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Carrier synchronization is a fundamental stage in the receiver 

side of any communication or positioning system. Traditional 

carrier phase tracking techniques are based on well-known 

phase-locked loop (PLL) closed-loop architectures, which are 

still the methods of choice in modern receivers. Those tech-

niques are well understood, easy to tune, and perform well 

under benign propagation conditions, but their applicabil-

ity is seriously compromised in harsh propagation environ-

ments, where the signal may be affected by high dynamics, 

shadowing, strong fadings, multipath effects, or ionospheric 

scintillation. From an optimal filtering standpoint, the Kal-

man filter (KF) is clearly a powerful alternative, but the syn-

chronization community seems still reluctant to exploit all the 

potential it has to offer. The purpose of this article is twofold: 

i) to review the basics and state of the art on both PLL and 

KF-based tracking techniques and ii) to present and justify 

the reasoning behind the systematic use of KF-based tracking 

approaches instead of the well-established PLL-based archi-

tectures from both theoretical and practical points of view. To 

support the discussion, two specific scenarios of interest to the 

aerospace community are numerically evaluated: robust car-

rier tracking of global navigation satellite systems' signals and 

synchronization in a deep space communications system.

INTRODUCTION

The main goal of this article is to provide a tutorial-style discus-
sion on why traditional synchronization loop architectures, inherited 
from the analog era, may be abandoned in modern digital receivers 
and to move forward toward the design and actual use of more flex-
ible, robust and powerful Kalman filter (KF)-based synchronization 
schemes. Carrier synchronization is a key process in most electronic 
devices involved in aerospace systems, and it is typically carried out 
following a two-stage approach: acquisition and tracking. The first 
stage detects the presence of the desired signal and provides a coarse 
estimate of its synchronization parameters, and the second one re-
fines those estimates, filtering out noise and tracking any possible 
time variation [1]. In the present work, we are concerned with the 
analysis of the carrier phase (CP) tracking problem. Hence, acquisi-
tion and time delay synchronization are not discussed.

Digital CP tracking techniques implemented in conventional re-
ceivers rely on well-known phase-locked loop (PLL) architectures [2], 
[3], [4] that set an output signal's phase relative to an input reference 
signal's phase. Those circuits are widely used in positioning systems, 
communications, computers, control, and measurement applications 
for frequency synthesis, clock and data recovery, clock distribution, 
and other more specialized functions. The signals of interest may be 
any periodic waveform but are typically sinusoids or digital clocks.

Digital PLLs can be implemented in hardware (usually with mixed 
signal or all-digital integrated circuits in complementary metal oxide 
semiconductor technology [5], [6], [7] and targeting frequencies on the 
order of gigahertz and above [8]), but the rapid evolution of program-
mable devices, such as field-programmable gate arrays, digital signal 
processors, microcontrollers, and general-purpose processors, enables 
software-defined implementations targeting frequencies up to hundreds 
of megahertz, in which the designer trades electronic components for 
computation resources [9], [10]. This approach provides advantages, 
such as easy customization of the feedback loop and a drastic reduction 
in the development cost, when compared with the hardware counter-
part. However, the underlying design principles remain the same re-
gardless of the technology of choice for the implementation.

The performance obtained with those techniques is generally 
good enough in benign propagation conditions, but they have been 
shown to deliver poor estimates or even fail under harsh propa-
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gation environments, where the signal may be affected by high 
dynamics, shadowing, strong fadings, multipath effects, or iono-
spheric scintillation [11], [12]. On the basis of conventional PLL 
architectures, some improvements have been proposed in the lit-
erature [13], [14], [15], but their performance have been overcome 
by KF-based techniques [11], [12], [16], [17], [18]. The main draw-
back of KFs is the need of an exact knowledge of the system model 
noise statistics' for an optimal behavior, thus being constrained by 
the accuracy of the dynamic model and the a priori fixed system 
parameters. In practice, those quantities may need to be somehow 
adjusted to provide a robust solution [19], a problem that has been 
solved by the so-called adaptive KFs (AKFs) [19]–[24].

Our previous experience on the use of KF synchronization schemes 
for both communications [25], [26] and positioning systems [19], [27], 
[28], [29], the lack of a unified analysis in the literature, and a clear 
answer to the PLL versus KF dilemma ignited this work. From different 
analysis carried out in the literature for specific scenarios, it seems clear 
that KF schemes should, in general, be preferred in front of PLL-based 
solutions, but the synchronization and aerospace communities seem still 
reluctant to go further on theoretical analysis of such techniques and to 
cross the gap between theory and implementation. Moreover, the ad-
vent of software-defined radio receivers in real-life applications [30], 
[31] has confirmed the practical feasibility of this approach. The main 
goal of this tutorial-style article is to provide a comprehensive overview 
and unified framework. Therefore, this work is for the practitioner or 
engineer who needs to solve real hands-on problems and the academic 
or researcher willing to push forward on new advanced synchronization 
techniques.

The notation used in this article is as follows: lowercase italics 
for scalar variables, either deterministic or stochastic, both real or 
complex; uppercase italics for constants; lowercase bold for vec-
tor variables, columnwise defined; uppercase bold for matrix vari-
ables; (·), (·)*, and (·)H stand for the transpose, conjugate, and 
conjugate transpose (hermitic) operators, respectively; is an esti-
mate of the true parameter value x at time k, given its value in time 
k – 1;x ∼ 2( , )x xµ σ  is a random variable x Gaussian-distributed 
with mean μ

x
 and variance 2

xσ ; and ℜ(x) and I(x) stand for the real 
and imaginary parts of x, respectively. More notation will be de-
fined throughout the article, as needed.

PLL-BASED ARCHITECTURES

CP synchronization techniques implemented during recent decades 
in mass-market and industrial-grade positioning, communications, 
and tracking systems receivers rely on well-established PLL-based 
architectures [4], [32], [33]. First analyzed by Appleton in 1922 
[34], early applications of PLLs were the control of receivers' local 
oscillators, especially in FM demodulators and automatic volume 
control circuits. In the early 1950s, they played an important role 
in the development of color television [35], and the availability 
of PLL integrated circuits in the mid-1960s facilitated their rapid 
introduction into a wide range of consumer products, becoming 
a key component of electronic devices for the next three decades 
[36], [37], [38]. Nowadays, digital PLLs are widely used in mod-
ern communication systems [39] and are still the method of choice 
in many applications, such as global navigation satellite systems 
(GNSS) [3] and space communications [40], mainly because of 
manufacturer's inertia on legacy solutions and well-proven tech-
nologies. Hereafter, the main PLL-based architectures and design 
rules are summarized.

BASICS

In general, a PLL is built up with three main blocks: the discrimina-
tor or phase detector, the loop filter, and a numerically controlled 
oscillator (NCO), which is nothing but an integrator. The main idea 
is to obtain first an error signal (i.e., discriminator's output), which 
is proportional to the CP error; then, this error goes through the loop 

Figure 1. 
Standard PLL architecture.
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filter, in charge of filtering out noise and driving the error to zero; 
and finally, the NCO is used to generate the local replica (i.e., a 
complex exponential using the predicted or tracked CP). The basic 
PLL architecture is sketched in Fig. 1.

The role of the phase discriminator is to produce an output that 
is proportional to the phase estimation error. In the presence of data 
modulating the phase of the input signal (and thus producing phase 
jumps), noncoherent discriminators (usually known as Costas-type 
discriminators) should be adopted. The two quadrant arctangent 
discriminator atan (I(y

k
)/ℜ(y

k
)) is usually the preferred noncoherent 

choice [3], although other discriminators may result from differ-
ent optimization criteria and signal-to-noise ratio (SNℜ) regimes 
[41], [42]. Otherwise, if phase jumps produced by data have been 
removed (either because they belong to a training sequence known 
at the receiver or because they have been estimated) or pilot (data-
less) signals are available, coherent discriminators may be used 
[39]. In the absence of data, the optimal maximum likelihood 
(ML) estimator is the four-quadrant arctangent discriminator atan2 
(I(y

k
)/ℜ(y

k
)). In addition to the phase discriminators, one may be 

interested in directly tracking the input signal frequency by using 
a frequency-locked loop (FLL). ℜefer to [43] for detailed analysis 
and an updated overview on carrier tracking techniques.

The order of the PLL refers to the overall closed loop (used 
throughout the article to unify the notation) and not only to the 
filter loop, which may lead to confusion because the latter is al-
ways one order lower than the entire loop due to the NCO. The 
order of the PLL basically determines the input signal dynamics 
that the filter is able to track. In other words, a second-order PLL is 
able to track a constant frequency mismatch, whereas a third-order 
PLLs properly tracks frequency drifts. The loop coefficients are 
usually optimized to minimize the mean-squared error (MSE) [3], 
but other approaches may be adopted as well [44].

The dynamics of a PLL are heavily dependent on the type and 
response of the loop filters. A PLL with nth order filter is of (n + 
1)th order. In the general case, a PLL of order n has a closed-loop 
transfer function that can be expressed as [45]

( ) ( ) ( ),PIH s H s L s=  (1)

where H
PI

(s) = K
1
 + 2 3

2 ...K K
s s

+ +  is the transfer function of the 
proportional plus integrator part, K

i
 is the gain of the loop of order 

i, and L(s) is the transfer function of the loop filter.

ANALOG VERSUS DIGITAL

To start from scratch and see how digital PLLs are derived from 
their analog design, some results on analog PLLs are given togeth-
er with their digital counterpart.

Analog PLLs

The Laplace transform of the continuous time domain transfer 
functions for the second- and third-order PLL loop filters are, re-
spectively,

2 2 2 3

2 3 2( ) ; ( ) ,n n n n na s c s b sL s L s
s s

ω ω ω ω ω+ + +
= =  (2)

where a, b, and c are the loop filter coefficients, and ω
n
 (radian 

per second) is the so-called natural frequency of the loop filter. 
The PLL loop is closed with a voltage-controlled oscillator (VCO), 
with transfer function V(s) = 1/s (unity VCO gain). The closed-
loop transfer functions for these second- and third-order PLLs are

2

2 2 2( ) ,n n

n n

a sH s
s a s

ω ω

ω ω

+
=

+ +
 (3)

2 2 3

3 3 2 2 3( ) .n n n

n n n

c s b sH s
s c s b s

ω ω ω

ω ω ω

+ +
=

+ + +
 (4)

The single-sided loop noise bandwidth B
n
 in hertz (defined as the 

bandwidth of a perfect rectangular filter that produces the same 
integrated noise power as that of the actual filter) is obtained from 
the frequency response (setting s = j2π f) of the closed-loop system 
as

( )
2

, 0
2 ,n i iB H j f dfπ

∞

=   (5)

where i is the loop order. This bandwidth can be used to compute the 
receiver's noise floor (kTB

n
) and its sensitivity (the minimum input 

signal power required to produce a specified SNℜ at the receiver's 
output). Equation (5) can be analytically computed from the loop 
parameters and the natural frequency [3]. Again, considering the 
second- and third-order loops, the noise bandwidth can be written as

( )2 22

,2 ,32

1 ; .
4 4( 1)n n n n

bc b caB B
a bc

ω ω
 + − +  = =   −   

 (6)

Therefore, the design of the analog PLL is completely specified 
by the desired noise bandwidth and the filter parameters, which 
are usually designed to minimize the estimation's MSE. Typical 
values are [3] a = 2, b = 1.1, and c = 2.4, which is the setup used 
in the literature to compute the PLL parameters from a specified 
noise bandwidth.

Digital PLLs

Digital PLLs are usually derived from their analog counterpart. 
Using s = (1 − z−1)/T

s
, with T

s
 the sampling period, one can obtain 

the PLL loop transfer function and the overall closed-loop transfer 
function. In this case, the VCO is replaced by a NCO with transfer 
function

1

1( ) .
1
zN z
z

−

−

=

−

 (7)

Considering the following loop filter transfer functions [15]

2
2 1 1( ) ,

1
L z

z
α

α
−

= +

−
 (8)

( )
2 3

3 1 21 1
( ) ,

1 1
L z

z z

α α
α

−
−

= + +
− −

 (9)
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the discrete-time closed-loop transfer function for the second- and 
third- order PLLs are

( )1 2 1
2 2

1 2

( ) ,
( 1) ( 1)

z
H z

z z z
α α α

α α

+ −
=

− + − +
 (10)

2
3 3 2 2

1 2 3

( ) ,
( 1) ( 1) ( 1)

H z
z z z z z

α

α α α

=

− + − + − +  (11)

where the loop filter coefficients can be directly computed from 
the analog loop filter parameters, the desired noise bandwidth and 
the sampling period as

 C second order: α
1
 = aω

n
T

s
 and α

2
 2 2

n sTω .

 C third order: α
1
 = cω

n
T

s
, α

2
 = 2 2

n sb Tω  and α
3
 = 3 3

n sTω .

For the digital PLL, the equivalent noise bandwidth can be directly 
computed from H(z) (results given in hertz) [15], leading to

( )

2
1 2 1 2

,2
1 1 2

2 2 ,
2 4 2n

s

B
T
α α α α

α α α

+ +
=

− −
 (12)

3,1
,3

3,2 3,3

,
2n

s

B
T

γ

γ γ
=  (13)

with γ
3,1

 = 2
1 24α α  − 4α

1
α

3
 + 2 2 2

2 1 2 1 34 2 4α α α α α+ +  + 4α
2
α

3
 + 3α

1
α

2
α

3
 

+ 2 2
3 1 3α α α+ , γ

3,2
 = α

1
α

2
 − α

3
 + α

1
α

3
 and γ

3,3
 = 8 − 4α

1
 − 2α

2
 − α

3
.

These results verify that digital PLL parameters computed 
from the analog coefficients are equivalent to the parameters di-
rectly derived in the discrete-time domain, because the resulting 
equivalent noise bandwidths coincide.

STANDARD AND ADVANCED PLLS

A key step for the practitioner may be how to interpret (8) or (9) 
and the way to turn them into a useful architecture. The block dia-
gram of a third-order PLL loop filter is sketched in Fig. 2. The 
standard PLL-based architectures are somehow limited because 
of the noise reduction versus dynamic range trade-off, which may 
lead the filters to lose lock.

This trade-off is mainly driven by the bandwidth and order of 
the loop. A small bandwidth is needed to filter out as much noise 
as possible to be able to operate at low SNℜ, whereas a large one 
is required for coping with fast variations of the parameters of 
interest. Moreover, the loop's order also plays an important role 
in such scenarios. For instance, the second-order PLL is uncon-
ditionally stable at all noise bandwidths, but it is not suitable to 
deal with complex dynamics. The third-order PLL, while being 
more flexible in front of high dynamics, only remains stable for 
bandwidths below 18 Hz [3]. Another issue is the PLL constant 
bandwidth, a priori fixed by the designer. A time-varying band-

width would seem to be more suitable in practice. These two key 
points have led to propose a plethora of advanced PLL-based 
techniques.

One possible solution to provide robustness and extra flex-
ibility to the stand-alone PLLs is to consider cooperative loops 

architectures, where several loops interact to counteract its in-
dividual limitations. The most basic solution is the so-called 
switching architecture, where a PLL is used under nominal op-
eration but the system switches to a FLL in harsh conditions to 
not lose lock [46]. The FLL is, in general, more robust than the 
PLL because the variability of the incoming signal frequency 
is orders of magnitude lower than the phase variability. How-
ever, the solution usually adopted to overcome the problems of 
standard architectures in dynamic or harsh conditions is the use 
of a hybrid approach in which the FLL permanently assists the 
PLL (F-PLL) [13], [47], which is capable to maintain lock in 
situations in which the PLL diverges. The second concern that 
typically arises from standard architectures is the constant band-
width operation, which may limit its applicability to rather con-
stant propagation conditions. A possible solution is to directly 
use the input working conditions to automatically adjust the loop 
bandwidth, what is usually known as adaptive bandwidth PLL 
(A-PLL) [48]. Several contributions appeared in the literature 
using the same concept [15], [49], [50].

The following section presents a systematic, unified approach 
to design digital phase tracking filters that is based on the techni-
cally sound Bayesian filtering theory.

STANDARD KF-BASED CARRIER TRACKING

OPTIMAL FILTERING BACKGROUND AND KF GENERAL 

FORMULATION

The optimal filtering problem involves the recursive (i.e., online) 
estimation of time-varying unknown states of a system by using 
the incoming flow of information (observations) from the system, 
along some prior statistical knowledge about the variations of such 
states. The general dynamic state-space model (assuming additive 
noises) can be expressed as

( )1 1  ,k k k k− −
= +x f x ν  (14)

( ) ,k k k k= +y h x n  (15)

Figure 2. 
Block diagram of a third-order digital PLL loop filter.
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where x
k
 R xn
∈  and y

k
 R yn
∈  are the hidden states of the system and 

measurements at time k, f
k–1

(·) and h
k
(·) are known, possibly nonlin-

ear functions; ν
k
 and n

k
 are referred to as process and measurement 

noises (assumed mutually independent stochastic processes). The 
optimal Bayesian filtering solution [51] is given by the marginal 
distribution p(x

k
|y

1:k
),1 which gathers all the information about the 

system contained in the available observations. This distribution 
can be recursively computed in two steps: i) prediction, the predic-
tive distribution p(x

k
|y

1:k−1) is computed using prior information, 
p(x

k
 | x

k−1), and the previous distribution, and ii) update, the new 
measurements y

k
 and the predictive distribution (see Algorithm 1 

in [53]) are used to obtain the new filtering distribution p(x
k
|y

1:k
).

The standard KF [51], sketched in Algorithm 1,2 provides the 
closed-form solution to the optimal Bayesian filtering problem in 
linear and Gaussian systems, assumptions that not always hold. A 
plethora of alternatives have been proposed in recent decades to 
solve the nonlinear estimation problem. Among them are the ex-
tended KF (EKF) [51], the family of sigma-point KFs [54] within 
the Gaussian framework and the family of sequential Monte Carlo 
methods [55] for arbitrary noise distributions. The carrier synchro-
nization problem is just a particular application case of this general 
filtering solution.

The probabilistic assumptions made by the KF are v
k
 ∼ 

(0,Q
k
) and n

k
 ∼  (0,R

k
), with Q

k
 and R

k
 being the process and 

measurement covariance matrices, respectively. For linear dynam-
ic systems, the KF always provides the linear MMSE solution, but 
if the process or measurement noises are not Gaussian distributed, 
the KF is no longer optimal. The filter uses a Gaussian approxima-
tion and only propagates the mean and covariance of the predictive 
and posterior distributions, so intuitively the further from Gaussi-
anity, the further from optimality.

The filtering equation in Step 7 of Algorithm 1 reveals how the 
KF estimation works

( )| 1 1| 1 | 1

state prediction measurement update

ˆ ˆ ˆ .k k k k k k k k k− − − −
= + −x F x K y y   (16)

Algorithm 1 General KF formulation

Require: 0 ,0|0ˆ , , , , , andx k k k k k k∀x P F H y Q R
1: Set k ⇐ 1
Time update (prediction)

2: Estimate the predicted state: | 1 1 1| 1ˆ ˆk k k k k− − − −
=x F x .

3: Estimate the predicted error covariance:
 , | 1 1 , 1| 1 1 .x k k k x k k k k− − − − −

= +P F P F Q

Measurement update (estimation)

4: Estimate the predicted measurement: | 1 | 1ˆˆ k k k k k− −
= H xy .

5: Estimate the innovation covariance matrix:
 , | 1 , | 1 .y k k k x k k k k− −

= +P H P H R

1 The characterization of the posterior distribution allows us to 
compute the minimum mean-squared error (MMSE), the maxi-
mum a posteriori (MAP), or the median of the posterior (mini-
max) estimators, addressing optimality in many senses [52].

2 The standard filtering notation is used, where the subscript k|k−1 
stands for prediction at time k using measurements up to time 
k−1 and k|k refers to the estimation at time k, including the com-
plete measurements set y

1:k
.

6: Estimate the Kalman gain: 1
, | 1 , | 1k x k k k y k k

−

− −
=K P H P .

7: Estimate the updated state: ( )| | 1 | 1ˆ ˆ ˆk k k k k k k k− −
= + −x x K y y .

8: Estimate the corresponding error covariance:
 , | , | 1 , | 1.x k k x k k k k x k k− −

= −P P K H P
9: Set k ⇐ k + 1 and go to step 2.

The first term takes into account the state evolution model to pre-
dict the state at the following time step, while the second one cor-
rects this prediction by incorporating the information provided by 
the new measurement y

k
. The term y

k
 − | 1ˆ k k −

y  is called innovation, 
which can be seen as an error signal and a key part of the KF the-
ory. If the filter is optimal, the innovations' sequence is a white 
Gaussian process, which is a useful theoretical result to build con-
sistency tests [56], [57].

The innovations are weighted by the time-varying Kalman gain 
K

k
, which is computed by using the uncertainty of the state-space 

model (i.e., noise statistics) and the covariance of the estimation 
error (i.e., how good the state estimation is)

( )
1

, | 1 , | 1 .k x k k k k x k k k k

−

− −
= +K P H H P H R   (17)

Observing the terms involved in the gain computation, and 
with a slight abuse of language, the following effects can be de-
duced: i) increasing the measurement noise R

k
, or equivalently 

the uncertainty on the observation, reduces K
k
; thus, the filter is 

less confident on the information provided by the observations; 
ii) on the other side, increasing the system model uncertainty, Q

k
, 

increases P
x,k|k–1

 and, in turn, K
k
. In this situation, more weight 

is given to the observations and less to the state prediction. If 
the system is observable (i.e., the system states can be altered 
by changing the system input) and controllable (i.e., the value 
of the initial state can be determined from the system output), 
the filter tends to an asymptotic regime [58], that is, both K

k
 

and the estimation error covariance matrix tend to steady-state 
fixed values,

, |lim ; lim .k k k x k k→∞ ∞ →∞ ∞
→ →K K P P  (18)

These values only depend on the transition matrices and both 
process and measurement noise statistics and thus can be com-
puted off-line. The steady-state error covariance is obtained by 
solving a discrete algebraic ℜiccati equation, and the steady-
state gain is straightforwardly derived from this covariance ma-
trix (Fig. 3). The use of such constant gain may be really useful 
in applications, where computational complexity is a very criti-
cal point, because a steady-state convergence ensures that the 
gain in Equation (16) does not need to be recomputed at each 
time instant (that is, K

k
 = K∞). In this case, note that during the 

transient time, the filter is no longer optimal, and the ℜicatti 
equation may not converge [59].

The KF formulation is only valid for linear systems, but in 
many real-life applications, the measurement function, the state 
evolution, or both may be nonlinear. A classical solution is to use 
the so-called EKF, which uses a linearization of such nonlinear 
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functions and directly applies the KF equations. The key point is 
to use linearized transition matrices (Jacobian matrices), such as3

 ( )  ( )
1| 1 | 1ˆ ˆ

1 1 1 ; ,
k k k k

k kk k k k
− − −

− − −= ∇ = ∇
x x

F f x H h x  

and plug them into Steps 3, 5, and 7 of Algorithm 1. Notice that 
in Steps 2 and 4, we can use nonlinear functions. It is beyond the 
scope of this article to provide a detailed discussion on KF theory; 
for further details on the topic, refer to [51], [60].

CARRIER TRACKING STATE-SPACE FORMULATION

It is usually assumed that the phase variations of the signal of inter-
est are due either to the relative movement between the transmitter 
and the receiver or to synchronization mismatches, and on top of it, 
there is a random behavior due to the noises affecting the system. 
The state-space formulation of this problem is defined via both 
process and measurement equations, as shown hereafter.

Carrier Tracking Process Equation

1 1 , k k k k− −
= +x F x ν  (19)

where the additive noise includes any possible modeling mismatch. 
The state to be tracked includes the CP and the Doppler frequency 
terms (i.e., using a Taylor series expansion of the CP and truncat-
ing at the order of interest), and the so-called transition matrix F

k–1
 

defines the phase evolution due to receiver dynamics. For instance, 
assuming that tracking phase θ

k
 (radian), Doppler shift f

k
 (hertz), 

and Doppler frequency rate kf  (hertz per second) are enough for a 
given application (i.e., assuming a third-order Taylor approxima-
tion of the phase), the phase is

2 2
0

12 ,
2k k s k sf kT f k Tθ θ π

 
= + + 

 
  (20)

where k refers to the discrete-time instants and T
s
 is the sampling 

period. In this scenario, the state to be tracked is x
k
 k k kf fθ 
 



, 

and the transition matrix is given by

3 The vector differential operator is defined as ∇ = [∂/∂x
1
,...,∂/∂x

n
].

2

1

1 / 2
0 1 ,
0 0 1

s s

k s

T T
T

−

 
 

=  
 
 

F  (21)

where the phase is expressed in cycles (radian/2π). It is straight-
forward to extend this state formulation to higher-order frequency 
terms if needed.

Carrier Tracking Observation Equation

Two cases may be considered: i) the measurements are noisy CP 

observables (linear equivalent model); and ii) the observations are 
directly the received signal baseband complex samples.

 C Linear observation equation: the inputs to the carrier track-
ing block are linearly related to carrier observables,

lin lin
, , ,k k k k k k ky n

θ θ
θ= + → = +y H x n  (22)

with H
k
 the measurement transition matrix and n

k
 the mea-

surement noise, including thermal and phase noise contribu-
tions, as well as other propagation disturbances.

 C Nonlinear observation equation: the inputs to the carrier 
tracking block are the complex baseband signal samples, 
which are nonlinearly related to the carrier observables,

( ) ,kj
k k k k k k ky e nθγ= + → = +y h x n  (23)

with h
k
(·) the nonlinear measurement function, and γ

k
 refers 

to the time-varying envelope of the received signal, which 
may be affected by different propagation disturbances such 
as fading, multipath, or scintillation.

Early approaches to this problem, such as the α-β and the α-β-γ 
filters [61], do not require a detailed system model, trading com-
putational load by a degradation in performance with respect to the 
KF [62] due to their static, heuristically chosen gains.

KF-BASED CARRIER SYNCHRONIZATION ARCHITECTURES

In this section, different architectures to implement the KF-based 
carrier tracking solution are provided, coupling the general formu-
lation given in Section III.A with the specific state-space model of 
Section III.B [16], [25].

Linear Observation Architectures

The inputs to the tracking block are directly phase observables 
and thus use the state-space model defined by (19) and (22). Note 
that this architecture is called standard linear KF throughout the 
article, but in the literature, it is also referred to as direct-state 
KF [16]. The closed-loop block diagram is sketched in Fig. 3. An 
alternative linear architecture named error-state KF or rate-only 
feedback loop, typically used in GNSS [63], [64], is presented and 

Figure 3. 
Linear KF-based carrier tracking architecture with noisy carrier obser-
vations.
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analyzed in [16], with respect to the standard (direct-state) KF. The 
idea consists of using a state-space model, where the filter does not 
track directly the CP but the phase error. As it does not provide any 
advantage over the standard KF, the latter is preferred for practical 
applications.

Nonlinear Observation Architectures

The previous linear architecture is of limited applicability in real-
life implementations. At least, some extra information should be 
added to explain how the phase observables are obtained. The 
standard solution is to use a discriminator, as done in traditional 
PLL architectures (Case 1), but the complex samples of the re-
ceived baseband signal can be directly treated using a nonlinear 
filter (Case 2).

 C Case 1, discriminator-based traditional approach:
Using a discriminator allows the use of a traditional KF, 
avoids the derivation of suboptimal solutions, and is con-
sidered the reference KF-based architecture [43]. The main 
differences with the linear standard KF are i) the carrier gen-
erator block, which uses the nonlinear observation equation 
h

k
(·) and ii) the discriminator as phase detector. The block 

diagram is shown in Fig. 4 (top).

 C Case 2, EKF solution:
Using a discriminator might break the Gaussianity assump-
tion within the KF, making the filter not optimal anymore, 
which may lead to poor filter performances or even diver-
gence. Moreover, the discriminators may need to operate un-
der saturation in low SNℜ scenarios. A solution is to directly 
deal with the nonlinear Gaussian observation model [25], 
[26]. The simplest solution is to use a linearization proce-
dure (EKF-like solution) and then reuse the previous linear 
standard KF approach, sketched in the bottom diagram of 
Fig. 4.

In practice, there are some issues that are of capital importance 
for the actual implementation, detailed hereafter.

ON THE IMPLEMENTATION ISSUES

Noise Statistics

It is common for the system model not to be perfectly known; thus, 
the noise covariance matrices are set to some expected value. A 
rule of thumb typically considered in the KF design is that noise 

covariances must be equal or greater than the true ones to ensure 
the filter convergence. Therefore, it is convenient to be rather con-
servative and not underestimate the noise impact into the system. 

If 
ˆ
kkQ  > Q

k
,4 the steady-state filter performance may be worse, but 

the filter tends to be more reactive and robust to model changes 
so more suitable to rapidly time-varying scenarios. ℜegarding the 
measurement noise, ˆ

kR  > R
k
 implies that K

k
 < K

optimal
; thus, the 

filter relies more on the process transition model [19].

4 A > B means that A − B is non-negative definite [60].

An expression for the approximated variance of the phase 
noise, expressed in squared radians, at the output of the Costas-
type two quadrant arctangent discriminator is [65]

2

0 0

1 11 .
2C/N 2C/Nn

s sT Tθ

σ
 

= +  
   (24)

where C/N
0
 is the carrier-to-noise density ratio (independent of the 

receiver bandwidth B
w
), which is related to the SNℜ as

( )0 10(dB-Hz) SNR (dB) 10log HC ./N ( z)wB= +  (25)

The process noise covariance matrix is fixed according to the ex-
pected dynamic working conditions. Considering the third-order 
illustrative example, this covariance is related to the frequency 
rate error variance (i.e., possible frequency rate modeling error or 
higher-order expected dynamics).

Filter Initialization

How to set the initial values is something completely application 
dependent. In practice, the best option is to set these parameters ac-
cording to some a priori information or physical meaning. Taking 
into account the example at hand, where the state to be tracked is 
x

k
 ; ;k k kf fθ 
 

 T, the initial values can be set to 0x̂  = [0; 0; 0]T. The 
initial error covariance is defined as

( )0 0 0

2 2 2
,0|0 diag , , ,x f fθσ σ σ=P   

Figure 4. 
Standard (top) and extended (bottom) KF-based carrier tracking archi-
tectures. The standard KF uses a discriminator as a phase detector, while 
the EKF directly operates with the input complex samples and computes 
P

y,k|k–1
, K

k
, and P

x,k|k
 by using the linearized .kH
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where the initial phase error variance can be set to 
0

2
θ

σ  = π2/3 
(squared radian), if the initial phase is uniform in [–π, π], or equal 
to 

0

2
θ

σ  = 1/12 (squared cycles), if it is considered in [–1/2, 1/2]. 
The initial frequency and frequency rate error variances depend 
on the acquisition stage. The maximum expected acquisition error 
or acquisition resolution determines the maximum expected initial 
tracking frequency error.

PLL VERSUS KF ARCHITECTURE COMPARISON

In the previous sections, the basics of both PLL and KF-based car-
rier tracking architectures have been introduced in a separate man-
ner. ℜegarding the problem at hand, some comparisons between 
PLLs and KFs are found in the literature, but only taking into ac-
count basic architectures. This section provides a comparison of 
those two approaches not only for conventional architectures but 
also for most advanced PLL-based solutions.

CONVENTIONAL PLL VERSUS STANDARD KF

The fact that a second-order PLL is equivalent to a second-order 
KF in steady-state conditions (i.e., for a time-invariant system with 
an a priori fixed Kalman gain) is well-known [66].

ℜecently, the equivalence between both techniques in 
steady-state conditions has been shown for the third-order case 
[67]. A block diagram comparison is sketched in Fig. 5, re-
using the previously introduced standard architectures, where 
it is easy to identify the block-by-block equivalence. In the 
KF approach, the innovations' sequence goes through the dis-
criminator to obtain the residual phase error to be used in the 
linear KF implementation, as in the PLL. Then, the estimated 
phase is constructed from the weighted residual error plus the 
predicted value, being directly the implementation of the KF 
equations. Notice that in both cases, the input to the carrier 
generator block is the predicted phase; therefore, the equiva-
lence is made more evident if the KF formulation is expressed 
in the predictor form,

( )1| | 1 | 1ˆ ˆ ˆ .k k k k k k k k k k+ − −
= + −x F x F K y y  (26)

Considering the phase contribution (i.e., the first element of x
k
) and 

the linear second-order loop form, this equation can be rewritten as

2,
1| | 1 | 1 1,

Output of the loop

Equivalent to NCO

ˆˆ ˆ ,k
k k k k s k k k k

s

T f
T

α
θ θ α

+ − −

 
= + + +  

 




 (27)

with K
k
 = 1, 2,k kα α  


and ε

k
 representing the KF discriminator 

output, and where the main architectural contributions have been 
identified to construct the parallelism with the standard PLL ar-
chitecture.

The predicted phase in a standard second-order PLL is

( )
1

PLL PLL
1 1 2 2

1

ˆ ˆ .
k

k k k i
i

θ θ α α α
−

+

=

= + + +   (28)

It is straightforward from this expression (see Fig. 5) and the NCO 
expression in (7) to see that the second-order joint PLL loop filter 
plus NCO operation can be written by using a state-space formula-
tion as [16]:

1
PLL PLL

1 2

1 1ˆ ˆ ,
0 1 0 1

s s
k k k

s

T T

T

α

α
+

 
    

= +    
    

 

x x   (29)

with ε
k
 the PLL discriminator output in cycles and PLL ˆˆˆ [ ] ,k k kfθ=x   

which is strictly equivalent to the KF considering constant gains 
(i.e., notice the effect of the state prediction matrix F

k
, which im-

plies a modification of the original gain α
2
). By considering fre-

quency estimates at the output of the loop filter and a first-order 
NCO, the standard loop filter and NCO block structure is recovered 
from (29), as shown in (27). The equivalence for the third-order 

Figure 5. 
Standard second-order PLL versus standard two-states (x

k
 = [θ

k
 f

k
]T) KF.
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PLL is straightforward considering the carrier tracking state-space 
formulation example in Section III.B. Again, a difference between 
both gains must be commented: if the standard PLL implementa-
tion has a set of three coefficients equal to {α

1
, α

2
, α

3
}, the strictly 

equivalent KF must consider the following constant gains due to 
the effect of the transition matrix (i.e., phase expressed in cycles), 
K = 2

1 2 3/  2 / ][ s sT Tα α α+
.

This subtle adjustment leads to the following equation (with α 
= α

1
 + α

2
/T

s
 + 2α

3
2/ sT ):

2
| 1

1| | 1 | 1

ˆ
ˆˆ ,

2
 ˆ s k k

k k k k s k k k

T f
T f  

     



 

where the different gains in the Doppler frequency and Doppler 
frequency rate terms T

s | 1k̂ kf −
 and 2

| 1
ˆ

s k kT f
−

 /2, naturally appear in the 
standard PLL predicted phase expression when considering the 
corresponding loop gains K and the PLL state-space formulation 
as in (29).

From an architectural point of view, there is a clear parallelism 
between the well-known PLL and the standard KF formulation. 
The main difference is that the loop filter gain is somehow heuristi-
cally adjusted in the PLL but optimally computed in the KF. If the 
system is time invariant and the PLL bandwidth is set according to 
the expected actual working conditions, this heuristic adjustment 
may not be an inconvenience. In this case, the Kalman gain tends 
rapidly to its steady-state value K∞. However, the flexibility of the 
KF optimal gain plays an important role in real-life time-varying 
scenarios, in which the optimal gain does not tend to a steady-state 
value but evolves with time. Therefore, the PLL is a simplified 
particular case of the general KF.

The following one-sigma equation is typically used to deter-
mine the desired (“optimal”) static PLL loop bandwidth,

( )
( )

noise opt

measurement noise
dynamics

threshold ,
3

e w
w

B
B B

θ
σ + ≤ → 

 (30)

where the predefined threshold is usually known as loss-of-lock 
threshold. This threshold is typically set to 1/12 of the pull-in range 
of the discriminator, that is, 30° (coherent) and 15° (noncoherent). 
Considering an arctangent Costas discriminator, the thermal noise 
jitter contribution is

noise
0 0

11 (rad),
C/N 2C/N

w

s

B
T

σ
 

= +  
 

 (31)

and the dynamic stress θ
e
 is related to the maximum line-of-sight 

(LOS) expected phase dynamics [3]. For instance, in a second-or-
der PLL the phase model considers a constant Doppler shift; thus, 
the dynamic stress is the maximum LOS acceleration. In a third-
order PLL, the filter tracks a Doppler shift and Doppler frequency 
rate, then the dynamic stress is the maximum LOS jerk.

COOPERATIVE LOOPS VERSUS KF JOINT ESTIMATION

The noise reduction versus dynamic range trade-off introduced in 
Section II, which is the main problematic of standard constant-
bandwidth stand-alone PLLs, is clear from (30): if the noise af-
fecting the system (σ

noise
(B

w
)) increases, to maintain the jitter below 

the threshold, one must lower the loop bandwidth for an optimal 
behavior. But if the system dynamics (θ

e
(B

w
)) increase, one must 

raise the loop bandwidth, which is inversely related to the dynamic 
stress.

In practice, the loop bandwidth is set to the minimum value 
that is able to cope with the maximum expected dynamics, which is 
suboptimal most of the times. A well-established solution to cope 
with this trade-off under non-nominal propagation conditions is 
the use of cooperative loops. A popular approach is the F-PLL [47], 
which uses a FLL to permanently assist a PLL, thus providing a 
frequency aiding. The key idea directly arises from the bandwidth 
determination using (30). If one is capable to reduce as much as 
possible the dynamic stress of the loop, then a much lower loop 
bandwidth may be used to cope with low SNℜ scenarios. Under 
these circumstances, the main filter only copes with the residual 
frequency errors and focuses on noise reduction. The classic sec-
ond-order FLL-assisted third-order PLL architectures are sketched 
in Fig. 6 [47], where the FLL loop structure is preserved to give 
a clear picture of the corresponding frequency aiding interaction 
with the PLL. Note that both the FLL and PLL bandwidths are 
heuristically adjusted, relying on the correct operation of the fre-
quency aiding provided by the FLL.

In the literature, a comparison between the F-PLL and the KF 
at a theoretical level or looking for the architectural equivalence, as 
done for the standard PLL, does not exist as far as authors' knowl-
edge. Using the state-space formulation for the PLL introduced in 
(29), and considering that the FLL tracks [ ]k kf f , the interaction 
between both filters is expressed as

( )FLL FLL
| 1 1 2 ,

ˆ ,k k k f kf eρ β β−= + +  (32)

with β
1
 and β

2
 the FLL gains and ef,k the frequency discriminator 

output. Using an equivalent third-order PLL state-space model and 
the frequency aiding, the output of the PLL loop filter is

PLL FLL
| 1 | 1 1 2 3 ,

Frequency aiding

ˆˆ ( ) ,k k k k k k kf f eθρ ρ α α α− −= + + + + +
  (33)

where the frequency aiding of the FLL is done via the estimate 
of the frequency rate. Optimally, FLL

| 1k k kf f
−

→
  ; thus, the frequency 

rate that the PLL has to track | 1k kf −
→

  0. This frequency aiding is 
made explicit by considering the architecture in Fig. 6 but is hidden 
in the overall expression if considering the conventional compact 
implementation,

PLL
| 1 | 1 , , ,ˆˆ

k k k k k k f kf f e eθρ α β− −= + + +  (34)
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with α = α
1
 + α

2
 + α

3
 and β = β

1
 + β

2
.

Using the knowledge on the equivalence between loops, the 
most obvious and direct application of KFs to emulate the F-PLL 
makes use of the same architecture by replacing both PLL and 
FLL with two cooperative KFs. The first KF would be in charge 

of 
(1) [ ]k k k kf fθ=x  

 and the second one of 
(2) [ ]k k kf f=x  

, with an 
interaction between both using the output of the second-filter as a 
frequency input to the first KF.

But from an optimal filtering point of view, this in not nec-
essary because a single filter can optimally solve the estimation 

problem, that is, the sequential estimation of x
k
 = [ ]k k kf fθ  

 using 
the available observations up to time k. To obtain a fair compari-
son, the KF should use both phase and frequency discriminators; 
therefore, the observation equation should be modified to account 
for both measurements. The resulting KF predictor form is

(1)

1| | 1 (2)
ˆ ˆ ,k
k k k k k k k

k

r
r+ −

 
= +  

 
x F x F K

 (35)

where (1)
kr  and (2)

kr  are the outputs of the KF phase and frequency 
discriminators, respectively, and the Kalman gain

1,

2, 1,

3, 2,

0
.

k

k k k

k k

α

α β

α β

 
 

=  
  

K  (36)

The corresponding predicted phase is given by

2
| 1 (1) (2)

1| | 1 | 1

ˆ
ˆˆ ˆ

2
,s k k

k k k k s k k k k k k

T f
T f r rθ θ α β−

+ − −= + + + +


 (37)

with α
k
 = α

1,k
 + T

s
α

2,k
 + 2

sT a
3
/2 and β = T

s
β

1
 + 2

sT β
2
/2. Analyzing (34) 

and (37), it is straightforward to see that the F-PLL equivalent is 
obtained with a time-invariant Kalman gain equal to

1

2 1
2 2

3 2

0
/ / ,

2 / 2 /
s s

s s

T T
T T

α

α β

α β

 
 

=  
  

K  (38)

which leads to the following final phase prediction:

| 1 (1) (2)
1| | 1 | 1

ˆ
ˆˆ ˆ ,

2
k k

k k k k k k k k

f
f r rθ θ α β−

+ − −= + + + +


 (39)

again with α = α
1
 + α

2
 + α

3
 and β = β

1
 + β

2
. This result confirms the 

expression for the time-invariant equivalent Kalman gain previ-
ously introduced, and it is equivalent to the compact F-PLL ex-
pression in (34). Notice that the gains in the F-PLL are adjusted 
heuristically, while the KF sequentially computes the optimal gain 
and provides the optimal solution to the problem. Therefore, the 
proposed KF is equivalent to the F-PLL formulation, except for the 
values of the time-variant coefficients, which, in fact, are optimally 

Figure 6. 
F-PLL loop architecture block diagram.
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computed and not set to constant values. One can conclude that this 
KF-based approach provides an optimal solution to the suboptimal 
F-PLL implementation.

ADAPTIVE PLLS VERSUS KF OPTIMAL APPROACH

As already stated in Section II, one of the main limitations of 
standard PLLs is their constant bandwidth, which is a priori 
fixed by the designer according to the expected working condi-
tions [i.e., typically set using (30)] and of limited applicability 
in time-varying scenarios. An alternative to counteract this lack 
of adaptability or flexibility is to incorporate the capability to 
estimate the actual working conditions (i.e., system noise and 
dynamic stress), which leads to the A-PLL [48], [49]. The pa-
rameters used to set the loop bandwidth, σ

noise
 and θ

e
, can be 

sequentially estimated from the input samples and the discrimi-
nator output.

The standard KF carrier tracking implementation is usually 
said to inherently have an adaptive bandwidth, because the Kal-
man gain is optimally computed, taking into account both Q

k
 and 

R
k
. However, this is only true if the noise statistics are completely 

specified (i.e., known ∀ k). In practice, the measurement noise co-
variance is set according to the expected SNℜ and usually does not 
take into account possible variations, and the process noise cova-
riance is determined according to a single application-dependent 
scenario. Considering that constant noise covariances lead to a 
constant steady-state Kalman gain; therefore, the optimal adaptive 
behavior of the KF is lost in the implementation for time-variant 
systems. Analyzing (30), it is easy to see the analogy between the 
first left-hand term σ

noise
 and R

k
 and the relation between the dy-

namic stress and Q
k
. In the KF, the relation between those quanti-

ties and the filter bandwidth is computed in an optimal manner, 
while in the A-PLL is suboptimally computed using predefined 
thresholds. If the noise statistics are not fully determined a priori, 
the solution is to estimate and sequentially adjust them into the 
filter, which is usually known as AKF [19], [24] (see Section V.A 
for details). From a practical architecture point of view, consider 
the following:

 C Adaptive PLL versus optimal KF: the KF does not need 
any additional processing to estimate the actual working 
conditions and to optimally adjust the loop bandwidth, 
which can be seen as an implementation of an optimized 
A-PLL.

 C Adaptive PLL versus AKF: if the system is partially known, 
an AKF solution is equivalent to the A-PLL. Both architec-
tures make use of an estimate of the system noise ( ˆ

kR  and 

noiseσ̂ ) and the dynamic stress ( ˆ
kQ  and êθ ), but the AKF op-

timally adjusts the loop bandwidth according to these esti-
mates, while the A-PLL uses a somehow heuristic threshold-
dependent approach.

To conclude, with respect to the A-PLL, both KF-based adap-
tive approaches will always be superior in terms of performance, 
optimality, and flexibility [11].

ADVANCED KF-BASED APPROACHES

In the previous section, the KF-based formulation of standard and 
advanced PLL architectures has been detailed from theoretical, ar-
chitectural, and conceptual points of view. The main idea was to 
show that a standard PLL is a particular suboptimal implementa-
tion of the KF, that the cooperative loops can also be formulated 
using KFs, and that the adaptive bandwidth loops are actually im-
proved when using a KF approach. The goals of this section are 
first to give a deeper insight on the AKF schemes and then to show 
that the flexibility of the KF goes far beyond the implementation of 
existing PLL-based architectures. The much more complex prob-
lems, which cannot be treated from a PLL point of view, can actu-
ally be solved by using powerful KF-based solutions.

AKF TRACKING SCHEMES

In standard KF-based tracking architectures, both the measure-
ment noise variance 2

,n kσ  and the process noise covariance matrix 
Q

k
 are assumed to be perfectly known, which is not realistic in 

practical implementations and may lead to poor performances in 
time-varying scenarios. The concept behind the AKF has already 
been introduced in the previous section when compared with the 
adaptive PLL approach. The main goal of the AKF is to sequen-
tially adjust the noise statistics according to the actual working 
conditions to obtain a robust and reliable tracking solution and to 
provide the answer to the problem of interest here: variability. This 
is equivalent to obtain a sequential optimal time-varying Kalman 
gain adaptation (i.e., adaptive equivalent noise bandwidth). The 
suboptimality introduced by the lack of precise knowledge of the 
noise statistics within the KF framework may introduce several 
estimation errors [68]. Therefore, a real-life robust system must 
counteract the fact that accurate noise characteristics and dynamic 
models are hardly available in practice. Two different approaches 
based on the residuals (state estimate minus prediction) were pre-
sented in [20] for vehicle navigation; an adaptive two-stage KF 
relying on the innovations' covariance is proposed in [21] for high 
dynamics scenarios, and an ad hoc implementation, called vari-
able gain AKF, was introduced in [22]. An interesting alternative 
approach has been recently presented in [23], [24], where a C/N

0
 

estimate (usually available at the receiver) is used to adjust the CP 
error variance, which, in turn, is used to optimally compute the 
Kalman gain in a time-varying manner.

From an optimal estimation point of view, the problem reduces 
to the estimation of the covariance matrices of two Gaussian dis-
tributions. The carrier tracking problem using standard noise sta-
tistics estimation methods [69], [70] was studied in [68], but the 
problem is not yet solved in a unified manner. In the literature, 
we find a plethora of methods and different approaches to face 
the noise statistics estimation problem. In the early 1970s, Mehra 
[69] published a survey paper and classified the existing methods 
into four categories: Bayesian, ML, covariance matching, and cor-
relation methods. The most popular are the correlation methods 
[69], and the more recent autocovariance least square [71] seems 
to provide the best solution. A good analysis on the design of such 
AKFs for carrier tracking is given in [19].
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AUGMENTED STATE AND MULTIPLE MODEL 

FORMULATIONS

One of the most important features of the KF-based solution, apart 
from its optimal approach, is the flexibility it provides to deal with 
different problems, while strictly considering the same architec-
ture, which from a practical point of view may be of capital im-
portance in some applications. For instance, in the carrier tracking 
problem, to extend a second-order loop to a third-order, one only 
needs to add the frequency rate into the state evolution formulation 
and to extend the corresponding covariance matrices to take it into 
account. This can be used to include any prior knowledge of the 
system into the state-space formulation. In some cases, this can 
be the only way to solve the problem and provide a robust carrier 
tracking solution. For instance, if some specific propagation condi-
tions are a priori known and effectively modeled using a dynamic 
state-space model, they can be merged together with the CP of in-
terest into a single state-space formulation. In this case, the KF is 
aware of those specific propagation conditions and may be able to 
mitigate undesired effects. An illustrative example [28], [29] of a 
real application of these ideas is presented in Section VI.

All the methods introduced in this article, from the standard 
architectures to the most advanced adaptive and augmented state 
KF-based approaches, rely on a specific dynamic model, which 
defines the evolution of the parameters of interest (e.g., the CP 
in this case). The KF is optimal when the state-space formulation 
perfectly matches the real system. If a mild modeling mismatch 
or slightly time-varying scenario is considered (i.e., a weak un-
certainty about the state evolution Q

k
 or the measurement noise 

R
k
) the natural solution is given by the AKF, but this approach 

does not provide a robust solution to strongly time-varying sce-
narios. High variability in the sense that the system uncertainty 
is not only on the system noise but on the state-space formulation 
itself. To overcome this model-based uncertainty, the best solution 
is to consider model matching or selection strategies. Among the 
different solutions available in the literature, the most promising is 
the so-called interactive multiple model (IMM) approach, which 
has been thoroughly used in target tracking, navigation, and high 
dynamics applications [56], [72]. The main idea behind the IMM 
is to overcome the main problem of stand-alone KFs following a 
divide and conquer strategy, dealing with changing scenarios by 
using several more easily fixed operation KFs. In other words, it is 
a bank of interacting KFs running in parallel. Each KF is designed 
for a specific scenario, and the filter is in charge to construct a 
final estimate using models' likelihood. Notice that a key point to 
obtain a good estimate is the interconnection among individual fil-
ters. This concept has already been successfully applied to carrier 
synchronization [27].

COMPUTER SIMULATIONS

To support the discussion on the PLL versus KF dilemma, two 
illustrative examples of interest to the aerospace community are 
given in the sequel. The first case deals with the GNSS carrier 
tracking under harsh propagation conditions, namely considering 
ionospheric scintillation disturbances, which is a popular topic in 

the community. The second case proposes a KF-based architecture 
in a deep space communications system, being an extremely chal-
lenging synchronization scenario.

CASE 1: ROBUST GNSS CP TRACKING

Ionospheric scintillation is the name given to the disturbance 
caused by electron density irregularities along the propagation 
path through the ionosphere. These irregularities affect the GNSS 
signals with amplitude fades and phase variations. An important 
feature is the existing correlation between deep amplitude fades 
and phase variations in a simultaneous random manner, the so-
called canonical fades [73]. This is certainly the most challeng-
ing scenario in GNSS carrier tracking problems. This particular 
example is used to support the fact that prior knowledge on the 

propagation conditions can be introduced into the system by state 

augmentation, providing an extra capability to the filter, a fact that 
is impossible to take into account using PLL-based architectures 
(see Section V.B).

The scintillation can be modeled as a multiplicative channel 
[74] ξ

s
(t) = ρ

s
(t) ( )sj te θ  and synthesized by using the Cornell scintilla-

tion model (CSM)5 [75], where ρ
s
(t) and θ

s
(t) are the corresponding 

envelope and phase components.
The scintillation phase is a correlated stochastic process, 

which, in turn, can be fairly modeled as an AR(1) process: θ
s,k

 = 
βθ

s,k−1 + η
k
, with η

k
 ∼ 2(0, )

η
σ , which can be included in the KF 

state-space formulation to jointly track the desired phase θ
d,k

 Dop-
pler frequency f

d,k
 frequency rate ,d kf  and possible scintillation ef-

fect θ
s,k

. This idea was first introduced in [27] within a multiple 
model approach and further extended in [28], [29]. The simplified 
model for the samples at the input of the carrier tracking stage is

( )2
,; ~ 0,kj

k k k k n ky e n nθα σ= +   (40a)

, , ,; ,
k k s k k d k s k
Aα ρ θ θ θ= = +  (40b)

where ρ
s,k

 refers to the scintillation amplitude effects. The state 
evolution [27] is given by

2

1

1 / 2 0
0 1 0

,
0 0 1 0
0 0 0

s s

s
k k k

T T
T

β

−

 
 
 = + 
  
 

x x v  (41)

where the process noise, v
k
 ∼  (0,Q), stands for possible uncer-

tainties or errors on the state transition model.
In this example, the signal of interest is corrupted by moderate 

and severe scintillation, and the following parameters are used: T
s
 

5 The CSM has been embedded in the so-called Cornell scintil-
lation simulation MATLAB toolkit, which is available at http://
gps.ece.cornell.edu/tools.php. This software will be used in the 
computer simulations to generate the desired scintillation effect.



A Tutor ia l on Kalman Fi l ter-Based Techniques

= 10 ms, C/N
0
 = 35 dB-Hz, f

d,0
 = 2 Hz, and ,0 0.1df =

  Hz/s. The 
tested methods were second-order PLL (B

PLL
 = 10 Hz), second-

order FLL-assisted third-order PLL (B
FLL

 = 5 Hz, B
PLL

 = 5 Hz), a 
standard KF only tracking the dynamics (i.e., *

, , ,[ ]k d k d k d kf fθx  

) and a KF, including the scintillation into the state-space formula-
tion (termed KF-Aℜ).

The root mean square error (ℜMSE) obtained with the four meth-
ods is plotted in Fig. 7a, where it is easy to identify the two regions 
in which the signal is corrupted by scintillation (indicated in the fig-
ure). ℜegarding the performance of the PLL-based techniques and 
the standard KF, there are two key points that must be stated: i) the 
standard techniques are unable to identify which phase variations are 
due to dynamics (desired) and which ones come from the ionospheric 
scintillation (undesired); ii) if these techniques are well tuned to track 
fast phase variations (i.e., moderate to high dynamics) or time-vary-
ing scenarios, a desirable quality of a reliable and robust architecture, 
they will also track the fast scintillation phase variations. The KF-Aℜ 
provides an increased robustness and better performance. These two 
statements are more evident in Figs. 7b, 7c, where the Doppler fre-
quency and scintillation phase estimation are plotted for a single real-
ization (only available for the KF-based techniques). In the Doppler 
frequency estimation, one can see that the standard KF understands 
the scintillation as frequency variations, while the KF-Aℜ correctly 
decouples both contributions, giving always better performances and 
being much more robust and powerful.

CASE 2: SIGNAL TRACKING IN DEEP SPACE 

COMMUNICATIONS

Another example of challenging synchronization is found in deep 
space communications for planetary exploration, an application 
with extreme requirements in terms of received low signal power. 
Synchronization in deep space involves an initial acquisition stage 
in which the PLL is allowed to operate at a larger loop bandwidth 
to acquire the carrier frequency in the presence of significant Dop-
pler dynamics. Once the carrier frequency is acquired, the receiver 
enters the tracking stage, where the loop bandwidth is typically 
decreased to reduce the noise in the loop and cope with very low 
received signal power [40]. Hence, the PLL must be configured to 
different operating bandwidths that are adapted to the SNℜ and as 
well as must cope with loop transitions. Under this scenario the in-
herent AKF bandwidth and filter flexibility may offer an advantage 
on loop adaptation or configuration.

This study case considers the following telecommand transmit-
ted (space-to-Earth) signal model known as remnant carrier modu-
lation with sinusoidal subcarrier:

( )( )( ) sin 2 ( )sin 2 ( ) ( ) ,c c sc sc cs t A f t m D t f t t tπ π φ φ= + + +  (42)

with f
c
, f

sc
 being the carrier or subcarrier frequencies, ϕ

c
(t), ϕ

sc
(t) the 

carrier or subcarrier phase, m
c
 the modulation index (0 < m

c
 < π), 

D(t) the information data stream, and A the signal amplitude, with 
D(t) = ( ),n s n

n
c p t nT c− ∈ {+1,−1}, T

s
 symbol period and p(t) the 

pulse shape. The communication channel is modeled as an AWGN 

Figure 7. 
(a) ℜMSE obtained from 200 Monte Carlo runs for different carrier 
tracking techniques. Signal of interest corrupted by moderate and severe 
scintillation. Doppler frequency (b) and scintillation phase (c) estima-
tion for one single realization, using a standard KF and the improved 
KF-Aℜ.
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channel in the presence of Doppler and phase noise. The received 
signal is then given by

2
noise

12 ( )
2 ,

s k r kj F kT F kT

k k kr x e n
π φ

  
+ +     = +

 (43)

where x
k
 is the received digital baseband signal and T

k
 the sample 

period. The Doppler shift and Doppler rate are denoted by F
s
 and 

F
r
, respectively. The phase noise ϕ

noise
 is introduced at the simula-

tion by applying a mask similar to the one defined in [76], and 
AWGN is added according to n

k
 ∼  (0, N

0
).

To illustrate the potential application of KFs to this case study, 
the challenging carrier tracking scenario is evaluated by means 
of Monte Carlo simulations implementing the telecommand link 
specified in Table 1. Fig. 8a depicts the CP steady-state ℜMSE 
for both second- and third-order PLLs compared with a standard 
AKF-based tracking loop. The reference lock refers to the σ = 30° 
loss-of-lock rule-of-thumb [3]. The performance obtained with 
both PLLs is similar when considering the same loop bandwidth 
and slightly worse with the second-PLL with a higher bandwidth, 
as typically considered in the carrier acquisition stage. The perfor-
mance gain obtained with the AKF is clear from the results, where 
for this specific case study the performance improvement is higher 
at lower E

s
/N

0
.

Fig. 8b illustrates the automatic adaptive bandwidth given 
by the AKF approach versus the constant standard PLL band-
width (i.e., acquisition mode Bw = 20 Hz, tracking mode Bw = 
10 Hz). When using the latter, the transition between acquisition 
and tracking modes is performed heuristically, while the adap-
tive bandwidth provided by the AKF is based on the optimal 
filtering solution. Notice that the AKF bandwidth starts at 45 Hz 
for a fast acquisition and then converges to 7.5 Hz in the steady-
state regime.

Although KF approaches can offer advantages over PLL con-
figurations in terms of adaptability, further investigation with a 
more exhaustive analysis on its robustness and complexity require-
ments for the very low SNℜ regime is needed.

Figure 8. 
(a) CP ℜMSE versus different E

s
/N

0
 values at the input of the demodu-

lator for the 125 sps case. (b) Adaptive (KF) versus constant (PLL) 
bandwidth example.

Table 1. 

Parameters of the Deep Space Telecommand Communication Link Used in the Simulations

Radio Frequency Modulation Remnant Carrier, as in (42)

Pulse code modulation Nonreturn-to-zero level

Carrier frequency X band

Subcarrier frequency f
sc

 = 16 kHz

Modulation index m
c
 = 1.2

Subcarrier waveform Sinusoid

Symbol rate 125 symbols per second (sps)

Doppler shift F
s
 = 2 kHz

Doppler rate F
r
 = 30 Hz/s
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CONCLUSION

This article presented a detailed comparison of PLL and KF-based 
carrier synchronization techniques, together with some promising 
advanced architectures, the main goal being to shed some light on 
the PLL versus KF dilemma and to provide the practitioner with 
design guidelines. To summarize, in the following, there is a list of 
the main reasons why KF-based architectures should be preferred 
in modern receivers operating under non-nominal propagation 
conditions over PLL legacy schemes:

 C Formulated from an optimal filtering approach

 C Inherent adaptive bandwidth architecture

 C Joint CP and frequency optimal estimation

 C Nonlinear implementation operating with the received sig-
nal, avoiding possible discriminator disadvantages

 C State-space augmentation to account for prior knowledge on 
non-nominal propagation conditions

 C Adaptive tracking architectures to cope with challenging 
time-varying propagation scenarios.

 C Easily embedded into a multiple model method

Even if this article claims and shows that KF-based architec-
tures are always equivalent or superior in terms of performance 
with respect to their PLL counterpart and, in general, are more 
flexible and robust, it is worth saying that the latter is still useful 
in many applications in which non-nominal channel propagation 
conditions do not apply, the increased computational complexity 
may not be accepted, or the final fine tuning is not possible. 
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