
 Open access Journal Article DOI:10.1145/937598.937601

Are quorums an alternative for data replication — Source link

Ricardo Jiménez-Peris, Marta Patiño-Martínez, Gustavo Alonso, Bettina Kemme

Institutions: Technical University of Madrid, École Polytechnique Fédérale de Lausanne, McGill University

Published on: 01 Sep 2003 - ACM Transactions on Database Systems (ACM)

Topics: Replication (computing)

Related papers:

 The dangers of replication and a solution

 Concurrency Control and Recovery in Database Systems

 The part-time parliament

 A critique of ANSI SQL isolation levels

 Weighted voting for replicated data

Share this paper:

View more about this paper here: https://typeset.io/papers/are-quorums-an-alternative-for-data-replication-
ic2hnwqeoj

https://typeset.io/
https://www.doi.org/10.1145/937598.937601
https://typeset.io/papers/are-quorums-an-alternative-for-data-replication-ic2hnwqeoj
https://typeset.io/authors/ricardo-jimenez-peris-15l3jyl5ty
https://typeset.io/authors/marta-patino-martinez-d2mdz16ouf
https://typeset.io/authors/gustavo-alonso-3av2dplsxs
https://typeset.io/authors/bettina-kemme-2lzwk2ro0t
https://typeset.io/institutions/technical-university-of-madrid-1ety5u2c
https://typeset.io/institutions/ecole-polytechnique-federale-de-lausanne-3d352jbh
https://typeset.io/institutions/mcgill-university-2kp72n3l
https://typeset.io/journals/acm-transactions-on-database-systems-4z4payqv
https://typeset.io/topics/replication-computing-3pkp0ldj
https://typeset.io/papers/the-dangers-of-replication-and-a-solution-1uj92zms11
https://typeset.io/papers/concurrency-control-and-recovery-in-database-systems-2ewdx14r3w
https://typeset.io/papers/the-part-time-parliament-7bj8mrzqeb
https://typeset.io/papers/a-critique-of-ansi-sql-isolation-levels-2k0a4rfasv
https://typeset.io/papers/weighted-voting-for-replicated-data-587rlub0di
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/are-quorums-an-alternative-for-data-replication-ic2hnwqeoj
https://twitter.com/intent/tweet?text=Are%20quorums%20an%20alternative%20for%20data%20replication&url=https://typeset.io/papers/are-quorums-an-alternative-for-data-replication-ic2hnwqeoj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/are-quorums-an-alternative-for-data-replication-ic2hnwqeoj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/are-quorums-an-alternative-for-data-replication-ic2hnwqeoj
https://typeset.io/papers/are-quorums-an-alternative-for-data-replication-ic2hnwqeoj

Are Quorums an Alternative
for Data Replication?

RICARDO JIMÉNEZ-PERIS and M. PATIÑO-MARTÍNEZ

Universidad Politécnica de Madrid (UPM), Madrid, Spain

GUSTAVO ALONSO

Swiss Federal Institute of Technology (ETHZ), Zürich, Switzerland

and

BETTINA KEMME

McGill University, Montreal, Quebec, Canada

Data replication is playing an increasingly important role in the design of parallel information
systems. In particular, the widespread use of cluster architectures often requires to replicate data
for performance and availability reasons. However, maintaining the consistency of the different
replicas is known to cause severe scalability problems. To address this limitation, quorums are
often suggested as a way to reduce the overall overhead of replication. In this article, we analyze
several quorum types in order to better understand their behavior in practice. The results obtained
challenge many of the assumptions behind quorum based replication. Our evaluation indicates
that the conventional read-one/write-all-available approach is the best choice for a large range
of applications requiring data replication. We believe this is an important result for anybody de-
veloping code for computing clusters as the read-one/write-all-available strategy is much simpler
to implement and more flexible than quorum-based approaches. In this article, we show that, in
addition, it is also the best choice using a number of other selection criteria.

Categories and Subject Descriptors: H.3.4 [Information Storage and Retrieval]: Systems and
Software—performance evaluation

This article is an extended version of JIMÉNEZ-PERIS, R., PATIÑO-MARTÍNEZ, M., ALONSO, G., AND KEMME,
B. 2001. How to select a replication protocol according to scalability, availability, and communication
overhead. In Proceedings of the International Symposium on Reliable Distributed Systems (SRDS)

(New Orleans, La.). IEEE Computer Society Press, Los Alamitos, Calif., pp. 24–33.
This work has been partially funded by the Spanish National Science Foundation (MCYT), contract
number TIC2001-1586-C03-02.
Authors’ addresses: R. Jiménez-Peris and M. Patiño-Martı́nez, Facultad de Informática, Uni-
versidad Politécnica de Madrid, Madrid, Spain; email: {rjimenez,mpatino}@fi.upm.es, Web:
http://lsd.ls.fi.upm.es/∼rjimenez; http://lsd.ls.fi.upm.es/∼mpatino; G. Alonso, Department of Com-
puter Science, Swiss Federal Institute of Technology (ETHZ), Zürich, Switzerland; email:
alonso@inf.ethz.ch, Web: http://www.inf.ethz.ch/personal/alonso; B. Kemme, School of Computer
Science, McGill University, Montreal, Quebec, Canada; email: kemme@cs.mcgill.ca, Web: http://
www. cs.mcgill.ca/∼kemme/.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 0362-5915/03/0900-0257 $5.00

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003, Pages 257–294.

258 • R. Jiménez-Peris et al.

General Terms: Performance, reliability

Additional Key Words and Phrases: Data replication, quorums, scalability, availability, distributed
transactions.

1. INTRODUCTION

The text book approach to deal with performance and availability problems in
data replication protocols is to use quorums. Quorums reduce the number of
copies involved in reading or updating data. Hence, in theory, quorums should
reduce the overall cost of replication in terms of performance penalties, com-
munication overhead, and system’s availability [Bernstein et al. 1987; Weikum
and Vossen 2001]. Following this idea, many text books describe quorums as
the way to, for example, deal with network partitions [Coulouris et al. 2000;
Bernstein et al. 1987], minimize communication overhead [Bacon 1997], in-
crease availability [Lewis et al. 2002], and balance the cost between read and
write operations [Weikum and Vossen 2001]. Thus, from the existing literature,
one could readily conclude that quorums can be used to improve the perfor-
mance and availability of replication protocols.

Although the availability and load distribution of quorum systems have been
studied in much detail [Rangarajan et al. 1993; Naor and Wool 1998; Amir
and Wool 1996, 1998; Peleg and Wool 1995; Ahamad and Ammar 1989], exist-
ing studies make three simplifying assumptions that distort the comparisons.
These three assumptions are: (a) asymptotic behavior as being representative
of the overall system’s behavior; (b) read and writes have the same cost regard-
less of whether they are local or remote; and (c) scalability does not need to be
monotonic.

In terms of comparison, most existing availability studies used asymptotic
analysis, for example, Naor and Wool [1998], to draw conclusions about the com-
parative characteristics of different quorum techniques. Unfortunately, eager
replication does not scale beyond a few tens of sites. For any comparison to be
practically relevant, it is necessary to take into account the constant and mul-
tiplicative factors discarded in an asymptotic analysis. Similarly, to facilitate
the analysis, researchers have assumed that transaction processing is entirely
symmetric across the system (e.g., Nicola and Jarke [2000] and Agrawal and
Abbadi [1990b, 1990a]). This is probably one of the most distorting factors in
such analyses as transaction processing in a replicated, distributed database
is highly asymmetric. An example of such asymmetries are those caused by
common optimization strategies like propagating tuple changes directly rather
than SQL statements. Finally, quorum formation techniques are typically stud-
ied only for the best possible configuration. This hides the fact that many forms
of quorums impose significant restrictions on the number of nodes in the sys-
tem (e.g., Cheung et al. [1990] and Agrawal and Abbadi [1990b]), and might
degenerate if used in a nonoptimal configuration. For scalability purposes, it is
crucial to be able to grow the system by adding a few nodes at a time. Otherwise,
it becomes very difficult to use it in a real system. Ideally, the quorum strategy
should exhibit monotonic scalability.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 259

With these important practical considerations as the basis for the analysis,
we have studied and compared some of the most relevant forms of quorums.
Due to the more realistic assumptions, we believe the analysis offers a com-
prehensive and fair picture of existing quorums and is, therefore, an impor-
tant contribution by itself. Our results challenge the notion that quorums im-
prove performance, availability, or communication overhead. The results of our
analyses indicate that the conventional read-one/write-all-available approach
(ROWAA) is clearly the best choice for a wide range of applications requiring
data replication. In terms of scalability, ROWAA is clearly one of the best choices
possible for most applications since it minimizes the read overhead. Our anal-
yses show that most quorum systems outperform ROWAA only under extreme
write ratios (80–90% of the operations are updates). In terms of availability,
ROWAA is far better than any quorum, even if we consider only optimal configu-
rations for each quorum technique. When monotonic scalability is considered,
many types of quorums become infeasible and ROWAA is the only reasonable op-
tion. In terms of communication, it can be argued that ROWAA does not tolerate
network partitions. However, this can be easily solved by adopting a primary
partition approach. The primary partition would be the one containing at least
one quorum. With this, ROWAA provides the same availability as quorums and,
as our analyses show, has a much better behavior than any quorum system
when scalability, availability, and communication overhead are considered as a
whole. This is an important result since the read-one/write-all strategy is much
simpler to implement and more flexible than quorum based approaches.

The article is organized as follows. Section 2 presents the system model and
some definitions. Quorum protocols are studied according to their structure.
Section 3 presents the ROWAA protocol and voting quorums. Different quorum
systems based on grids are studied in Section 4. Finally tree quorums are de-
scribed in Section 5. Section 6 compares the best protocol of each of these three
sections. Related work is presented in Section 7 and conclusions in Section 8.

2. SYSTEM MODEL AND DEFINITIONS

In this section, we first introduce our transaction and quorum model. Then,
we describe three performance measurements: scalability and how work is dis-
tributed in the system, availability, and communication overhead. We would
like to mention that the analysis ignores some aspects of the problem. One of
them is concurrency control and its effects on transactional conflicts, response
time delay, abort rate, etc. For such analysis we refer, for example, to Gray
et al. [1996], Carey and Livny [1988], and Yu et al. [1993]. A second issue is the
overhead of forming and maintaining quorums, which can be considerable in
some cases. Thus, our measurements will produce results that should be seen
as an upper bound of what can potentially be achieved since including these
additional costs will only decrease the performance.

2.1 Model

A replicated database consists of a group of sites N = {N1, N2, . . . , Nn} that
communicates by exchanging messages. Sites are fail-stop, and site failures

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

260 • R. Jiménez-Peris et al.

can be detected. We consider a crash-recovery model where sites can recover
and rejoin the system after synchronizing their state with one of the running
replicas. The database is fully replicated, and thus, each site contains a copy of
the database. We assume that all sites are homogeneous.

Clients interact with the database by issuing transactions. Transactions are
executed atomically, that is, a transaction either commits or aborts. Transac-
tions are partially ordered sets of read (r) and write (w) operations. Two trans-
actions conflict if they access the same data item and at least one of them is a
write operation. If a transaction contains write operations, a 2-phase-commit
protocol (2PC) at the end of the transaction is executed among all sites. We as-
sume replica control is combined with a concurrency control method such that
one-copy-serializability [Bernstein et al. 1987] is guaranteed: each copy must
appear as a single logical copy and the execution of concurrent transactions
over the physical copies is equivalent to the serial execution over the logical
copy.

A client submits a transaction—and with it all the operations of this
transaction—to any of the sites in the system. This site is called the origi-
nator of the transaction and its operations, and coordinates with the rest of
the system. A transaction and its operations are called local at the site it is
submitted to, and remote at the other sites.

We consider in the study two kinds of transactions: queries, which contain
only read operations, and update transactions.

The number of sites where a read or write operation must be performed is
a quorum. In particular, read and write quorums must be such that read and
write operations or two write operations on the same data item overlap (they
access at least one common copy). That is, any read quorum must overlap with
any write quorum, and any two write quorums must overlap between them.
The following definitions present these properties formally. Some of them are
borrowed from Naor and Wool [1998].

Definition 1 (Quorum System). A set system S = {S1, S2, . . . , Sn} is a col-
lection of subsets Si ⊆ N of a finite universe N . A quorum system defined over a
set of sites N is a set system S that has the property: ∀i, j ∈ {1 ·· n}, Si ∩ S j 6= ∅

The nonempty intersection property is crucial in that it allows any quorum
to make decisions on behalf of the whole system, and still guarantee overall
consistency.

Definition 2 (Write Quorum). Given a quorum system S, each Si ∈ S is a
write quorum.

The cardinality of a set S is denoted by |S|.

Definition 3 (Degree of an Element). The degree of an element x ∈ N in a
set system S is defined as the number of sets that contain x: deg(x) = |{Si ∈
S, x ∈ Si}|.

Definition 4 (s-Uniformity). A set system S is s-uniform if ∀Si ∈ S, |Si| = s.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 261

s-uniformity indicates that all sets are of the same size and that the size is s.
This property is important, since load distribution among the sites is directly
related to s-uniformity. Systems that are not s-uniform have problems with load
balancing and, therefore, with scalability.

Definition 5 ((s, d)-Fairness). A set system S is (s, d)-fair if it is s-uniform
and ∀x ∈ N , deg(x) = d .

(s, d)-fairness adds an additional dimension to s-uniformity. With s-
uniformity, all sets must be of the same size. In an (s, d)-fair system, all sets
must be of the same size and all sites must equally participate in all sets (all
sites must have the same degree). (s, d)-fairness expresses the symmetry of a
quorum system, which impacts on the system scalability and reliability.

Definition 6 (Read-Write Quorum). A read-write quorum system, over the
set of sites N , is a pair (R, W) where W is a quorum system, and R a set system
with the following property: ∀Wi ∈ W, ∀Ri ∈ R, Wi ∩ Ri 6= ∅.

Definition 7 (Read Quorum). Given a read-write quorum system (R, W),
each Ri ∈ R is called a read quorum.

2.2 Scalability

In order to measure the scalability of a replicated system we will consider a
read-write quorum (R, W) where both R and W are (s, d)-fair. That is, all sites
have the same probability to belong to a read (write) quorum and read (write)
quorums having the same size. We denote the size of a write quorum with wq,
and the size of read quorums with rq. From here, Pw = wq

n
is the probability for

a site to participate in a write quorum, and Pr = rq
n

the probability for a site to
participate in a read quorum. From here, we derive the following definitions:

Definition 8 (Symmetry in a Quorum System). A quorum system is consid-
ered symmetric if all operations have the same cost, regardless of whether they
are local or remote operations.

Definition 9 (Asymmetry in a Quorum System). A quorum system is con-
sidered asymmetric if some operations have different cost, depending on
whether they are local or remote operations.

Let L be the total processing capacity of the system, that is, the maximum
number of operations per time unit that can be handled by the entire system.
Let Lw = w · L be the load created by updates, with w being the proportion of
update operations in the load. Let Lr = (1 − w) · L be the load created by read
operations.

Definition 10 (Load at a Site in a Symmetric System). Let t be the process-
ing capacity of one site, that is, the number of operations each site is able to
execute per time unit, t and L are related in the following way:

t = Pw · Lw + Pr · Lr , (1)

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

262 • R. Jiménez-Peris et al.

which in terms of L can be rewritten as follows.

t = L · (w · Pw + (1 − w) · Pr) (2)

Definition 11 (Symmetric Scale Out Factor, so). The scalability (scale out
factor) of a system is given by the total processing capacity of the entire system
(L) divided by the processing capacity of one site (t).

so =
L

t
=

1

w · Pw + (1 − w) · Pr

(3)

Expressions similar to (3) can be found in Wool [1998], Kemme [2000], and
Jiménez-Peris et al. [2001]. However, distributed databases are rarely symmet-
ric. Instead, many commercial database systems perform asymmetric update
operations. An SQL statement like update employee set salary = salary +

1000 where level = 1 is parsed, optimized and executed at the local site. Most
of the execution time is spent scanning the entire employee table for relevant
records; only a handful of records might be updated. In order to avoid redun-
dant work, the remote sites do not reexecute the SQL statement. Instead, the
local site sends to all other sites the key to the employee records that need to be
updated along with the new salary values. Remote sites directly access and up-
date the relevant records (through special index structures) without scanning
the entire table. Experiments in Kemme and Alonso [2000] and Jiménez-Peris
et al. [2002] have shown that such an approach can reduce the execution costs
at remote sites by a factor of 5.

In theory, this strategy can be applied to both read and write operations.
However, if we look at, for example, relational database systems, we can see
a significant difference between read and write operations. A write operation
usually writes one or more records of a single table (SQL update, delete, and

insert statements). As a result, if a write quorum does not include all sites in
the system, each site might have up-to-date records (with the highest version
number) and stale records (not having the highest version number) in a single
table. In comparison, select statements are usually more complex than write
statements, often involving transformations of the original tables (e.g., n-way
joins). A single query can scan thousands of records and return hundreds of
records or a single aggregation value to the user. For each of the records to be
scanned, one has to determine the latest version. Since there might not exist
a single site in the system that has the latest version of each record, each site
has to first collect all records relevant for the query, then the latest version
for each of these records has to be determined, and finally the result records
or the aggregation value has to be calculated. In summary, since scanning the
records is the most intensive work, and this work has to be done by all sites,
read operations are essentially always symmetric.

Hence, in here, we distinguish only between local and remote writes. Read
operations will be considered symmetric. With this, the probability for a site to
participate in a write operation can be divided into two parts:

Pw = P O
w + P R

w , (4)

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 263

where P O
w is the probability of being the originator of a write operation and P R

w

is the probability of participating in a remote write operation (i.e., an operation
originated by other sites). Moreover, we assume that the cost of performing
an update operation locally is 1 while the cost of performing a remote update
operation is given by a variable factor wo (0 < wo ≤ 1). wo = 1 means the
system is symmetric for write operations.

Definition 12 (Asymmetric Scale Out Factor, sowo). The scale out factor
(sowo) in a asymmetric system is defined by the following.

sowo =
L

t
=

1

w · P O
w + w · wo · P R

w + (1 − w) · Pr

(5)

2.3 Availability

We assume that site failures are independent and that the probability of a site
being up is p. This probability is calculated as p = TU

TU +TD
, where TU is the

uptime and TD the downtime. The downtime includes the time to recover the
system after the failure. In our study, we do not consider that different quorum
systems might have different recovery overhead since too little information is
available to differentiate the costs. We assume that p > 0.5, since it has been
shown that for p < 0.5 the best option is not to use replication [Peleg and Wool
1995]. The overall availability of the system will be referred to as av and we will
distinguish between the availability for read operations avr and the availability
for write operations avw.

Definition 13 (Availability of an Operation). The availability of a read
(write) operation, avr (avw), is the probability that a read (write) operation
can be performed in the system.

Definition 14 (System Availability). The availability of a system (av) is the
probability that an operation can be performed in the system.

av = w · avw + (1 − w) · avr (6)

For comparison purposes, we will work with the unavailability of the system.
The unavailability is calculated as 1 − av and represented in logarithmic scale.
Thus, an unavailability of 10−i corresponds to an availability of i nines (e.g.,
two nines is 0.99). The read, write, and system availabilities of a single site
system are all p and the corresponding unavailability is 1 − p.

Most of the literature proposing new quorum systems already provide de-
tailed availability analysis. There, the term availability is often equivalent to
our definition of write operation availability. Whenever possible, we take the
results provided and only derive read operation and system availability.

2.4 Communication Overhead

Replication requires the participating sites to coordinate their activities by
exchanging messages. In practice, this can have a significant impact on the
overall behavior of the protocol. On the one side, CPU cycles are lost in dealing
with the messages (flattening, sending, receiving, and unflattening). On the

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

264 • R. Jiménez-Peris et al.

other side, the network bandwidth might be exceeded, resulting in additional
delays. The message overhead affects not only scalability but also availability
[Saha et al. 1996].

Our analysis focuses on the number of messages exchanged to measure the
impact on CPU time (message overhead at sending and receiving sites) and
network load. Although an important factor, we do not consider the size of the
messages because this information is strongly application dependent in most
situations. Read and write messages in a symmetric system are SQL state-
ments, hence, they will typically always be small. The return messages for read
requests, however, might contain between a few and thousands of values de-
pending on the application. The size of write messages in an asymmetric system
is also difficult to predict. Typically, these messages will contain a few updated
records, however, in special applications, they might also be quite large. As a
result, we do not believe that message size can be captured without knowing
the application domain.

Most of the literature proposing quorum protocols provide some form of com-
munication analysis. However, the models and assumptions in each of these
papers are often very different making it difficult to compare the different ap-
proaches. In our analysis, we provide a single model for all protocols allowing
for a thorough comparison. In particular, we take into consideration issues like
2PC and system asymmetries. For the purposes of our study, we consider only
the best possible implementation (the one with the least number of messages).
We will assume that all write operations are executed locally on a shadow copy.
Thus, updates are sent to the replicas only at the end of the transaction in one
single message. If a transaction contains write operations, the participating
sites have to agree on the outcome of the transaction using a 2PC protocol.
Sending the write operations can be combined with the vote request message
of the 2PC protocol. The participating sites must respond with a vote message.
In the last phase, the originator sends a commit or abort message to all sites
in the write quorum. In contrast to write operations, read operations cannot be
delayed until the end of the transactions or executed on a local shadow copy.
Hence, for each read operation of a transaction, the originator of the transac-
tion must send a read request to each member of the read quorum and each
participating site must return a reply message containing the read value and
its version. For read-write quorum systems (R, W) in which R is 1-uniform
(i.e., all read quorums have size rq = 1), we will assume that the read is per-
formed locally and no messages are needed for read operations. Furthermore,
transactions that only consist of read operations do not require any message
overhead.

In addition to calculating the message overhead per operation, we have to
take into consideration the number of write operations per transaction. Since
the number of messages per update transaction is constant and independent
of the number of write operations within the transaction,1 the message over-
head per individual write operation decreases with increasing number of write

1We assume that all the write operations within a transaction can be sent in a single message. The
expressions in this section can be easily extended if this assumption does not hold.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 265

operations per transaction. If transactions only have on average one write op-
eration then each write operation in the system causes three message rounds
(vote request, response, decision). If transactions have on average ten write op-
erations, then the overhead per write operation is only a tenth. Note, that the
number of write operations per transaction is not determined by w. A small w

indicates that there are generally few write operations in the system. For in-
stance, the workload can have many queries (read-only transactions) and few
update transactions. Each of these few update transactions, however, can have
many write operations.

With this, assuming that a transaction contains on average ow write opera-
tions, the message overhead for point-to-point messages is defined by:

Definition 15 (Message Overhead, Point-to-Point). The message overhead
per operation performed in a quorum system using point-to-point communi-
cation is given by the expression:

msg = w ·
3 · (wq − 1)

ow

+ (1 − w) · 2 · (rq − 1) (7)

If a multicast primitive is available, the number of exchanged messages varies.
For all updates, one message is needed for the vote request, wq − 1 messages
are needed to get the vote message of each participant, and one more message
are required to commit or abort the transaction. For each read operation, one
needs a message to request the read, and rq − 1 messages to get the responses
from the participants. Thus:

Definition 16 (Message Overhead, Multicast). The message overhead per
operation performed in a quorum system using multicast communication is
given by the expression:

msg = w ·
wq + 1

ow

+ (1 − w) · rq (8)

3. READ-ONE WRITE-ALL AND VOTING

3.1 Read-one Write-all

In the read-one write-all (ROWA) approach [Bernstein et al. 1987], reads are
performed at a single site, while write operations must be performed at all
sites. Read operations can be executed locally to minimize the communication
cost.

A naive version of ROWA would require all replicas to be available to perform
a write operation [Bernstein et al. 1987]. A variation of this technique known as
read-one write-all-available (ROWAA) improves the availability of the database
[Bernstein et al. 1980, 1987; Rothnie et al. 1980]. Although the original protocol
does not tolerate partitions, the basic protocol can be extended with a primary
component (partitions) approach that makes it partition tolerant.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

266 • R. Jiménez-Peris et al.

Fig. 1. Example of HQC: 9 copies organized into a 2-level hierarchy.

3.2 Voting

The MAJORITY quorum (also known as quorum consensus) [Thomas 1979] and
weighted voting [Gifford 1979] use voting to define the quorums. Each site
has a nonnegative number of (weights) votes. Quorums are defined so that
the number of votes exceeds half of the total votes (majority). Read and write
quorums must fulfill the following constraints: 2 · wq > n and rq + wq > n, being
n the number of sites. The minimum quorum sizes satisfying these constraints
are: 2 · wq = n + 1 and rq + wq = n + 1 and therefore, wq = ⌊n

2 ⌋ + 1 and
rq = ⌈n

2 ⌉ = ⌊n+1
2 ⌋. Thus, a write quorum can be formed by any majority, and a

read quorum by half of the system sites, if n is even, or by a majority if n is odd.
Those quorums are static, that is, the system size (total weight) is predefined.

The majority can be defined dynamically, according to the current system size
in order to be able to cope with failures [Eager and Sevcik 1983; Herlihy 1987;
Barbará et al. 1989; Jajodia and Mutchler 1990].

Hierarchical quorum consensus (HQC) is a generalization of MAJORITY [Kumar
1991]. This generalization consists in organizing the sites into a hierarchy. This
hierarchy can be represented as a complete tree where physical sites appear
at the leaves of the tree. At each level i (beyond the root level) of the tree, a
majority of tree nodes must be taken. For instance, nine sites can be organized
into a ternary tree of three levels (Figure 1). Level 0 is the root, and level 2 is
the leaf-level. To perform a read or write operation a majority of nodes at level
1 must be chosen (two out of the three nodes). For each node chosen at level 1,
a majority of nodes at level 2 must be chosen (two out of three physical sites).
For the example of Figure 1, the (read or write) quorum size is 4, whilst for
MAJORITY is 5. The quorum size for HQC is minimal when the tree is ternary
[Kumar 1991], in such a case the read and write quorum sizes are n0.63.

Several variations of voting have been proposed like voting with witnesses
[Paris 1986; Paris and Long 1991], voting with bystanders [Paris 1989], and
voting with ghosts [van Renesse and Tanenbaum 1988]. The first variation in-
troduces witnesses to reduce storage costs and minimize the number of replicas
to achieve consistency. Witnesses are lightweight replicas that only hold version
numbers. Witnesses participate as normal replicas in read and write quorums.
Any quorum needs at least one conventional replica. The second and third vari-
ations are protocols that extend voting to deal with a special kind of partition
failures, where only failures of gateways connecting network segments are con-
sidered (i.e., a network segment does not partition).

Multidimensional voting [Cheung et al. 1991] is a general technique to rep-
resent quorum systems that generalizes weighted voting. It assigns to each
site a vector of dimension k of nonnegative weights. The weights of the n sites

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 267

Voting prot. rq wq Pr P O
w P R

w

ROWAA 1 n 1
n

1
n

n−1
n

MAJORITY ⌊ n+1
2 ⌋ ⌊ n

2 ⌋ + 1 1
2

1
n

1
2

HQC n0.63 n0.63 n0.37 1
n

n0.63−1
n

Fig. 2. Quorum sizes and quorum participation probabilities for selected voting protocols.

Voting prot. so so(wo)

ROWAA
n

1+w·(n−1)
n

1+w·wo·(n−1)

MAJORITY
2·n

2·w+n
2·n

2·w+n·(1+w·(wo−1))

HQC n0.37 n

w·(1+wo)+n0.63 ·(w·wo−w+1)

Fig. 3. Scale out factors for selected voting protocols.

form a matrix of weights, md , of dimension n×k. A quorum is a k-dimensional
vector of non-negative values. The quorum must be satisfied for a number of
dimensions l , such that 1 ≤ l ≤ k. In multidimensional voting, a quorum is
formed hierarchically. (1) At the vote level, the number of votes for a dimension
must be greater or equal to the quorum requirement for that dimension. (2) At
the dimension level, quorums must be obtained for at least l dimensions. Mul-
tidimensional voting with the quorum requirement of l out of k dimensions is
termed MD − (l , k) − voting. The extra column gives the flexibility to represent
several quorum schemes like quorum consensus and HQC.

Weighted voting and voting variations, with the exception of multidimen-
sional voting, perform as MAJORITY in the best case [Naor and Wool 1998].
Weighted voting is useful for systems where the failure probability is not uni-
form. The overall system availability can improve by assigning more votes to
sites with higher availability. Since, only systems with uniform failure proba-
bility are considered in our study, we will only analyze the MAJORITY and HQC

protocols.

3.3 Scalability

The probability Pr of being in read quorum and the probability Pw of being
in a write quorum for the selected voting protocols can be computed from the
quorum sizes (Figure 2). For write operations we distinguish between being
the originator of the operation (P O

w) or just a quorum participant (P R
w). From

these probabilities the scalability expressions (3) and (5) in Section 2.2 can be
calculated for each of the protocols. Figure 3 summarizes these results.2

For simplicity, we have linearly interpolated between the optimal configu-
rations for each quorum type (even number of nodes in MAJORITY, number of
nodes in HQC results in complete tree where each path from root to leaf has the
same length). Thus, the curves can be seen as an upper bound for the scale out

2We assume n is even for MAJORITY.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

268 • R. Jiménez-Peris et al.

Fig. 4. Scalability (voting): (A-C) symmetric and (E-F) asymmetric load (wo = 0.15).

factor because scalability might be lower for nonoptimal configurations [Naor
and Wool 1998].

Figure 4 shows the scale out as a function of the number of nodes and the
fractions of updates in the load. In a symmetric system, voting protocols exhibit
a poor scalability as can be seen in Figure 4 (A)-(C). ROWAA scales linearly for
a 100% reads profile because read operations are local. But the scalability of
ROWAA drops very fast when the proportion of writes increases. On the other
hand, MAJORITY and HQC present an almost null scalability over the entire range
with HQC performing slighly better than MAJORITY.

For asymmetric systems, the scalability of voting protocols improves notice-
ably as shown in Figure 4 (E)-(F). ROWAA presents good scalability when there
are more reads than writes (Figure 4(D)). The drop in the scalability of ROWAA

in the worst case scenario (w = 1) is not as sharp as in a symmetric sys-
tem. MAJORITY and HQC are significant worse than ROWAA at high read rates,
and outperform ROWAA at high update rates. In contrast to symmetric systems,
both MAJORITY and HQC are affected by both the number of sites and the pro-
portion of writes in an asymmetric system. HQC behaves slightly better than
MAJORITY.

3.4 Availability

If there are no network partitions, a system using ROWAA is available for both
write and read operations as long as one site is available. That is, it tolerates
up to n−1 site failures. The probability that all sites fail is: (1− p)n. Therefore,
the availability ROWAA is given by:

av = avr + avw = 1 − (1 − p)n

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 269

Fig. 5. Unavailability of voting protocols for p = 0.9.

If a primary component is considered, ROWAA exhibits the same availability
as MAJORITY. In MAJORITY, the system can progress as long as there is a majority
of available sites. For simplicity in the notation, we assume an odd number of
sites, n = 2k + 1 (i.e., both write and read quorums require k + 1 sites and we
do not need to distinguish between the two types of operations). From here, the
system availability is given by the following expression:

av = Probability(k + 1 copies up) + Probability(k + 2 copies up) + · · ·
+ Probability(n copies up) =

k+1
∑

i=1

(

n

k + i

)

pk+i(1 − p)k+1−i

The availability of HQC is computed upwards from the leaves (avh) of the
tree (level h) to the root (level 0), where the availability of the root (av0) is
the system availability. The availability of level i (avi) is the probability of
having a majority of nodes of level i +1. Assuming that p is the availability of a
single site, the availability formulas are recursively defined as follows [Kumar
1991]:

avh = p avi =
3

∑

j=2

(

3

j

)

(avi+1) j · (1 − avi+1)3− j av = av0

All these protocols are (s, d)-fair. Thus, all sites play the same role, they
manifest the best possible availabilities for their quorum sizes. Figure 5 shows
the unavailability of voting protocols as a function of the system size for p =
0.9.

Ignoring network partitions, ROWAA has the best availability. Considering
network partitions, the most available quorum system is (minimal) MAJORITY

under the assumptions of uniform failure probability and p > 1
2 [Barbará and

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

270 • R. Jiménez-Peris et al.

Voting prot. Point-to-Point Multicast

ROWAA
3·w
ow

· (n − 1) w
ow

· (n + 1)

MAJORITY
3·w
ow

· n
2 + (1 − w) · (n − 2) w

ow
· n+4

2 + (1 − w) · n
2

HQC (n0.63 − 1) · (3·w
ow

+ 2 · (1 − w)) w · n0.63+1
ow

+ (1 − w) · n0.63

Fig. 6. Communication overhead for voting quorums.

Fig. 7. Communication overhead (voting quorums and ow = 5): (A-C) point-to-point communica-
tion; (D-F) multicast. The numbers in parenthesis indicate the number of sites.

Garcia-Molina 1987; Peleg and Wool 1995]. This means that the availability of
MAJORITY is the upper bound for the availability of any quorum system under
the previous conditions. HQC has an availability close to the one of MAJORITY

when site availabilities are over 0.8.

3.5 Communication Overhead

The communication overhead is computed as the number of messages required
per operation. Applying expressions (7) and (8) from Section 2.4 we obtain the
overheads shown in Figure 6.

Figure 7 shows that HQC outperforms MAJORITY for both point-to-point com-
munication and multicast, no matter the proportion of read and write oper-
ations due to the smaller quorum sizes. With point-to-point communication,
ROWAA behaves better than HQC when the there are more reads than writes.
With multicast, ROWAA outperforms HQC even for configurations with more
writes (70%) than reads.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 271

Fig. 8. Different types of grids: (A) 3 × 4 Rectangular; (B) Triangular; (C) Paths; (D) 2-level, 2 × 2
Hierarchical.

3.6 Summary of ROWAA and Voting Quorums

Overall, ROWAA seems to be the best choice among this group of protocols. It be-
haves better in terms of scalability and communication overhead when the
proportion of reads is greater than the one of writes. If multicast is avail-
able, ROWAA produces a smaller communication overhead even when there are
more writes than reads. If network partitions are ignored, ROWAA also exhibits
the best availability. Extending ROWAA to cope with network partitions will
bring its availability down to that of MAJORITY. Both MAJORITY and ROWAA allow
easy reconfiguration in case of failures or the addition of new nodes into the
system.

4. GRID QUORUMS

4.1 Basic Grid Quorum

The simplest form of grid quorum is the rectangular grid [Cheung et al. 1990]. A
rectangular grid quorum organizes the n sites in a grid of r rows and c columns
(i.e., n = r · c). A read quorum consists of accessing an element of each column
of the grid (rq = c). A write quorum requires an entire column and one element
from each of the remaining columns (wq = r + c − 1). Given the grid in Figure
8(A), examples of read quorums are: {5, 2, 7, 12}, {9, 10, 3, 4}, or {1, 6, 11, 4}.
Examples of write quorums are: {1, 5, 9, 2, 7, 4}, {2, 6, 10, 5, 7, 4}, {3, 7, 11, 9,
6, 4}.

A rectangular grid becomes optimal in terms of quorum sizes when the grid
is a square. In this case, rq =

√
n and wq = 2 ·

√
n − 1. In what follows we will

refer to this type of grid as SQUARE.

4.2 Alternative Grid Patterns

A simple extension of the original rectangular grid is proposed by Kumar et al.
[1993] by allowing read quorums to either contain one element from each col-
umn or all elements from a single column. This increases the availability of the
grid without affecting the scalability (in particular, when the grid is a square
read quorums remain s-uniform). The authors also propose configurations for
incomplete grids. They allow not only for more flexibility in the grid structure
but also exhibit better availability.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

272 • R. Jiménez-Peris et al.

Sites in a triangular grid or TRIANGLE [Erdös and Lovász 1975; Lovász 1973]
are arranged in d rows such that row i (i > 1) has i elements (Figure 8(B)). A
write quorum is the union of one complete row and one element from every row
below the full row. Therefore, the quorum size is always d. A read quorum can be
either one element from each row or a write quorum. In the former case, all reads
go through the site in the first row, therefore, we will consider that read and
write quorums are formed in the same way. Since d is the number of rows, then
the number of sites in the system should be n =

∑d
i=1 i = d · (d + 1)

2 and therefore,

d = −1 +
√

1 + 8 · n
2 . It should be noted that TRIANGLE is a uniform quorum system

but is not (s, d)-fair. Sites at the bottom rows have a lower degree than those at
the top. We will assume that there is a mechanism to distribute the load so that
all sites have approximately the same load. For instance, the database can be
divided in p partitions and there is a TRIANGLE for each partition. Transactions
are executed within one partition.

Crumbling walls (CW) generalize TRIANGLE by not requiring row i to have i

elements [Peleg and Wool 1997]. Quorums in a CW follow the same rules as in
TRIANGLE. Although there are no restrictions on the number of elements of each
row, a CW is a non-dominated coterie (the most available quorums) if the width
of the first row is one and the width of the rest of the rows is equal or greater than
two. Peleg and Wool [1997] also show that the availability of a wall improves
when the row widths increase monotonically. All these requirements are met
by TRIANGLE. The main advantage of CW is that logarithmic row width growth
walls (CWlog) have a Condorcet failure probability3 when the number of sites
tends to infinity. However, since we are interested in realistic configurations
(up to few tens of sites) and quorum sizes in CWlog are not uniform, we will
restrict our study to TRIANGLE.

Lattice grids aim at increasing the availability of rectangular grids. They
require quorums to be formed using paths from top to bottom (vertical paths)
and from left to right (horizontal paths) [Theel and Pagnia-Koch 1995; Wu and
Belford 1992]. A read quorum is a horizontal path while a write quorum is a
horizontal and a vertical path. This idea can be applied to grids of different
shape and can be used in a hierarchical manner. Lattices were further general-
ized by Naor and Wool [1998] who proposed several alternative grid quorums:
Paths, SC-Grid and B-Grid. Naor and Wool already indicate that PATHS is the
best option of the three so we will ignore the other two here. PATHS is based
on two superimposed square grids one of size d and the other of size d + 1
(Figure 8(C), with d = 2). The number of nodes in the system, n, must be such
that n = 2 ·d2 +2 ·d +1 for some positive integer d . From that, d = −1 +

√
2·n− 1

2 .
These two grids of vertices are transformed into two grids of edges (G and G∗)
by substituting every vertex with two edges, one vertical and one horizontal.
Quorums are defined as paths over the edge grids G and G∗. Thus, a read quo-
rum can be built using a horizontal path in G and a write quorum using a
horizontal path in G and a vertical path in G∗. A minimum path (horizontal

3When sites fail with probability p, the failure probability of quorum system Fp, Fp → 0 when
p < 1

2 and Fp → 1 when p > 1
2 .

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 273

Grid prot. rq wq Pr P O
w P R

w

SQUARE
√

n 2 ·
√

n − 1 1√
n

1
n

2·
√

n−2
n

TRIANGLE
−1+

√
1+8·n

2
−1+

√
1+8·n

2
−1+

√
1+8·n

2·n
1
n

−3+
√

1+8·n
2n

PATHS
1+

√
2n−1
2

√
2n − 1 1√

2n−1−1
1
n

√
2n−1−1

n

Fig. 9. Quorum sizes and probabilities of participating in a quorum of selected grid quorums.

or vertical) is of size d + 1. Thus, a read quorum is of size d + 1 = 1 +
√

2 · n− 1
2

and a write quorum of size 2 · d + 1 =
√

2 · n− 1. Since d + 1 <
√

n for all values
of d and n, this approach has better scalability than SQUARE. The advantage of
PATHS lies in the extra flexibility added by using paths rather than columns. In
SQUARE, we need a complete column. Hence, when all columns have a failed site,
no quorum can be formed. In PATHS, the failures must occur all in the same row
in the grid of size d or all in the same column in the grid of size d +1. Otherwise,
the failed sites can be circumvented by building a path around them (at the cost
of larger quorums).

Another variation on the rectangular grids are hierarchical grids [Kumar
1991]. A construction that is isomorphic to hierarchical grids has also been
proposed by Naor and Wool [1998] in the form of the AndOr system. In a
hierarchical grid, sites are organized in an h-level grid. At each level there
is a grid. For instance, 16 sites can be configured into a 2-level grid of 2 × 2
at each level (Figure 8(D)). A read quorum is recursively formed by choosing
an element of every column at each grid level. A write-only quorum is recur-
sively formed by choosing at level i a full column of level i − 1 nodes. A write
quorum is made combining any pair of read and write-only quorums. For rect-
angular grids, this results in a read quorum size of

√
n and a write quorum size

of 2 ·
√

n − 1, that is, identical to its nonhierarchical counterpart. In terms of
availability, a one-level rectangular grid has an asymptotic availability of 0. The
hierarchical grid has an asymptotic availability of 1. However, this occurs only
when n tends to infinity and, therefore, this difference in behavior is irrelevant
in practice.

To study the characteristics of grid based quorums, we will focus our atten-
tion on SQUARE, TRIANGLE, and PATHS quorums systems. SQUARE represents the
behavior of rectangular and hierarchical grids and are generally better than any
other variations on this theme. TRIANGLE is the best representative of crum-
bling wall methods. PATHS are chosen as the best option among lattice based
methods.

4.3 Scalability

Quorum sizes and probabilites are calculated in a similar way as for voting quo-
rums. The results are shown in Figure 9. Applying these values to expressions
(3) and (5) in Section 2.2, we can obtain the symmetric and asymmetric scale
out factors for each one of the protocols, shown in Figure 10.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

274 • R. Jiménez-Peris et al.

Grid prot. so so(wo)

SQUARE
n√

n·(w+1)−w
n

w·(1−2·wo)·(1−
√

n)+
√

n

TRIANGLE
2·n

−1+
√

1+8·n
2·n

3·w·(1−wo)−1+
√

1+8·n·(w·wo+1−w)

PATHS
2·n

(
√

2·n−1−1)·(w+1)+2
2·n

(
√

2·n−1−1)·(w·(2·wo−1)+1)+2

Fig. 10. Scale out factors of selected grid quorums.

Fig. 11. Scalability (grid quorums, wo = 0.15): (A-C) symmetric, (D-F) asymmetric load.

Figure 11 shows the symmetric and asymmetric scale out factors as a func-
tion of the number of sites and the fraction of updates in the load (w).

For symmetric systems (Figures 11(A)-(C), the poor scalability of grid quo-
rums is clear. Having the smallest quorum size, PATHS exhibits a slightly better
behavior. TRIANGLE is not affected by w since quorum sizes are the same for read
or writes. The slight advantage of PATHS and SQUARE over TRIANGLE for low val-
ues of w is due to the fact that read quorums in PATHS and SQUARE are smaller
than write quorums.

The scalability of grid based quorums improves in asymmetric systems
(Figures 11(D)-(F)). In an asymmetric system, scalability improves for write
dominated loads since remote writes are less expensive. Due to its smaller
quorum size, PATHS exhibits the best behavior for all values of n and w. Since
SQUARE has smaller read quorums and larger write quorums than TRIANGLE,
SQUARE performs better than TRIANGLE for low values of w and worse for high
values of w.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 275

Fig. 12. Read and write quorum availabilities and overall availabilities of selected grid quorums.

4.4 Availability

The availability in grid quorums is usually determined by the probability that
either no complete column or no complete path can be located. The latter implies
that either an entire row (for vertical paths) or an entire column has failed (for
horizontal paths). As an example, for rectangular grids, the write availability
of a grid of size r × c is (1 − (1 − p)r)c − (1 − pr − (1 − p)r)c and the read
availability is (1−(1−p)r)c [Cheung et al. 1990]. The latter is the probability that
every column has at least one working node. The former is the probability that
every column has at least one working node and there is one column with all its
nodes being up. The availability of SQUARE can be directly derived from there,
with sqrt(n) instead of r and c. The availability of PATHS is calculated in similar
way but taking into account that one works with paths rather than columns or
rows. We use the failure probability formula for crumbling walls in Peleg and
Wool [1997] to calculate the availability of TRIANGLE, taking into account that
row i has i elements (Figure 12).

Figure 13 shows the unavailability for the different grid quorums as a factor
of w. Except for Figure 13(C), we only consider optimal configurations for each
quorum.

The availability of grid quorums is dominated by a negative factor controlled
by w. This is due to the larger size of write quorums which are roughly twice the
size of read quorums in almost all grid quorums (except in TRIANGLE). This effect
can be clearly seen in Figures 13(A) and 13(C) (for SQUARE) and Figure 13(D)
(for PATHS). In rectangular grids, this effect can reach extreme proportions.
Figure 13(C) shows the unavailability of two rectangular grids (n = 14 and
n = 22). These two cases demonstrate the problems associated with the
configuration of grids. The problem with systems of size n = 14 or n = 22 is
that the only possible regular grids that can be constructed greatly distort the
size of the quorums. When the load contains only read operations, the greater
availability is due to the fact that read quorums are very small (2 nodes in both
cases) and, therefore, the system becomes very resilient to failures. However,
as soon as write quorums are needed, the availability of the system decreases
dramatically.

Overall, the best availability is provided by TRIANGLE and PATHS. TRIANGLE has
the advantage of having quorums of the same size for read and write operations.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

276 • R. Jiménez-Peris et al.

Fig. 13. Unavailability (grid quorums, p = 0.9): (A), (B), (D) optimal configurations; (C) including
nonoptimal configurations. The numbers in parenthesis indicate the number of sites.

This makes it independent of the nature of the load. Unfortunately, the avail-
ability increases very slowly with system size. This is because, in TRIANGLE,
if the last row fails, no quorum can be obtained. The relative size of this last
row compared with the total number of nodes decreases as n increases, thereby
limiting the advantage of having more sites. PATHS suffers from a more acute
version of the same problem. The availability of PATHS increases monotonically
with d (n = 2 · d2 + 2 · d + 1). We gain one nine of availability for each unit
increment of d. However, this gain implies a significant jump in system size.
Thus, with respect to availability, TRIANGLE seems a better option as it reaches
comparable availability levels with smaller system sizes.

4.5 Communication Overhead

Using expressions (7) and (8) from Section 2.4, the communication overhead in
each of the grid quorums can be derived based on the different quorum sizes. The
result is shown in Figure 14. Figure 15 compares the different protocols when

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 277

Grid prot. Point-to-Point Multicast

SQUARE 2 · (
√

n − 1) · (3·w
ow

+ 1 − w)
√

n · (2·w
ow

+ 1 − w)

TRIANGLE (−3 +
√

8 · n + 1) · (3·w
2·ow

+ 1 − w) −1+
√

8·n+1
2 · (w

ow
+ 1 − w) + w

ow

PATHS (−1 +
√

2·n − 1) · (3·w
ow

+ 1 − w) −1+
√

2·n−1
2 · (2·w

ow
+ 1 − w)

Fig. 14. Communication overhead for selected grid quorums.

Fig. 15. Communication overhead in grid quorums: (A-C) point-to-point; (D-F) multicast. The
numbers in parenthesis indicate the number of sites.

point-to-point communication is used (Figures 15(A)-(C)) and when multicast
is used (Figures 15(D)-(F)). In terms of message overhead, PATHS does better
than either SQUARE or TRIANGLE. This is due to the fact that the quorum size in
PATHS is smaller than for the other two grid types.

4.6 Summary of Grid Quorums

From the comparison above, it is clear that PATHS is a better option than SQUARE

and TRIANGLE. It has better scalability both in symmetric and asymmetric sys-
tems. It also exhibits better and more uniform availability. Finally, it has the
lowest communication overhead for most load types.

Our analysis only looks at optimal configurations (squares, triangles, com-
plete path structures). When nodes are removed or added, such configuration
changes and both scalability and availability usually degrade. For instance,
Naor and Wool [1998] provides mechanisms to find quorums for PATHS in any
kind of configuration while still distributing the load equally among all nodes.
However, scalability and availability might be considerably lower than that
described above (Naor and Wool [1998] only provide lower bounds). Alterna-
tively, in case of failure of an entire column, it would be feasible to transform

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

278 • R. Jiménez-Peris et al.

the grid into an SC-Grid or B-Grid [Naor and Wool 1998], but quorum forma-
tion is different and the protocol would need to be changed, again changing the
performance results.

A SQUARE can be turned into a rectangular grid. For instance, in SQUARE, if an
entire column fails, one can conceivably remove that column and keep working
with a rectangular grid. This is particularly useful when sites fail or parts of the
system need to be taken off-line. This affects the behavior of the system (e.g.,
Figure 13(C)) but still results in a grid that can work under similar principles.
TRIANGLE can also be turned into crumbling wall grids keeping the same rules
for forming quorums.

5. TREE QUORUMS

5.1 Basic Tree Quorum Construction

Tree quorums were first introduced in Agrawal and Abbadi [1990b] and further
elaborated in Agrawal and Abbadi [1991, 1992]. Further tree protocols have
been developed, mainly combining the concept of a tree structure with grid
structures or majority voting. Similar to grid protocols, tree quorums impose a
logical structure on the nodes in the system in order to reduce quorum sizes.
The copies of an object are organized into a tree of height h and degree d ,
that is, each node has d children and the maximum length from the root to
any leaf is h. Usually, analysis is only done for complete trees. In Agrawal
and Abbadi [1992], the authors analyze incomplete d -trees (each node has at
most d children). However, there exist many different incomplete d -trees for a
given number of nodes, and both average quorum size and availability strongly
depend on the structure of the tree. Hence, most of our calculations only hold
for complete trees and only represent rough estimations for incomplete trees.
A high degree of deviation can be expected in these cases.

A tree quorum q = 〈l , b〉 over a tree with height h and degree d is constructed
as follows [Agrawal and Abbadi 1992]: The protocol tries to select the root of
the tree and b children of the root. Furthermore, recursively for each selected
child, b of its children have to be accessed, and so on, until a depth l is reached.
In the case all nodes are accessible the quorum forms a tree of height l and
degree b. If some node is inaccessible at depth h′ from the root, the node is
replaced by b tree quorums of height l − h′ starting from the children of the
inaccessible node. In order to guarantee intersecting quorums, quorums must
overlap both in height and degree. For a read quorum rq = 〈lr , br〉 and write
quorum wq = 〈lw, bw〉 to overlap we need lr + lw > h and br + bw > d , for two
write quorums to overlap we have 2 · lw > h and 2 · bw > d .

5.2 Alternative Tree Quorums

This general definition of tree quorums can now be refined to special instances
that might favor one quorum type over the other or optimize availability.
In Agrawal and Abbadi [1990b], the authors first introduced the READROOT

protocol, in which a write quorum is wq = 〈h, d/2 + 1〉 and a read quorum has
dimensions rq = 〈1, (d + 1)/2〉. Write operations are performed on a quorum

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 279

Fig. 16. Example of a tree structure: 13 copies organized into a tree of height 3 and degree 3.

formed by the root, a majority of its children, a majority of the children of
each of these children, and so forth. Hence, two concurrent writes have at least
one element in common at each level of the tree. For instance, in the tree of
Figure 16 with degree 3 and three levels, a write operation could access the set
of copies {1, 2, 4, 6, 7, 11, 12}. Reads are performed on the root. If the root is not
available, the read should be performed on a majority of its children. For each
unavailable site needed for the majority, a read on a majority of its children
should be performed, and so forth. For instance, in the tree of Figure 16 a read
could access {1}. If 1 is unavailable, it could access {2, 3} and if 1, 3, and 4 are
unavailable, it could access {2, 9, 10}. Since write operations access a majority
of sites at each level, read and write operations will overlap at least in one site.
This means, READROOT has a majority approach regarding the degree parame-
ter (both read and write operations must acquire a majority of d nodes), and a
ROWAA approach regarding the height parameter (a read operation must only
access one level in the best case, while write operations must access all levels).

In contrast, in MAJTREE, a majority approach is used both for the degree and
the height parameters. That is, a read quorum is rq = 〈(h + 1)/2, (d + 1)/2〉
and a write quorum is wq = 〈h/2 + 1, d/2 + 1〉. This increases the availability
of write operations (since write quorums can be built without the root) but also
the access costs of read operations. Looking at Figure 16, possible read and
write quorum are, for instance, {1, 2, 3} or, if the root is down, {2, 5, 6, 3, 8, 9}.
However, if, for example, the root and both 2 and 3 are down, then neither read
nor write quorums can be built.

Finally, in LOGWRITE read quorums have dimension rq = 〈1, d 〉 and write
quorums are wq = 〈h, 1〉. The smallest read quorum consists of only the root. If
the root is down all children of the root must be accessed. If any of these nodes is
not accessible, all its children must be accessed, etc. Example of read quorums
in Figure 16 are {1}, {2, 3, 4} or {2, 3, 11, 12, 13}. Write operations must access
one node in each level such that the nodes build a path from the root to one leaf
(for instance {1, 4, 12} in Figure 16). This makes the approach similar to the
grid protocol (the grid having a triangular structure) with the difference that
no special measurements have to be taken to overlap write operations since all
write quorums include the root.

Agrawal and Abbadi [1991] propose a binary tree quorum protocol for mutual
exclusion that only considers write quorums. In general, a quorum is a path from
the root to any of the leaves. However, in case of failure of the root or for load
balancing purposes, not every quorum needs to access the root. As a result, the
quorums are not s-uniform. Since it has similar characteristics as MAJTREE, we
do not discuss it further.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

280 • R. Jiménez-Peris et al.

Tree prot. rq size wq size Pr P O
w P R

w

READROOT(3) 1 21+⌊log3n⌋ 1
n

1
n

2·(2⌊log3n⌋−1)
n

READROOT(d) 1 (d+1)·n⌊log3
d+1

2
⌋−2

d−1
1
n

1
n

d+1
d−1

· n
⌊logd

d+1
2

⌋−1
n

MAJTREE(3) 2
⌊log3n⌋+3

2 − 1 2
⌊log3n⌋+3

2 − 1 2
⌊log3n⌋+3

2 −1
n

1
n

2
⌊log3n⌋+3

2 −2
n

MAJTREE(d)
d+1

2

⌊logd n⌋+3

2 −2

d−1

d+1
2

⌊logd n⌋+3

2 −2

d−1

d+1
2

⌊logd n⌋+3

2 −2

n·(d−1)
1
n

d+1
2

⌊logd n⌋+3

2 −(d+1)

n·(d−1)

LOGWRITE 1 ⌊logd n⌋ + 1 1
n

1
n

⌊logd n⌋
n

Fig. 17. Quorum sizes and participation probabilities for selected tree protocols.

5.3 Scalability

The tree quorum systems are a special case in that sites generally do not have
the same degree. All other protocols (except TRIANGLE) ensure that all sites do
about the same amount of work without any special arrangement. For tree
quorums, the root and upper level nodes have a much higher load than the leaf
nodes, and there are no obvious mechanisms to automatically distribute the
load. Only MAJTREE offers the possibility to alleviate the load of the upper level
nodes at the price of generating bigger quorum sizes. READROOT and LOGWRITE

require each write quorum to access the rool. Obviously, if the entire load goes
through the root, the system will only scale as much as the root. If we assume
all sites have the same capacity, then the scale out factor is simply 1 for all val-
ues of n, w, and wo. To avoid this limitation, we will assume that the database
can be divided in n partitions, each one assigned to one site. We will further
assume that each site/partition is assigned a different tree where that site acts
as the root of the tree of the partition. The traffic will be divided among the
partitions so that transactions are executed only within one partition (other-
wise, serializability cannot be guaranteed). An additional shortcoming of the
tree quorum is that the quorum size grows when failures occur. For the sake of
simplicity, in our scalability analysis we will only consider the quorum size dur-
ing normal operation (i.e., without failures). We provide a general expression
for trees of degree d and resolve the expression for ternary trees. For analysis
purposes, we only consider cases in which d is odd and larger than 1 (i.e.,
d = 2 · m − 1, m > 1). If the number of nodes is given by n, we can approximate

the height h as h = ⌊logd n⌋ + 1 and n =
∑⌊logd n⌋

i=0 d i (assuming the root is at
level 0, its children at level 1, . . .).

Quorum sizes are given by the width and length of the quorum subtree.
If a quorum is determined by q = 〈l , b〉, then the size of the quorum can be
calculated by:

∑l
i=0 bi. Figure 17 summarizes the quorum sizes for the READ-

ROOT, MAJTREE, and LOGWRITE protocols. The table also provides the resulting
probabilities of being in a read (Pr) quorum, being the originator of a write
(P O

w), and being a remote node in a write operation (P R
w). The scalability ex-

pressions (3) and (5) in Section 2.2 for each of the protocols are depicted in
Figure 18.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 281

Tree prot. so so(wo)

READROOT(3) n

1+2·w·(2⌊log3n⌋−1)
n

1+w·wo·2·(2⌊log3n⌋−1)

READROOT(d) n

1+w· d+1
d−1 ·(n⌊logd

d+1
2

⌋−1)

n

1+w·wo· d+1
d−1 ·(n⌊logd

d+1
2

⌋−1)

MAJTREE(3) n

2
⌊log3n⌋+3

2 −1

n

w+w·wo·(2
⌊log3n⌋+3

2 −2)+(1−w)(2
⌊log3n⌋+3

2 −1)

MAJTREE(d) n·(d−1)

d+1
2

⌊logd n⌋+3

2 −2

n

w+w·wo·
d+1

2

⌊logd n⌋+3

2 −(d+1)

d−1 +(1−w)·
d+1

2

⌊logd n⌋+3

2 −2

d−1

LOGWRITE
n

1+w·⌊logd n⌋
n

1+w·wo·⌊logd n⌋

Fig. 18. Scale out factors for selected tree protocols.

Fig. 19. Scalability of tree protocols: (A-C) symmetric load; (E-F) asymmetric load (wo = 0.15).

Figure 19 depicts the scalability for trees with degree d = 3 for both
the symmetric (A)-(C) and asymmetric case (D)-(E). In the symmetric case,
MAJTREE has the worst scalability of all three protocols loads due to the high
costs of read operations. It only outperforms READROOT for very high update
rates. READROOT has very good scalability for high read rates but degrades very
fast for write intensive applicaitons. LOGWRITE has the best scalability. It even
scales reasonably well for write intensive applications. The reason is that reads
are local and write quorums are logarithmic on the number of nodes in the sys-
tem. In the asymmetric case, the results are generally better, especially for high
update rates. The relative performance between the protocols is similar to the

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

282 • R. Jiménez-Peris et al.

symmetric case. We would like to note, however, that this performance can only
be achieved if we are able to partition our data in equally active regions and
build individual trees for each of the regions such that each node in the system
experience the same load.

5.4 Availability

The availabilities of read and write operations can be expressed in form of
recurrence relations over the height of the tree. Let av(h)〈l , b〉 be the availability
of an operation that requires a tree quorum of length l and width b in a tree of
height h and degree d (we again assume that d is odd and d > 1, that is, d+1

2
builds a majority of children). The availability in a tree of height h + 1 can be
expressed by Agrawal and Abbadi [1992]:

av(h + 1)〈l , b〉 = Probability(root is up)
· [Availability of b subtrees with a(h)〈l − 1, b〉]
+ Probability(root is down)
· [Availability of b subtrees with a(h)〈l , b〉]

Taking p as the probability that a node is available, we obtain:

av(h + 1)〈l , b〉 = p ·
d−b
∑

i=0

(

d

b + i

)

· (av(h)〈l − 1, b〉)b+i · (1 − av(h)〈l − 1, b〉)d−b−i

+ (1 − p) ·
d−b
∑

i=0

(

d

b + i

)

(av(h)〈l , b〉)b+i · (1 − av(h)〈l , b〉)d−b−i

For MAJTREE we have to replace bby d+1
2 and l by (h+1)+1

2 for read quorums and
(h+1)

2 + 1 for write quorums. For READROOT and LOGWRITE the general equations
can be simplified and we can express the following availabilities for read (avr)
and write (avw) operations:

avr (ReadRoot) = Prob(root is up) + Prob(root is down)
· Prob(a majority of subtrees is read available)

avw(ReadRoot) = Prob(root is up) · Prob(a majority of subtrees is write available)
avr (LogWrite) = Prob(root is up) + Prob(root is down)

· Prob(all subtrees are read available)
avw(LogWrite) = Prob(root is up) · Prob(at least one subtree is write available)

Given that the availability of a tree of height h = 1 (one node) is av(1) = p

for all tree protocols and quorum types, Figure 20 indicates the recurrence
equations for all three tree protocols for h > 1.

Figure 21 shows the unavailability of the different tree protocols as a factor
of w. We only consider complete tree configurations. As with the grid protocols,
w influences the availability of the system negatively. This holds for all tree pro-
tocols (except for MAJTREE of height h = 3 where read and write quorums have
the same size). For READROOT, the availability of read operations increases with
the number of nodes while the availability of write operation decreases. For MA-
JTREE the behavior depends on whether the height is even or odd. In LOGWRITE

increasing the number of nodes helps for read operations, write operations are

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 283

Fig. 20. Availability for selected tree protocols.

Fig. 21. Unavailability of tree protocols (p = 0.9). The numbers in parenthesis indicate the number
of sites.

always close to the availability of the root, since on each further level, only one
out of d nodes needs to be available.

5.5 Communication Overhead

The communication overhead for the tree quorums according to Definitions 7
and 8 given in Section 2.4 for both multicast and point-to-point is given in
Figure 22. For READROOT and LOGWRITE, communication overhead increases
with the update rate whereby the overhead of LOGWRITE stays considerable
small due to the small quorum sizes. The performance improvements of mul-
ticast over point-to-point are obvious in these cases. The behavior of MAJTREE

depends strongly on the configuration. At height 2, a read quorum consists of
only one node favoring read intensive applications. At height 3, read and write
quorums have the same size and therefore, increasing update rates decreases

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

284 • R. Jiménez-Peris et al.

Fig. 22. Communication overhead of tree protocols for ow = 5: (A-C) point-to-point; (D-F) multi-
cast. The numbers in parenthesis indicate the number of sites.

the message overhead due to the capacity to bundle messages. At height 4,
write quorums are bigger than read quorums. Still, the high costs for remote
read operations lead to higher message costs at high read rates.

5.6 Summary of Tree Protocols

Within the tree protocols, LOGWRITE provides the overall best performance. Al-
though MAJTREE has better availability, the low scalability and high message
rates make it a very unattractive candidate.

However, there are a couple of issues that must be taken into consideration
when applying tree structures. In very few cases the number of nodes in the sys-
tem leads to a complete tree. Although incomplete trees can be used in exactly
the same way as complete trees [Agrawal and Abbadi 1992], their scalability
and availability varies, not only between trees with different number of nodes
but also within different tree configurations of the same size. Some work has
been done on how to balance the load in trees [Wool 1996; Naor and Wool 1998]
that can help to overcome this shortcoming.

As mentioned earlier, the indicated good scalability for READROOT and LOG-
WRITE can only be achieved when it is possible to build different trees for dif-
ferent data partitions, and to be able to distribute the load equally across all
sites. We doubt that this can be achieved in practice.

Additionally, tree protocols are not suitable in dynamic environments. For
instance, when one node fails permanently it must be replaced by another node,
otherwise one partition is not going to be available anymore (the node was root
of one partition) and all other trees in which the node was member change their
structure and with it, their availability and scalability. Similarly constraints
hold when new nodes join the system.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 285

Fig. 23. Scalability of ROWAA, PATHS and LOGWRITE.

6. OVERALL COMPARISON

In what follows, we compare the best solutions found in each category (ROWAA,
PATHS, and LOGWRITE).

6.1 Scalability

Figure 23 compares the scalability for these three protocols. LOGWRITE by far
outperforms the other two protocols for the entire range. Reading local data
and having only a logarithmic size of write quorums is the particular strength
of LOGWRITE. PATHS is by far the worst protocol and only performs better than
ROWAA for high update rates in asymmetric environments.

Unfortunately, LOGWRITE can only scale well if the load is distributed evenly
across all nodes. Since the protocol is not fair per se, all write quorums must
access the root, a smart a priori data partitioning is necessary to be able to
take advantage of this scalability. This means, the graph depicts only the best
case and the real scalability will be smaller. In the worst case, scale-out will be
one for all workloads. Finding a smart data distribution is, however, not easy,
and we are not aware of any algorithm that would tackle this problem.

In ROWAA and PATHS, it is quite simple to achieve the scalability depicted in
the figure. Additionally, both ROWAA and PATHS are fair. Hence, implementing
load balancing is trivial (e.g., send the next transaction to the node with the
lowest current CPU load).

6.2 Availability

Figure 24 depicts the availability of the three candidates. In this case ROWAA is
by far the best protocol, showing the fastest improvement when the number of

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

286 • R. Jiménez-Peris et al.

Fig. 24. Unavailability of ROWAA, PATHS and LOGWRITE.

nodes in the system increases. It also only depends on the number of nodes and
not on the type of application (read or write intensive).

PATHS has acceptable availability, however, a considerable number of nodes
must be added to the system to decrease unavailability by one 9, and there is al-
ways one 9 difference between the unavailability of read and write operations.
LOGWRITE has the worst availability and does not provide fault-tolerance for
write operations: if the root fails, then write operations cannot be performed.
If we partition the data, and each node is root for a different partition, then
only the write operations on the data for which the failed node is the root,
cannot be accessed anymore. This has two implications: First, even if one root
fails, we can still write the data for which the node was not the root. Sec-
ond, there exist many roots and if any of the roots fail, some data partition
cannot be written anymore. Depending on the application this will lead to
higher or smaller availability as depicted in the figure. If the application is
still functional even if some data is no more writable, availability is higher.
If the application requires all data to be accessible for update at any time,
then the availability is much smaller because all roots must be up for the
system to be operational. The more roots there are, the less likely this will
happen.

6.3 Communication Overhead

Figure 25 compares the communication overhead of the three protocols. The
communication behavior is similar to the scalability results.

LOGWRITE has the all-over best performance scaling very well over the entire
range. For instance, while ROWAA’s performance for large systems deteriorates
at high update rates, LOGWRITE keeps the communication overhead very small,
independently of whether multicast is available or point-to-point must be used.
PATHS has the opposite behavior than the other two protocols. While ROWAA and
LOGWRITE have higher overhead for updates, PATHS has higher overhead for
read operations. However, LOGWRITE outperforms PATHS even for update rates
of 100%. If the choice is between ROWAA and PATHS, then we have to look at the

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 287

Fig. 25. Communication overhead of ROWAA, PATHS and LOGWRITE. The numbers in parenthesis
indicate the number of sites.

application to decide which protocol is better. Since most applications will have
a tendency to be read intensive, ROWAA will be the better choice.

6.4 Configuration Density

Configuration density describes the behavior of the system when nodes are
added or removed. Other changes include the addition of new data to the sys-
tem or the change in access patterns in the workload. Thus, ROWAA, smoothly
adapts to any change. If nodes are added, the availability increases by a factor
easy to calculate and the scalability and communication equations are correct
for all system sizes. New data can simply be added by performing “Insert”
statements at all sites (just another write), and since all nodes have the same
access right to all data, changes in the access patterns can be handled by simple
load distribution algorithms.

For PATHS, the behavior is less smooth. If the system size n is not of the form
n = 2 · d2 + 2 · d + 1, we have to build a PATHS structure in which some nodes
appear twice, or where quorum sizes in general become larger. As a result, some
points in the grid become more critical and more loaded than others. This means
that in the case of incomplete grids, we have to do a smarter load distribution.
Naor and Wool [1998] propose algorithms for such load redistribution. However,
they are cost intensive and might not lead to optimal scalability.

The same holds for LOGWRITE. Adding a new node changes the form of the
tree. Although incomplete trees do not necessarily have less scalability or avail-
ability, it is a cumbersome calculation to change a tree with n nodes into a tree
with n+1 such that the tree has optimal availability and smallest quorum size
of all trees of size n + 1. Additionally, whenever we add a new node we have to
create a new tree with this new node as the root and repartition our data from
n trees to n+1 trees in order to achieve optimal load distribution. For the same

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

288 • R. Jiménez-Peris et al.

reason, if we new data is added to the system or the access patterns change,
the data partitions must be recomputed.

7. RELATED WORK

There are many important results on the availability of quorum systems and
most of the papers that study quorum systems compare the availability of dif-
ferent quorum protocols.

For systems with homogeneous site availability, Barbará and Garcia-Molina
[1987] show that for p > 0.5 the most available quorum system is MAJORITY.
For p < 0.5, Peleg and Wool [1995] show that the singleton (monarchy) exhibits
the best availability. In that paper the authors study the availability of several
quorums systems (MAJORITY, wheel, TRIANGLE, LOGWRITE, SQUARE, . . .). The au-
thors provide the number of quorums, the minimal quorum cardinality and the
failure probability. The availability figures presented in our paper show what
was predicted by these theoretical results. A detailed comparative study of the
availability of exclusive quorums (equivalent to write quorums) can be found
in Wool [1996]. In this comparison, the availability formulas for exclusive quo-
rums are derived and those quorums exhibiting a Condorcet failure probability
are identified.

For systems with heterogeneous site availability, if all sites have an availabil-
ity p > 0.5, Tong and Kain [1988] and [Spasojevic and Berman 1994] show that
the optimal quorum system is weighted voting and provide a formula to obtain
the optimal weights. Finally, for the general case of systems with heterogeneous
site availability where 0 < p < 1, Amir and Wool [1998] prove that, if there
are sites with p > 0.5, then all sites with p < 0.5 should be set zero weights
(dummy copies) except when all sites p < 0.5, in which case the monarchy is
the optimal quorum with one of the sites with the highest availability as king.

Amir and Wool [1996] present an empirical study of quorum systems over
the Internet. The study was conducted with a 14-site system distributed among
two different geographic sites and three Internet segments during 6 months.
Fourteen dynamic and static quorums systems were evaluated. The study uses
three quality measures: system unavailability (there is no available quorum),
unaccessibility (the probability that the network component where a site resides
does not contain a quorum) and worst unaccessibility. The authors show that
dynamic quorum systems behave better than static ones as predicted by ana-
lytical and simulation studies. An important contribution of this paper is that
it proves empirically that the traditional assumptions in availability studies,
independent failures and absence of partitions, are invalid. More particularly,
their experiments show that the independent failure assumption does not hold
in LANs, and the absence of partitions does not hold in WANs.

Wool [1998] argues that quorums might become a viable option for repli-
cated database systems in the near future. A first reason is that due to CPU
and network improvements, remote reads do not lead to much higher response
times than local reads, especially in LAN’s. Secondly, by analyzing the load in a
similar way as our symmetric load analysis in Section 2.2, the author concludes
that quorums are better than ROWAA at already moderate update rates (e.g.,

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 289

25% in Maekawa’s quorum system [Maekawa 1985] of 13 sites). Our results
confirm these numbers for symmetric systems. However, our asymmetric anal-
ysis shows that asymmetric writes lower the impact of large write quorums
even for high update rates over 50%, and hence, favor the ROWAA approach
for a very wide range of applications.

Rangarajan et al. [1995] propose a quorum algorithm (subgroups) whose
resiliency (availability) is compared with MAJORITY and Maekawa’s algorithm
[Maekawa 1985]. The authors also compare the quorum sizes (best and worse
case) and the worst case message overhead (when failures occur) for the tree
algorithm [Agrawal and Abbadi 1989], HQC and grid-set [Agrawal and Abbadi
1990a]. They assume point-to-point communication, and contact a quorum for
each operation (no deferred updates).

The capacity of some quorum systems (MAJORITY, Maekawa’s algorithm, HQC,
and subgroups [Rangarajan et al. 1995]) is studied by Rangarajan et al. [1993].
The capacity is defined as the number of operations a system can perform on
average. The capacity takes into account the availability and the time needed
to perform an update operation and to process the messages needed to perform
that operation. The authors show that for MAJORITY, the capacity cannot be
increased by a factor greater than 1

p
(being p the probability of a node being

active). For Maekawa’s algorithm, it is shown that the capacity increases up to
a certain point and then it decreases.

According to Naor and Wool [1998], most of the previous analysis do not
distinguish between the properties of the quorum system and the properties
of the strategy that chooses which quorum to access. Naor and Wool define
a strategy as the frequency of picking each quorum. A strategy induces the
frequency of accessing each element, which is the load on that element. The
load on a given quorum system is the minimal load on the busiest element
induced by the best possible strategy. The authors calculate the minimum load
for voting systems and some tree protocols. They also present four algorithms
that have optimal or near optimal load and high availability (PATHS, B-Grid,
SC-grid and AndOr). The paper studies the protocols for mutual exclusion (write
operations). The load on an element is what we have called the probability of a
site to participate in a (read) write quorum. For those quorum systems that are
not (s, d)-fair the scalability provided must be considered an upper bound. Wool
[1996] provides a more exhaustive comparison of the load of mutual exclusion
quorums.

Keum et al. [1995] carry out a simulation of the performance for ROWA, MA-
JORITY, primary copy and the READROOT protocols. The performance measures
are the response time for both read and write transactions and the ratio of the
total number of committed transactions to the total number of transactions.
Their simulation assumes that locks must be acquired at each site in a quorum
before performing a read or write operation. They show that if the read trans-
action ratio is low, primary copy and READROOT protocols outperform the other
protocols. MAJORITY has poor performance under all simulation conditions. The
performance of ROWA varies with system load and read transaction ratio.

Liu et al. [1997] compare the performance of primary copy and MAJORITY pro-
tocols with no replication. The simulation measures data availability, response

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

290 • R. Jiménez-Peris et al.

time and throughput with and without failures for three- and five-fold repli-
cation. In the primary copy, protocol updates are deferred until the 2PC is
executed.

Nicola and Jarke [2000] present an analytical model for symmetric replicated
database systems. The main innovation is the study of replication in the con-
text of two dimensions with integrated communication. These dimensions are
(1) the percentage of replicated data, and (2) the degree of replication of the data.
The first dimension varies from zero replicated items to the replication of all
the items, whilst the second dimension varies from two-fold partial replication
to full replication. The analytical model is based on a primary copy approach,
and analyzes throughput and response time. Their results depicts configura-
tions in which either the network of the database become the bottleneck.

Message overhead is studied in Saha et al. [1996]. The authors study the
average case message overhead for MAJORITY, rectangular grids, LOGWRITE, HQC

and RST [Rangarajan et al. 1995] protocols. The average message overhead for
point-to-point communication is calculated taken into account the presence
of failures. They also consider the trade-off between message overhead and
availability.

Kumar and Segev [1993] study how to assign votes to minimize the commu-
nication cost taken into account the availability of the quorum protocols. The
model assumes that locks must be acquired at each site in a quorum before
performing a read or write operation. They do not consider the availability of
multicast primitives. They study the communication cost for equal and differ-
ent vote assignments, with and without tolerating failures, and for different
availability thresholds.

Kumar [1990] compares the communication cost and availability of HQC and
MAJORITY. The communication cost is studied when link failures occur for point
to point communication.

Ingols and Keidar [2001] perform a simulation to evaluate the effect of the
interruptions on the availability of dynamic voting algorithms. Dynamic voting
consists in selecting a new primary component adaptively. Interruptions take
into consideration the fact that the process to form a new primary component
does not always succeed.

Many efforts have been devoted to compare different performance criteria
(throughput, response time, message cost, abort rate, and deadlocks) for dis-
tributed and replicated databases [Ciciani et al. 1990; Carey and Livny 1986;
Gray and Reuter 1993; Anderson et al. 1998; Hwang et al. 1996]. However, none
of those efforts take into account quorum protocols.

In terms of the scalability of replication protocols, we are not aware of any
approach analyzing asymmetric systems, i.e., all citations above refer to anal-
ysis of symmetric systems. Furthermore, we have not found any discussion
regarding the complexity and technical problems of performing database read
operations (SQL select statements) within a quorum compared to simply ex-
ecuting them at a single site. Finally, to the best of our knowledge, none of
the papers that takes into account the communication overhead uses multicast
primitives and only [Liu et al. 1997] consider deferred update propagation for
the primary copy protocol.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 291

8. CONCLUSIONS

In this article, we have compared quorum based data replication protocols
among themselves and with the conventional read one-write all available ap-
proach. Although quorum protocols are often proposed as the means to improve
the performance and availability of replicated databases, the results presented
in this paper raise important questions regarding their applicability in practice.

Scalability. ROWAA and LOGWRITE are, in principle, the best choices for read
intensive environments in both symmetric and asymmetric systems. For very
write intensive environments (close to write only applications), PATHS outper-
forms ROWAA. However, typical workloads are neither extremely read intensive
nor extremely write intensive. In most cases, there is a tendency to have more
reads than writes (with a 70/30 or even 80/20 ratio in most cases). Thus, most
applications greatly benefit from local reads. This makes ROWAA and LOGWRITE

better choices for systems that must support a wide range of loads. To decide
between these two protocols, one needs to look at load balancing. In ROWAA, the
load is automatically balanced by simply directing transactions uniformly to all
nodes. In LOGWRITE, it is theoretically possible to balance the load using data
partitions and assuming disjoint access patterns. In practice, unfortunately,
this is not a very realistic approach and LOGWRITE creates serious load balanc-
ing problems that render it infeasible in many scenarios. Therefore, ROWAA is
realistically speaking the best option from a scalability point of view.

Availability. ROWAA provides the best possible availability: the availability
increases linearly, in a logarithmic scale, with each additional replica added to
the system. Moreover, the availability does not depend on the type of workload
(read intensive or write intensive). The simple version of ROWAA does not tolerate
network partitions but it can be extended so that it can cope with them. In that
case, the availability of ROWAA is the same as that of MAJORITY. Since MAJORITY

is the second best protocol in terms of availability, we conclude that ROWAA is
the best option from the point of view of availability.

Message overhead. Many clusters are built nowadays in a star configura-
tion with a switch at the center. As a result, multicast is the normal mode of
operation. With this in mind, LOGWRITE has the best behavior in terms of mes-
sage overhead. ROWAA is expensive in terms of messages for write intensive
applications, however, never to the point of rendering it impractical.

Configuration. ROWAA does not impose any restriction in the number of
nodes. It also requires very little in terms of configuring the system. Changes
in the configuration can take place dynamically without having to change the
protocol. In this regard, ROWAA is a much better option than any of the other
protocols discussed.

The obvious conclusion from these results is that ROWAA is the best choice
for a wide range of application scenarios. It offers good scalability (within the
limitations of replication protocols), very good availability, and an acceptable
communication overhead. It also has the significant advantage of being very

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

292 • R. Jiménez-Peris et al.

simple to implement and very easy to adapt to configuration changes. For very
peculiar loads and configurations, it is possible that some variation of quorum
does better than ROWAA. The analyses provided in this article clearly identify
these situations and can serve as a guide to system designers for the few cases
in which ROWAA is not adequate.

REFERENCES

AGRAWAL, D. AND ABBADI, A. E. 1989. An efficient solution to the mutual exclusion problem. In
Proceedings of the ACM Symposium on Principles of Distributed Computing. (Edmonton, Alb.,
Canada). ACM, New York, 193–200.

AGRAWAL, D. AND ABBADI, A. E. 1990a. Exploiting logical structures in replicated databases. Infor-

mation Processing Letters 33, 5, 250–260.
AGRAWAL, D. AND ABBADI, A. E. 1990b. The tree quorum protocol: An eficient approach for managing

replicated data. In Proceedings of the International Conference on Very Large Databases (VLDB)

(Brisbane, Australia). Morgan-Kaufmann, San Mateo, Calif., 243–254.
AGRAWAL, D. AND ABBADI, A. E. 1991. An efficient and fault-tolerant solution for distributed mutual

exclusion. ACM Trans. Comput. Syst. 9, 1 (Feb.), 1–20.
AGRAWAL, D. AND ABBADI, A. E. 1992. The generalized tree quorum protocol: An efficient approach

for managing replicated data. ACM Trans. Datab. Syst. 17, 4 (Dec.), 689–717.
AHAMAD, M. AND AMMAR, M. H. 1989. Performance characterization of quorum-consensus algo-

rithms for replicated data. IEEE Trans. Softw. Eng. 15, 4 (Apr.), 492–496.
AMIR, Y. AND WOOL, A. 1996. Evaluating quorum systems over the internet. In Proceedings of the

IEEE International Conference on Fault-Tolerant Computing Systems (FTCS) (Sendai, Japan).
IEEE Computer Society Press, Los Alamitos, Calif., 26–35.

AMIR, Y. AND WOOL, A. 1998. Optimal availability quorums systems: Theory and practice. Inf.

Proc. Lett. 65, 5 (Mar.), 223–228.
ANDERSON, T. A., BREITBART, Y., KORTH, H. F., AND WOOL, A. 1998. Replication, consistency, and prac-

ticality: Are these mutually exclusive? In Proceedings of the ACM SIGMOD Conference (Seattle,
Wash.). ACM, New York, 484–495.

BACON, J. 1997. Concurrency Systems. Addison-Wesley, Reading, Mass.
BARBARÁ, D. AND GARCIA-MOLINA, H. 1987. The reliability of vote mechanisms. IEEE Trans.

Comput. 36, 10 (Oct.), 1197–1208.
BARBARÁ, D., GARCIA-MOLINA, H., AND SPAUSTER, A. 1989. Increasing availability under mutual ex-

clusion constraints with dynamic vote reassignment. ACM Trans. Comput. Syst. 7, 4 (Nov.),
394–426.

BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, N. 1987. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, Mass.
BERNSTEIN, P. A., SHIPMAN, D., AND ROTHNIE, J. B. 1980. Concurrency control in a system for dis-

tributed databases (SDD-1). ACM Trans. Datab. Syst. 5, 1 (Mar.), 18–51.
CAREY, M. J. AND LIVNY, M. 1986. Conflict detection tradeoffs for replicated data. ACM Trans.

Datab. Syst. 16, 4 (Dec.), 703–746.
CAREY, M. J. AND LIVNY, M. 1988. Distributed concurrency control performance: A study of al-

gorithms, distribution, and replication. In Proceedings of the International Conference on Very

Large Databases (VLDB). Morgan-Kaufmann, San Mateo Calif., 13–25.
CHEUNG, S. Y., AHAMAD, M., AND AMMAR, M. H. 1990. The grid protocol: a high performance

scheme for maintaining replicated data. In Proceedings of the IEEE International Confer-

ence on Data Engineering (ICDE). IEEE Computer Society Press, Los Alamitos, Calif., 438–
445.

CHEUNG, S. Y., AMMAR, M. H., AND AHAMAD, M. 1991. Multidimensional voting. ACM Trans. Com-

put. Syst. 9, 4 (Nov.), 399–431.
CICIANI, B., DIAS, D. M., AND YU, P. S. 1990. Analysis of replication in distributed database systems.

IEEE Trans. Knowl. Data Eng. 2, 2 (June), 247–261.
COULOURIS, G., DOLLIMORE, J., AND KINDBERG, T. 2000. Distributed Systems. Concepts and Design.

3rd edition. Addison Wesley, Reading, Mass.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

Are Quorums an Alternative for Data Replication? • 293

EAGER, D. L. AND SEVCIK, K. C. 1983. Achieving robustness in distributed database systems. ACM

Trans. Datab. Syst 8, 3 (Sept.), 354–381.
ERDÖS, P. AND LOVÁSZ, L. 1975. Problems and results on 3-chromatic hypergraphs and some related

questions. Colloq. Math. Soc. János Bolyai 10, 609–627.
GIFFORD, D. K. 1979. Weighted Voting for Replicated Data. In Proceedings of the 7th ACM Sym-

posium on Operating Systems (Pacific Grove, Calif.). ACM, New York, 150–162.
GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D. 1996. The dangers of replication and a solution.

In Proceedings of the ACM SIGMOD Conference (Montreal, Ont., Canada). ACM, New York,
173–182.

GRAY, J. AND REUTER, A. 1993. Transaction Processing: Concepts and Techniques. Morgan-
Kaufmann Publishers, San Mateo, Calif.

HERLIHY, M. 1987. Dynamic quorum adjustment for partitioned data. ACM Trans. Datab.

Syst. 12, 2 (June), 170–194.
HWANG, S., LEE, K. K. S., AND CHIN, Y. H. 1996. Data replication in a distributed system: A per-

formance study. In Proceedings of the 7th Database and Expert Systems Applications (Zurich,
Switzerland). Lecture Notes in Computer Science, vol. 1134. Springer-Verlag, New York, 708–
717.

INGOLS, K. AND KEIDAR, I. 2001. Availability study of dynamic voting systems. In Proceedings of

the IEEE Internationl Conference on Distributed Computing Systems (ICDCS) (Phoenix, Ariz.).
IEEE Computer Society Press, Los Alamitos. Calif., 247–254.

JAJODIA, S. AND MUTCHLER, D. 1990. Dynamic voting algorithms for maintaining the consistency
of a replicated database. ACM Trans. Datab. Syst. 15, 2 (June), 230–280.

JIMÉNEZ-PERIS, R., PATIÑO-MARTı́NEZ, M., ALONSO, G., AND KEMME, B. 2001. How to select a replica-
tion protocol according to scalability, availability, and communication overhead. In Proceedings of

the International Symposium on Reliable Distributed Systems (SRDS) (New Orleans, La.). IEEE
Computer Society Press, Los Alamitos, Calif., 24–33.

JIMÉNEZ-PERIS, R., PATIÑO-MARTı́NEZ, M., ALONSO, G., AND KEMME, B. 2002. Scalable database repli-
cation middleware. In Proceedings of the IEEE International Conference on Distributed Comput-

ing Systems (ICDCS) (Vienna, Austria). IEEE Computer Users Society, Los Alamitos, Calif.
KEMME, B. 2000. Database Replication for Clusters of Workstations. Ph.D. dissertation. Dept. of

Computer Science, Swiss Federal Institute of Technology Zurich.
KEMME, B. AND ALONSO, G. 2000. Don’t be lazy, be consistent: Postgres-R, A new way to imple-

ment Database Replication. In Proceedings of the IEEE International Conference (VLDB) (Cairo,
Egypt). Morgan-Kaufmann, San Mateo, Calif., pp. 134–143.

KEUM, C. S., CHOI, W., HONG, E. K., KIM, W. Y., AND WHANG, Y. 1995. Performance evaluation of
replica control algorithms in a locally distributed database system. In Proceedings of the 4th

International Conference on Database Systems for Advanced Applications (Singapore). World
Scientific Press, 388–396.

KUMAR, A. 1990. Performance of a Hierarchical Quorum Consensus Algorithm for Replicated
Objects. In Proceedings of the IEEE International Conference on Distributed Computing Systems

(ICDCS) (Paris, France). IEEE Computer Society Press, Los Alamitos, Calif., 378–385.
KUMAR, A. 1991. Hierarchical quorum consensus: A new algorithm for managing replicated data.

IEEE Trans. Comput. 40, 9 (Sept.), 996–1004.
KUMAR, A. AND SEGEV, A. 1993. Cost and availability tradeoffs in replicated data concurrency

control. ACM Trans. Datab. Syst. 18, 1 (Mar.), 102–131.
KUMAR, A., RABINOVICH, M., AND SINHA, R. K. 1993. A performance study of general grid structures

for replicated data. In Proceedings of the IEEE International Conference on Distributed Com-

puting Systems (ICDCS) (Pittsburgh, Pa.), IEEE Computer Society Press, Los Alamitos, Calif.,
178–185.

LEWIS, P., BERNSTEIN, A., AND KIFER, M. 2002. Databases and Transaction Processing. Addison-
Wesley, Reading, Mass.

LIU, M. L., AGRAWAL, D., AND ABBADI, A. E. 1997. The performance of replica control protocols in
the presence of site failures. Distrib. Syst. Eng. 4, 2 (June), 59–77.

LOVÁSZ, L. 1973. Coverings and colorings in hypergraphs. In Proceedings of 4th South Eastern

Conference on Combinatorics, Graph Theory and Computing. Utilitas Math., Winnipeg, B.C.,
Canada, 3–12.

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

294 • R. Jiménez-Peris et al.

MAEKAWA, M. 1985. A
√

N algorithm for mutual exclusion in decentralized systems. ACM Trans.

Comput. Syst. 3, 2 (May), 145–159.
NAOR, M. AND WOOL, A. 1998. The load, capacity, and availability of quorum systems. SIAM J.

Comput. 27, 2 (Apr.), 423–447.
NICOLA, M. AND JARKE, M. 2000. Performance modeling of distributed and replicated databases.

IEEE Trans. Knowl. Data Eng. 12, 4 (July), 645–672.
PARIS, J. F. 1986. Voting with witnesses: A consistency scheme for replicated files. In Proceedings

of the IEEE International Conference on Distributed Computing Systems (ICDCS) (Cambridge,
Mass.). IEEE Computer Society Press, Los Alamitos, Calif., 606–612.

PARIS, J. F. 1989. Voting with bystanders. In Proceedings of the IEEE International Conference

on Distributed Computing Systems (ICDCS) (Newport Beach, Calif.). IEEE Computer Society
Press, Los Alamitos, Calif., 394–405.

PARIS, J. F. AND LONG, D. E. 1991. Voting with regenerable volatile witnesses. In Proceedings of

the IEEE International Conference on Data Engineering (ICDE) (Kobe, Japan). IEEE Computer
Society Press, Los Alamitos, Calif., 112–119.

PELEG, D. AND WOOL, A. 1995. The availability of quorum systems. Inf. Comput. 123, 2 (Dec.),
210–223.

PELEG, D. AND WOOL, A. 1997. Crumbling walls: A class of practical and efficient quorum systems.
Distrib. Comput. 10, 2, 87–97.

RANGARAJAN, S., JALOTE, P., AND TRIPATHI, S. K. 1993. Capacity of voting systems. IEEE Trans.

Softw. Eng. 19, 7 (July), 698–706.
RANGARAJAN, S., SETIA, S., AND TRIPATHI, S. K. 1995. A fault-tolerant algorithm for replicated data

management. IEEE Trans. Parall. Distrib. Syst. 6, 12 (Dec.), 1271–1282.
ROTHNIE, J. B., BERNSTEIN, P. A., FOX, P. A., GOODMAN, N., ET AL. 1980. Introduction to a system for

distributed databases (SDD-1). ACM Trans. Datab. Syst. 5, 1 (Mar.), 1–17.
SAHA, D., RANGARAJAN, S., AND TRIPATHI, S. K. 1996. An analysis of the average message overhead

in replica control protocols. IEEE Trans. Parall. and Distrib. Syst. 7, 10 (Oct.), 1026–1034.
SPASOJEVIC, M. AND BERMAN, P. 1994. Voting as the optimal static pessimistic scheme for managing

replicated data. IEEE Trans. Parall. Distrib. Syst. 5, 1 (Jan.), 64–73.
THEEL, O. AND PAGNIA-KOCH, H. 1995. General design of grid-based data replication schemes using

graphs and a few rules. In Proceedings of the IEEE International Conference on Distributed Com-

puting Systems (ICDCS) (Vancouver, B.C., Canada). IEEE Computer Society Press, Los Alamitos,
Calif., 395–403.

THOMAS, R. H. 1979. A majority consensus approach to concurrency control for multiple copy
databases. ACM Trans. Datab. Syst. 4, 9 (June), 180–209.

TONG, Z. AND KAIN, R. Y. 1988. Vote Assignments in Weighted Voting Mechanisms. In Proceedings

of the International Symposium on Reliable Distributed Systems (SRDS). (Columbus, Ohio). IEEE
Computer Society Press, Los Alamitos, Calif., 138–143.

VAN RENESSE, R. AND TANENBAUM, A. S. 1988. Voting with ghosts. In Proceedings of the IEEE Inter-

national Conference on Distributed Computing Systems (ICDCS) (San Jose, Calif.). IEEE Com-
puter Society Press, Los Alamitos, Calif., 456–462.

WEIKUM, G. AND VOSSEN, G. 2001. Transactional Information Systems: Theory, Algorithms, and the

Practice of Concurrency Control and Recovery. Morgan-Kaufmann Publishers, San Mateo, Calif.
WOOL, A. 1996. Quorum systems for distributed control protocols. Ph.D. dissertation, The

Weizmann Institute of Science, Rehovot, Israel.
WOOL, A. 1998. Quorum systems in replicated databases: Science or fiction? Data Eng. Bull. 21, 4

(Dec.), 3–11.
WU, C. AND BELFORD, G. G. 1992. The triangular lattice protocol: A highly fault tolerant and highly

efficient protocol for replicated data. In Proceedings of the International Symposium on Reliable

Distributed Systems (SRDS). (Houston, Tex.). IEEE Computer Society Press, Los Alamitos, Calif.,
66–73.

YU, P. S., DIAS, D. M., AND LAVENBERG, S. S. 1993. On the Analytical Modeling of Database Concur-
rency Control. J. ACM 40, 4 (Sept.), 831–872.

Received June 2002; revised February 2003; accepted June 2003

ACM Transactions on Database Systems, Vol. 28, No. 3, September 2003.

