal transferability of habitat models. How-

ever, these studies were restricted to a limited number of

habitats and species within a restricted number of taxonomic

groups, including arthropods in fens (Schröder & Richter,

1999), fish (Freeman et al., 1997; Glozier et al., 1997) or birds

(Fielding & Haworth, 1995; Ozesmi & Mitsch, 1997).

Comparisons across many species (Araújo et al., 2005a) and

separate regions should allow more general conclusions.

Testing of model transferability could prove particularly

powerful for complementing standard procedures of model

evaluation (for best practice techniques see Maggini et al.,

2006, this issue). The use of observations independent from the

training data set has been recommended for a proper

evaluation of models (Fielding & Bell, 1997; Guisan &

Zimmermann, 2000). If the training and test data sets are

restricted to the same spatial and temporal domains, internal

evaluation techniques such as data partitioning or split sample

approaches are sufficient. If the predictions are to be tested for

their generality and robustness (accuracy and stability of

predictions in a new situation), Fielding & Bell (1997)

recommend using a geographically (Fielding & Haworth,

1995) or temporally (Boyce et al., 2002; Araújo et al., 2005b)

independent data set for their external evaluation.

A large number of studies, involving many different

modelling techniques, have been conducted to predict the

potential distribution of species under changing environmental

conditions (Huntley, 1995; Sykes & Prentice, 1995; Guisan &

Theurillat, 2000b; Bakkenes et al., 2002; Peterson et al., 2002;

Dirnböck et al., 2003; Thuiller et al., 2005; Araújo et al., 2006)

as well as in regions where such species do not yet occur

(Weber, 2001). However, testing for proper geographical or

temporal transferability of models and the related uncertainty

has usually been neglected.

For full model transferability between two regions, we

suggest that the three following conditions have to be fulfilled:

(1) the internal evaluation of models fitted in region A and B

must be similar, (2) a model fitted in region A must at least

retain a comparable external evaluation when projected into

region B, and (3) internal and external spatial predictions have

to match within both regions; here internal prediction means

that a model fitted in region A is used for predictions in region

A, whereas external prediction means that a model fitted in

region B is used for predictions in region A.

We hypothesize that some modelling techniques are likely to

be more robust than others when transferred from one

geographical region to another. For instance, the shape of

response curves in generalized additive models (GAM; Hastie

& Tibshirani, 1986), being based on smoothing techniques, is

not predefined and thus allows modelling closer to the data

(Guisan et al., 2002; Lehmann et al., 2002) than do generalized

linear models (GLM; McCullagh & Nelder, 1989), which are

based on parametric (often polynomial) response curves. For

this reason, and for an identical number of degrees of freedom

allowed for each predictor in each technique, we expect GAMs

to provide higher fits overall (as shown by Moisen & Frescino,

2002) but potentially at the cost of being less generalizable than

GLMs to other situations, that is, showing weaker transfera-

bility in space and time.

In this study we propose a quantitative measure (a

new index) and test of transferability. Our data set covers

54 alpine plant species in two distinct geographical regions of

Switzerland and Austria. We conducted a cross-region assess-

ment using two modelling techniques, GLMs and GAMs, to

answer three main questions:

1 How can transferability best be quantified?

2 Are niche-based models fitted with GLMs and GAMs

transferable in space?

3 Does model transferability depend on the modelling

technique used (GLM vs. GAM)?

METHODS

Study areas

The two study areas cover parts of the alpine and forest-free

subalpine zones of the western Swiss Alps (6�60¢ to 7�10¢ E;

46�10¢ to 46�30¢ N) and the north-eastern calcareous Alps in

Austria (14�60¢ to 15�50¢ E; 47�30¢ to 47�50¢ N). A compar-

ison of the environmental gradients realized within the

two study areas is given in Table 1. Hereafter, the Swiss

and Austrian study areas are abbreviated CH and AT,

respectively.

In the CH region, elevations reach 3210 m a.s.l. at the top of

the Diablerets chain where important glaciers are still found.

Along the altitudinal gradient the sequence of vegetation belts

is that typical for the calcareous Alps: colline belt with

deciduous forests (mainly Fagus sylvatica L., European beech);

montane belt with mixed forests (F. sylvatica and Abies alba

Mill., silver fir); subalpine belt with coniferous forest [Picea

abies (L.) Karsten, Norway spruce]; alpine belt with heath,

meadow and grassland vegetation; and nival belt with sparse

vegetation cover of characteristic high-elevation taxa. Veget-

ation has long been, and still is, under the influence of human

land use: pasture is common in this region from the valley

bottoms up to the subalpine and lower alpine areas.

The AT study area comprises four distinct mountains

(Mt Hochschwab, Mt Schneealpe, Mt Rax and Mt Schnee-

berg). Summits vary between 1900 and 2300 m a.s.l. Veget-

ation belts are generally similar to the CH region, although the

nival zone is lacking. As in CH, summer pastures are abundant

(Dirnböck et al., 2003).

In this study we focused on the subalpine to nival belts only.

Accordingly, we set the lower limit of the study areas at

1300 m a.s.l. in both CH and AT. This altitude corresponds to

the average lower elevation limit of the subalpine belt in the

Alps (Ozenda, 1985).

Niche-based species distribution models

Journal of Biogeography 33, 1689–1703 1691
ª 2006 The Authors. Journal compilation ª 2006 Blackwell Publishing Ltd



Species data

Data on the presence–absence of species originate from two

separate data sets. The CH data comprise 402 vegetation plots

sampled during 2002 and 2003. The data for AT were collected

between 1994 and 2001 on a total of 603 plots. A random

stratified sampling strategy restricted to open, non-woody

vegetation (grassland, rock and scree vegetation) was applied

in both study areas. The plot size was constant in CH (16 m2),

whereas it varied from 5 to 30 m2 in AT (Dirnböck et al.,

2003). From the overall species pool of these samples, a total of

54 species with more than 30 occurrences in both data sets

were selected for modelling.

Environmental predictors

We generated a comparable set of environmental predictors for

both study areas, using identical GIS algorithms and types of

input data (Table 2). All GIS predictors were calculated with a

25-m spatial resolution as derived from the digital elevation

models (DEM) available in each study area.

First, we calculated the slope from the DEMs to account

for gravitational processes such as snow avalanches and

rockfalls (Guisan et al., 1998; Dirnböck et al., 2003) and their

impact on vegetation. Second, we calculated linear lapse rates

for long-term (1961–90) monthly mean temperature and

monthly rainfall taken from the national meteorological

networks of Switzerland and Austria (MeteoSuisse and

ZAMG). Next, we normalized the monthly values to 0 m

a.s.l., using the regression lapse rates, and interpolated the 0-

m data to the whole surface of both study areas using inverse

distance weighted interpolations (IDW). Finally, the spatially

interpolated values (representing locally adjusted regression

intercepts) were reprojected to actual elevations using the 25-

m DEM of each study area and the regression lapse rates.

This method differs from the approach of Zimmermann &

Kienast (1999) in using IDW rather than thin-plate splines

for the interpolation. These basic climatic variables were then

transformed into three physiologically more meaningful

bioclimatic predictors: the growing degree-days (with 0 �C

threshold), moisture index over the growing season (differ-

ence between precipitation and potential evapotranspiration

from June to August), and potential global solar radiation

during the growing season (Table 2 and references therein).

Additionally, the spatially distributed hydrological model

PREVAH (Gurtz et al., 2003) was used to obtain a physically

based predictor for snow-cover duration in both Swiss and

Austrian study sites.

Table 2 Physiologically meaningful environmental predictors used to model the distribution of species

Variables Units Details Method References

Temperature degree days �C day year)1 Sum of days multiplied by

temperature > 0 �C

ARCInfo AML Zimmermann &

Kienast (1999)

Moisture index

(average of monthly values June–August)

mm day)1 Monthly average of daily

atmospheric H2O balance

ARCInfo AML Zimmermann &

Kienast (1999)

Global solar radiation

(average of monthly values June–August)

kJ m)2 day)1 Monthly average of daily

global solar radiation

ARCInfo AML Kumar et al. (1997)

Snow cover days Number of days with snow

cover for the period

1980–2000

PREVAH HRU model Gurtz et al. (1999)

Slope degrees Slope inclination DEM, ARCInfo

GRID routine

Anon (2004)

Table 1 Environmental context of the two study areas

Switzerland (CH) Austria (AT)

Surface (km2) 270 110

Number of vegetation plots 402 603

Altitudinal range (m) 1300–3210 1300–2273

Temperature range (�C) )3.5–6 1–4.5

Temperature degree days (�C day year)1) 313–2346 788–1830

Precipitation range (mm) 1400–2400 1500–2500

Moisture index (average of monthly values June–August)

(mm day)1)

)13–174 )7–160

Global solar radiation (average of monthly values June–August)

(kJ m)2 day)1)

3264–30659 3267–30616

Number of days with snow cover per year (period 1980–2000) 75–347 130–237

CH, Swiss study area; AT, Austrian study area.
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As the latter model has not yet been used in any similar

biogeographical study, we provide more details here. PREVAH

has been used previously for simulation of the hydrological

behaviour of catchments at different spatial scales (Zappa, 2002)

and, among other model applications, checked against point

observations of snow water equivalent and remotely sensed

maps of snow cover distribution (M. Zappa, unpublished data).

In the present application, the hydrological model is forced by

interpolated daily values of observed climatic variables collected

by MeteoSuisse and ZAMG. Data for five meteorological

variables (precipitation, air temperature, relative sunshine

duration, wind speed and water vapour pressure) have been

used for the period 1979–2000. Global radiation was estimated

as described by Schulla (1997). Both temperature and radiation

are locally adjusted to take into account slope, aspect and shade.

1979 was adopted as the initialization period. The parameters

controlling snow accumulation, snowmelt and runoff genera-

tion were then calibrated for the 6-year period 1980–85, and

spatially distributed maps of cumulative snow cover duration

were finally summarized for the 20-year period 1980–99.

All these environmental variables are expected to have a

major direct ecophysiological impact on plant species (Pearson

et al., 2002; Dirnböck et al., 2003; Körner, 2003), as required

for successful transferability.

Analytical design

All steps of the analyses are summarized in Fig. 1. We divided

the analytical design into three main parts: (1) model fitting,

(2) model evaluation, and (3) model prediction.

Model fitting

Two separate models were fitted for each species in the s-plus

2000 software (MathSoft, 1999), with presence/absence values

in each regional data set, using GLMs (McCullagh & Nelder,

1989) and GAMs (Hastie & Tibshirani, 1986) with a binomial

variance and a logistic link function. In both GLMs and GAMs,

an Akaike information criterion (AIC)-based stepwise proce-

dure in both directions was used to select the most significant

predictors (Akaike, 1973). Up to second-order polynomials

(linear and quadratic terms) were allowed for each predictor in

GLMs, with the linear term being forced in the model each

time the quadratic term was retained. Up to four degrees of

freedom were allowed for the smooth functions in GAMs. The

fit of GLMs and GAMs was measured with the Nagelkerke R2

(Guisan & Zimmermann, 2000). Model fits within and

between models (GLMs and GAMs) and regions (CH and

AT) were compared for the 54 species with Wilcoxon signed-

rank tests (treating the samples as grouped by species).

Spatial predictions

For both GLMs and GAMs, spatial predictions were made over

the full geographical domains in s-plus using custom codes,

then mapped using the ArcGIS 9.0 software (ESRI, 2004).

Predictions in CH were made from both the model fitted in

CH (internal predictions, IP) and the model fitted in AT

(external predictions, EP), and reciprocally for predictions in

AT.

Model evaluation

Comparisons of predicted (probability scale) and observed

(presence–absence) values were based on the area under the

curve (AUC) of a receiver-operating characteristic plot (ROC;

Fielding & Bell, 1997) and the Kappa coefficient maximized

over the full range of possible probability thresholds (hereafter

max Kappa; Huntley, 1995; Guisan et al., 1998). AUC takes

values between 0 and 1 with 0.5 meaning no agreement; 0 an
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EE 
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IE 
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IP 
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Figure 1 Experimental design. Generalized linear and generalized additive models (GLMs and GAMs) of each species were evaluated with

the Switzerland (CH) and Austria (AT) presence/absence data sets and then applied to the geographical domains of both regions (—,

IE ¼ internal evaluation; —, IP ¼ internal prediction; – – –, EE ¼ external evaluation; – – –, EP ¼ external prediction).
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inverse relationship (errors better predicted); and 1 perfect

agreement. Max Kappa takes values between )1 and +1, with 0

meaning no correlation, )1 an inverse relationship and +1 a

perfect agreement.

The AUC values were interpreted using the classification of

Araújo et al. (2005a) adapted from Swets (1988): excellent

AUC > 0.90; good 0.80 > AUC < 0.90; fair 0.70 > AUC <

0.80; poor 0.60 > AUC < 0.70; fail 0.50 > AUC < 0.60. The

Kappa values were interpreted using the ranges of agreement of

Araújo et al. (2005a) adapted from Landis & Koch (1977):

excellent K > 0.75; good 0.40 > K < 0.75; poor K < 0.40. We

assumed that the geographical transferability fail for models

which have an internal evaluation (¼IE) > 0.7 for the AUC

coefficient (> 0.4 for Kappa) and which have an external

evaluation (¼EE) < 0.7 for the AUC (< 0.4 for Kappa).

The internal evaluation of the models was made by running

a 10-fold cross-validation (van Houwelingen & Le Cessie,

1990) on the training data set. During the cross-validation

procedure, the original prevalence of the species presences and

absences in the data set was maintained in each fold.

The external evaluation was made by projecting each model

in the other area and comparing predictions with geographi-

cally independent observations using AUC and max Kappa.

This represents a fully independent evaluation as recom-

mended by Fielding & Bell (1997).

Internal and external evaluations were compared within and

between models and regions for the 54 species using paired

t-tests.

Measuring and testing transferability

According to our previous definition of full model transfer-

ability (see Introduction) three conditions have to be fulfilled,

based on comparisons of model fit; model evaluation; and

spatial predictions. Whereas comparison of model fit is

straightforward (one measure for each model in each region),

comparison of evaluation measures is more complex. To

achieve this, we developed an index (equation 1) that

numerically assesses the transferability of an SDM across two

regions:

where AUCregA fi regA means that the model is fitted in

region A and evaluated in the same region. The transferability

index (TI) is based on the decrease of the AUC coefficient

when switching from the internal (AUCregA fi regA

and AUCregB fi regB) to the external (AUCregA fi regB and

AUCregB fi regA) evaluation for both regions. The TI varies

from 0 to 1 and is at its maximum when the difference between

IE and EE is null. Note that this index is based only on the

AUC evaluation measure, and does not include assessment of

reciprocal spatial predictions. Thus it provides information

only on criteria 1 and 2 when assessing the full transferability.

Four potential relationships implying this TI and various

species or model properties were tested with linear models

across the whole set of species, for both GLMs and GAMs: TI

as a function of (1) the differences between prevalences in

Switzerland and Austria, (2) the differences in degrees of

freedom between the models fitted in CH and in AT, (3) the

differences between the adjusted deviance of models fitted in

CH and in AT, and (4) the similarities between models

compositions in CH and in AT.

In addition, we tested separately the difference in degrees

of freedom between GLMs and GAMs as a function of

[(IE ) EE) of GLMs] ) [(IE ) EE) of GAMs] in each region

with a linear regression. The prevalence of a species in one

region was calculated using the ratio of the occurrences of the

species to the total number of observations. The similarity

between the model compositions in CH and AT was

calculated with the simple matching coefficient (Legendre &

Legendre, 1983).

To assess the third criterion of full model transferability, the

agreement between IP and EP maps was calculated with an

asymmetrical distance version of Kulczynski’s coefficient (KC;

Legendre & Legendre, 1983). The KC for comparison of map j

vs. k, (here IP vs. EP for a given region) Djk, is:

KCjk ¼

Pn
i¼1 Xij �

Pn
i¼1 minðXij;XikÞ

Pn
i¼1 Xij

ð2Þ

where Xij and Xjk are the habitat suitability for cell i for maps j

and k, respectively, and n is the number of cells. Similarly, KCkj

can be calculated for k vs. j, and KCkj is not, in general, equal to

KCjk. The KC varies from 0 to 1 and is at its maximum when

the difference between IP and EP is null. The KCs were then

compared within and between models and regions with

Wilcoxon signed-rank tests. Overall trends between models

and regions across species were assessed using boxplots and

standard pairwise tests.

RESULTS

The measures of model fit are, on average, 24% higher for

GAMs than for GLMs in both CH and AT regions. On average,

GLMs and GAMs have a higher fit in CH than in AT (83%

higher for GLMs and 78% for GAMs; Table 3, Fig. 2). In

addition, the range of values for the explained deviance
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(adj-D2) is narrower in CH than in AT for both GLMs and

GAMs (Fig. 2). Results of comparisons across regions and

across methods are given in Table 4. Hereafter, reference

numbers given in the text for each type of comparison (C1–

C6) are as explained in Table 4.

The IE is systematically higher than the EE for both GLMs

and GAMs, between and within regions (C1 and C2). When

comparing the two methods (C3) using the Kappa coefficient,

IE for GLMs is higher than for GAMs in AT, whereas no

significant difference is observed with the AUC coefficient. In

CH, comparing the IE of GLMs and GAMs using either the

AUC or the Kappa coefficients yields no significant difference.

The comparisons of regions (C4) show that the IE of GLMs

and GAMs is higher in CH than in AT. Furthermore, GLMs

fitted in CH have higher EE with the Kappa coefficient than

GAMs fitted in CH when both are transferred to AT (C5),

whereas no significant difference is observed with the AUC

coefficient. However, no such significant differences exist

between EE of GLMs and GAMs when they are transferred

from AT to CH. The EE of GAMs transferred from AT to CH

is higher, on average, than that of GAMs transferred from CH

to AT (Table 5).

The histograms (Fig. 4) show an important difference

between the IE and EE of GLMs and GAMs in both regions.

When testing transferability with the AUC metric, the

transferability failed for 68% of the species models fitted in

Switzerland and for 55% of the models fitted in Austria for

GLMs, and for 67% (CH) and 53% (AT) of the models for

GAMs. These values are even higher when evaluated with the

Kappa coefficient: 82% of the GLMs fitted in CH failed and

100% of the GAMs, whereas all the models fitted in AT and

91% of the GAMs failed. The distribution of the AUC

coefficients on the EE histograms (Fig. 3) shows that, globally,

GLMs are only slightly – yet significantly – more robust to

transferability than GAM models.

The results of the linear regressions in Table 5 show no

relationships between the TI of GLMs and GAMs and the

difference of prevalence, degrees of freedom and adjusted

deviance between the two regions. There is also no relation

between the TI and the similarity of models, in terms of

predictor composition, between CH and AT.

The number of degrees of freedom used in GAMs is higher,

on average, than in GLMs in both CH and AT (Wilcoxon

signed-rank tests: P < 0.001), but the linear regressions show

no relationship between the difference in IE and EE between

GLM and GAM [(IE ) EE)GLM ) (IE ) EE)GAM] and the

difference in degrees of freedom between GLMs and GAMs in

both regions (R2 < 0.01).

Regarding spatial predictions, the Wilcoxon signed-rank

tests on the agreement between prediction maps (KC) show no

significant differences between GLMs and GAMs within CH

(Fig. 5, arrow 1 below the graph) and within models across

regions (Fig. 5, arrows 3 and 4). On the other hand, the

agreements between IP and EP of GAMs are higher, on

average, than those of GLMs in AT (Fig. 5, arrow 2, P < 0.01).

In general, the agreement between IP and EP is rather weak

(average value of the coefficient between 0.3 and 0.39) and the

variation across species is considerable (from 0 to 0.97).

The four examples in Fig. 6 illustrate the different types of

pattern of GLM transferability across regions. In order to be

comparable across regions, the four selected species have a

similar adjusted deviance in CH and AT. The results of GAM

models are not presented because they show exactly the same

patterns. Three scenarios are possible. A few species, such as

Thesium alpinum L., meet all the criteria for full transferability

(Fig. 6a). For other species, such as Luzula multiflora (Retz.)

Lej. and Hypericum maculatum Crantz s.str., models transfer
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Figure 2 Boxplots of the adjusted D2 explained by generalized

linear and generalized additive models (GLMs and GAMs) in

Switzerland (CH) and Austria (AT) for the 54 species. None of the

differences in the adjusted D2 within models between the two

regions (arrows 1 and 2), and between GLMs and GAMs within

regions (arrows 3 and 4), is significant (Wilcoxon signed-rank tests

with P values of 0.898/0.951 and 0.770/0.051, respectively).

Table 3 Global comparisons, using Wilcoxon signed-rank tests, of the adjusted deviance of the 54 species models between generalized

linear and generalized additive models (GLMs and GAMs) (IDs 1 and 2) and between Switzerland (CH) and Austria (AT) (IDs 3 and 4) (IDs

correspond to numbers in Fig. 2)

ID x Test y P

Comparisons between GLMs and GAMs 1 GLM.CH < GAM.CH < 0.001

2 GLM.AT < GAM.AT < 0.001

Comparisons between CH and AT 3 GLM.CH > GLM.AT 0.007

4 GAM.CH > GAM.AT 0.001
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well from one region to another but not vice versa (asymmet-

rical transferability; Fig. 6b,c). This asymmetrical transferabil-

ity represents the predominant pattern across our 54 species.

Finally, the models of some species are not adequately

transferable in either direction (Fig. 6d). However, even when

the first two criteria for full transferability are met (see

Introduction), the agreement between IP and EP remains very

low in a significant number of cases (c. 10% of species).

DISCUSSION

General patterns in transferability

The average transferability of our models across all species is

weak compared with other studies (Thomas & Bovee, 1993;

Schröder & Richter, 1999; Mäki-Petäys et al., 2002). The

external evaluation failed for more than 50% of the species.

Considerable discrepancies among species are observed for

trans-geographical predictions (between IP and EP maps).

Overall, prediction agreement (measured by the KC) across all

species and between methods is, on average, weak. Fielding &

Haworth (1995) reached the same conclusion, namely that

there is a lack of generality in their models. Taken together,

these results suggest that care should be taken when these

models are projected to future climates (Araújo et al., 2005b).

However, the capacity for transferability is highly species-

specific. Models for some species meet the criteria for full

transferability (e.g. T. alpinum, Fig. 6a), whereas many others

do not, showing either asymmetrical transferability or none at

all (e.g. Arabis alpina L., Fig. 6d).

Our study highlights the importance of testing transfer-

ability on a large number of species. Moreover, it reveals a

Table 4 Comparison by paired t-tests of internal evaluation (IE) and external evaluation (EE) for generalized linear and generalized

additive models (GLMs and GAMs) in Switzerland (CH) and Austria (AT) (e.g. GLMCHAT ¼ GLM fitted in CH and evaluated with the AT

data set)

AUC maxKappa

x Test y P x Test y P

Transposability

C1: Comparisons of IE with EE

across regions within models

GLM.CH.ON.CH > GLM.CH.ON.AT < 0.001 GLM.CH.ON.CH > GLM.CH.ON.AT < 0.001

GAM.CH.ON.CH > GAM.CH.ON.AT < 0.001 GAM.CH.ON.CH > GAM.CH.ON.AT < 0.001

GLM.AT.ON.AT > GLM.AT.ON.CH < 0.001 GLM.AT.ON.AT > GLM.AT.ON.CH < 0.001

GAM.AT.ON.AT > GAM.AT.ON.CH < 0.001 GAM.AT.ON.AT > GAM.AT.ON.CH 0.023

C2: Comparisons of IE with EE

within regions and models

GLM.CH.ON.CH > GLM.AT.ON.CH < 0.001 GLM.CH.ON.CH > GLM.AT.ON.CH < 0.001

GAM.CH.ON.CH > GAM.AT.ON.CH < 0.001 GAM.CH.ON.CH > GAM.AT.ON.CH < 0.001

GLM.AT.ON.AT > GLM.CH.ON.AT < 0.001 GLM.AT.ON.AT > GLM.CH.ON.AT < 0.001

GAM.AT.ON.AT > GAM.CH.ON.AT < 0.001 GAM.AT.ON.AT > GAM.CH.ON.AT < 0.001

Methods

C3: Comparisons of IE

within regions between models

GLM.CH.ON.CH ¼ GAM.CH.ON.CH 0.27 GLM.CH.ON.CH ¼ GAM.CH.ON.CH 0.48

GLM.AT.ON.AT ¼ GAM.AT.ON.AT 0.14 GLM.AT.ON.AT > GAM.AT.ON.AT 0.004

C4: Comparisons of IE

across regions within models

GLM.CH.ON.CH > GLM.AT.ON.AT < 0.001 GLM.CH.ON.CH > GLM.AT.ON.AT 0.019

GAM.CH.ON.CH > GAM.AT.ON.AT < 0.001 GAM.CH.ON.CH > GAM.AT.ON.AT 0.001

Transposability by methods

C5: Comparisons of EE

within regions between models

GLM.CH.ON.AT ¼ GAM.CH.ON.AT 0.82 GLM.CH.ON.AT > GAM.CH.ON.AT 0.010

GLM.AT.ON.CH ¼ GAM.AT.ON.CH 0.65 GLM.AT.ON.CH ¼ GAM.AT.ON.CH 0.99

C6: Comparisons of EE

across regions within models

GLM.CH.ON.AT ¼ GLM.AT.ON.CH 0.61 GLM.CH.ON.AT ¼ GLM.AT.ON.CH 0.12

GAM.CH.ON.AT < GAM.AT.ON.CH 0.015 GAM.CH.ON.AT < GAM.AT.ON.CH 0.002

Table 5 Results of linear regressions correlating the transferability index to: difference of the prevalence of species between the two study

regions; difference in degrees of freedom between generalized linear and generalized additive models (GLMs and GAMs); difference of

adjusted D2 of the models; and similarity of model composition between the two regions

Y/X

CH-AT

Prevalence Adjusted D2 d.f. Similarity

R2 P R2 P R2 P R2 P

Transferability index (TI)

GLM 1.66E-03 7.69E-01 4.19E-04 8.83E-01 1.30E-02 4.10E-01 6.89E-04 8.50E-01

GAM 2.71E-03 7.081E-01 4.23E-02 1.35E-01 8.79E-03 5.00E-01 1.23E-05 9.79E-01
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considerable variation in the transferability of SDMs

between regions and between modelling techniques. The

causes for this limited transferability and high variability

cannot be unveiled directly from our results. However,

aspects of our results can be used to help identify potential

reasons and propose hypotheses for guiding further inves-

tigation.

From an inspection of our models, we could not find

evidence in support of the idea that differences in the degrees

of freedom and in the selected predictors have an effect on the

TI. Thus we focus our discussion on the predominant pattern

of asymmetrical transferability. Possible causes may be separ-

ated into two categories: (1) environmental causes, which are

specific to differences between geographical regions, and (2)

biotic causes, which are intrinsic to each individual species

being modelled and to the regional species pool with which it

is interacting.

Environmental and biotic limitations to full

transferability

With respect to geographical differences, asymmetrical trans-

ferability might depend on the predictor variables in the model

and their range in the training region compared with their

range in the test region. From a transferability perspective, a

model with predictors that cover the same or a wider range in

the training region is more likely to give accurate predictions

in the test region than the reverse. Hence differences in the size

and upper limit of the altitudinal range between the two

regions (McPherson et al., 2004) may have truncated the

response curves of alpine and subalpine species to tempera-

ture-related predictors in AT, but not in CH: for example, true

alpine species could have a linear response to degree-days in

AT and a unimodal response in CH. This is equivalent to the

problem of extrapolating beyond the realized range of one or

more gradients within the training region (Van Horn, 2002),

which is an important issue in general for the geographical

transferability of models.

Transferability is obviously sensitive to where, within the

distributional and environmental range of a species, a model

was developed and parameterized: the variability of transfer-

ability is more pronounced when models are transferred from

CH to AT.

Larger-scale effects, such as the geographical situation of the

study areas (e.g. north–south vs. east–west oriented valleys)

and differences in land-use practices, could also affect trans-

ferability (Fielding & Haworth, 1995). Dirnböck et al. (2003)

showed that, for many alpine species, land use (history) is a

significant predictor of regional distribution patterns. This

kind of qualitative variable is, however, extremely difficult to

standardize across regions that have different human traditions

and agricultural practices.

Shifts in the microclimatic niches of species from one region

to another can be understood as a response to climatic
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Figure 3 Histograms of the distribution of the area under the curve of a receiver-operating characteristic plot (AUC) and Kappa coeffi-

cients for the internal and external evaluation in Switzerland and Austria.
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differences between regions: the niche requirements of the

species are met by occupying different types of site (Walter &

Breckle, 1985). However, some differences in local microcli-

matic conditions may not have been captured by the

interpolated environmental variables used in this study. For

example, a displacement in the geological or edaphic gradient

(Coudun et al., 2006, this issue) that may be required to

recover the water conditions could not have been taken into

account with our set of predictors. In our case, the 25-m

resolution of the predictors may not be appropriate to capture

processes such as snow accumulations, rockfalls or microtop-

ographical refugees (Gottfried et al., 1998; T. Lassueur, S. Joost

and C. F. Randin, unpublished data).

Another reason for asymmetrical transferability may be that

species whose abundance is highly unequal in the two regions

may have their niches deformed in divergent directions. For

instance, whereas high regional abundances may drive a niche

inflation due to mass effects or source–sink systems (Dias,

1996; Pulliam, 2000), regional rarity may cause a niche

restriction due to Allee effects (Groom, 1998) or dispersal

limitations (Pulliam, 2000; Dirnböck & Dullinger, 2004).

However, such discussion remains speculative as long as these

effects cannot be revealed by specifically designed observa-

tional studies of field experiments.

Differences in phenotypic plasticity and the presence of

distinct ecotypes in the two regions may also have an influence

on transferability (Joshi et al., 2001). Solving this would have

required genetic analyses to be performed, which was beyond

the scope of our study, but it constitutes an interesting

direction for future research.

Asymmetrical transferability may also be caused by external

biotic factors. Although some authors argue that competitive

displacement affects a species’ geographical range only rarely

(Thompson et al., 1993; Hill et al., 2000; Prinzing et al., 2002),

others suggest that biotic interactions play quite an important

role in limiting species ranges (Zobel, 1997; Odland & Birks,

1999). More generally, Ozesmi & Mitsch, 1997) suppose that

transferability is difficult to assess without taking the main

interspecific interactions into account. These different points

of view may be the result of studies having been carried out at

different resolutions, and thus may be a question of scale. If the

resolution used does not correspond to that at which

competition potentially takes place (if the competing species

can co-occur in the same cell without actually competing for

resources), such competitive effects on species range may not

be detectable (Guisan & Thuiller, 2005).

As the capacity for transferability appears to depend largely

on the species being modelled, further investigations should

focus on individual species properties, such as the relationship

between species traits or full functional types and their

transferability (Kleyer, 2002). In this respect, preliminary

results on the relationship between plant traits and the

robustness/accuracy of SDMs are promising (Dirnböck &

Dullinger, 2004; Thuiller et al., 2004; Thuiller, 2004). For
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instance, by controlling the proportion of the realized niche

that a species was able to colonize, the dispersal capacity can

influence the distribution of alpine plant species and their

niche breadth along environmental gradients, and thus also

affect the transferability of models.

Modelling techniques and choice of predictors

The scores of the external evaluation are globally higher for

GLMs than for GAMs when models are transferred from CH

to AT, and the scores of the EPs are higher for GLMs in both

directions of transferability. Moreover, the variability of the EP

is, on average, slightly less pronounced with GLMs, which

suggests that models fitted with this technique are more robust

when transferred than are GAMs. This result is in line with our

hypothesis that overfitting can reduce transferability, with

GLMs being less prone to overfitting and thus more general-

izable. It is, however, in contradiction with results obtained by

Araújo et al. (2005b) who found GAM to show superior

transferability, in time, to GLMs. Such results are highly

dependent on the way GLMs and GAMs are fitted. If

polynomial orders higher than quadratic are allowed, GLMs

could well show more pronounced overfitting than GAMs. At

least, for the same number of degrees of freedom allowed for

each predictor (e.g. third order in GLM; smoothing with three

degrees of freedom in GAM), GAMs, as non-parametric

models, will always tend to be closer to the data, more sensitive

to the peculiarities of particular samples, and thus more prone

to overfitting.

Another methodological issue with transferability, although

very difficult to assess, may be the quality of the predictor

variables and the way each method deals with these. For

instance, as GAMs tend to be closer to the data, one could

expect them to be more sensitive to measurement or modelling

errors in the predictors. However, although these errors may

well weaken the models, and thus limit their transferability,

they are unlikely to cause the asymmetrical transferability

observed in our study. An additional problem here is that the

exact level of error is usually unknown for individual predic-

tors. As a result, a proper error assessment can be difficult to

conduct in this type of study. Nevertheless, in future studies

attempts should be made to pay more attention to the quality

and type of predictor variables. According to other studies

using similar predictors, those used here are supposedly of a

rather proximal nature. However, they still might not be the

most proximal and physiologically meaningful ones, and thus

may have potentially contributed to causing limited transfer-

ability. Further efforts should be made to improve the accuracy

of the environmental predictors used to fit this type of model,

their spatial resolution and their proximality (in the sense of

closeness to causality; Austin, 2002), especially in complex

landscapes such as mountain ecosystems.

CONCLUSIONS

Overall, we observed a weak geographical transferability for the

54 SDMs, with considerable variation among species. In this

regard, our TI proved useful in providing a quantitative

estimate of the geographical transferability across regions.

Furthermore, none of the differences in the degrees of

freedom, in the composition of models, or in species

prevalence across regions appeared to have an effect on the

transferability values. The proposed index thus seems useful,

but requires more thorough testing and evaluation than

possible in this single study.

Only a minority of species met the criteria of full transfer-

ability, while asymmetrical transferability was the predominant

pattern. The pronounced variability across species calls for

additional multi-species assessments in order to test the

transferability of SDMs properly. From our set of species, we

suggest that several factors (region- or species-specific) may

explain the partial transferability or even total lack of

transferability for some species. The slightly better transfera-

bility of GLMs compared with GAMs further suggests that

overfitting may reduce transferability. This also requires

further investigation.

Overall, we conclude that transferability is an important

component of model evaluation, particularly when models are

to be projected in space or time. Other sources of uncertainty

have already been shown to weaken the suitability of SDMs for
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those of GLMs within AT (arrow 2, Wilcoxon signed-rank test,

P ¼ 0.002). No significant difference was observed in the average

for agreements of either GLMs or GAMs between the two ranges
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respectively).
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Figure 6 Four examples of generalized linear model (GLM) transferability across regions. Full transferability gives good external evalua-

tions (AUC) in both regions. Thesium alpinum meets all the transferability criteria. Models of other species (Luzula multiflora and

Hypericum maculatum) are only transferable from one region to another but not vice versa (asymmetrical transferability), whereas the last

group of species does not meet transferability criteria in any direction (Arabis alpina). The differences between internal and external

predictions of GLMs (difference between continuous predictions) are represented on a map for each region. These patterns are the same for

the generalized additive models (GAMs). The variation of predictions between internal prediction (IP) and external prediction (EP) can be

very high, even if the conditions for transferability are fully met. For the four examples, the Kappa values and maps show an important

variation between IP and EP.
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climate-change projections (Thuiller et al., 2004; Thuiller,

2004; Araújo et al., 2005b, 2006; Pearson et al., 2006). Here we

demonstrate that failure to achieve full transferability in space

can constitute an additional – yet very important – component

of the uncertainty associated with these projections. Their

robustness to transferability and the related uncertainty should

thus be estimated first, then provided alongside the projections

themselves in order to allow nature managers and conserva-

tionists to make informed decisions.
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particularly Pascal Vittoz, Stéfanie Maire, Dario Martinoni,
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