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Are Space-Filling Curves Efficient Small Antennas?
José M. González-Arbesú, Sebastián Blanch, and Jordi Romeu, Member, IEEE

Abstract—The performance of space-filling curves used as small
antennas is evaluated in terms of quality factor and radiation effi-
ciency. The influence of their topology is also considered. Although
the potential use of these curves for antenna miniaturization their
behavior is not exceptional when compared with other intuitively-
generated antennas.

Index Terms—Fractals, monopole antennas, small antennas,
wire antennas.

I. INTRODUCTION:
SMALL ANTENNAS AND FRACTALS

A N antenna is said to be small when its size is much smaller
than its operating wavelength. In fact, when it can be en-

closed into a radiansphere [1] of radius(being ).
Small antennas are constrained in their behavior by a funda-
mental limit stated by Chu and reexamined by McLean [2], [3].
In the end, it is the electrical size (being the wavenumber
at the operating wavelength in free space) of the antenna what
limits the quality factor of a small antenna.

The quality factor is related with the impedance bandwidth
of the antenna. It is supposed that the bandwidth of an antenna
could be improved when the antenna efficiently uses the avail-
able volume of the radiansphere that surrounds it [4], [5]. In
this sense, the properties of fractal geometries were expected to
help when trying to design useful antennas that might improve
some features of common Euclidean ones [6]. Among them, the
fact that fractals have a Haussdorf–Besicovitch dimension that
could be fractionary and greater than their topological dimen-
sion. Mandelbrot [7] called this dimensionfractal dimension.

Recently, a lot of effort is concentrated on demonstrating how
fractals of higher fractal dimension are more efficient at low-
ering resonant frequencies than any other geometry [8] and, con-
versely, that fractals are not more effective than other geometries
with the same wire diameter, total wire length, and occupied
area [9], [10].

In our opinion, attention must concentrate on the ability of
fractal geometries to efficiently design antennas. This efficiency
has to be evaluated in terms of radiation efficiencyand loss-
less quality factor versus the electrical size of the an-
tenna, the parameter that according to the fundamental limit de-
fines the performance of the antenna. A first approach to this
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Fig. 1. Bi-dimensional space-filling designs with fractal dimension 2 (for the
limit fractal) and Euclidean designs. First row: Hilbert monopoles. Second row:
Peano monopoles, Peano variant 2 monopoles, and Peano variant 3 monopoles.
Third row: standard�=4 monopole and meander line loaded monopoles.

criterium was presented at [10]. A deeper study assessing how
far are fractal antennas at resonance from the fundamental limit
and the independence of these results from fractal dimension are
presented in this research through the use of quality factor and
radiation efficiency maps versus electrical size to show trends
of certain fractal families compared against nonfractal designs.

II. SPACE-FILLING CURVES ASMONOPOLES

Space-filling fractal curves are potential candidates to build
miniature antennas thanks to their capability of compressing
large wires into small areas. In [6], a Koch curve was analyzed
in a monopole configuration and presented as a first example of
fractal curve with improved characteristics. This first experience
was extended to fractal dipole configurations using bi-dimen-
sional and three dimensional fractal trees [11]. Simulated con-
figurations agreed with expectations when analyzing the com-
puted values for a frequency range where external compen-
sation of the reactive part of the input impedance of the an-
tennas was needed. Nevertheless, for self-resonant prefractal
structures (when no external loads are needed to cancel the re-
active impedance of the antenna) no practical evidence of their
behavior in terms of has been reported until now.

The importance of space-filling geometries as optimal or
efficient curves for small antenna design is assessed in this work
using bi-dimensional wire monopoles. Bi-dimensional geome-
tries are preferred thanks to its easy fabrication procedures with
conventional printed circuits manufacturing techniques. Also,
monopole configurations are suitable to quick measurement
routines because they do not require baluns.

Several plane-filling designs used to build monopole an-
tennas are shown in the first two rows of Fig. 1. All of them are
constructed using the iterated function systems (IFS) algorithm
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TABLE I
CHARACTERISTICS OF THESIMULATED MONOPOLES

[12], and all of them generate fractal curves with fractal di-
mension 2 in the limit. If fractal dimension alone would play a
role in the behavior of the antennas we should expect the same
performance for all of them. But we cannot work with fractals,
we always work with truncated versions called prefractals.

The analyzed monopoles are a Hilbert curve and three
variants of a Peano curve. The Hilbert curve and the third variant
of the Peano curve are generated using a networked IFS
of four and nine transformations, respectively. Another Peano
curve is generated using an IFS with nine transformations
and with crossings among parts of the curve. Though being an
space-filling fractal curve it is not suitable for designing a minia-
ture antenna due to its closed loop structure. To avoid the loops
and achieving higher miniaturization ratios the generating pro-
cedure is slightly altered and Peano variant 2 curve is
obtained although being not strictly a prefractal.

III. SIMULATIONS AND MEASUREMENTS

The curves described in Section II have been used to de-
sign several wire monopoles. These monopoles are simulated
with copper wire of 0.12-mm radius. Simulations include an
small 2-mm length segment that accounts for the feeding point
where a connector should be welded in a real antenna. Although
the lossless models are matched at 800 MHz, the antennas are
characterized in the range of 500–1500 MHz. Characteristics
of simulated monopoles are summarized in Table I. Simula-
tions are carried out using the numerical electromagnetics code
(NEC) [13], a method of moments code suitable to analyze wire
structures. Each antenna was divided into segments smaller than

and larger than 2.5 times the wire radius. Extremely short
segments smaller than are avoided. Prefractals are simu-
lated until iteration 4 for the Hilbert monopole and until iteration
2 for the Peano, Peano variant 2, and Peano variant 3 monopoles.
Whereas radiation efficiency calculations were used according

Fig. 2. Computed radiation efficiency at resonance versus electrical size of the
antenna. Dashed lines join families of prefractals.

to its definition, the quality factor value was computed with the
same definition of Chu [2].

Computed and at resonance versus electrical size
are shown in Figs. 2 and 3. Dashed lines join prefractals by fam-
ilies. Quality factors are computed for the lossless models of the
structures to be compared with the fundamental limit for lineal
polarization [3]. As expected, open wire monopoles reduce their
radiation efficiency and increase their quality factor with each
iteration, while reducing the electrical size of the structure. The
increasing wire length with iteration reduces efficiency and, at
the same time, the closeness among wire segments cause more
intense couplings increasing the quality factor of the structure.

However, the Peano monopole is a closed loop structure
and its behavior is quite different. Negligible variations on
its electrical size at resonance , radiation efficiency and
quality factor are noticed while increasing the iteration of the
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Fig. 3. Computed quality factor at resonance versus electrical size of the
antenna. Dashed lines join families of prefractals.

prefractal. It is supposed that with the increasing iteration the
Peano monopole tends to behave as a rhombic monopole.

Figs. 2 and 3 reveal that simulations of intuitively generated
monopoles loaded with meander lines (shown at the third row
of Fig. 1) achieve the same reductions in size with better perfor-
mances in and than prefractals.

The prefractal and the nonprefractal monopoles have been
manufactured (Fig. 4) with 0.35-mm strips (25 mm thick)
supported on an slim (0.25 mm) FR4 dielectric substrate.
Monopoles are attached to an 80 cm80 cm ground plane
and feeded with an SMA connector. They have been measured
using the Wheeler cap technique [15] with an small cylindrical
radiation shield and making two measurements of the input
impedance of the antennas with and without the cap using a
network analyzer.

To assess the trend of the simulated Peano monopole an
Euclidean rhomb monopole was fabricated and measured. The
Peano monopole was fabricated resonant at 1.2 GHz to use
the same cap that was employed for the other antennas. The
influence of the dielectric substrate and the fabrication of the
monopoles with strips and not with wires shifted the resonant
frequency of the antennas to lower values than simulated.
A monopole was also fabricated to compare with this
well-known antenna the measured frequency shift, the losses in
efficiency, and the increase in quality factor due to the presence
of the fiberglass substrate and the change of wires by strips.
Despite of the substrate and the use of strips, the performance
of the monopoles agree with expected simulations as depicted
in Figs. 5 and 6: increasing the iteration of the prefractals is
useful to reduce the electrical size of the monopoles, but
the drastic reduction on radiation efficiency and the increase
on quality factor makes these antennas rather unuseful for
practical applications.

IV. CONCLUSION

The behavior of a miniaturized monopole antenna cannot
only be evaluated in terms of its size reduction compared with

Fig. 4. Fabricated monopoles compared with a 10 eurocent coin. From top
to bottom: Hilbert monopoles, Peano monopoles,�=4 monopole and rhomb
monopole, Peano variant 2 monopoles, Peano variant 3 monopoles, and meander
line loaded monopoles.

an standard monopole. Of course, this is a very interesting
parameter in certain applications, but it is not enough. An-
other parameters are crucial to define the applicability of the
antennas: quality factor and radiation efficiency.

In this sense, space-filling prefractal antennas are not suit-
able to design efficient miniature antennas. Though suitable for
reaching higher miniaturizarion ratios compared with a conven-
tional monopole, they store a lot of energy in the near fields
of the antenna and have higher ohmic losses. Both inconve-
niences result in high values of quality factors and low values of
radiation efficiencies. In addition, and at self-resonance, fractal
dimension seems not to play a role in the behavior of the an-
tennas as experiences with prefractals with the same fractal di-
mension show. These conclusions have been assessed through
simulations and measurements on bi-dimensional self-resonant
prefractal wire monopoles.
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Fig. 5. Measured radiation efficiency at resonance versus the electrical size of
the prefractals. Dashed lines join families of prefractals. The performance of a
�=4 monopole and a rhomb monopole appear on the graphics.

Fig. 6. Measured quality factor at resonance versus the electrical size of the
prefractals. Dashed lines join families of prefractals. The performance of a�=4
monopole and a rhomb monopole appear on the graphics.

The experiences from this work also show that other intu-
itively generated Euclidean configurations perform better than
prefractal structures with the same size-reduction ratios (
values), and even admit more degrees of freedom for the an-
tenna designer.
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