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Abstract

Background: Many complex random networks have been found to be scale-free. Existing

literature on scale-free networks has rarely considered potential false positive and false negative

links in the observed networks, especially in biological networks inferred from high-throughput

experiments. Therefore, it is important to study the impact of these measurement errors on the

topology of the observed networks.

Results: This article addresses the impact of erroneous links on network topological inference and

explores possible error mechanisms for scale-free networks with an emphasis on Saccharomyces

cerevisiae protein interaction networks. We study this issue by both theoretical derivations and

simulations. We show that the ignorance of erroneous links in network analysis may lead to biased

estimates of the scale parameter and recommend robust estimators in such scenarios. Possible

error mechanisms of yeast protein interaction networks are explored by comparisons between

real data and simulated data.

Conclusion: Our studies show that, in the presence of erroneous links, the connectivity

distribution of scale-free networks is still scale-free for the middle range connectivities, but can be

greatly distorted for low and high connecitivities. It is more appropriate to use robust estimators

such as the least trimmed mean squares estimator to estimate the scale parameter γ under such

circumstances. Moreover, we show by simulation studies that the scale-free property is robust to

some error mechanisms but untenable to others. The simulation results also suggest that different

error mechanisms may be operating in the yeast protein interaction networks produced from

different data sources. In the MIPS gold standard protein interaction data, there appears to be a

high rate of false negative links, and the false negative and false positive rates are more or less

constant across proteins with different connectivities. However, the error mechanism of yeast

two-hybrid data may be very different, where the overall false negative rate is low and the false

negative rates tend to be higher for links involving proteins with more interacting partners.

Background
Recent studies have found that many complex networks,
ranging from the World-Wide Web [1] and the scientific
collaboration network [2] to biological systems such as

the yeast protein interaction network [3], are scale-free.
The scale-free property states that the distribution of the
connectivity k (number of links per node) in a network
can be described by the power law, i.e.,
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P(k) = ck-γ, c > 0, γ > 0.  (1)

A visual diagnosis of the scale-free behavior can be made
through the log-log plot of the connectivity distribution,
in which a straight line with slope -γ is expected. In scale-
free networks, the nodes are not randomly or evenly con-
nected with some highly connected nodes ("hubs"). The
ratio of the number of "hubs" to that of nodes in the rest
of the network remains constant as the network changes
in size. One attractive feature is that scale-free networks
are more resistant to random failures compared with ran-
dom networks due to the existence of a few highly con-
nected "hubs" [4]. Remarkably, it has been observed that
the scale parameter γ varied only in the narrow range of
2.1 – 4 in the aforementioned real-world networks. All
existing studies on scale-free networks assumed that the
observed links represented the underlying structure of the
network, but paid little attention to the fact that the
observed links often involved errors, namely, false posi-
tives and false negatives. For example, Jeong et al. [3] con-
sidered the Saccharomyces cerevisiae protein interaction
network inferred from yeast two-hybrid (Y2H) experi-
ments. It is well-known that the Y2H system has many
false positives as well as false negatives [5]. A natural ques-
tion to ask is whether a scale-free network is still observed
as scale-free in the presence of errors. And if it is, what are
the possible underlying error mechanisms and how varia-
ble is the observed scale parameter γ? Answering these
questions may lead to further insight to the scale-free
property, better understanding and correct usage of the
observed network data. For convenience, we will call net-
works observed with erroneous links as perturbed net-
works in the rest of this article.

Results
In this article, we address the above questions by both the-
oretical derivations and simulation studies using the yeast
protein interaction network as a prototype. However, the
results apply to general scale-free networks.

Connectivity distribution of scale-free networks with 

erroneous links under a simple model

We first study how the connectivity distribution of a scale-
free network is affected when errors are present. Following
previous studies on the reliability of protein interaction
networks [6], we assume a simple error mechanism in
which the false positive rate (rFP) and false negative rate
(rFN) are the same for all node pairs, and false positives
and false negatives are independently generated. The false
positive rate and false negative rate of a node pair refer to
the probability that the pair of nodes is observed as linked
when they are actually not and the probability that the
pair of nodes is observed as unlinked when they are actu-
ally linked. Under this assumption, every truly linked pair
of nodes has a probability rFN to be observed as unlinked

nodes, and every truly unlinked pair of nodes has a prob-
ability rFP to be observed as linked nodes.

The above assumption is similar to the grand canonical
ensembles of random networks in Chapter 4 of Dorogovt-
sev and Mendes [7], in which networks evolve by remov-
ing existing edges and adding new edges with certain
probabilities. We can also view the perturbed network as
obtained by removing edges (false negative) and adding
edges (false positive) from the underlying network. The
probability of adding an edge between two non-linked
nodes is the false positive rate rFP, and the probability of
removing the edge between two linked nodes is the false
negative rate rFN. However, while Dorogovtsev and
Mendes mostly discussed the connectivity distribution of
equilibrium networks (networks obtained after infinite
times edge adding and removing), we focus on the con-
nectivity distribution of the observed network that are
obtained by considering removing every existing edge and
adding non-existing edges just once.

Connectivity distribution of the perturbed network

In the following, we will derive the distribution of the
observed connectivities for a scale-free network of size n
for given values of rFP and rFN. Let NP and NT denote the
observed and true connectivity of a node, respectively.
Then the probability to observe a node with k links is

The minimum and maximum connectivity of a node, Tmin

and Tmax, are assumed to be the same for all the nodes in
the network, and their values depend on the specific net-
work. In general, we set Tmin = 0 and Tmax = n - 1 when
expert knowledge is not available, where n denotes the
size of the network, i.e., the total number of nodes in the
network. The following elucidates how to calculate (2)
analytically. Let NFP, NTP, NFN, NTN, and NN be the num-
bers of false positive links (observed as linked but actually
not), true positive links (observed as linked and actually
linked), false negative links (observed as unlinked but
actually linked), true negative (observed as unlinked and
actually unlinked) and negative links (actually unlinked)
associated with the node, respectively. Since the observed
links of a node consist of both false positive and true pos-
itive ones, and the true links consist of true positive and
false negative ones, we have NP = NFP + NTP, NT = NFN +
NTP, NN = NFP + NTN, and Tmax = NT + NN. Furthermore,
underour assumed error mechanism, following similar
derivations as shown in [7], NFP and NFN follow the bino-
mial distributions Bin(Tmax - NT, rFP) and Bin(NT, rFN),
respectively, for a given value of NT. This implies that rFP =
E(NFP)/(Tmax - NT) = E(NFP)/(NFP + NTN) and rFP = E(NFN)/
NT = E(NFN)/(NTP + NFN), where E(X) denotes the
expectation of random variable X. Then the conditional
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probability P(NP = k|NT = j) in (2) can be written as
follows.

where dBin(k; p, n) = P(X = k) with X ~ Bin(n, p). Moreover,
the power law of the scale-free network implies that P(NT

= j) = cj-γ. Hence, the observed connectivity distribution
can be calculated by

Simulations

We next explore the impact of the erroneous links on the
topology of the scale-free networks. With an emphasis on
the yeast protein interaction network, we compute the dis-
tribution of the observed connectivity of scale-free net-
works with the false positive rate (rFP) and false negative
rate (rFN) similar to the yeast protein interaction network
under the assumption of the aforementioned simple error
mechanism. We set the scale parameter γ = 3, the size of
the network n = 1000 or 7000, and vary rFP from 0.0001 to
0.0003 and rFN from 0.1 to 0.9 on 9 equally spaced values.
These ranges of rFP and rFN are based on Deng et al. [8], in
which the authors estimated the false positive rate and
false negative rate to be less than 0.000285 and greater
than 0.64, respectively, based on the Y2H data. We con-
sider a larger range of rFP to cover other data sources, such
as the MIPS complex data, where false positives are less
frequent. In the calculations, we use Tmin = 1 and Tmax = n
- 1.

In the log-log plot (Figures 1 and 2) of the observed con-
nectivity distribution of the perturbed networks when (rFP

= 0.0001, rFN = 0.3) and (rFP = 0.00015, rFN = 0.8), it can
be seen that the connectivity distribution after perturba-
tion still maintains the scale-free property in the middle
range of the connectivity, but deviates from the original
linear pattern at both the small and large connectivity
regions. The slope of the linear part is close to the true
value -3 (see Tables A.1 and A.2 in Additional file 1). The
deviation is more significant in the large connectivity
region than that in the small connectivity region. This
deviation pattern is consistent across networks of different
sizes considered in our calculations (data not shown).
Comparisons among the observed connectivity distribu-
tions (figures not shown) of perturbed networks with dif-
ferent values of rFP and rFN suggest that the deviation
depends little on rFP but largely on rFN. As rFN increases, the

deviation of the tail probability becomes more significant.
This deviation is also more obvious in a smaller network.

Estimation of γ

The connectivity distribution of the perturbed network
suggests a cautious use of the observed link data, espe-
cially on estimating γ. The scaling parameter γ, an impor-
tant characteristic measure of the scale-free network, is
commonly estimated using the ordinary least squares
(OLS) in the linear model from the log transformation of
(1).

log P(k) = log c - γ log k.  (4)

It is well known that the OLS estimator can be very sensi-
tive to even a small number of outliers. For example,
applying the OLS estimator in Figure 1(a) will not be able
to capture the linear trend if the point at the last end is
included in the estimation. Therefore, robust estimators,
such as the M-estimator and the least trimmed squares
(LTS) estimator [9] are more proper choices in such situa-
tions due to their resistance to outliers. Our simulations
suggest that the LTS estimator can correctly capture the
linear trend without visual diagnosis of the connectivity
distribution, while the OLS and M-estimator often fail to
estimate the slope of the linear part correctly. Therefore,
we will use the LTS estimator in our following simulation
studies.

Exploring error mechanisms of yeast protein interaction 

networks by simulations

In the previous section, we found that the scale-free prop-
erty can be conserved to a large extent under a simple error
mechanism. However, the error mechanisms of the real
data are often more complicated. For more complicated
error mechanisms, theoretical derivations of the connec-
tivity distribution of the perturbed networks are often
intractable. But it is also important to know how the
empirical connectivity distributions of real networks are
affected by the erroneous links. Therefore, we conduct
extensive simulation studies to investigate the finite-sam-
ple impact of the error mechanisms on the connectivity
distribution. Our study focuses on the yeast protein-inter-
action network data.

For real network data, no matter whether erroneous links
are involved or not, the empirical connectivity distribu-
tion will not display a linear pattern as clear as the ones in
Figure 1 due to sampling variations and its discrete
approximation to the tiny probability of nodes with large
connectivities. For example, Figure 3 shows the connectiv-
ity distribution of a simulated scale-free network Net0 and
Figure 4 shows the connectivity distribution of Net0 after
perturbation by the simple error mechanism discussed
above. In Figure 4, we observe a much larger curvature
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Connectivity distribution of the perturbed scale-free networks (rFP = 0.0001, rFN = 0.3)Figure 1
Connectivity distribution of the perturbed scale-free networks (rFP = 0.0001, rFN = 0.3). This picture shows the con-
nectivity distribution of the the perturbed networks using (3) provided that rFP = 0.0001 and rFN = 0.3. Figure 1(b) and 1(d) are 
the linear parts of Figure 1(a) and 1(c), respectively, imposed with the regression lines fitted by the OLS.
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Connectivity distribution of the perturbed scale-free networks (rFP = 0.00015, rFN = 0.8)Figure 2
Connectivity distribution of the perturbed scale-free networks (rFP = 0.00015, rFN = 0.8). This picture shows the 
connectivity distribution of the the perturbed networks using (3) provided that rFP = 0.00015 and rFN = 0.8. Figure 2(b) and 2(d) 
are the linear parts of Figure 2(a) and 2(c), respectively, imposed with the regression lines fitted by the OLS.
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deviation from the linear trend at the small connectivity
region than that in Figures 1 and 2. It is not clear why the
empirical distributions of the simulated networks are so
different from the theoretical calculations, but this obser-

vation demonstrates that simulation studies are necessary
to complement the findings from the theoretical calcula-
tions. In addition, simulation studies can also explore
possible error mechanisms by comparing the connectivity

Connectivity distribution of Net0Figure 3
Connectivity distribution of Net0. This picture shows the connectivity distribution of the simulated scale-free random net-
work Net0 imposed with regression lines given by different methods (dashed line: OLS; dotted line: M-estimation; solid line: 
LTS).
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distributions of simulated perturbed scale-free networks
with the observed networks by assuming that their under-
lying structure are indeed scale-free.

In the following, we investigate the error mechanisms of
two real yeast protein interaction network data sets used
in Jeong et al. [3] and Deng et al. [6] by comparing the

Connectivity distribution of Net0 after perturbation (rFP = 0.0002, rFN = 0.7)Figure 4
Connectivity distribution of Net0 after perturbation (rFP = 0.0002, rFN = 0.7). This picture shows the connectivity dis-
tribution of the simulated scale-free random network Net0 perturbed by the simple error mechanism using rFP = 0.0002 and rFN 

= 0.7. Regression lines given by different methods are also imposed (dashed line: OLS; dotted line: M-estimation; solid line: 
LTS).
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connectivity distribution of these two networks with that
of the simulated network perturbed by different error
mechanisms. We assume that the true underlying topol-
ogy of the yeast protein interaction network is scale-free
[3]. Then if we perturb the simulated scale-free network by
the error mechanisms similar to the ones of the real yeast
protein interaction networks, the resulting connectivity
distribution should be similar to the ones of the real
networks.

MIPS and Y2H yeast protein networks

Jeong et al. derived the yeast protein network from com-
bined, non-overlapping Y2H data [10,11]. This network
has 1,870 proteins as nodes, connected by 2,240
identified direct physical interactions [12]. The other net-
work was obtained from the gold standard of yeast pro-
tein interactions based on the MIPS complex data [13].
This gold standard data set has 1,376 proteins and 2,876
interacting protein pairs, out of which 2,559 are also
recorded in the Yeast Proteome Database (YPD) [14]. The
YPD subset has 1,373 proteins. Estimates of γ from the
Y2H network, the gold standard data and the YPD subset
are 2.396, 2.721 and 2.870, respectively. The connectivity
distributions of these two networks are shown in Figure 5
and Figure 6, respectively.

Error mechanisms

We consider different error mechanisms in terms of differ-
ent types of false positive rates (pij = P (xi and xj are
observed linked|xi and xj are actually unlinked)) and false
negative rates (qij = P (xi and xj are observed unlinked|xi

and xj are actually linked)) for node pair (xi, xj), i = 1,..., n,
j = 1,..., n, i ≠ j. Assume that the overall false positive rate
and false negative rate are rFP and rFN, in the sense that the
expected number of false positive links and false negative
links are E(NFP) = rFP NN and E(NFN) = rFN NP. We consider
nine different error mechanisms by letting pij and qij be
one of the following three different types:

1. constant: pij = rFP and qij = rFN for all (xi, xj);

2. increasing (with connectivity):

3. decreasing (with connectivity):

where L(x) denotes the true connectivity of node x. For
Net0, NP = 49, 007 and NN = 24, 503, 521. The combina-
tions of different structures on false positive rates and false
negative rates produce nine error mechanisms in Table 1.

Simulation studies

We simulate a scale-free network Net0 using the preferen-
tial attachment growth model [15,16]. In this algorithm,
we start from m0 = 7 isolated nodes and add m = 7 links to
the existing nodes with probability proportional to their
connectivity in each of the T = 7, 000 evolving steps. Net0

has L = 49, 007 links and n = 7, 008 nodes. The mean-field
theory [15] suggests that the theoretical value of γ for Net0

is 3, which agrees well with the estimates in Table 2.

We always assume that false positives and false negatives
are independently generated. In the simulations, a link is
added (false positive) between every two unlinked nodes
(xi, xj) in Net0 with probability pij, and the link is removed
(false negative) between two linked nodes (xi, xj) in Net0

with probability qij. We also consider these error mecha-
nisms under high and low overall false positive (rFP) and
false negative rates (rFN). The connectivity distributions of
Net0 after perturbation are shown in Figures 7, 8, 9, 10 for
different values of rFP and rFN: (0.00025, 0.5), (0.00025,
0.8), (0.00015, 0.5), (0.00025, 0.8).

Under the nine different error mechanisms, the connectiv-
ity distribution of the perturbed Net0 can be dramatically
different. Under error mechanisms S2, S5, S6 and S9, the
perturbed networks contain a small proportion of nodes
with low connectivity, which differs greatly from the
observed yeast protein interaction networks (Figures 5
and 6). This finding suggests that these four mechanisms
are far different from the true error structure, and we will
not discuss them in the following. We also observe that
changes in rFP render little impact on the connectivity dis-
tribution under all error mechanisms, but a higher value
of rFN increases the probability of nodes with small con-
nectivity under S1, S3 and S8. And mechanisms S4 and S7
are highly stable structures, that is, the connectivity distri-
bution changes little in response to changes in rFP or rFN

under these two error mechanisms. This suggests that
scale-free networks with constant false negative rates can
still provide very credible information about its
topological structure. This finding is also confirmed by
the fact that the estimates of γ vary little when rFN changes
(see Tables A.5 and A.6 in Additional file 1). The esti-
mated values of γ vary only from 2.61 to 3.03 with a
standard error of 0.125 under S4 and only from 2.56 to
3.31 with a standard error of 0.161 under S7, whereas the
estimate of γ clearly decreases as rFN increases under S3
and S8 (Tables A. 4 and A. 7 in Additional file 1). Under
S1, there is no clear pattern on the estimated γ as rFN

changes (Table A.3 in Additional file 1), but the estimates
of γ vary in a much wider range (1.16 – 4.35) compared
with those under S3 and S8. It is worth noting that our
conclusions are restricted to the particular range of rFP and
rFN we have studied, however these ranges are believed to
be reasonable to describe the Y2H systems.
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The simple error mechanism S1 with a high false negative
rate produces patterns (Figures 8(a) and 10 (a)) similar to
that of the gold standard data (Figure 6). For the Y2H

yeast protein interaction network (Figure 5), S4 gives the
best approximation, but still differs slightly in the proba-
bilities of nodes with small connectivity. This suggests

Connectivity distribution of the Y2H yeast protein interaction networkFigure 5
Connectivity distribution of the Y2H yeast protein interaction network. This picture shows the connectivity distri-
bution of the protein interaction network in Jeong et al. [3] inferred from the Y2H data. The imposed regression line is fitted 
by the LTS method.
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that the real error structure of the Y2H analyses may be
more complicated than all the simple proposals we have
considered.

Conclusion
This article first investigates the impact of erroneous links
on network topological inference. From our theoretical

Connectivity distribution of the MIPS yeast protein interaction networkFigure 6
Connectivity distribution of the MIPS yeast protein interaction network. This picture shows the connectivity distri-
bution of the protein interaction network in Deng et al. [6] inferred from the MIPS gold standard data. The imposed regression 
line is fitted by the LTS method.
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and simulation results, we find that, under a simple error
mechanism, the scale-free property is preserved for
moderate connectivities. But the linear pattern is distorted
at both the small and large connectivity regions.
Accordingly, we recommend to use robust estimators (e.g.
LTS) that are more resistant to the outliers at both ends of
the distribution to estimate the scale parameter γ.

Moreover, we have also explored possible error mecha-
nisms of the yeast protein interaction data by simulations
considering nine different error mechanisms. The results
suggest that changes in the overall false positive rates have
little impact on the resulting connectivity distribution, but
increasing the overall false negative rates can increase the
probability of nodes with small connectivities under some
error mechanisms, and hence decrease the scale parameter
γ. The connectivity distribution can be very stable under
several error mechanisms when the overall false positive
rates and false negative rates change, which suggests that
in certain situations the observed data can provide
suffcient topological information on the underlying net-
work structure even when the false negative rates are quite
high.

The simple error mechanism that assumes that the false
positive rate and false negative rate of each protein pair are
constants agrees well with the MIPS gold standard data
when the false negative rate is high. A different error
mechanism is suggested for the Y2H data, where more
connected protein pairs tend to have higher false positive
rates and lower false negative rates. As this error mecha-

nism provides only a reasonable approximation to the
Y2H data, more sophisticated mechanisms might be
needed to better capture its error structure.

Methods
Preferential attachment growth model

In a series of papers [15,16], Barabási et al. demonstrated
that a scale-free network could be obtained by growing
from a small number of isolated nodes by preferential
attachment. The simulation scheme is defined in two
steps:

1. Growth: starting with a small number (m0) of nodes,
add a new node at every time step and connect it to m (≤
m0) nodes already present in the system

2. Preferential attachment: The new node is more likely to
connect to nodes with larger connectivity. The probability
Πi that a new node will be connected to node i depends on

its connectivity ki, such that .

Least Trimmed Squares (LTS)

The basic idea of LTS estimation is to minimize the sum
of h smallest squared residuals instead of all squared
residuals in the OLS to achieve robustness and also main-
tain good effciency. Please refer to [9] for more details of
the algorithm, such as practical choices of h. In this article,
the LTS estimation is performed using the lqs() function
implemented in R [17].

Table 1: Nine error mechanisms.

Error mechanism pij qij

S1 constant constant

S2 constant increasing

S3 constant decreasing

S4 increasing constant

S5 increasing increasing

S6 increasing decreasing

S7 decreasing constant

S8 decreasing increasing

S9 decreasing decreasing

Table 2: Parameter estimates for Net0.

Parameter OLS M-estimation LTS

log c 1.4600 1.7846 4.008

γ 2.0918 2.1769 2.803
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Connectivity distribution of Net0 perturbed by different error mechanisms (rFP = 0.00025, rFN = 0.5)Figure 7
Connectivity distribution of Net0 perturbed by different error mechanisms (rFP = 0.00025, rFN = 0.5).
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Connectivity distribution of Net0 perturbed by different error mechanisms (rFP = 0.00025, rFN = 0.8)Figure 8
Connectivity distribution of Net0 perturbed by different error mechanisms (rFP = 0.00025, rFN = 0.8).
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Connectivity distribution of Net0 perturbed by different error mechanisms (rFP = 0.00015, rFN = 0.5)Figure 9
Connectivity distribution of Net0 perturbed by different error mechanisms (rFP = 0.00015, rFN = 0.5).
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Connectivity distribution of Net0 perturbed by different error mechanisms (rFP = 0.00015, rFN = 0.8)Figure 10
Connectivity distribution of Net0 perturbed by different error mechanisms (rFP = 0.00015, rFN = 0.8).
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